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Abstract001

Continual pre-training has long been consid-002
ered the default strategy for adapting models003
to non-English languages, but struggles with004
initializing new embeddings, particularly for005
non-Latin scripts. In this work, we propose En-006
erGIZAr, a novel methodology that improves007
continual pre-training by leveraging statisti-008
cal word alignment techniques. Our approach009
utilizes GIZA++ to construct a subword-level010
alignment matrix between source (English) and011
target language tokens. This matrix enables in-012
formed initialization of target tokenizer embed-013
dings, which provides a more effective starting014
point for adaptation. We evaluate EnerGIZAr015
against state-of-the-art initialization strategies016
such as OFA and FOCUS across four typolog-017
ically diverse languages: Hindi, Basque, Ara-018
bic and Korean. Experimental results on key019
NLP tasks – including POS tagging, Sentiment020
Analysis, NLI, and NER – demonstrate that021
EnerGIZAr achieves superior monolingual per-022
formance while also out-performing all meth-023
ods for cross-lingual transfer when tested on024
XNLI. With EnerGIZAr1, we propose an intu-025
itive, explainable as well as state-of-the-art ini-026
tialisation technique for continual pre-training027
of English models.028

1 Introduction029

As research into developing better and larger lan-030

guage models progresses, models for medium- and031

low-resourced languages continue to lag behind.032

English models are always the first to be intro-033

duced to new developments in LLM pre-training.034

Sometimes major advancements also include mul-035

tilingual models as a secondary checkpoint, but036

this is seldom the case. This leaves researchers037

working on non-English languages with two pri-038

mary options. First, to train their own models with039

the technological enhancements proposed. This040

option comes with restrictions on data sizes and041

1Anonymized Github link

available compute. Newer methodologies often use 042

large unstructured English corpora like C4 (Raffel 043

et al., 2020), OSCAR (Ortiz Suárez et al., 2019), 044

OpenWebText (Gokaslan et al., 2019), etc. How- 045

ever, the corpora available for other languages are 046

hardly comparable in size to the unstructured En- 047

glish datasets, and therefore the resulting mod- 048

els are often sub-optimal. Wu and Dredze (2020) 049

showed that monolingual models trained for low- 050

resource languages performed significantly worse 051

than mBERT despite mBERT having very limited 052

representations for low-resource languages. 053

The second option, and the more commonly used 054

one, is to adapt existing English or multilingual 055

models to a particular target language. This op- 056

tion is preferable for reasons such as computational 057

efficiency, low data requirements, etc. The most 058

commonly accepted methodology in practice for 059

achieving this has been continual pre-training. Con- 060

tinual pre-training uses an English or multilingual 061

model as a checkpoint and continues training for 062

the pre-training objective. Continual pre-training 063

decidedly results in a better model and is more 064

efficient, however, it does come with its restric- 065

tions. Since an English or multilingual model is 066

used as the starting checkpoint, it forces one to use 067

the vocabulary of the source model, which might 068

not be fit for several languages, especially those 069

in non-Latin scripts. Even when using a multilin- 070

gual vocabulary, research by Rust et al. (2021) has 071

shown that the representation of most medium- and 072

low-resourced languages is meek at best. 073

This bottleneck has led to significant work in 074

optimally initializing new tokenizer entries (Wang 075

et al., 2019; Tai et al., 2020; Hewitt, 2021) or adapt- 076

ing models to target language tokenizers (Minix- 077

hofer et al., 2022; Dobler and de Melo, 2023; Liu 078

et al., 2024). The challenge arises in finding a 079

methodology that can consistently initialize new 080

embeddings with minimal supervision across hun- 081

dreds of languages with varying scripts and other 082
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typological factors.083

