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ABSTRACT

Information transmission by diffusing particles is crucial in many biophysical and
artificial systems. The factors that make a diffusive model an optimal choice in a
given context remain elusive and vital in narrowing the search space for context-
specific applications. This study explores a class of diffusion-reaction paradigms
on different performance objectives. Precisely, we compare the robustness, char-
acteristic length scale, and stochastic variability of the competing transport mod-
els considering the mesoscopic and microscopic views of the transport, asking
whether the entrapment of diffusing molecules improves the reliability of the dif-
fusive transport models.

1 INTRODUCTION

The diffusion transport of particles in short-range signal transmission is critical in many systems,
including pattern formation in living species, communication between nanomachines, and target-
specific drug delivery mechanisms (Akyildiz et al., 2008; Squires et al., 2008; Wartlick et al., 2009).
The spatial presence of particles in these systems results from diffusive transport of various forms;
however, the exact details of the underlying mechanism may vary. For instance, amongst the alter-
native models, the diffusion-decay (DD) model with and without entrapment of diffusing particles
is commonly seen in many patterning systems but are of dissimilar spatio-temporal dynamics and
characteristics. Specifically, the DD model is pertinent to explain the spatial spread of signaling
in many systems, for example, as seen in early embryonic patterning in Drosophila development
(Gregor et al., 2007; Bialek & Setayeshgar, 2005). In molecular communications (Pierobon et al.,
2014; Kuran et al., 2020; Jamali et al., 2018), a diffusive channel has alternative representations with
diffusion of signaling particles as its core (Jamali et al., 2018; 2019; Akyildiz et al., 2008). Other
systems, for instance, trap diffusing particles through a series of interactions, affecting dynamics,
time-scales, length-scales, efficiency in information transmission, etc (Eldar et al., 2003; Alon, 2019;
Umulis et al., 2006). These systems also experience various forms of perturbation, such as varia-
tion in production, temperature and pH , viscocity, alterations on the length scale, and the traits also
vary between different transport models and in their underlying details (Bialek & Setayeshgar, 2008;
Alon, 2019). As in the case of protein movement, the viscocity of the cytoplasm modulates the diffu-
sivity of the particles resulting in an inhomogeneous protein diffusion and regulated activity (Huang
et al., 2022). Also, self-enhanced particle degradation provides increased robustness in signaling
but at the cost of a reduced characteristic length (Eldar et al., 2003) of the distribution, suggesting
further exploration and tuning of contrasting traits between models of dissimilar transport details.
Moreover, diffusive transport is a viable model for the formation of potential molecular communi-
cation channels (Jamali et al., 2019) that exhibit contrasting traits, necessitating the assessment of
alternative diffusion models. Thus, a trade-off between performance objectives in diffusion trans-
port models becomes necessary in many applications and has been the primary focus of our current
study.
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Figure 1: a) Diffusive transport model: Particles emanate from a source and transport away by
diffusion in a channel of length L which may relate to envisaged applications such as drug delivery
or communications between nanomachines. b) Cellular patterns as a result of morphogen gradient
sensing often seen in early embryonic development. c) Pseudo 1D approximation of stochastic
transport of a diffusing particle experiencing Brownian motion (approximated by Smoluchowski
Equation).

2 MODELS AND METHODS

In our preliminary analysis, we consider variants of the three different models representing variations
in boundary conditions, source types and degradation mechanisms (Lander et al., 2002). Precisely,
the models are subclassed into: i) diffusion-decay (DD) of the diffusive particles that freely diffuse
in the medium and undergo degradation at a constant rate (kδ) and ii) reaction-diffusion (RD) mech-
anism, where particles in the fluid medium, for instance potential regulators, trap and untrap the
diffusing particles, modulating their dynamics. These additional interactions result in an effective
diffusivity and degradation rate of the diffusing particles. We also analyze how the strength and
the polynomial order of degradation affect the desired performance objectives (Eq. 1 and 3). Such
modifications of diffusion dynamics may contribute to a greater advantage in one aspect but with
compensation needed in other traits, and have been studied by using deterministic and stochastic
models.

