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Abstract
We revisit the recently introduced Local Glivenko-
Cantelli setting, which studies distribution-
dependent uniform convergence rates of the Em-
pirical Mean Estimator (EME). In this work, we
investigate generalizations of this setting where
arbitrary estimators are allowed rather than just
the EME. Can a strictly larger class of measures
be learned? Can better risk decay rates be ob-
tained? We provide exhaustive answers to these
questions—which are both negative, provided the
learner is barred from exploiting some infinite-
dimensional pathologies. On the other hand, al-
lowing such exploits does lead to a strictly larger
class of learnable measures.

1. Introduction
Cohen & Kontorovich (2023) initiated the study of the lo-
cal Glivenko-Cantelli setting: laws of large numbers that
are uniform over a function class but rather than being uni-
versal over all distributions, feature a delicate dependence
of the risk decay on the (local) sampling measure. This
naturally led to the binomial empirical process: for a fixed
p ∈ [0, 1]N and each n ∈ N, we have a sequence of in-
dependent Yj ∼ Binomial(n, pj), which are centered and
normalized to obtain Ȳj := n−1Yj − pj . The object of
interest is the expected uniform absolute deviation:

∆n := E sup
j∈N

|Ȳj |. (1)

More generally, one could imagine fixing a distribution µ

on {0, 1}N, sampling X(1), X(2), . . . , X(n) i.i.d. from µ,
and estimating p := EX(1) via the Maximum-Likelihood
Estimator (MLE) p̂ := 1

n

∑n
i=1 X

(i). In the case where µ
is a product measure (that is, the components of the vector
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X ∼ µ are mutually independent), E ∥p̂ − p∥∞ recovers
the expression in (1). Despite its austere appearance, the
binomial empirical process with independent coordinates
Yj under ℓ∞-norm deviation already captures much of the
richness of problem. Extensions to more general product
distributions µ over [0, 1]N are straightforward (Blanchard &
Voráček, 2024, Corollary 6) and the behavior under ℓr norms
for r < ∞ is considerably simpler (Proposition 7 ibid.).
Finally, the in-expectation bounds are readily converted to
high-probability tail bounds (Proposition 9 ibid.), and all of
the upper bounds stated for product measures hold verbatim
for arbitrary correlations.

For the purpose of analyzing (1), Cohen & Kontorovich
showed that there is no loss of generality in restricting p to
the set [0, 1

2 ]
N
↓0, consisting of all p ∈ [0, 1

2 ]
N with pj ↓ 0.

They defined LGC ⊂ [0, 1
2 ]

N
↓0 as the family of p for which

∆n −→
n→∞

0 and showed that LGC consists of exactly those p
for which

T (p) := sup
j∈N

log(j + 1)

log(1/pj)
, p ∈ [0, 1

2 ]
N
↓0 (2)

is finite. They also characterized up to constants the asymp-
totic decay of ∆n (whenever T (p) < ∞) via the functional

S(p) := sup
j∈N

pj log(j + 1), p ∈ [0, 1
2 ]

N
↓0, (3)

establishing that ∆n(p) decays as
√
S(p)/n. Additional

finite-sample bounds provided therein were tightened by
Blanchard & Voráček (2024) as follows:

∆n(p) ≍1 ∧

√S(p)

n
+ sup

j≥1

log(j + 1)

n log
(
2 + log(j+1)

npj

)
 ,

if n · sup
j≥1

2jpj > 1,

∆n(p) ≍
1

n
∧
∑
j≥1

pj ,

otherwise.

In a later work, Blanchard et al. (2024) extended some of
the analysis to the much more difficult case where µ is not
a product measure (i.e., the coordinates of X ∼ µ have
correlations). In the present paper, we return to the product-
measure case and investigate a different extension: How
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does ∆n behave if rather than restricting the estimator to
the MLE p̂, we allow arbitrary estimators p̃?

Actually, a bit of a refinement in terminology is necessary.
When considering (essentially) unrestricted classes of dis-
tributions such as those parametrized by p ∈ [0, 1

2 ]
N
↓0, the

Empirical Mean Estimator (EME) and the Maximum Likeli-
hood Estimator (MLE) coincide. However, for more general
families P ⊂ [0, 1]N, this is no longer the case: the like-
lihood of a given sample might be maximized over P by
some p̂ other than the EME. Hence, in the sequel, we shall
be pedantic about this distinction, focusing on the EME as
the more natural candidate.

Formally, an estimator p̃ is any mapping from ({0, 1}N)n to
[0, 1]N. Any p ∈ [0, 1]N induces the product measure

µ = µ(p) = Bernoulli(p1)⊗ Bernoulli(p2)⊗ . . . (4)

on {0, 1}N. If X(1), X(2), . . . , X(n) are sampled i.i.d. from
µ, then these induce ∆̃n := E ∥p̃− p∥∞. We say that a
family of product distributions induced by P ⊂ [0, 1]N

is learnable by p̃ if ∆̃n −→
n→∞

0 for each p ∈ P , and just
learnable if it is learnable by some p̃. (Since the sequence p
fully determines the measure µ(p), it is fitting to say that p̃
“learns” p — and hence also µ(p).)

