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Abstract

This paper investigates projection-free algorithms
for stochastic constrained multi-level optimiza-
tion. In this context, the objective function is a
nested composition of several smooth functions,
and the decision set is closed and convex. Existing
projection-free algorithms for solving this prob-
lem suffer from two limitations: 1) they solely
focus on the gradient mapping criterion and fail
to match the optimal sample complexities in un-
constrained settings; 2) their analysis is exclu-
sively applicable to non-convex functions, with-
out considering convex and strongly convex objec-
tives. To address these issues, we introduce novel
projection-free variance reduction algorithms and
analyze their complexities under different crite-
ria. For gradient mapping, our complexities im-
prove existing results and match the optimal rates
for unconstrained problems. For the widely-used
Frank-Wolfe gap criterion, we provide theoretical
guarantees that align with those for single-level
problems. Additionally, by using a stage-wise
adaptation, we further obtain complexities for
convex and strongly convex functions. Finally,
numerical experiments on different tasks demon-
strate the effectiveness of our methods.

1. Introduction

In this paper, we consider projection-free algorithms for
stochastic constrained multi-level compositional optimiza-
tion in the form of

}I(Tg)f(lF(X):fKOfK—lo“'Ofl(X), ()
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where X is a closed convex set. We assume that each func-
tion f; and its gradient can only be accessed through noisy
estimations, symbolized as f;(-;£) and V f;(+; £) such that

Ee [fi(-:8)] = fi(-) and E¢[Vfi(-:6)] = Vfi(),

where £ denotes samples drawn from the oracle. Problem (1)
finds wide applications in machine learning tasks, such as
reinforcement learning (Dann et al., 2014), government
planning (Bruno et al., 2016), risk management (Dentcheva
et al., 2017), model-agnostic meta-learning (Ji et al., 2020),
robust learning (Li et al., 2021), risk-averse portfolio opti-
mization (Shapiro et al., 2021), and graph neural network
training (Balasubramanian et al., 2021).

Although stochastic multi-level optimization has been inves-
tigated extensively in recent years (Yang et al., 2019; Bala-
subramanian et al., 2021; Zhang & Xiao, 2021; Chen et al.,
2021; Jiang et al., 2022b), current work mainly focuses on
unconstrained problems, i.e., X = R¢. For many practical
problems, such as risk-averse portfolio optimization, the de-
cision set is constrained (e.g., the decision variable x should
be in a simplex for portfolio optimization). Traditional
constrained optimization typically employs a projection op-
eration to ensure that the solutions are within the decision
set. However, projection is usually complicated and time-
consuming, and existing literature (Xiao et al., 2022) begin
to show interest in developing projection-free algorithms for
constrained multi-level problems by replacing projection (a
convex optimization problem) with multiple steps of more
efficient linear minimization operation.

Projection-free methods typically require two oracles: 1)
the Stochastic First-order Oracle (SFO), which takes a point
x and returns the pair (f(x;&), Vf(x;€)), where £ is a
sample drawn from the oracle; 2) the Linear Minimiza-
tion Oracle (LMO), which takes a direction d and outputs
arg mingey (x,d). To evaluate different projection-free
algorithms, the most widely used measures are the number
of calls to SFO and LMO required to attain an acceptable
solution. For non-convex functions, such a solution x is usu-
ally defined by the Frank-Wolfe gap (Lacoste-Julien, 2016),
formalized as

F(x) = max(X — x, —-VF(x)) <, )

xeX
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Table 1. Summary of results for projection-free algorithms under three different criteria: the Frank-Wolfe gap (FG), gradient mapping (GM),
and optimal gap (OG). Here CVX represents convex functions and SC stands for A-strongly convex functions. We compare our methods
with 1-SFW (Zhang et al., 2019),SPIDER-FW (Yurtsever et al., 2019), NCGS (Qu et al., 2018), SGD+ICG (Balasubramanian & Ghadimi,
2018), LINASA+ICG (Xiao et al., 2022), and SCGS (Lan & Zhou, 2016).

Method Criterion ~ Assumptions  Level Batch size SFO LMO
1-SFW FG Smooth 1 1 O(e? O (e7?)
SPIDER-FW FG Smooth 1 O (e O(e? O (e7?)
Theorem 1 FG Smooth K 1 O (e® O (e7?)
Theorem 2 FG Smooth K 0(671) O (e o 672)
NCGS GM Smooth 1 O (et O (e? O (e7?)
SGD+ICG GM Smooth 1 O (et O (e? O (e7?)
LINASA+ICG ~ GM Smooth K 1 O (e? O (e7?)
Theorem 3 GM Smooth K 1 O(e ")  0O(e??)
Theorem 4 GM Smooth K @) (6_0 5) @) (6_1‘5) o (6_2)
1-SFW 0G Smooth+CVX 1 1 O(e? O (e7?)
SPIDER-FW 0G Smooth+CVX 1 O () O (e? O ()
Theorem 5 0G Smooth+CVX K 1 O (e? O (e7?)
Theorem 6 0G Smooth+CVX K O(ch) O (e? O ()
SCGS 0G Smooth+SC 1 O() o\t O(e!
Theorem 7 0G Smooth+SC K 1 oA tet O(e?
Theorem 8 0G Smooth+SC K o) o't O(e!

where € is a small value. More recently, the gradient map-
ping criterion (Qu et al., 2018) has been introduced, which
is denoted as

)

where Iy denote the projection onto the domain X and
parameter 3 is a positive constant. Notably, if X = R?,
this gradient mapping criterion simplifies to the stationary

point, i.e., E {HVF (x)||2} < ¢, which is the standard metric

for stochastic unconstrained problems. When the objective
function is convex or strongly convex, the optimal gap crite-
rion is employed instead, expressed as

2
<e ()

F(x) - min F(%) < e, @
xeX

which measures the difference between the objective and
the optimal value.

The current method for stochastic projection-free multi-level
compositional optimization, named as LINASA+ICG (Xiao
et al., 2022), integrates the linearized NASA (Ghadimi et al.,
2020) algorithm with inexact conditional gradient (Balasub-
ramanian & Ghadimi, 2018), and provides theoretical guar-
antees under the gradient mapping criterion. This method
can identify an acceptable point with O(e~2) calls to SFO
and O(e~3) calls to LMO. However, it still suffers from sev-
eral drawbacks. Firstly, its SFO complexity does not match
the existing optimal rate of O(e~!+?) for stochastic uncon-
strained problems. Secondly, its analysis solely concentrates

on gradient mapping, and results for the more widely used
Frank-Wolfe gap criterion are not provided. Finally, this
method is restricted to non-convex objective functions, and
it is unclear how to improve the rate for convex and strongly
convex objectives.

To address these issues, we propose new algorithms that
utilize the variance reduction estimator STORM (Cutkosky
& Orabona, 2019) to obtain more accurate evaluations of
both the inner function values and the overall gradient. By
integrating these estimators with a specifically designed
Frank-Wolfe algorithm (Jaggi, 2013), we improve the rate
for gradient mapping and are able to analyze the Frank-
Wolfe gap. Besides, by employing a large batch size, we
can reduce the iteration numbers and thus improve the LMO
complexities while maintaining the same SFO rates. More-
over, we develop a stage-wise algorithm with a warm-start
technique and provide theoretical guarantees for both con-
vex and strongly convex functions. Compared with previous
methods, this paper makes the following contributions:

1. We establish the first theoretical guarantees for the
Frank-Wolfe gap (Theorem 1, 2) under the multi-
level setting. The rates we obtained match the results
for single-level projection-free methods (Zhang et al.,
2019; Yurtsever et al., 2019).