2.1 TRANSPORT MODELS: DETERMINISTIC VIEW

2.1.1 DIFFUSION-DEGRADATION: NO TRAP

∂C
∂t =D ∂2C

∂x2 − kδ · Cm + boundary conditions + production + initial condition (1)

In Eq. 1, kδ is the degradation rate and m denotes the polynomial order of degradation of C. The
models include various boundary conditions such as reflecting and flux-boundary, at the left (x = 0)
and reflecting at the right (x = L) end. The source of secretion of the diffusing particle C is
assumed to be located at x = 0 (see Fig. 1a). At steady state, and with additional simplification,
Eq. 1 simplifies to (see Appendix A.1)

C(x) = C0e
(−x/λ) (2)

where C0 = (Jλ)/D; J , D, and λ are the flux at x = 0, diffusivity of C, and characteristic length
scale of diffusing C, respectively.

2.1.2 REACTION-DIFFUSION: TO TRAP

∂C

∂t
= DC0

∂2C

∂x2
− konC ·R+ koffCR,

∂CR

∂t
= DCR0

∂2CR

∂x2
+ konC ·R− (koff + ke) · CR

RT = R+ CR, and Boundary conditions + production + initial conditions (3)

Consider that the particles C interact with particles R to form CR, defined as the trapped C. While
diffusing away after secretion, the particle C couples and decouples following the first-order and
second-order reaction kinetics, respectively. In Eq. 3, kon, koff, and ke are the association, dissocia-
tion, and endocytosis rate constants, respectively. RT is the conservation condition on the regulators
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Figure 2: a-c) Mean characteristic length scales of To Trap and No Trap models for selected param-
eters. d-g) Shift relative to that for linear decay in a No Trap model as we move to higher degree
polynomials, for varying D and kδ at spatial points 20% and 80% of the diffusive length for a reflect-
ing boundary (d,e), 20% and 80% for an absorbing boundary (f,g). Parameters used are provided in
A.3

R that trap the diffusing particle C. Assuming that trapped C, denoted as CR, diffuses very slow
(DCR0 ≈ 0), and it equilibrates very fast, Eq. 3 simplifies to (see Appendix A.2)

∂C

∂t
=

DC0

1 + RT
kD

∂2C

∂x2
− keRT

(1 + RT
kD

)kD
C = Deff

∂2C

∂x2
− keffC (4)

As obtained, the entrapment of diffusing particle via a regulator R modifies the diffusivity and
degradation of particle C, and appears strikingly similar to Eq. 1. However, entrapment results
in an effective diffusivity Deff and a degradation rate keff of the diffusing particle. The numerical
simulation of the model in Eq. 3 assumes that the system operates far from saturation, allowing RT

to remain approximately constant spatially.

2.2 METHODS

2.2.1 STOCHASTIC ANALYSIS

In stochastic analysis, we implement the diffusive model as in Eq. 1, with and without degradation
of C. The model does not consider a flux source, instead, an initial injection of 1000 particles
at a position near x = 0 at t = 0 undergoes Brownian movement with the particles reflected
once they hit any of the boundaries on the left (x = 0) or right (x = L) (see Appendix A.4).
Assuming that X(t) ∈ R1 represent the position of a diffusing molecule along the x-axis, the
particle’s Brownian motion is approximated using the stochastic differential equation (Erban et al.,
2007; Erban & Chapman, 2009) as

X(t+∆t) = X(t) +
√
2D∆tξx (5)

where D is diffusivity and the ξx ∈ N (0, 1) represents a normally distributed random number of
zero mean and unit variance. Precisely, we perform a stochastic analysis (see Appendix A.4) of 1-D
diffusion of particles through Eq. 5, and then further assess it through pseudo-1D assumption, as
schematically shown in Fig. 1c.
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Figure 3: Observation of trends in standard deviation for the stochastic model with and without
decay in the immediate region of the source, L = [0, 10] and the sink, L = [30, 40]. The dotted line
is the mean variation along that region.