This general setting immediately raises the natural questions:
Can LGC be expanded to a larger learnable family via some
estimator p̃ different from the EME? Can some estimator p̃
achieve better decay rates for ∆̃n than the EME?

Our contributions. Modulo some technical caveats, we
resolve both questions above in the negative. If the learner
is barred from exploiting some pathological quirks of the
infinite-dimensional setting, then essentially LGC as defined
above is the largest learnable family (Theorem 2.1). Fur-
thermore, the EME achieves the minimax risk decay rate
over non-pathological distribution families (Theorem 2.2).
Finally, in Theorem 2.3 we show that non-trivial extensions
of LGC become possible once the restrictions are relaxed.

Related work. Estimating the mean of a high-dimensional
distribution from independent draws is among the most
basic problems of statistics. Much of the earlier theory
has focused on obtaining efficient estimators m̂n of the
true mean m and analyzing the decay of ∥m̂n −m∥2 as
a function of sample size n, dimension d, and various
moment assumptions on X (Catoni, 2012; Devroye et al.,
2016; Lugosi & Mendelson, 2019a;b; Cherapanamjeri et al.,
2019; 2020; Diakonikolas et al., 2020; Hopkins, 2020; Lu-
gosi & Mendelson, 2021; Lee & Valiant, 2022). For d-
dimensional distributions µ on {0, 1}d, Chernoff and union
bounds yield ∆n(µ) ≲

√
ln(d+ 1)/n for the EME, and

a simple information-theoretic argument shows that this is
minimax-optimal up to constants (Cohen & Kontorovich,

2023, Proposition 1). Cohen & Kontorovich further moti-
vated their choice of the ℓ∞ norm as the most interesting
of all the ℓr norms, in a well-defined sense (see Blanchard
& Voráček (2024, Proposition 7)). Blanchard & Voráček
(2024) fully closed the gaps in the analysis of Cohen & Kon-
torovich, and Blanchard et al. (2024) took the first nontrivial
steps in analyzing non-product sampling distributions.

Notation. The measure-theoretic subtleties of defining dis-
tributions on {0, 1}N are addressed in Cohen & Kontorovich
(2023). Our logarithms will always be base e by default;
other bases will be explicitly specified. The natural numbers
are denoted by N = {1, 2, 3, . . .} and for k ∈ N, we write
[k] = {i ∈ N : i ≤ k}. The floor and ceiling functions,
⌊t⌋, ⌈t⌉, map t ∈ R to its closest integers below and above,
respectively; also, s ∨ t := max {s, t}, s ∧ t := min {s, t}.
Unspecified constants such as c, c′ may change value from
line to line. We use superscripts to denote distinct random
vectors and subscripts to denote indices within a given vec-
tor. Thus, if X(1), , . . . , X(n) are independent copies of X ,
then X

(i)
j denotes the jth entry of the ith copy.

When considering the EME as the sole estimator (as in
previous works), no generality was lost in restricting the
range of p to [0, 1

2 ] and assuming sequences monotonically
decreasing to 0 (i.e., [0, 1

2 ]
N
↓0). The definitions of T and

S in (2, 3) were based on this assumption. In this work,
we will need their slightly generalized versions. With the
convention ẋ := min {x, 1− x}, we define

T (p) := inf
σ:N→N

sup
j∈N

log(j + 1)

log(1/ṗσ(j))
, (5)

S(p) := inf
σ:N→N

sup
j∈N

ṗσ(j) log(j + 1), (6)

for p ∈ [0, 1]N, where the infimum is over all permutations
σ over N. Whenever ṗj → 0, a unique non-increasing
permutation ṗ↓ exists, and it is easily seen to be the one
achieving both infima above; thus, for p ∈ [0, 1

2 ]
N
↓0, the

definitions in (5, 6) coincide with those in (2, 3).

Any p ∈ [0, 1]N defines the product measure µ = µ(p) as in
(4). An estimator p̃ and its induced deviation ∆̃n are defined
just above (4), and the learnability of a family P ⊂ [0, 1]n

is defined just below it.

We say that a family P ⊂ [0, 1]N is decaying if lim
j→∞

ṗj = 0

for all p ∈ P . For p ∈ [0, 1]N and b ∈ {−1, 1}N, we say
that

p′ = p′(p, b) ∈ [0, 1]N

is a b-reflection of p about 1
2 if

p′j = bj

(
pj −

1

2

)
+

1

2
, j ∈ N.
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We say that P ⊂ [0, 1]N is strongly symmetric about 1
2 if

p′(p, b) ∈ P for all p ∈ P and b ∈ {−1, 1}N.