2. For gradient mapping (Theorem 3, 4), our approach
achieves an improved SFO complexity of O(e~1°) and
LMO complexity of O(e~2-%). The SFO complexity
matches the low bound (Arjevani et al., 2019), and the
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LMO complexity can be further reduced to O(e~2) by
using large batch sizes.

3. We explore the complexities for convex (Theorem 5, 6)
and strongly convex functions (Theorem 7, 8), and
derive the optimal SFO rates for these problems, which
have not been studied in previous projection-free multi-
level literature.

We compare our theoretical results with existing methods
in Table 1, and validate the effectiveness of our method
through numerical experiments in Section 4.

2. Related Work

This section briefly reviews related work on stochastic multi-
level compositional optimization and stochastic projection-
free algorithms.

2.1. Stochastic Multi-Level Compositional Optimization

Stochastic Compositional Optimization has been explored
extensively in the literature, and most research focuses on
the two-level settings (Wang et al., 2017a;b; Ghadimi et al.,
2020; Zhang & Xiao, 2019; Chen et al., 2021; Qi et al., 2021;
Jiang et al., 2022a; 2023; Yu et al., 2024). The problem of
multi-level compositional optimization was first investigated
by Yang et al. (2019). Inspired by multi-timescale stochas-
tic approximation (Wang et al., 2017a), they introduced the
multi-level stochastic gradient method, which achieves a
sample complexity of O (1/e7+5)/2) for K-level prob-
lems. When the function is strongly convex, this complexity
can be further improved to O (1 / cBHE)/ 4). Subsequently,
motivated by the NASA algorithm (Ghadimi et al., 2020),
Balasubramanian et al. (2021) proposed using a linearized
averaging stochastic estimator to track the function value,
attaining a sample complexity of O (1/€*) for non-convex
objectives. This rate was also obtained in a concurrent
work (Chen et al., 2021) by employing variance reduction
techniques to evaluate the function value.

Later, Zhang & Xiao (2021) employed nested variance re-
duction to approximate gradients, improving the sample
complexity to the optimal O (1 / 63). However, this ap-
proach requires a large and increasing batch size on the
order of O (1/¢). To address this issue, Jiang et al. (2022b)
developed a method called SMVR, which achieves the
same optimal rate but only requires a constant batch size.
SMVR also attains an improved rate of O ( 1/ 62) for convex
functions and O (1/ (Xe)) for A-strongly convex objectives.
More recently, Gao (2023) further introduced the decentral-
ized stochastic multi-level optimization algorithm, which
achieves the level-independent convergence rate under the
decentralized setting. Despite these advancements, these
algorithms are only applicable to unconstrained problems.

2.2. Stochastic Projection-Free Algorithms

The most well-known projection-free method, Frank-Wolfe
algorithm (Frank & Wolfe, 1956), was originally designed
for smooth convex optimization with polyhedral domains
and has been extended to any convex compact set by Jaggi
(2013). In the stochastic setting, Hazan & Kale (2012)
first developed a projection-free method for online smooth
convex optimization. Later, Hazan & Luo (2016) applied
variance reduction techniques to the stochastic Frank-Wolfe
algorithm. Inspired by the accelerated gradient method (Nes-
terov, 1983), Lan & Zhou (2016) proposed the stochastic
conditional gradient sliding (SCGS) method, which offered
an SFO complexity of O (A~'e~!) and an LMO complex-
ity of O (e~1) for smooth A-strongly convex optimization.
Besides that, projection-free methods are also widely inves-
tigated in online convex optimization in recent years (Hazan
& Minasyan, 2020; Wan et al., 2020; 2022; Mhammedi,
2022; Garber & Kretzu, 2023; Wang et al., 2024).

For non-convex objectives, Reddi et al. (2016) introduced
the SVFW method, achieving an SFO complexity of
O(e=19/3) and an LMO complexity of O(e~2) under the
Frank-Wolfe gap. Motivated by the variance reduction tech-
nique SPIDER (Fang et al., 2018), Yurtsever et al. (2019)
developed the SPIDER-FW algorithm, improving the SFO
complexity to O(e~?) by using a large batch size of O(e~1).
To avoid relying on large batches, Zhang et al. (2019) pro-
posed the one-sample stochastic Frank-Wolfe algorithm (1-
SFW), which attains the same SFO complexity and obtains
an LMO complexity of O(¢~2). Rather than focusing on
the Frank-Wolfe gap criterion, Qu et al. (2018) and Balasub-
ramanian & Ghadimi (2018) explored the gradient mapping
criterion, and attained O(e~2) complexities for both the
SFO and LMO at the cost of using a large batch of O(e 1)
in each iteration.

In the context of stochastic multi-level optimization, Xiao
et al. (2022) recently proposed a projection-free conditional
gradient-type algorithm, which combines the linearized
NASA algorithm with the inexact conditional gradient tech-
nique (Balasubramanian & Ghadimi, 2018). This method
achieves an SFO complexity of O (1/€?) and an LMO com-
plexity of O (1/€?) in terms of the gradient mapping cri-
terion. However, its SFO complexity does not match the
complexity of O (1 / 61'5) achieved by variance reduction
methods for unconstrained multi-level problems'. Further-
more, they only consider non-convex functions, and solely
focus on the gradient mapping criterion, which are the main
drawbacks we aim to address in this paper.

' Gradient mapping reduces to E [|[V F(x)||*] < ¢ for uncon-
strained problems, and existing methods (Zhang & Xiao, 2021;
Jiang et al., 2022b) ensure E [||VF(xgH] < e with a complexity of
O(1/€®), implying a rate of O(1/€e*-5) for gradient mapping.
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3. The Proposed Methods

In this section, we first introduce the assumptions used in
this paper. Then, we present the proposed algorithms, along
with their corresponding theoretical guarantees for three
different criteria: Frank-Wolfe gap, gradient mapping and
optimal gap.

3.1. Assumptions

We adopt the following assumptions throughout the paper,
which are commonly used in studies of stochastic composi-
tional optimization (Yuan et al., 2019; Zhang & Xiao, 2019;
2021; Jiang et al., 2022b) and stochastic projection-free
analysis (Qu et al., 2018; Yurtsever et al., 2019; Zhang et al.,
2019).

Assumption 1. (Constrained set) The decision set X
is closed and convex with a bounded domain such that
max e [x — ]| < D.

Assumption 2. (Smoothness and Lipschitz continuity) All
functions f1,. .., fx are Ly-Lipschitz continuous, and their
Jacobians V f1, ...,V fi are L j-Lipschitz continuous.

Assumption 3. (Bounded variance) For 1 < i < K, we
assume that:

Ee; [fi(x:€)] = fi(%),
Eeg; [Vfi(x:&)] = Vfi(x),
Eg [|Ifi0ei ) — £i0)]*] < 02
B [IIV£ix &) ~ VA] < 03

where {£}K

Assumption 4. (Average smoothness) For1l < i < K, we
assume that:

Eg; [l fix: ) — filyi€D)|”] < £3 Ix—yI*,
Eg [[IV/itx€) = VilysD)|*] < £3

| are mutually independent.

2
7lx=yl".

Assumption 5. We suppose that F (x1) — F, < Ap for
the initial solution x1, where F, = minyey F(x).