2.2.2 METRICS

The model uses robustness and characteristic length scale (λ) as metrics, where λ captures the spatial
position x where the concentration of C falls to a level C0/e (see A.1, Eq. 24). Robustness is defined
as the ability of a system to retain its acceptable signaling strength in the presence of perturbations.
In this study, we perturb the production J of the signaling particle and assess the positional shift
(Fig. 2) defined as

SJ = (Sx1, Sx2, . . . Sxn)/S
max
J ,where, Smax

J = max (Sx1, Sx2, . . . Sxn)

S2J = (Sx1, Sx2, . . . Sxn)/S
max
J (6)

The positional shift is calculated as ∆x = |x1 − x
′

1|. Here, we take a concentration (Sx1) from SJ

at position x1, and look for this same concentration in S2J . The position where Sx1 appears in S2J

is x
′

1. A low magnitude of ∆x relates to better robustness demonstrated by the system.

3 RESULTS

In the No Trap models (Eq. 1), we varied the degradation mechanism to capture the positional change
at x = 0.2 and x = 0.8 for the perturbations of the flux (J) of C and varied intrinsic diffusivity and
other parameters over a parameter space (Fig. 2d-g). As seen, the No Trap model achieves improved
robustness (measured by definition in Eq. 6) for higher-order polynomial degradation (denoted us-
ing m in Eq. 1), as demonstrated in earlier studies (Eldar et al., 2003). However, the improvement
saturates after m reaches a particular maximum order beyond which the polynomial-order degrada-
tion does not achieve much. Specifically, robustness improves negligibly, and the added benefits of
higher order polynomial degradation of C become indistinguishable. Furthermore, many patterning
systems need an extended spatial presence of the particles (Alon, 2019) in addition to enhanced
robustness against perturbations. Here, we capture the spatial presence of particles using the char-
acteristic length scale λ as the metric, as in Fig. 2a, where λ gradually decreases with an increase
in the order (m) of degradation. A comparison between the No Trap and To Trap model reveals a
superior performance for the To Trap model, showing an increased λ (Figure. 2) for m = 2, 3. The
study was conducted over large parameter space covering several order of magnitudes of parameters
(see Table. 2, Appendix) affecting the model dynamics. Interestingly, self-enhanced degradation
model (m = 2) also suggests improved robustness (Eldar et al., 2003), indicating its relevance from
multiobjective necessity. For the parameter sets (No Trap: 511, and To Trap: 5281) that produce
acceptable distributions (see Figure. 5, Appendix) of diffusing particles C, λ is smaller for a degra-
dation order m > 1, suggesting strong kinetic dependency of higher λ. One immediate analysis we
continue is identifying the required conditions for higher order degradation that achieve a greater λ
value. Aside from this, an initial comparison between the To Trap and No Trap model suggests that
if particles are trapped while diffusing, the system may appear more robust than a model that avoids
trapping diffusing particles, with comparable λ for the To Trap model (see Appendix, Figure. 4).
Together, the initial study reports that the trapping of particles absorbs perturbations better with in-
significant advantages for higher order (m > 4) degradations; however, additional study of tuning
and screening of the models’ dynamics is necessary to substantiate further.
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In stochastic analysis, initially we compare the role of free diffusion and the diffusion-decay phe-
nomenon by simulating exact Brownian dynamics of the diffusing particles C. Here, we calculate
standard deviation (σ) around the mean level of C over n = 50 runs at t1 = 10 and t2 = 100 min-
utes for each spatial position. An interesting phenomenon emerges showing region specific dynamic
behavior of σ. Specifically, mean level of σ calculated for x ≤ 0.25L for free diffusion model is
smaller than DD model, which, however, gets altered in region (x > 0.75L and x ≤ L) when com-
puted at t1 = 10 minutes (Figure. 3a-b). However, DD model exhibits less standard deviation (See
Figure. 3c-d) for both x ≤ 0.25L and (x > 0.75L and x ≤ L) if the dynamics evolve for a longer
duration (t2 = 100 min). Here, the mean of standard deviation in regions up to 0.25L and beyond
0.75L dynamically alter for short-term dynamics and remain uniform for long-term dynamics, indi-
cating the necessity of an extended analysis of different dynamic traits and precision in competing
transport models. Precisely, in many situations, information transmission or downstream activation
of signaling by a diffusive transport may trigger at the pre-steady state (Alon, 2019) and may be af-
fected by the alterations observed in this study. Also, such dynamic difference of standard deviation
may be relevant to mandatory traits such as dynamic scaling necessary by pattern formation systems
(Umulis, 2009).