The family LGC ⊂ [0, 1
2 ]

N was defined in Cohen & Kon-
torovich (2023) as the one learnable by the EME p̂, and char-
acterized therein as consisting precisely of those p ∈ [0, 1

2 ]
N

for which T (p) < ∞. Since in this work we do not restrict
the range of p to [0, 1

2 ], we define

˙LGC :=
{
p ∈ [0, 1]N : T (p) < ∞

}
, (7)

for T as defined in (5). It is straightforward to extend the
arguments of Cohen & Kontorovich (2023) to show that
˙LGC consists precisely of those p ∈ [0, 1]N for which the

EME p̂ yields ∆n → 0.

2. Main Results
Our first result may be informally summarized thus:
“morally” speaking, LGC is the largest family that is learn-
able by any fixed estimator.

Theorem 2.1 (expanding LGC). Suppose that P ⊂ [0, 1]N

defines a family of product distributions as in (4) and fur-
thermore

1. P is decaying

2. P is strongly symmetric about 1
2

3. P is learnable.

Then P ⊆ ˙LGC.

Remark. Strong symmetry about 1
2 forces the sequences

in P to be “generic” and prevents the learner from beating
the EME by exploiting some special structure. Note that
this condition is very much absent in Theorem 2.3, where
indeed such exploits become possible.

Having established that (modulo pathologies) LGC is the
largest learnable family, we next show that the EME is
nearly minimax-optimal for this family.

Theorem 2.2 (Minimax bound). There exist universal con-
stants c, c′, C > 0 such that the following holds. For n ∈ N
and s, t > 0 satisfying c′ logn

n ≤ s
t ≤ e−1, let

Ps,t :=
{
p ∈ [0, 1]N : S(p) ≤ s ∧ T (p) ≤ t

}
.

Then, whenever c′ logn
n ≤ s

t ≤ e−1 and

n ≥
t2

Cs log
t
s

t
s log

t
s · e−

t log t
s

log 2 − 1

,

we have

inf
p̃

sup
p∈Ps,t

E sup
j∈N

|p̃j − pj | ≥ 1 ∧
(
c

√
s

n
∨ Q(t, s) · t

n

)
,

(8)

where the infimum is over all estimators p̃ that are based on
n i.i.d. samples drawn from p, and

Q(t, s) = C

(
1 +

log t
s

log log t
s

)−1

.

Remark. The logarithmic factor and restrictions on the
range of n are likely artifacts of the argument, which we
kept streamlined for space and readability. We look forward
to removing both in the extended version.

Finally, we show that if the learner is allowed to “cheat”
by exploiting the information contained in the infinitely
many bits of each example X(i), then LGC can indeed be
non-trivially expanded. Let us elaborate a bit on the nature
of these exploits. The elements of LGC have a “generic,”
unstructured flavor: knowing the values of pj for j ∈ [N ]
reveals no useful information regarding the remaining j >
N ; all the learner knows is that these must decay as some
power of j in order to be in LGC. On the other hand, one
might consider adjoining a “structured” sequence to LGC,
such as p = ( 12 ,

1
2 , . . .). Because a single X(i) ∼ µ provides

a bit drawn from each of the Bernoulli(pj), the learner (as
we show below) is able to first test whether the unknown
sequence has the given structure (in this case, whether it was
generated by p ≡ 1

2 ) and if not, then reverts to the standard
EME for learning the unstructured sequences in LGC.

Theorem 2.3 (Relaxing decay and symmetry). Define the
family const ⊂ [0, 1]N by

const := {(c, c, . . . ) : c ∈ [0, 1]} .

Then P = ˙LGC ∪ const is learnable, meaning that there
exists an estimator p̃ such that ∆̃n(p) → 0 for all p ∈ P .

Remark. The techniques of Theorem 2.3 are applicable
considerably more broadly than just to the family Q =
const. For example, the argument can be easily adapted
to show that ˙LGC ∪ Q is learnable for any finite Q. The
following proposition shows a nontrivial Q which is strongly
symmetric and learnable, implying that the decay condition
of Theorem 2.1 is necessary.

Proposition 2.4 (Relaxing decay). Let c > 0 be a universal
constant, and define the family of distributions

Q =

{
p ∈ [0, 1]N | ∀j ∈ N, |pj − 1/2| ≤ c√

j

}
.

Then, Q is learnable.
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Open problems. Two natural directions for future study
are extensions of Theorems 2.1 and 2.3. For the former,
it is likely that the conditions on P are too stringent and
can be significantly relaxed; in particular, requiring that P
be decaying is quite probably unnecessary. Thus, we seek
a larger family P ′ whose learnability implies P ′ ⊆ ˙LGC.
Regarding Theorem 2.3, we again anticipate the existence
of considerably richer families Q for which ˙LGC ∪ Q is
learnable. One such family is proposed in the conjecture
below.