3.2. Results for Frank-Wolfe Gap

First, we examine the sample complexity under the crite-
rion of Frank-Wolfe gap. The primary procedure of our
algorithm involves estimating the gradient of the objective
function and then employing the Frank-Wolfe method to re-
place the projection operation. Note that the gradient of the
multi-level function exhibits a nested structure, and the esti-
mation error would accumulate as the level becomes deeper.
To address this issue, we resort to the variance reduction
technique STORM (Cutkosky & Orabona, 2019) to esti-
mate both the inner function value and the overall gradient.

Specifically, we draw a batch of samples {¢*, - -+, 51}
with the batch size B; for each level ¢ at time step ¢, and
then employ a variance reduction estimator u’ to track each
inner function value f;(-) as

ui:(l

Zfl " 17 t
Zfz (CHR R

This evaluation ensures that the estimation error is reduced
over time. Then, we employ a similar variance-reduced
estimator v to evaluate the overall gradient of the objective
function VF(x;) as:
1, ¢4,5
’ ft )]

| Bu[K
vi=(l—a)v,_ 1—|— Z [vai(ut_
i=1
val w T E )]

_7 =1
B
1 —
) By Z
j=1
After obtaining the gradient estimation, we follow the frame-
work of the Frank-Wolfe algorithm (Jaggi, 2013), but use the
estimator v, to replace the gradient required in the original
algorithm as follows:

a)uj_ 1+

&)

—(1-a)=

(6)

Zy = arg )I(Iél/ryl@(a Vt>7
Xpp1 = X¢ + (2 — X¢).

In this way, we develop our Projection-free Multi-level Vari-
ance Reduction (PMVR) method for stochastic multi-level
problems. The complete algorithm is presented in Algo-
rithm 1. Note that in the first 1terat10n (When t=1), we
can simply set estimator u} = Bo Z 0 fi(uih €07 and

B K 1. o4, .
vy = B%) i [Hi:l Vf;(ui=t:€87)|, where By is the
batch size for the first iteration.

Comparison with the SMVR method: Although the
SMVR algorithm (Jiang et al., 2022b) for unconstrained
problems also utilizes the STORM estimator to assess in-
ner function values and gradients at each level, our PMVR
method differs from SMVR in the following aspects: 1)
SMVR first estimates the gradient at each level using
STORM and then computes the overall gradient through
multiplication, requiring an additional gradient clipping for
each level to ensure the overall gradient does not explode.
This operation demands knowledge of the gradient upper
bound of each level, which is impractical in real-world ap-
plications. In contrast, our PMVR method directly applies
variance reduction to the overall gradient, eliminating the
need for such gradient clipping. This technique is also men-
tioned in a concurrent work (Gao, 2023); ii) Our method em-
ploys a constant learning rate 7 and momentum parameter c,
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Algorithm 1 PMVR Algorithm

Algorithm 2 PMVR-v2

1: Input: parameters 7', 7), «, initial points (x1,uy, vy)
2: for time stept = 1to 7T do
3: Setuy =x;

4:  forlevelt =1to K do 4 .

5 Draw a batch of samples {5;’1, Y }

6: Compute the estimator u’ according to (5)

7:  end for

8 Compute the gradient estimator v; according to (6)
9:  Compute z; = arg minye v (X, v¢)

10:  Update the weight: x;11 = x; + n(z: — x¢)

11: end for

12: Choose 7 uniformly at random from the set {1,...,7T}
13: Return (x,,u,,v,)

which are easy to implement and fine-tune, whereas SMVR
requires these parameters to decrease gradually, which is
more complicated; iii) Our PMVR is a projection-free algo-
rithm specifically designed for constrained problems, with
theoretical guarantees focused on the Frank-Wolfe gap and
gradient mapping. In contrast, SMVR aims to find stationary
points for unconstrained objectives.

Next, we present the sample complexities of Algorithm 1
with respect to the Frank-Wolfe gap F(-) defined in equa-
tion (2). Note that by using a large batch size B;, we are
able to decrease the iteration numbers and thus reduce the
LMO complexity. As a result, we provide a constant batch
version and a large batch version for our guarantees.

Theorem 1. By setting By = O(1), n = O(e?), and o =
O(€?), our PMVR algorithm guarantees that E [ F(x,)] < €
within T = O(e3) iterations.

Remark: The above theorem indicates that both the SFO
and LMO complexities are of the order O(e~3), consistent
with results for projection-free single-level problems using
a constant batch size (Zhang et al., 2019).

Theorem 2. (Large Batch) By setting B; = O(e™1), n =
O(e), and oo = O(€), our PMVR algorithm guarantees that
E[F(x,)] < e within T = O(e~2) iterations.

Remark: By employing a large batch size of O(e™ 1),
our method obtains an SFO complexity of O(e~3) and an
LMO complexity of O(e~2). These results align with those
achieved by existing projection-free methods for single-level
objectives (Yurtsever et al., 2019).

3.3. Results for Gradient Mapping

Then, we investigate the complexities under the criterion
of gradient mapping G(-) defined in equation (3). To deal
with the gradient mapping, our PMVR algorithm only re-
quires minimal modifications to fit this criterion. Based on

Replace Step 9 of Algorithm 1 with the following
1: Initialize wi = x;
2: for time stepn = 1 to NV do
3:  Compute s = arg minge x (v¢ + 8 (W, — x¢), 8)
4 Setwpi1 = (1 —v)wy, +ys
5: end for
6: Setz; = W41

Proposition 2 of Xiao et al. (2022), gradient mapping can
be decomposed into two components:

G(x¢) < —4p migg(waxtth) +2||VF(xe) — ve|?,

we

where
_ B 2
g(W, X4, vy) = (Ve, W — X)) + §||W —x¢||%.

Since our PMVR method has already employed variance-
reduced techniques to ensure that the gradient estimation er-

rorE | ||VF(x:) — v HQ} decreases over time, we can reuse

this part and focus on bounding the — minycx g(W, X, v¢)
term. To address this constrained quadratic minimization
problem, we design a sub-algorithm, modified from the
Frank-Wolfe method (Jaggi, 2013), which runs for several
loops. In each loop n, we update as follows:

s = argréréi)g(vt + B (W, —x¢),8),
Wot1 = (1 —y) wy, + ys.

Note that v, + 3 (w,, — x;) is the gradient of g(w,,, X, V)
with respect to parameter w,. Overall, we only need to
replace Step 9 in Algorithm 1 with a sub-algorithm pre-
sented in Algorithm 2, and we can obtain the guarantees for
gradient mapping below.

Theorem 3. By setting By = O(1), N = O(e™!), n =
O(V/e), and o = O(e), our PMVR-v2 algorithm guarantees
E[G(x,)] <einT = O(e~1?) iterations.

Remark: When using a constant batch size, our algorithm
results in O(e~1-%) SFO complexity and O(e~2-5) LMO
complexity, which are both better than the previous al-
gorithm LiNASA+ICG (Xiao et al., 2022), that achieves
O(e=?) SFO complexity and O(e~3) LMO complexity.

Next, we can improve the LMO complexity by using a large
batch size.

Theorem 4. (Large Batch) By setting By = O(¢7%%), N =
O(e™1), n = O(1), and o = O(+/¢), our PMVR-v2 ensures
E[G(x,)] < einT = O(e 1) iterations.