4 DISCUSSION

We started the proposed work by interrogating the fundamental question of the nature, type, or con-
text of optimal diffusive transport models seen in living species. Our preliminary analysis demon-
strates that models perform differently depending on whether particles degrade while diffusing. The
type of degradation also matters when it comes to robustness and length-scale adjustment for differ-
ent applications. Interestingly, performance objectives are kinetic-dependent, vary in exact molecu-
lar details, and appear qualitatively different under alternative boundary conditions, making a wide
range of model possibilities. An immediate caveat of the current study is its lack of a detailed micro-
scopic analysis that involves mutual information, channel capacity, etc., which becomes essential,
and so does the first-passage time (Van Kampen, 1992). Also, simulation assumptions should be
relaxed and alternative boundary conditions on the particles’ secretion must be studied extensively
(Erban & Chapman, 2007). Together, these findings are vital for strengthening our understanding
of the intricate details of diffusive transport that occurs in a living cell. These observations may be
relevant to the AI Virtual Cell (AIVC) (Bunne et al., 2024) initiative undertaken to design and de-
velop a neural network-based framework that represents the simulated behavior of a living cell, for
example, the movement of proteins, diffusion of RNA in cytoplasmic regions (Chen et al., 2014).
As conceptualized, the AIVC must capture a multiscale universal representation that should inte-
grate molecular and cellular interactions and information processing across different scales. Cell
processes change due to numerous extrinsic and intrinsic factors, and narrowing the search space
for biologically feasible information integration at the molecular, cellular, and multicellular scale
is crucial to obtaining the high-quality training data necessary for AIVC implementation. Overall,
whether a particle is to be trapped or not to be trapped requires additional model exploration, includ-
ing the inhibitor model both on a mesoscopic and microscopic scale, to shed light on the underlying
reasons behind evolutionary choices made in many living systems and has been a part of our ongoing
research.
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A APPENDIX

A.1 NO TRAP MODELS

A.1.1 FLUX AT SOURCE

We consider the following diffusion equation and the tabulated initial and boundary conditions,

∂C

∂t
= D

∂2C

∂x2
− kδC

m,m = 1, 2, . . . , n

Initial Condition Left Boundary Right Boundary
C(x, 0) = 0 −D ∂C

∂x = J Reflecting: ∂C
∂x = 0

-do- -do- Absorbing: C(L, t) = 0

Table 1: Initial and Boundary conditions: No Trap (flux at source)

We use a central difference scheme to discretize the PDEs.

∂2C

∂x2
=

Ci−1 − 2Ci + Ci+1

∆x2
(7)

∂C

∂x
=

Ci+1 − Ci−1

2∆x
(8)

Using equation 7 and equation 8, we find the expressions for artificial nodes at the reflecting left and
right boundaries:

C−1 = C1 +
J

D
2∆x (9) CL+1 = CL−1 (10)

Hence, we have the following systems of ODEs.

1. Right Boundary Reflecting

∂C(i, t)

∂t
=



D(
2C1+

J
D 2∆x−2C0

∆x2 )− kδC
m
0 ,m = 1, 2 , i = 0

DCi−1−2Ci+Ci+1

∆x2 − kδC
m
i ,m = 1, 2 , 1 ≤ i ≤ N − 1

D( 2CL−1−2CL

∆x2 ),−kδC
m
L ,m = 1, 2 , i = N

(11)

2. Right Boundary Absorbing

∂C(i, t)

∂t
=


D(

2C1+
J
D 2∆x−2C0

∆x2 )− kδC
m
0 ,m = 1, 2 , i = 0

DCi−1−2Ci+Ci+1

∆x2 − kδC
m
i ,m = 1, 2 , 1 ≤ i ≤ N − 1

(12)

A.1.2 CHARACTERISTIC LENGTH OF NO TRAP MODEL WITH REFLECTING BOUNDARIES

∂C

∂t
= D

∂2C

∂x2
− kC,D

∂C

∂x

∣∣∣∣∣
x=0

= −J,
∂C

∂x

∣∣∣∣∣
x=L

= 0

At steady state, we have

D
∂2C

∂x2
− kC = 0

∂2C

∂x2
=

kC

D
= C0

1

λ2

From this, we know

λ =

√
D

k

7
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The generic solution is,
C = C0e

− x
λ + C1e

x
λ

We use the boundary conditions to find the values of C0 and C1.