Conjecture. Let Q ⊂ [0, 1]N be a countable family of
sequences with the following property: for each q, q′ ∈ Q,
there is an ε > 0 and an infinite J ⊂ N such that |qj−q′j | >
ε for all j ∈ J . Then LGC ∪Q is learnable.

3. Proofs
3.1. Proof of Theorem 2.1

Assume, for the sake of contradiction, that there exists an
estimator p̃ and a family P ⊂ [0, 1]N satisfying the condi-
tions of the theorem, such that P is learnable by p̃ but there
exists a p∗ ∈ P \ ˙LGC. Based on p∗, we will construct a
family P∗ ⊂ P and argue that ∆̃n(p) → 0 cannot hold for
all p ∈ P∗.

Since P is strongly symmetric about 1
2 , for any p ∈ P

and any sign vector b ∈ {−1, 1}N, the b-reflection p′(p, b)
defined by p′j = bj(pj − 1

2 ) +
1
2 also belongs to P .

Consider the following randomized experiment:

• Let Y = (Yj)j∈N be a sequence of independent
Rademacher random variables, i.e., P(Yj = 1) =

P(Yj = −1) = 1
2 .

• Define p(Y ) ∈ [0, 1]N as the Y -reflection of p∗ about
1
2 , i.e. p(Y )

j = Yj(p
∗
j − 1

2 ) +
1
2 .

• Generate n independent draws X(1), . . . , X(n) ∈
{0, 1}N from the product distribution µ(p(Y )) as in
(4).

The assumption that ṗ∗j ∈ [0, 1
4 ]

N incurs no loss of general-
ity, since the decay condition implies that ṗ∗j ≤ 1

4 will hold
for all sufficiently large j. We can ignore ṗj ∈

(
1
4 ,

1
2

]
since

this would only decrease the estimation error ∆̃n(p).

We follow the standard reduction from the harder problem
of estimating p(Y ) to the easier problem of recovering the
sign vector y ∈ {−1, 1}N that defines the y-reflection p(Y ).
By the Neyman-Pearson lemma, an optimal estimator ŷ is
one that minimizes the posterior probability of error, i.e.,

ŷ = argmin
y∈{−1,1}N

P(Y ̸= y | X = x),

where Y is the random sign vector and X =(
X(1), . . . , X(n)

)
denotes the observed data.

Now

1− P(Y ̸= y | X = x)

=P(Y = y | X = x)

=P(Y1 = y1 | X = x)·
P(Y2 = y2 | X = x, Y1 = y1)·
P(Y3 = y3 | X = x, Y1 = y1, Y2 = y2) · . . . .

Since the Yj are mutually independent, each of the factors
above has the simpler form

P(Yk = yk | X = x, Y1 = y1, . . . , Yk−1 = yk−1)

= P(Yk = yk | X = x).

We conclude that the events Ej = {Yj ̸= yj | X} are mutu-
ally independent. Thus

P(Y ̸= y | X = x)

= P

⋃
j∈N

Ej


= lim

N→∞
P

 N⋃
j=1

Ej


= lim

N→∞
αN (P(E1),P(E2), . . . ,P(EN )) ,

where the second equality holds by regularity of prob-
ability measures (Kechris, 1995, Theorem 17.10), and
αN : [0, 1]N → [0, 1] is the inclusion-exclusion function
defined inductively by α1(x) = x and

αN+1(x1, x2, . . . , xN , xN+1)

= xN+1 + (1− xN+1)αN (x1, x2, . . . , xN ).

By Kontorovich (2012, Lemma 4.2), αN is monotonically
increasing in each argument. Hence, the optimal estimator
may minimize each P(Ej) individually — and so we may
define Aj as the estimator for the j-th coordinate, where
Aj : {0, 1}N×n → [0, 1] is any mapping from the j-th row
of the data matrix to an estimate of p(Y )

j . Let Bj be the event

that Aj and p
(Y )
j belong to different intervals, i.e., either

Aj ∈ [0, 1
2 ) and p

(Y )
j ∈ ( 12 , 1] or vice versa. To establish

a lower bound on the error of any estimator, consider the

4
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minimax risk:

inf
A

sup
p∈P

E
X
sup
j∈N

|Aj − pj |

≥ inf
A

E
Y
E
X
sup
j∈N

|Aj − p
(Y )
j |

≥ inf
A

E
Y
E
X
sup
j∈N

1{Bj}
∣∣∣∣12 − p

(Y )
j

∣∣∣∣
≥ 1

4
inf
A

E
Y
E
X
sup
j∈N

1{Bj}

=
1

4
inf
A

P
Y,X

⋃
j∈N

Bj


=

1

4
inf
A

∫
x∈{0,1}N×n

P

⋃
j∈N

Bj | X = x

 dPX(x)

≥ 1

4

∫
x∈{0,1}N×n

min
ŷ∈{−1,1}N

P(Y ̸= ŷ | X = x)dPX(x).