Remark: The above theorem indicates that PMVR-v2,
with a batch size of O(e~°%), achieves an SFO complexity
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Algorithm 3 Stage-wise PMVR

Algorithm 4 Stage-wise PMVR-v2

1: Input: initial points (xg, ug, vo)

2: for stage s = 1to S do

3 (xs,us,Vs) = Algorithm 1 with parameters T, 7,
s and initial points (Xs—1,Us—1,Vs_1)

4: end for

5: Return xg

of O(¢71%) and an LMO complexity of O(e~2). These
rates are superior to methods for single-level objectives, i.e.,
NCGS (Qu et al., 2018) and SGD+ICG (Balasubramanian &
Ghadimi, 2018), which require a larger batch size of O (e~ 1)
and demand a worse SFO complexity of O (¢~2). Notably,
our SFO complexity of O(e~1®) also matches the lower
bound for stochastic unconstrained optimization (Arjevani
et al., 2019).

3.4. Results for Optimal Gap

In addition to the analyses for general non-convex functions
in previous subsections, we further investigate the case for
convex and strongly convex functions, defined as follows.

Definition 1. A function F : X — R is convex if
F(y) > F(x)+ (VF(x),y — x),¥x,y € X.

Definition 2. A function F' : X — R is \-strongly convex
if vx,y e X

Ply) 2 F(x) + {VEG),y %) + Sy — x|

When the objective function is convex or strongly convex,
a local optimal point becomes a global optimal point. Con-
sequently, a natural criterion to consider is the optimal gap
defined in equation (4).

Convex functions: First, we investigate the case for con-
vex functions. To obtain theoretical guarantees, we design a
stage-wise algorithm with the warm-start technique building
on Algorithm 1. Specifically, we divide the entire process
into S stages, and for each stage s, we run Algorithm 1 with
a new set of parameters T, 75, &5, and use the output of
the previous stage {xs_1,us_1, Vs—_1} as the initial points.
The complete method is shown in Algorithm 3, referred to
as Stage-wise PMVR.

By decreasing as and 7, and increasing 7T at each stage,
we can ensure that the optimal gap is halved after each stage,
such that E [F(x,) — F,] < 3E [F(x,_1) — F,]. Denoting
S = O(log(<*)) and €, = €;/2°, where € is a positive
constant, we can obtain the guarantees for optimal gap in
the following theorem.

Theorem 5. Setting By = O(1), ns = O(€2), as = O(€2),

S S

Replace Step 9 of Algorithm 1 with the following
1: Initialize w1 = x;
2: for time step n = 1 to IV do
3:  Compute s = argmingex (v; + % (Wn —x¢),8)
4: Setwynq1 = (1 —y)w, +ys
5: end for
6: Setz; = WN+1

and Ts = O(e;?), we ensure E [F(xg)] — ming F (%) < €
in O(e2) iterations.

Remark: When using a constant batch size, we obtain
O(e=?) complexity for both SFO and LMO, matching the
results for single-level problems (Zhang et al., 2019). Also
note that the SFO complexity of O(e~2) is already optimal
for convex objective functions (Agarwal et al., 2012).

Theorem 6. (Large Batch) By setting By = O(e; '), ns =
O(es), as = O(es), and Ty = O(e5 1), we can ensure that
E[F(xs)] — ming F(X) < e in O(e~ 1) iterations.

Remark: The above theorem indicates that our algorithm
achieves an SFO complexity of O(e~2) and an LMO com-
plexity of O(e~!) with a large batch size of O(e~!), align-
ing with the rates of methods for single-level settings, such
as Spider-FW (Yurtsever et al., 2019).

Strongly convex functions: Compared with convex func-
. .. A 2

tions, we have an additional term % ||y — x||” for strongly
convex objectives according to the Definition 2. So, instead
of applying arg minye x (X, v¢) in Step 9 of Algorithm 1,

we aim to

3 . A 2
iy (., vi) = { (wov) + i)

via LMO in this case. To this end, we design a sub-algorithm
that runs the Frank-Wolfe method (Jaggi, 2013) for several
loops. In each loop n, we update as:

s in (vt 2 )8
=argmin{ v; + — (W, — X¢),8 ),
g@eX ¢ 2 t

Wp41 = (1 - ’Yt) W, + Y¢S,

(N

where v; + % (W, — x¢) is the gradient of g(w,,,X;, v¢)
with respect to parameter w,,. Overall, we retain the stage-
wise design of the original Algorithm 3, but replace step 9 in
its basic Algorithm 1 with the newly developed Algorithm 4.
This modification allows us to establish the optimal gap
guarantees as detailed below. Here, we denote €5 = €1 /2°,
where € is a positive constant.

Theorem 7. Setting B; = O(1), N = O(\e7 1), ns =
O(Xes), as = O(Xes), and Ts = O(A"te ), we ensure

E[F(xg)] — ming F(x) <ein S = (’)(log? tl ’)) stages.

€
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Figure 1. Results for matrix optimization with low-rank constraints.

Remark: When employing constant batch sizes, we can
achieve an SFO complexity of O(A~'e~!) and an LMO
complexity of O(e~2). Notably, the O(A~te~!) SFO com-
plexity we obtained is already optimal for stochastic uncon-
strained strongly convex problems (Agarwal et al., 2012)
and is thus unimprovable.

Theorem 8. (Large Batch) By setting B; = O(e; '), N
ONe 1), ns = ON), as = O(N), and T = O\~ )
we can guarantee that E [F(xg)] — ming F(X) < € within

S = O(log(<t)) stages.

Remark: By using a large batch size, the SFO complexity
remains on the same order, and the LMO complexity can be
further improved to O(e~!), matching the existing results
for strongly convex functions in the single-level setting (Lan
& Zhou, 2016).

4. Experiments

In this section, we evaluate the effectiveness of our proposed
methods through numerical experiments on three different
problems. We compare our methods with existing stochas-
tic multi-level algorithms, including A-TSCGD (Yang
et al., 2019), NLASG (Balasubramanian et al., 2021),
Nested-SPIDER (Zhang & Xiao, 2021), SCSC (Chen et al.,
2021), and SMVR (Jiang et al., 2022b). We also com-
pare with the previous projection-free multi-level algo-
rithm LiNASA+ICG (Xiao et al., 2022). For our algo-
rithm, we select the momentum parameter « from the set
{0.01,0.03,0.05,0.1,0.3} and search the parameter N for
PMVR-v2 from the range {10, 50, 100}. For the other meth-
ods, we adopt the hyper-parameters recommended in their
original papers or perform a grid search to select the best
ones. The learning rate is fine-tuned within the range of
{0.001,0.005,0.01,0.05,0.1}. All experiments are con-
ducted on a personal laptop.

4.1. Matrix Optimization with Low-Rank Constraints

Following the previous literature on projection-free multi-
level optimization (Xiao et al., 2022), we also conduct ex-
periments on matrix optimization with low-rank constraints.
Specifically, we consider the matrix-valued single-index
model (Yang et al., 2017) with a low-rank constraint, ex-
pressed as:

y=[(A,B*)p|° +¢ rank(B*) <s

where A, B € R™*", ¢ ~ N (0,0%),(-,-)r denotes the
Frobenius inner product, and s is a positive integer smaller
than both m and n. To recover a low-rank matrix B* given
A and y, we can optimize the mean squared loss function
with a nuclear norm constraint. The objective function can
be formulated as:

win F(5) =& | (1~ (4, )¢l*)’|
st | B« < s.

Note that in this case, the projection operation onto the
nuclear norm ball requires a full singular value decompo-
sition (SVD), while the linear optimization used by Frank-
Wolfe update only requires computing the singular vector
pair corresponding to the largest singular value, which is
much cheaper (Jaggi, 2013). In line with the setup in Xiao
et al. (2022), we define the matrix B* = vv'/ ||vv
and the matrix A is generated by A = [ + E, with

Ei; "N (0,0.3).