∂C

∂x
=

∂

∂x
(C0e

− x
λ + C1e

x
λ ) = − 1

λ
C0e

− x
λ +

1

λ
C1e

x
λ (13)

Taking the derivative of equation 13:

∂2C

∂x2
=

C1e
x
λ

λ2
+

C0e
− x

λ

λ2
(14)

Now, we apply the right boundary condition.

∂C

∂x

∣∣∣∣∣
x=L

= − 1

λ
C0e

−L
λ +

1

λ
C1e

L
λ = 0 ⇒ C1 = C0e

− 2L
λ (15)

Applying the left boundary condition,

∂C

∂x

∣∣∣∣∣
x=0

= − J

D
⇒ C1 − C0 = −Jλ

D
(16)

Substituting equation 15 in equation 16,

C0e
− 2L

λ − C0 = −Jλ

D
⇒ C0 =

Jλ

D(1− e−
2L
λ )

(17)

Following from equation 17

C1 =
Jλ(e−

2L
λ )

D(1− e−
2L
λ )

(18)

Substituting equation 17 and equation 18 into the generic solution we get,

C(x) = C0e
− x

λ + C1e
x
λ =

Jλ

D(1− e−
2L
λ )

(e−
x
λ + e−

2L
λ + x

λ ) (19)

As L ≫ λ, we have the expression

C(x) =
Jλ

D
(e−

x
λ ) (20)

Applying L ≫ λ to equation 17 and equation 18, we get

C0 =
Jλ

D
(21) C1 = 0 (22)

Combining equation 21 with λ =
√

D
k ,

C(x) = C0e
− x

λ (23)

Dimensional analysis of λ gives us the following:

λ =

√
D

k
=

√
[L2T−1]

[T−1]
= [L]

Finally, we have an expression for the concentration at the characteristic length of a diffusive model,

C(x)

∣∣∣∣∣
x=λ

=
C0

e
(24)

8



Published as a workshop paper at MLGenX 2025

A.2 TO TRAP MODEL

We consider the following diffusion model with a trapping mechanism, which has the corresponding
boundary conditions.

∂C

∂t
= DC0

∂2C

∂x2
− konC ·R+ koffCR,

∂CR

∂t
= DCR0

∂2CR

∂x2
+ konC ·R− koffCR− keCR,

RT = R+ CR,
∂C

∂x

∣∣∣∣∣
x=0

= − J

DC0
,
∂C

∂x

∣∣∣∣∣
x=L

= 0

In this model, kon is the forward reaction rate constant, koff is the backward reaction rate constant,
and ke is the endocytosis rate. R is a regulator, CR is the bounded particle and RT is the conservation
condition. Assuming DCR0 is very low, we have the following.

∂CR

∂t
= konC ·R− CR(koff + ke)

Further, assuming ∂CR
∂t = 0, we get

CR =
kon

koff + ke
(C ·R) =

C(RT − CR)
koff+ke
kon

=
C(RT − CR)

kD
=

C ·RT

C + kD

When kD ≫ C,

CR ≈ C ·RT

kD
(25)

Adding ∂C
∂t and ∂CR

∂t ,

∂C

∂t
+

∂CR

∂t
= DC0

∂2C

∂x2
− keCR (26)

Substituting equation 25 in equation 26,

∂C

∂t
(1 +

RT

kD
) = DC0

∂2C

∂x2
− ke(

C ·RT

kD
)

∂C

∂t
=

DC0

1 + RT
kD

∂2C

∂x2
− keRT

(1 + RT
kD

)kD
C = Deff

∂2C

∂x2
− keffC

(27)

where Deff and keff are the effective diffusion coefficient and the effective degradation rate. Follow-

ing the derivation done for the No Trap model, we have λ =
√

Deff
keff

, and from equation 21,

C0 =
Jλ

DC0
(28)

      

                    

 

 

 

 
 
  
  
 
 
 
  
 
  
 
  
 
  
 
  
 
     

       

a) b) c)

Figure 4: Characteristic length and shift comparison for the Trap and No Trap models, L = 500µm.
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A.3 PARAMETERS

Parameter Value Unit

D [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10] µm−2s−1

Dc0 [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10] µm−2s−1

k [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10] s−1

kon [0.0001, 0.001, 0.1, 1] nM−1s−1

koff [0.01, 1, 1.5, 2.5] s−1

ke [0.01, 1, 1.5, 2.5] s−1

RT 10 nM
J [0.05 0.1 0.5 1 5] nMµm−2s−1

Table 2: Parameter set used for screening gradients. The filtered out combinations were used in the
Trap and No Trap Models in Fig. 2 a-c.