By the Neyman-Pearson lemma, the optimal choice of
ŷj is according to the majority vote1 of the vector
(X

(1)
j , . . . , X

(n)
j ). In the event that (X(1)

j , . . . , X
(n)
j ) =

(1, 1, . . . , 1), but 1− ṗ∗j ̸= p
(Y )
j , the estimator makes a mis-

take. The probability of such an event, conditioned on the
other random variables Xj′ , Yj′ where j′ ̸= j, is exactly
1
2 (ṗ

∗
j )

n. Since we assumed p∗ /∈ LGC and thus ṗ∗ /∈ LGC,
we have T (ṗ∗) = ∞. Since ṗ∗j → 0, we may assume with-
out loss of generality that it is decreasing monotonically. By
Cohen & Kontorovich (2023, Lemma 3), it follows that for
all n ∈ N, we have

∞∑
j=1

(ṗ∗j )
n = ∞.

Since the events of ŷj being wrong are mutually indepen-
dent, the second Borel–Cantelli lemma implies that almost
surely at least one of them will occur. It follows that
lim infn→∞ ∆̃n(p

(Y )) ≥ 1
4 , contradicting the learnability

assumption. □

3.2. Proof of Theorem 2.2

We reduce the minimax lower bound problem to one over
a finite set of hypotheses. For 2 ≤ J ∈ N and 0 ≤ q ≤
q′ ≤ 1/2 to be chosen below, we consider J + 1 profiles
p(k) ∈ [0, 1

2 ]
N for k ∈ [J + 1]. For k = J + 1 we take the

step profile

p
(J+1)
j =

{
q, j ∈ [J + 1],

0, j > J + 1,

1The issue of optimally breaking ties or allowing randomized
decision rules is somewhat delicate and is exhaustively addressed
in Kontorovich & Pinelis (2019, Eq. (2.7)). In our setting, these
do not affect the probability of error.

and for 1 ≤ k ≤ J we take the same step profile but with
an additional bump at position k,

p
(k)
j =


q, j ∈ [J + 1] and j ̸= k,

q′, j = k,

0, j > J + 1.

The construction of these profiles is illustrated in Figure 1.

j

p
(k)
j

1 2
. . .

k
. . .

J

J
+
1

J
+
2

J
+
3

q q q q

q′

0 0
. . .

j

p
(J+1)
j

1 2
. . . . . .

J

J
+
1

J
+
2

J
+
3

q q q q q

0 0
. . .

Figure 1. Illustration of the step profile construction for p(k) (top)
and the special case for p(J+1) (bottom). Each bar represents the
value of p(k)j at position j. Values are shown above the bars.

Note that for all k ̸= ℓ ∈ [J +1] we have ∥p(k)−p(ℓ)∥∞ =
|q′ − q|. In addition, for k = J + 1,

S(p(J+1)) = q log(J + 1)

and

T (p(J+1)) =
log(J + 1)

log 1
q

,

and for k ∈ [J ],

S(p(k)) = max {q log(J + 1), q′ log 2}

and

T (p(k)) = max

{
log(J+1)

log
1
q

, log 2

log
1
q′

}
.

Given s ≤ t
e as in the Theorem statement, we choose q ∈

[0, 1
2 ] and J as

q =
1

t
s log

t
s

and log(J + 1) = t log
t

s
.
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Then

S(p(J+1)) = q log(J + 1) = s, (9)

T (p(J+1)) =
log(J + 1)

log 1
q

= t ·
(
1 +

log t
s

log log t
s

)−1

≤ t.

(10)

Below we set q′ ≤ 1/2 such that q′ ≥ q and for all k ∈ [J ],

S(p(k)) ≤ S(p(J+1)) = s

and T (p(k)) ≤ T (p(J+1)) ≤ t. (11)

Thus, p(k) ∈ Ps,t for all k ∈ [J + 1] and

inf
p̃

sup
p∈Ps,t

E sup
j∈N

|p̃j − pj |

≥ inf
p̃

max
k∈[J+1]

E
Xn∼µ(k,n)

∥p̃(Xn)− p(k)∥∞. (12)

To lower bound the right-hand side of (12) we apply the gen-
eralized Fano method. For k ∈ [J+1], let µ(k) = µ(p(k)) be
the product measure over {0, 1}N as defined in (4) and note
that EX∼µ(k){X} = p(k). We denote by µ(k,n) the product
measure of n independent copies of X ∼ µ(k). We invoke
Lemma 3.1 with the J + 1 measures (ν1, . . . , νJ+1) =
(µ(1,n), . . . , µ(J+1,n)), the distance function ρ = ∥·∥∞,
and the parameters θ(µ(k,n)) = EX∼µ(k){X} = p(k) for
k ∈ [J + 1]. Note that ρ(θ(µ(k,n)), θ(µn

ℓ )) = |q′ − q| for
all k ̸= ℓ ∈ [J + 1] and that

DKL(µ
(k,n)∥µn

ℓ ) ≤ n(h(q∥q′) + h(q′∥q)),

where

h(q∥q′) = q log
q

q′
+ (1− q) log

1− q

1− q′
.