In Figure 1, we plot the value of Frank-Wolfe gap, as well
as gradient mapping, against the running time of each al-
gorithm. All the curves are averaged over 50 runs. As can
be seen, our PMVR and PMVR-v2 methods demonstrate
a more rapid decrease in both criteria compared to other
approaches, especially for the gradient mapping criterion,
demonstrating the superiority of our proposed methods.
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Figure 2. Results for risk-averse portfolio optimization.

4.2. Mean-variance Risk-averse Optimization

We first consider the problem of risk-averse portfolio opti-
mization (Shapiro et al., 2021), a commonly used bench-
mark in comparing various multi-level algorithms (Yang
et al., 2019; Balasubramanian et al., 2021; Zhang & Xiao,
2021; Chen et al., 2021). Suppose we have d assets to in-
vest over time steps {1,..., T}, and r, € R? represents
the payoff of d assets at time step ¢. The goal is to maxi-
mize investment returns and minimize risk simultaneously.
A suitable approach for this purpose is the mean-variance
risk-averse optimization model, where risk is defined as the
variance. This optimization problem is formulated as:

min F
xeX

N

1 T A T
Z r:, X + 72 ry, X I' X>)2a
t=1

t:l

where r = % 25:1 r, and the decision variable x denotes
the investment quantities in d assets. The domain X’ is a sim-
plex, ensuring that ||x||; = 1 for any x € X. This problem
can be modeled as a stochastic two-level constrained com-
positional optimization problem, with each layer expressed

050 075  1.00
Time x103
----- SMVR === LINASA - PMVR =—— PMVR-v2
as follows:
T
)= (-7 Z ry, X
)\ T
fa(y1,y2) = TZ rey2) +y1)°,

where f1(+) is the inner function and f5(-) is the outer func-
tion such that F'(x) = fa(f1(x)).

For experimental validation, we utilize real-world datasets
Industry-10 and Industry-12 from the Kenneth R. French
Data Library?. These datasets include payoffs for 10 and
12 industrial assets over 25,105 consecutive periods. For
non-projection-free methods, we implement the projection
onto the simplex following a well-known efficient projection
method (Duchi et al., 2008). We report the loss value F(x),
as well as the Frank-Wolfe gap and gradient mapping criteria
in Figure 2, averaging all curves over 50 runs. We also in-
clude results concerning the number of iterations in Figure 4
in the Appendix A. It is observed that LINASA+ICG, our
PMVR and PMVR-v2, tend to converge more rapidly com-
pared to other algorithms in all tasks. Specifically, PMVR

Zhttps://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Figure 3. Results for risk-averse portfolio optimization.

demonstrates similar performance to LINASA+ICG in the
Industry 12 dataset and performs better than LINASA+ICG
in Industry 10. The loss value, Frank-Wolfe gap, and gra-
dient mapping of our PMVR-v2 decrease most quickly in
both datasets, validating the effectiveness of the proposed
method.

4.3. Mean-deviation Risk-averse Optimization

Finally, we further conduct the experiment on a three-level
compositional optimization problem. Here, we still consider
the problem of risk-averse portfolio optimization as in the
previous subsection, and the risk is quantified as the standard
deviation this time. The mathematical formulation of this
problem is:

(0 = M| D () = (7))

t=1 t=1

1
max —
xeEX T

[M]=

where ¥ = % Zthl ry, & is the probability simplex, and the
decision variable x denotes the investment quantity vector in
the d assets. This is a three-level compositional optimization
problem according to the analysis by Jiang et al. (2022b).

In the experiments, we also evaluated different methods on
the real-world datasets Industry-10 and Industry-12. The
results, including the loss value F'(x), the Frank-Wolfe gap,
and the gradient mapping criteria, are reported in Figure 3.
These results are averaged over 10 runs. As can be seen,
our methods (PMVR and PMVR-v2) demonstrated faster
convergence compared to other algorithms across all tasks.
The loss value, Frank-Wolfe gap, and gradient mapping
of our PMVR-v2 decreased most rapidly in both datasets,
indicating the effectiveness of our proposed approach.

5. Conclusion

In this paper, we investigate projection-free algorithms for
stochastic constrained multi-level optimization. Our pro-
posed methods not only yield better results than previous
approaches under the gradient mapping criterion but also
provide guarantees for the Frank-Wolfe gap, an aspect pre-
viously absent in projection-free multi-level research. Ad-
ditionally, we provide theoretical guarantees for convex
and strongly convex objective functions, and validate the
effectiveness of our proposed methods through numerical
experiments.
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A. More Experimental Results

We also report the loss value F'(x), as well as the Frank-Wolfe gap and gradient mapping criteria concerning the number
of iterations for the mean-variance risk-averse optimization in Figure 4. When the cost of the projection operation is not
considered (since we report the results based on iteration numbers rather than the time used), the SMVR, LINASA+ICG, our
PMVR and PMVR-v2, tend to converge more rapidly compared to other algorithms in all tasks. The loss value, Frank-Wolfe
gap, and gradient mapping of our PMVR-v2 decrease most quickly in both datasets, validating the effectiveness of the

proposed method.
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Figure 4. Results for risk-averse portfolio optimization.

B. Proof of Frank-Wolfe Gap (Theorem 1 and Theorem 2)

In this section, we present the proofs for the Frank-Wolfe gap. First, to bound the estimation error of the gradient, we have
the following lemma.
Lemma 1. The gradient estimation error can be divided into the following two parts.

2

T T K T K-1
Y E {HVF(xt)—thQ} <23 E||lvi - [[ VA | +25L23 S E {Hui—fi(ui_l)ng}.
t=1 t=1 =1 t=1 i=1

Proof. First, it is easy to show that:
2 2

K K
5 [ive - v RG] <28 | v - T vaci )| | 28 | [T - vPex)
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Then, we define that y! = fio fi_10...0 fi(w;) and VE(Wt) =Vfi(w) - Vfi(u™).

VF,(w;) — VFi(wy)| =0,

VFy(w;) — VEy(wy)|| = ||Vf1(Wt)Vf2(y,}) — Vi(w)V fa(u})]|

< L¢L, HYt

VFs(we) — VFs(wy)|| = val(wt)v.fQ(Yt)va(yg) — Vi(we)V f2(uf)V f3(u?) |
< LiLy (|lyi =il + [ly: — i)

K-1
<LE'L Y |y -]
i=1

HVFK(wt) VP (wy)

Besides, we also have:

||Yt _utH = Hf20f1 (W) —lltH
< |20 fi(wi) = folu; |l+||f2 () = 2H
< Ly [[fi(we) = wi]| + || falwi) = v
||Yt _utH = ||f3°f20f1 Wy —lltH
< | fso fao fr(we) — fa(ud)|| + || fs(uf) — uf||
< Lylly? —uf|| + [ fs(uf) - “t”
< Ly(Ly [ utm) — | + | atad) = wl) + | ucad) -

[y = wil] < Ly [lyi ™" = w7+ [l fi (™) — ud]
7
<YL | i -
j=1

To this end, we can conclude that:

HVF(Wt) - V?K(Wt)H < Kf Cy || fi(ui™h) — i,
=1

where C; := L;{_lLJ(l +Ly+...+ Lff_i_l). Since C; < L, we know that:

2

— VF(xy)

K—-1
< K3 AE [ i) —ui]’]
=1

Next, we bound the term E [Hvt Hz 1 Vfi(u H and E [Hu; — fi(ui—l)Hz} separately.