Parameter Value Unit

D [0.01, 0.1, 1] µm−2s−1

k [0.0001, 0.001, 0.01, 0.1] s−1

J (Unperturbed) 0.05 nMµm−2s−1

J (Perturbed) 0.1 nMµm−2s−1

Table 3: Parameter set used in the No Trap models for robustness analysis in Fig. 2 d-g.

Parameter Value Unit

D 0.1 µm−2s−1

Dc0 0.1 µm−2s−1

k 0.001 s−1

kon 0.001 nM−1s−1

koff 1.5 s−1

ke 1.5 s−1

RT 10 nM
J (Unperturbed) 0.05 nMµm−2s−1

J (Perturbed) 0.1 nMµm−2s−1

Table 4: Parameters used in the Trap and No Trap Models in Fig. 4
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Parameter Value Unit

D 0.01 µm−2s−1

Dc0 0.1 µm−2s−1

k 0.00001 s−1

kon 0.0001 nM−1s−1

koff 0.01 s−1

ke 0.01 s−1

RT 10 nM
J (Trap) 0.05 nMµm−2s−1

J (No Trap) 0.05 nMµm−2s−1

Table 5: Parameters used in the acceptable gradients in Fig. 5 with linear degradation.

Parameter Value Unit

D 0.01 µm−2s−1

Dc0 0.0001 µm−2s−1

k 0.01 s−1

kon 0.0001 nM−1s−1

koff 0.01 s−1

ke 0.01 s−1

RT 10 nM
J (Trap) 0.1 nMµm−2s−1

J (No Trap) 0.05 nMµm−2s−1

Table 6: Parameters used in the unacceptable gradients in Fig. 5 with linear degradation.

Parameters were screened in two phases. Firstly, parameter combinations for which the discretized
steady-state solution did not align with its analytical counterpart, were removed. The combinations
of D, k and J which carried over, were used to compute discretized solutions for polynomial order
degradation up to m = 10.

From all the resulting steady-state solutions, we picked out the concentration gradients where C at
x = 0.25L is at least 0.1Cmax and C at x = L is less than 0.3Cmax. A comparison of acceptable
and unacceptable gradients is given in Figure 5.

a) b) c) d)No Trap

NOT ACCEPTED

Length

ACCEPTED 

C
on

ce
nt

ra
tio

n

     
 

   

   

   

   

 

Trap

     
 

   

   

   

   

 

No Trap

     
 

   

   

   

   

 

     
 

   

   

   

   

 

Trap

Figure 5: A comparison of acceptable (a,b) and unacceptable (c,d) gradients.
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A.4 STOCHASTIC SIMULATION STEPS

The Smolochowski equations for Brownian dynamics consider the following steps (Erban et al.,
2007; Erban & Chapman, 2009):

(a) Generated ξ ∈ N (0, 1)

(b) Calculated the position of all 1000 particles injected at x = 0 and t = 0 using X(t+∆t) =

X(t) +
√
2D∆tξ

(c) if X(t+∆t) of a partile is < 0, we replace X(t+∆t) = −X(t)−
√
2D∆tξ and it takes

care of the particles crossing the left boundary at x = 0.

(d) if X(t + ∆t) of a partile is > L, we replace X(t + ∆t) = 2L − X(t) −
√
2D∆tξ, and

takes care of the particles that cross the right boundary at x = L.
(e) Steps (c) and (d) mimic the reflecting boundary conditions at both ends.

For the degradation of the particles undergoing Brownian dynamics, the following step is considered

(a) Degradation: For sufficiently small ∆t, the term k1∆t1 ≤ 1 denotes the probability that
a particle is degraded between [t, t + ∆t). To remove a particle from the system due to
degradation, we generate a uniform (0, 1) random variable r. If c(t)k∆t > r, then a
particle is removed from the system. That is, c(t+∆t) = c(t)− 1.
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