Then Lemma 3.1 implies

inf
p̃

max
k∈[J+1]

E
Xn∼µ(k,n)

∥p̃(Xn)− p(k)∥∞

≥ q′ − q

2

(
1−

(
n(h(q∥q′) + h(q′∥q)) + log 2

log(J + 1)

))
.

(13)

We now fix q′(q) = q′(q, n, J) ≥ q to be the solution to the
equation

h(q∥q′(q)) + h(q′(q)∥q) = log(J + 1)

2Cn
. (14)

Below we verify that (11) indeed holds with this choice
of q′(q). Substituting (14) into (13), we obtain the lower
bound

q′(q)− q

2

(
1−

(
log(J + 1)/C + log 2)

log(J + 1)

))
≥ q′(q)− q

2

(
1− 1

C
− log 2

log 3

)
≥ q′(q)− q

8
,

for an appropriate value of the constant C > 0.

We analyze q′(q)−q for q′(q) satisfying (14) as in Blanchard
et al. (2024) and consider two regimes for h(q∥q′)+h(q′∥q).
For any 0 < q ≤ q′ ≤ 1

2 , we have

(q′ − q)2

q′
≤ h(q∥q′) + h(q′∥q) ≤ 2(q′ − q)2

q
. (15)

So, by the right inequality in (15),

q′(q)− q ≥
√

q (h(q∥q′(q)) + h(q′(q)∥q))
2

=

√
q log(J + 1)

4Cn

=

√
S(pJ+1)

4Cn

=

√
s

4Cn
. (16)

In addition, by the left inequality in (15),

q′ ≤ q +

√
q′ log(J + 1)

2Cn

≤
√

q′

(
√
q +

√
log(J + 1)

2Cn

)
,

which implies

q′ ≤

(
√
q +

√
log(J + 1)

2Cn

)2

= q + 2

√
q log(J + 1)

2Cn
+

log(J + 1)

2Cn

= q

(
1 + 2

√
log(J + 1)

2Cnq
+

log(J + 1)

2Cnq

)
.

Since by assumption Cqn = Cn
t
s log( t

s )
≥ c′ log 2, we have

that for a sufficiently large constant c′,

q′ ≤ q log(J + 1)

log 2
.

This verifies (11) and establishes the term c
√

s
n in (8).

Next, we assume t
n ≥ c

√
s
n . For any 0 ≤ q ≤ q′ ≤ 1/2 we

have h(q∥q′) ≤ h(q′∥q), and for q′ ≥ 9q, it holds that (see,
e.g., Blanchard et al. (2024))

1

2
≤ h(q∥q′) + h(q′∥q)

q · q′−q
q log q′−q

q

≤ 4. (17)

For z ≥ e, the solution x to the equation x log x = z
satisfies x ≥ z

log z (Corless et al., 1996). Taking c > 0
sufficiently large such that

z =
log(J + 1)

2Cqn
=

t2

2Cns
log2

(
t
s

)
≥ c2

2C
≥ e,

6
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we have that q′(q) satisfies (14) if q′(q)− q ≥ 8q and

q′(q)− q

q
≥

log(J+1)
2Cqn

log log(J+1)
2Cqn

;

namely,

q′(q)− q ≥ log(J + 1)

2Cn log
(

log(J+1)
2Cqn

)
=

T (pJ+1)

2Cn
·

log 1
q

log log(J+1)
2Cqn

=
T (pJ+1)

2Cn
·

log 1
q

log s
2Cnq2

≥ T (pJ+1)

4Cn

=
t

4Cn
·
(
1 +

log t
s

log log t
s

)−1

,

where in the last inequality we used the fact that s
2Cn ≤ 1.

Lastly, we verify that q′(q) is such that (11) holds, namely,
log 1

q

log 1
q′(q)

≤ log(J+1)
log 2 . The left inequality in (17) implies that

q′(q) ≤ q + C ′ t
n for some constant C ′. Putting this and

q = 1
t
s log t

s

and log(J + 1) = t log t
s , we have that (11)

holds if
log( ts log

t
s )

log( ts log
t
s )− log(1 + t2

Cns log
t
s )

≤
t log t

s

log 2
.

This is satisfied when

n ≥
t2

Cs log
t
s

t
s log

t
s · e−

t log t
s

log 2 − 1

.

Finally, we consider the case where t ≥ n. We repeat the
arguments in the proof of Theorem 2.1 to show that in this
case the minimax rate is bounded from below by a constant.
Taking any p∗ ∈ Ps,t such that T (p∗) ≥ n, and assuming
without loss of generality that p∗ is non-increasing, let j′ be
such that

T (p∗) ≥ log(1 + j′)

log(1/ṗ∗j′)
.