Lemma 2. The gradient estimator vy enjoys the followmg guarantee:

K
Vi — H Vfl(u;_l
=1

|:HV1 Hz 1 Vi(u H } 2K20T03L2K—2
< o By d

]
£2L2K Q;XQE[HW _yit! H}
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Proof. According to the definition of v;, we know that:

ZHsz HED+(L—a) | vie 1—*ZHsz (w;=1;67)

jlzl jlll

Then we can obtain the following guarantee:

K 2
Vi — H Vii(uit
1=1 )
=15 ZHsz HED) + (- ) | vee 1——ZHVf1 w36 Hsz
j=1l1i=1 j=1l1i=1
= (1_0415 (Vt I_vaz ut 1>+Oét ZHsz ut 17 t vaz ut 1
1i=1
K - 2
vaz ut 1 vaz vaz ut 1a t +72va2 §£Z’j)
i=1 j 1i=1 j=1i=1
Since the expectation of last two terms equals zero, such that
ZHsz (w21; &7 vaz (wZ)| =0,
] 1i=1
K P
vaz llt 1 vaz Zvaz ut 17 t vaz ;52’J) =0,
i=1 ] 1i=1 j 1i=1
we would have that:
K 2
Vi — H Vfi(ut_l
i=1
2
<(1—-a)’E |||vi— 1—1_[VfZ u 1) +E ||« Zval ul 167 HVfl u 1)
j 1i=1
ZHVf’L ut 1, t’j _7Zvaz ;gzd)_vai(ui:%)ﬁ_l—[vfi(util
J 1i=1 j=1li=1 i=1 =1
9 2
<(I—a)E | ||vi 1—HVfZ (ui=]) + 202E —ZHVfl (ui=1; ¢ HVfl (ui=])
j=14i=1

K K
+ 2K 72va2 ut 17 t’J _7ZHVJ£Z §5§’j)_vai(ui:i)"‘nvfi(util
i=1 i=1

]111 jl’Ll
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Then, we would bound the last two terms, respectively. First, we have that:

E Zvav ut 17 ¢’ HVﬁ ut 1

lel

o
B2 ZE ut 17 e vaz ut 1
b
val w, i & vaz (ui"1)
K
vaz w15 67) = V() vaz w1 &)
=2
K
+V fi( ut 1 vav ut 17 h ) vfl(ut DV fa(ug_, vaz ut_l’ :j)
=2 1=3
2
(vazut 1>vaut17t vazutl
2
("1 67) = Vi(al, vaz w15 67)
K s ’
+EE Vi, vaz w15 67) = V)V (g, vaz w15 6Y)
=2 =3

r 2

K
+B—1E (HVflut 1>VfKut e Hszut :

K
< (K4 KR gy L)

K? _
:E03L2K 2

When dealing with the second term, note that

K

By . K
|5 (st - TToneiva - TTwawib s v
Jj= =

So, we can have that:
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<—£2L2K 22]]5{ —u;’j\ﬂ

i=1

To this end, we can conclude that:

K 2
E [ v — ij,(u;—l) ]

K
<(1-o)E [ vior— [[ VD)
=1

2 K
2K?%0?02 _ 2K _ i 1112
] 1t J[?K 2 1 C?][?K 2; :]E[Hut 1 ui—%” }7
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which implies that

K
Vi — H Vfi(ui_l
i=1

ZT: (at+1 - Oét) .

t=2

2K2L2K 2 T

Zatﬂ _|_ 52 L2K 22

ZE[HU i ]

Q41

Note that 1/a; 41 — 1/a; = t4/2 — (t — 1)1/2 < 1/2 and for t > 2, Y2 t2/3 < 3T'/3 4 1. As a result, we have that

T K 2
ZE Vt—HVfi(llfl <
=1 i=1
K 27 972 72K —2 K
1605 K~L 4[{ 1 )
v [T | [+ 2B g M e 22 3B [l -]
i=1 i=1

Lemma 3. The inner function estimator u, ensures that:

T K SEE(|Ju - £ snkTo .
SO E [ - A )] < ! I, 2okl fZZE[Hu —ui ]

: «
t=1 =1 t=1 =1

Proof. Since wj = = X2 fi(wi™€07) + (1 - a)(uj_; — & 2 fi(ui=1:67)), we have:
i—1 i||2
E[Hfi(ut )*“tH }
B

= |||(1 - ) (ui; ~ fiui=}) + Blz(f;(ut L) - fiuith)

j=1

2
+fz(ut 1) f1 *—Z(fz ut 1’ t )7fi(ui—1;§:,j))
) a?
S(l—oz)2EHui 1 fl(ut 1)H + U fz(ut 1»&573 ut 1 H }
1 B, 2
+ 2E Blj;<fl(ut 15 t ) fz( ; t ) fl(ut 1)+f1( ))

where the last inequality is due to: E {fi(uij) — fi(ui™h) — Bl Z (fz( wi—leid) - fi(ufl;fz’j))} — 0, as well as
E[g1 E (fl(ut 1 t ) fz(ut 1))} =0.
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Also, since we know the fact that E {fz(ut D - fii ™ = fi(uizh ) - fi(ul ;fz’j)} = 0, we have:

2

B
E _B}lZ(fl(ut 17 t ) fl( 75;7‘7) .fz(ut 1)+f7,( ))

(i) = aih + A=) - stui~56) ]

B

E:

g (rizte )—ﬁ(uil;gz*j))\ﬂ
5=

.2
fz ut 17 t fl( §§Z7J)H ]

<—L’ Hu uff_1|| .

As a result, we can conclude that:

20202 2

E[Hfi(ui_ 7ut||:| 1*04E||ut L — filuZ 1)H + B, JF Hut 1 —uy 1”2
This leads to the fact that:
= i1 20202 K 1112
ZE[Hfi(ut ) —ul| } <(1—-a) ZIEHut L — fi(uiz 1)|| +7 ZH“ LY
i=1

By summing up and rearranging, we can get:

zT:ZK:E [Hui_fi(uiil)uz] SZME [Huﬁojfi(uzf )|l } QaKTa L3 ZZE [Hu il ’ﬂ’

t=1 i=1 t=1 i=1

which finishes the proof.

Then, we try to bound the term Z L E {Hutﬂ u, ! ||2} .

Lemma 4.

ZE{HutH ui ] < <Z (203)’ ) (E[n2||zt—xt||2]+”“2§( 2KZE[Hut fiu H})

i=1 i=1

=

Proof. We discuss the following two cases, separately.
1. For the first level, i.e., ¢ = 1, we have:
i—11(2 2 2
E [Jluizt - wi ] = B [Iis —xl?] = E [ 2 — %]
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2. For other levels, i.e., 2 < i < K, we have:

{||uf+1 i‘1||2]

. . 1 &
=E ||| (fifl(u§_2) - ui_l) + B, Z(fi*l(ut+1’£t+1) fica(uj »ft+1))
j=1
1 & :
tal| 5 S ficau A0 = fisa(up?)
j=1

2

B,
<2E ||l (fic1(ui™?) —ui™") +a Bil Z fica(af726000) — fisa(ug™?)
j=1

+2L3E [[|uiz? - ||

2 20202
+ JE—

<207 fa(ui~) — wi| 2038 [uiz i)

Denote Ti = E [Hui - fi(uifl)Hz} and Q' = {Huprl ?1”2} we have Q" < 2£3Q"! + 22T + % for
1 > 2. Then we can get:

Q' <E [ |z — xilI’

Q* < (2L})E [772 |z — Xt||2]