Then
∞∑
j=1

(ṗ∗j )
n ≥

∞∑
j=1

(ṗ∗j )
T (p)

≥
j′∑

j=1

(ṗ∗j )
log(1+j′)

log(1/(ṗ∗
j
))

≥ j′(ṗ∗j′)
log(1+j′)

log(1/(ṗ∗
j′

))

=
j′

1 + j′
≥ 1

2
.

As in the proof of Theorem 2.1, applying Lemma 3.2 with

Aj ={
(X

(1)
j , . . . , X

(n)
j ) = (1, 1, . . . , 1), but 1− ṗ∗j ̸= p

(Y )
j

}
,

where Yj ∼ Bernoulli(1/2) and p
(Yj)
j = Yj ṗ

∗
j + (1 −

Yj)(1− ṗ∗j ), we get that the minimax rate is lower bounded
by a universal constant. □

3.3. Proof of Theorem 2.3

We aim to prove that the family

P := ˙LGC ∪ {(c, c, . . . ) : c ∈ [0, 1]}

is learnable by an estimator p̃n. Choose some p ∈ P . The
general strategy is to construct an estimator that can dis-
tinguish between cases where T (p) = ∞ and cases where
T (p) < ∞, based on the sample.

Step 1: Testing if T (p) = ∞. We begin by defining a test
Φ to check whether T (p) = ∞. The idea is to check the
first half of the sequence X

(1)
j , X

(2)
j , . . . , X

(n)
j are all ones

and the second half are all zeros. Formally, the test function
is defined as:

Φ(X(1), X(2), . . . , X(n)) = 1

(
lim sup
j→∞

Ej

)
,

where we define the event

Ej :=
{
X

(i)
j = 0 for i ≤ n

2
and X

(i)
j = 1 for i >

n

2

}
.

Note that, for each j, we have

P (Ej) = p
⌊n/2⌋
j (1− pj)

⌈n/2⌉
,

and because {Ej}j are independent, by the two Borell-
Cantelli lemmas, Φ = 1 almost surely if and only if

∞∑
j=1

p
⌊n/2⌋
j (1− pj)

⌈n/2⌉
= ∞.

The above sum can be estimated by the following sums,
∞∑
j=1

ṗnj ≤
∞∑
j=1

p
⌊n/2⌋
j (1− pj)

⌈n/2⌉ ≤
∞∑
j=1

ṗ
⌊n/2⌋
j . (18)

Step 2: Consistency of the Test. We now show that
the test Φ is consistent. First, assume T (p) = ∞, which
means T (ṗ↓0) = ∞, then by Cohen & Kontorovich (2023,
Lemma 3), we have

∑∞
j=1 ṗ

n
j = ∞ for all n, then by (18)

we have Φ = 1 almost surely.

On the other hand, if T (p) < ∞, again by Cohen & Kon-
torovich (2023, Lemma 3), we have

∑∞
j=1 ṗ

n
j < ∞ for

large enough n, which means that for large enough n we
have Φ = 0 almost surely, as before.

7
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Step 3: Defining the Estimator. Once the test Φ has been
applied, we define the estimator p̃n as follows:

p̃n(j) =

{
1
n

∑n
i=1 p̂n(i), if Φ(X1, . . . , Xn) = 1,

p̂n(j), otherwise.

In words, if the test Φ indicates that T (p) = ∞, we use
the average of all p̂n(j) (as this is consistent with the as-
sumption that p is a constant sequence). If Φ indicates that
T (p) < ∞, we use the EME p̂n(j) directly.

Step 4: Consistency of the Estimator. We now verify
that the estimator p̃n is consistent.

If p ∈ LGC, then T (p) < ∞, and the test Φ will eventually
return 0. In this case, the estimator p̃n(j) is simply the EME,
which is known to be consistent for all p ∈ LGC. Therefore,
p̃n → p in ℓ∞ as n → ∞.

If p = (c, c, . . . ) for some constant c ∈ [0, 1], then T (p) =
∞, and the test Φ will always return 1. In this case, the
estimator p̃n(j) is the average of all p̂n(j), which, by the
law of large numbers, will converge to c. Thus, p̃n(j) → c
as n → ∞.

Conclusion. The estimator p̃n correctly learns all distri-
butions in the family ˙LGC ∪ {(c, c, . . . ) : c ∈ [0, 1]}, com-
pleting the proof.

□

3.4. Proof of Proposition 2.4

Define the estimator p̃n(j) as follows:

• For indices j ≤ k(n), where k(n) is chosen later,
estimate pj using the empirical mean:

p̃n(j) =
1

n

n∑
i=1

X
(i)
j ,

where X
(i)
j ∼ Bernoulli(pj).

• For indices j > k(n), set p̃n(j) = 1/2.

Using Chernoff’s bound, for any ϵ > 0,

P (|p̃n(j)− pj | ≥ ϵ) ≤ 2 exp(−2nϵ2).

Applying the union bound over j ≤ k(n),

P

(
sup

j≤k(n)

|p̃n(j)− pj | ≥ ϵ

)
≤ 2k(n) exp(−2nϵ2).

Choosing

ϵn = O

(√
log k(n)

n

)
,

ensures this probability vanishes. Thus, with high probabil-
ity,

sup
j≤k(n)

|p̃n(j)− pj | = O

(√
log k(n)

n

)
.

For j > k(n), since pj is approximated by 1/2:

sup
j>k(n)

|pj − 1/2| ≤ sup
j>k(n)

c√
j
= O

(
1√
k(n)

)
.

Choosing k(n) = Θ(n) ensures this term vanishes.

Thus, combining both terms,

E ∥p̃n(j)− p∥∞ = O

(√
log k(n)

n

)
+O

(
1√
k(n)

)
,

which converges to zero as n → ∞. Therefore, Q is learn-
able.

□

3.5. Auxiliary lemmas

Lemma 3.1 (Yu (1997)). For r ≥ 2, let ν1, ν2, ..., νr be a
collection of r probability measures with some parameter
of interest θ(ν) taking values in pseudo-metric space (Θ, ρ)
such that for all j ̸= k,

ρ(θ(νj), θ(νk)) ≥ α

and
DKL(νj∥νk) ≤ β.

Then

inf
θ̂
max
k∈[r]

E
Z∼νk

ρ(θ̂(Z), θ(νk)) ≥
α

2

(
1−

(
β + log 2

log r

))
,

where the infimum is over all estimators θ̂ : Z 7→ Θ.

Lemma 3.2 (Van Handel (2014) Problem 5.1a). If
A1, . . . , AN are independent events, then

(1− e−1)

[
1 ∧

N∑
k=1

P(Ak)

]
≤ P

(
N⋃

k=1

Ak

)
.
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A. Simulation Results
To support our theoretical findings, we present two sets of simulations. The first demonstrates the tightness of the lower
bound in Theorem 2.2, while the second highlights a specific setting where the simple average estimator outperforms the
Empirical Mean Estimator (EME), complementing the results of Theorem 2.3.

A.1. Tightness of the Lower Bound in Theorem 2.2

The first simulation aims to validate the theoretical bounds presented in Theorem 2.2. Specifically, we compare the empirical
average supremum deviation ∆n with the theoretical predictions for different values of q (variance control parameter) and
sample sizes n.

We consider six values of q: q = 0.1, q = 0.2, q = 0.05, q = 0.01, q = 0.005, and q = 0.002. For each configuration,
empirical results are averaged over J = 100, 1000, and 10000 repetitions to ensure stability. The empirical deviations are
plotted alongside theoretical predictions in a log-log scale to capture the decay behavior as n increases.

Figure 2 shows the results. The empirical deviations (dashed lines) closely follow the theoretical bounds (solid lines),
confirming the tightness of the lower bound in Theorem 2.2. As expected, larger values of J lead to smoother empirical
curves, emphasizing the role of averaging in reducing variance. Notably, the empirical deviations converge to the theoretical
decay rate as n grows.

A.2. Performance Comparison: Theorem 2.3 Complement

In the second simulation, we explore a specific setting where the simple average estimator surpasses the performance of the
EME. This complements the findings of Theorem 2.3 by demonstrating that allowing certain structured distributions can
yield better decay rates with alternative estimators.

We evaluate the performance of the EME and the simple average estimator under six different distributions: uniform,
triangular, Beta(2,2), exponential, 1/n-scaled, and Gaussian. For each distribution, we vary the number of trials k ∈
{10, 50, 100, 500} and compute the error as a function of the sample size n. The results, plotted on a log-log scale, are
shown in Figure 3.

The plots reveal that the simple average estimator achieves lower error rates compared to the EME across all settings as
k increases. This improvement is most pronounced for structured distributions like 1/n-scaled, Beta(2,2), and Gaussian,
where the averaging process effectively captures the underlying structure. These findings corroborate the theoretical insights
of Theorem 2.3, showcasing that the choice of estimator can significantly impact performance in specific scenarios.

A.3. Discussion

The results of these simulations provide strong empirical support for our theoretical findings. The first simulation confirms
the tightness of the lower bound in Theorem 2.2, while the second demonstrates the practical advantages of alternative
estimators, as predicted by Theorem 2.3. These findings highlight the robustness and relevance of our theoretical framework
for analyzing the Local Glivenko-Cantelli (LGC) class.
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Figure 2. Average supremum deviation ∆n as a function of sample size n on a log-log scale for varying q values (q =
0.1, 0.2, 0.05, 0.01, 0.005, 0.002). Empirical results (dashed lines) are averaged over J = 100, 1000, and 10000 repetitions and
are compared to theoretical predictions (solid lines).
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Figure 3. Error comparison between the EME and the simple average estimator for varying sample sizes n under different distributions:
uniform, triangular, Beta(2,2), exponential, 1/n, and Gaussian. Results are plotted for k ∈ {10, 50, 100, 500} to illustrate the effect of
averaging.

12