2020 42 2T1

2a20 (1+2c3)

Q* < (263 E [P 2 — xi|?] + 5 +20% (2227} + 12)
i 2yi—1 2 2 20202 2y\J—1 21.71 2\t 1=7 Anj
Q' < (262) 7B [ lm — %l + =203 2ty (265) T
j=1 j=1
oyi—1 9 )1 20202 & ovj—1 5 L& o\ Kl nnj
< (23) B[P lln - x| + 5o (20 20?303 (203) T .
j=1 j=11=1

When summing up, we have:

ad K ) 20202 K K i K K ol
S Y @) T E [ -l + T3 (20 T+ 202K Y (208)
=t =1 i=1 j=11=1
K i—1 20202 K
< (Z (2£5) ) <E (7 Nl —x][*] + == 20 2KZT’>
i=1 i=1
So we have :
a2 = 2yi—1 2 2 20202 K )
ZE“utH ;| } > (2c3) E {77 1z — || } B + 2a KZE“ut fila™|| }
=1

O
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i—1
Lemma 5. Denote that the constants as L; = (2K£(2]L§K72 + 4£?) (Zf_l (2[2?) >, Ly = max{2,2KL2},
Lg = 2Ly(2K03 3% 7% + 4K0? + 21102 K + L1 D* + Ly), we can ensure that:

T
L3 OéLgT L3’I72T
IE{ F(x;) — 2]< ,
Z IVE(xt) — vl *ozB0+ B, + B,

t=1

Proof. Based on Lemma 1, we have:

2

T T K K-1
S E[IVFx) —vill’] <23 E | |vi - T[] VAiui™ +2KLE Y 3B [||uf - fitui ™|
t=1 t=1 =1 t=1 i=1
K2o LzK 2 i 2
Noting that E [H ~ 115, Vfi(u H ] YK E {Hut J(ug | } < Ko and setting 2aL, K <
By, we can deduce that:
T K . 2 T K-1 _ ‘ ,
SE||ve - [[VA@™Y] | +2) E[Hug—fi(ug-l)u }
t=1 =1 t=1 =1
K?03L35 7% +2Ko?  2aK?To3 L3 +4aKTo? 2KL3 L2K Pt L E it |2
= aBo " B i ;;E[Hu ~uidlr]

- K?05L5% 7% +2Ko?  2aK?To3 L3 72 + 4aKTo?
- aBy * B
L 2Ta20?K S . 2
+ Tél (Tn2D2 5t 20°K» Y "E [||u; — fi(ai™Y| }
t=1 i=1
K202L2572 1 9Ko?  20K?To%L%K72 + 4aKTo? 22 2
< Jhy gLy +L117DT 2aL10° KT

- aBy + B, aBy B}

T K ‘ ‘ )
30D E [ui - fitwi ]

t=1 i=1

So, we have that:

S IVF () =il

t=1
K

Vi — H Vfi(ufl
i=1

T
<L) E
t=1

2 T K-1

t Loy SR [uf - fiwi )]

t=1 i=1

- K?63L35 7% + 2K o? . 2aK*To3 L3~ + 4aKTo? N Li?D®T  2aL,0®KT
2 aBy By abB; B%
L: LT Lsn®T

< b3 i alsg n 37

70[80 Bl OéBl

O

Now we can finish the proof as follows. Denote the Frank-Wolfe Gap as F(x) := maxzecx (X — x,—VF(x)) and
z; = argmaxzex (X — x, —VF(x)).
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L
F(xt41) S F (%) + (VF (X¢) , X1 — Xe) + TF i1 — x|

That is to say:

By setting T = O (e~

L
=F (Xt) + n <Vt,Zt — Xt> +’I7 <VF (Xf) — Vi, Zp — Xt> + 7}27FD2

< F(x¢) +n{ve,zf —x¢) + 0 (VF (x¢) — Ve, 2 — X¢) +1° *DZ
oLF

=F(x¢) +n(VF (x¢),z; —x¢) + 1 (VF (x¢) — Vi,2¢ — 2}) + 7 : LF 2
L
< F (%) = 0F (%) + 0D [ VF (xe) = vil| + 1 - D?
) T
1 F(x1) — F(x741) Lr
T;}-(XQS T Z:: IVF (x; _Vt||+777D

2),n=0(e),a=0(e), By = By = O (¢7!), we can ensure that F(x) < e. Moreover, we can

obtain the same guarantee by setting that & = O (¢2) ,n = O (¢?) , By = O (1),By =0 (1), T =0 (e73).

C. Proof of Gradient Mapping (Theorem 3 and Theorem 4)

In the previous analysis of Lemma 5, we simply reduce 7% ||z; — x; ||2 < n%2D?. To obtain the optimal rate, we have to keep
this term. That is to say, we rewrite the Lemma 5 as follows

Ls 3 n*L3
fZIE[IIVF(XJ—vtII 57t B aBTant x|
t=1

According to Proposition 2 of Xiao et al. (2022), we know that the gradient mapping

196xe DI < —48g(x1,vi) + 2B [|VF () = vil?]

where g(x;,v;) = minyex {<Vtvy - x) + %Hy - Xt||2}'

Due to the convergence of Frank-Wolfe algorithm (Jaggi, 2013), we know that

28D*

(i = %)+ Sl =l < g0t ve) + 2

which is widely used in the analysis of Frank-Wolfe algorithm (Xiao et al., 2022; Zhang et al., 2019; Wan et al., 2021; Wan
& Zhang, 2021). Now, we begin our proof

F(x¢41)

L
< F (%) + (VF (x0) X1 = %0) + 5 %1 — ]

L
< F(x¢) +n(VF (xt),2: —X¢) + 772—F l|lz: — xt||2

2

L
= F (%) +11(V, 20 = %0) + 0 (VF (x0) = Vi, 20 = %) +0° " 12—

L
= F(x¢) +n(ve,2z¢ —X¢) + ?Hzt — x|+ 0 (VEF (x¢) — Vi, 2 — X¢) — %\\Zt —x||2 + UQTF |z — x¢|?
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Denote y* = minye v {(vt, y = %)+ 2y — x| } Set ) < 57— (note that /3 is a positive constant), and then we have,

2nBD?

F(x¢11) S F(x¢) +0(ve,y" —x¢) + %Hy* —x||* + N 12
L
En{VE () vz~ x) — Dlla il 42 T 2 — P
2

268D
< F(xt) +ng(xe,ve) + D7

+ 0 (VF (%) = Vi, 20 — Xg) — ?Hzt — x4

N+2
P el
77 2 t t
24 D?
< F(x¢) +ng(xe, ve) + ]€+;} +n(VF (x¢) = Vi, 20 — X¢) — %”zt —x¢|?
28D? 2
< Fx) +ngloi,vi) + g+ B [IVFGx) —wil?] = % e = el
As a result,
F(x;) - F (x 26D? 2
gt vi) £ TR | 290 2 1956 - vil?] - Sl -l
So, we have:
1G(x¢. B)|1*
< — 4Bg(x0, vi) + 2B [ IV F (1) = vil ]
4B(F(x;) — F (x 832 D? 2
<ﬁ((”n(t“»+£+2+thwwa—wF—inm—&w
Finally, we have
1z
37 166x..9)
t=1
ABAF  842D? 10
< TNt LR [IvRe) - vi] - —72 21— x|
480p | 842D 0Ly | 10Lsa n2 1 & 2
< 10L3—— — — —
ST + N aBoT + B 3 tz:; |z — x|
2712
_4BAp 83D 10L; | 10Lya
nT N aByT By
The last inequality holds with n < ﬂ;OO‘LBl By setting o = O(y/e), n = O(1), T = O(e7 1), By = O(e7 %), B; =
O(e79%), and N = O(e™!), We can ensure that E [||g x¢, B)|| ] < e. This guarantee can also be satisfied by setting

a=0(),n=0(/0),T=0(c15) By=0( %), B = O(1),N = O(c™).

D. Proof of Optimal Gap (Theorem 5, 6, 7 and 8)

In this section, we investigate the optimal gap for convex and strongly convex objective functions.

D.1. Convex
According to the equation (C.21) of Yurtsever et al. (2019), for algorithm 1 with convex objectives, we have that

, LpD?

E[F (xe41)] = Fo < (1 =) (E[F (x¢)] = £2) + nDE[[VEF (x¢) = vel| + 77—
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Then we have:

T
T z:: (x¢41)] — Fi

E|F — Fy LpD?
7( [ (x0)] )+ Z]Envp(xt)—vtum r
T t 1
E|F - F L D2
<EEEI=R) ., p fzuz”vmxt)fvtu oyt
t=1
; 2
LHV Vfi(u H}—FQL E[u fi(ut! }
<(]E[F(X1)]*F*> |: 2 1= Hz 1 f 221 1 H 1 ( 1 )H
< +D
nT aoT
Ong 772L3 LFD2
D
+ B1 + OlBl +n 2
Next, we denote that I'; = + Zle HZ 1 Vfi(u H 7 Zthl ZZK=1 [|uf — j”i(ui_l)H2 for stage s and we
denote x° as the output of Algorithm 3 for the stage s. Then we have:
E[F (x*71) = F] LT, 4 asLs  n2Ls3 LpD?
E[F(x°) — Fy] < D D = s
e =Rl s = e TP e T T2

Also, we have that:

Fg<2FS_1 Oéng L3773
T T oy B3 o By

_ r1ys—1 _ €. (4AF+24464D?Ly) To(16D%Lo+6) s 12n,Ls 128Lsn,D?
Sete; = (5) ,Ms = g < 4L;D2’T > max{ s ) . 7Bl > max ez P .

We can guarantee that E [F (x*) — F,] < €5 and E [I'y] < €2. We will use the induction to give the proof: ‘

Proof. When s = 1, we have:

AF LQFO 041L3 172L3 LFD2
E[F(x') - F] < D D 1
[ (X ) } - 771T1 + OllTl + B% + O[lB% n 2
<ea=1

where I'y = K203L?K_2 + 2K 2. Also, we have that:

2T a1 L Lsn?
I, < 0 + 1 13 37711
OélTl Bl Clel

<e=1

Then, assume E [F (x*) — F,] < e, and E [T'5] < €2, we would prove that it holds for stage s + 1.
E[F (x**") — F]

€s Loe2 asi1L 2. L LpD?
o p [ fols Rk et
Ns+1Ts41 51 541 B; 1183 2

IN

€
GGG een
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We also know that

r < 2¢2 as+1L3 L3773,+1
s+1 > as+1Ts+1 Bf—i—l Oés+1Bi+1
62 2 & 2
_ﬁ + E + ﬁ €st1
So we prove E [F (Xs) _ F*] < (%)8—1 with n, = a, < ﬁ7 Bf > max { 1276];L37 128L€32715D2 }’ >
max { (4AF+247:64D2L2), FO(lﬁ[::L”G) } This condition can be satisfied by setting that s = O(e;), Ts = (’)(es_l),
a = O(es) and B = O(e; 1) [Large batch version]. This can also be achieved by setting that s = O(€2), Ts = O(e;?),

&)
a = O(e?) and B = O(1) [Constant Batch].

To ensure E [F (x*) — F,] < ¢, set § = O(log,(1)), and the SFO rate is 3.5_, T*B§ = O (Zle 2(25)) =0(%). O

D.2. Strongly Convex

In this section, we assume F'(x) is A-strongly convex function and we set ) < ;72—

F(xt41)

L
<E (%) +(VF (x¢) , X1 — X¢) + TF xe+1 — x|

L
<F (x0) +1(VF (%) 20 — %) + 1P ||z — x|

2
A L A

=F (%) 41 (Ve 2 = 1) + 1 (VEF (%) = Ve, 2 = x4) + 1= 1z = x| + (P55 = L2 12 — x|

) . A, AD?2  pA
<F(x) +{VE(x1) = Vo2 = x7) 40 (VEGx), X" = x) + 12 o =il 157 = 2l — ]

where the last inequality is due to the fact that
A A, AD?
N (Ve e =) + 12— xil* < (vext =) + 2 = x|+ o

For A-strongly convex function, we have (VEF(x;),x* — x¢) < F, — F(x;) — 3 ||x¢ — x*||>. As a result:

A A 4
F (xi41) < F(xi) +n(Fs = Flxe) = 2 x* = x| + 2 20 = x*° + SLIVE(x0) = vil

16
M _ @ |z — x ||2
N 8 t t
So we have: \D?
4 D
F (xe41) = F2 < (1= 0)(F (x1) = F2) + 3L [VF(x) = vil|* + 15—

Finally, we have:

T _Fr 4 T
T Z(F(Xt) - F) < T* 37 Z IVF (%) = v
t=1

Next, we denote x° as the output for stage s. Then, we have:

F (Xs—l) — F* 4FS_1 40&SL3 477ng )\D2

E[F (x*)] - F, <
[FO) = Fes — NoTs | AB; ' AawB; | N
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Also, we have that:

FS <2F3_1 Odng L37’]g
o T B3 o By

2 2
Set that e, = (3)*71, By > els N > QDL 1 > gy (POt PO AUDG By = max{A~!,1}. We can

guarantee that E [F' (x°) — Fy] < €5 and E [['s] < Ae;. We will use the induction to give the proof:

Proof. When s = 1, we have:

‘ 2
r, < 2I'g a1[1/3 L37711
OlelBO Bl Oqu

< ey = )‘7

where B denotes the batch size used only in the first iteration of the first stage. Also, we have that:

AF 4F0 4&1.[/3 477%.[/3 )\D2
E[F(x') - F,] <
[ (X ) ] - ’Ith * AOquB() AB% )\OélB% N
S €1 = ].

Then assume E [['s] < Aeg and E [F (x®) — Fy] < €5, we would prove that it holds for stage s + 1.

2FS OZS+1L3 L377§+1
Fs+1 < s+1 s+1
O4s-i-1jjs—i-1 Bl aerlB]
2)es ast+1L3 Lan iy
T o1 T4 Bf'H as+1Bf+1
A€s
< 26 :)\65+1
Besides, we know that
s 4T dogi L an?. L AD?
E[F(x*"")~F] <=+ oLy | pyils
775+1Ts )\as+1Ts+1 ABT )\as—&-lBi N
S %9 = €541

O

So we prove E[F (x*) = F,] < (1) with ¢, = (3)*71, By > Zgela N > OD% 7 > Pltil) g -
max{\~! 1}.

This condition can be satisfied by setting that 7, = a; = O(A), Ty = O(A™!), By = O(e; '), N = O(2) (Large
Batch) or by setting that i, = a; = O(Ae;), Ts = O(A"'e;!), By = O(1), N = O(2) (Constant Batch). To ensure

S

E[F (x°) — F,] < ¢ set S = Ology(1)), and the SFO rate is Y0, T, Bf = Y5, CMas—1 = (L),
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