In this research we propose EnerGIZAr, a084

methodology for improved continual pre-training.085

We show that by tokenizing parallel corpora, fol-086

lowed by aligning them with GIZA++ (see exam-087

ple in Figure 1), a statistical alignment tool trained088

using Expectation Maximisation (EM), we can ini-089

tialize an alignment matrix between the source090

(English-only) and target language tokens. Using091

said alignment matrix to initialize target tokenizer092

embeddings results in an excellent initial check-093

point for continual pre-training. Moreover, hav-094

ing a subword-to-subword alignment matrix makes095

the methodology particularly transparent and in-096

terpretable allowing for the possibility of manual097

or semi-automated modifications to the matrix to098

further enhance the initialization. We attempt to099

answer the following main research questions in100

this work:101

• Is it feasible to initialize a model in a target102

language using parallel data and a word align-103

ment tool?104

• Can this initialized model, when continually105

trained, compete with other SOTA initiali-106

sation strategies like OFA (Liu et al., 2024)107

and FOCUS (Dobler and de Melo, 2023) for108

monolingual performance?109

• Which of the initialisation strategies – SOTA110

versus EngerGIZAr – preserves the most111

cross-lingual signals, therefore resulting in112

the best model for cross-lingual use cases?113

We perform experiments on four languages114

(Hindi, Basque, Arabic, and Korean) with widely115

differing typological features, such as script, ge-116

olocation and morphology. We evaluate all models117

on downstream tasks with real-world use cases, in-118

cluding part-of-speech tagging, sentiment analysis,119

natural language inference, and named entity recog-120

nition. We also test all the methods’ cross-lingual121

performance on the XNLI (Conneau et al., 2018)122

dataset. Our results illustrate that EnerGIZAr out-123

performs continual pre-training baselines as well124

as SOTA initialisation methods FOCUS and OFA,125

both in purely monolingual as well as cross-lingual126

testing.127

The remainder of this paper is organised as fol-128

lows. We cover related work in Section 2, with 2.1129

covering related embedding initialisation strategies130

while 2.2 covers statistical alignment methods. Sec-131

tion 3 covers the methodology and formulation of132

the work, while Section 4 details the experimental 133

protocol, hyperparameters, data, models, and ad- 134

ditional information. Finally, Section 5 details the 135

results of all experiments including monolingual 136

and cross-lingual settings. 137

2 Related Work 138

2.1 Embedding Initialisation Strategies 139

Continual pre-training, the most commonly used 140

practice to adapt pre-trained models to new do- 141

mains and languages simply uses all the com- 142

ponents of a transformer and continues training 143

for MLM objectives with additional monolingual 144

data (Gururangan et al., 2020). A better alternative 145

to this can be continual pre-training using a tok- 146

enizer in the target language to better adapt to the 147

vocabulary of the target language (Minixhofer et al., 148

2022). However, in this case, the embedding layer 149

from the source model is completely discarded for 150

a new randomly initialized embedding layer for the 151

target language tokens. Although training an em- 152

bedding layer from scratch increases convergence 153

time, it usually results in a better model than vanilla 154

continual pre-training, given sufficient data. An- 155

other advantage is the reduced length of tokenized 156

text passed to the model since this allows the model 157

to process more information in a single pass. 158

However, rather than random initialization, re- 159

cent developments have proposed ideas for a more 160

informed initialization of target language embed- 161

dings. WECHSEL (Minixhofer et al., 2022), FO- 162

CUS (Dobler and de Melo, 2023) and OFA (Liu 163

et al., 2024) all rely on multilingual static word em- 164

beddings in a shared space as auxiliary embeddings. 165

These methods enhance the transfer of embeddings 166

by incorporating information from a static embed- 167

ding space, such as FastText (Mikolov et al., 2018). 168

The WECHSEL method (Minixhofer et al., 169

2022) focuses on efficient initialization of subword 170

embeddings by utilizing bilingual dictionaries to 171

enhance knowledge transfer between languages. A 172

shared static embedding space, aligned with the 173

help of a bilingual dictionary, is used to compute 174

the similarity between source and target sub-words. 175

Next, a set of k-nearest neighbours in the source lan- 176

guage is used to initialize target sub-words. How- 177

ever, it relies heavily on the quality and availability 178

of the bilingual dictionaries as well the static em- 179

beddings used for alignment. 180

FOCUS (Dobler and de Melo, 2023), which 181

stands for Fast Overlapping Token Combinations 182
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Figure 1: An example of two parallel sentences in English (above) and Hindi (below) and their tokenized forms
(using bert-base-cased for English and hindi-bert for Hindi), aligned using GIZA++.

Using Sparsemax, is an innovative method for183

adapting pre-trained models to low-resource lan-184

guages. The core idea behind FOCUS is to repre-185

sent newly added tokens in a vocabulary as combi-186

nations of overlapping tokens found in the source187

vocabulary. This overlap is determined based on se-188

mantic similarity in an auxiliary token embedding189

space (FastText). The similarity computer between190

source and target tokens is converted to weights us-191

ing SparseMax (Martins and Astudillo, 2016), and192

the weights are subsequently used for initialising a193

target word with the k-nearest neighbours.194

The OFA (Liu et al., 2024) framework em-195

ploys factorized embeddings to optimize computa-196

tional efficiency while ensuring robust model per-197

formance. By dividing embeddings into language-198

agnostic and language-specific components, OFA199

reduces the number of parameters needed for train-200

ing, leading to faster convergence and a lower en-201

vironmental impact during pre-training. OFA uses202

ColexNet+ (Liu et al., 2023) embeddings as its203

source of multilingual information, creating a bi-204

partite graph using a fixed set of neighbours for205

each target sub-word. Esentially, OFA builds on the206

works of WECHSEL and FOCUS, introducing the207

factorisation component and replacing the source208

of static embeddings with ColexNet+, which is209

more conceptually grounded and potentially a bet-210

ter source of cross-lingual signals. Once more,211

however the quality of the static embeddings heav-212

ily determines the initialisation.213

In our work, we present a different take on em-214

bedding initialisation by bypassing the need of215

pre-trained multilingual embeddings, or orthogo-216

nal embedding alignment techniques used in previ-217

ous work. Instead, we rely on statistical sub-word218

alignment. Our work can be related to Rémy et219

al. (2024), which was tested on the Mistral-family220

of models for Dutch and Tartu, where parallel data221

along with FastAlign was used to find the near-222

est neighbours for a target sub-word to be newly223

initialized. The key differences being the use of224

FastAlign, which prioritizes speed and efficiency 225

over deep probabilistic modelling in contrast to 226

GIZA++, the lack of alternate initialisation strate- 227

gies like direct copying and random normal initiali- 228

sation, as well as filtering and refinement strategies 229

for the alignment matrix. In addition, our method 230

is also thoroughly evaluated for an extensive set of 231

tasks and languages in comparison with the SOTA 232

of FOCUS and OFA. 233

Our approach starts from the intuition that SMT- 234

based word alignment provides a more raw source 235

of information overlap between two vocabularies, 236

even though embedding similarities may be more 237

granular and contain more information. Different 238

from previous work, we also hypothesize that work- 239

ing with an alignment matrix - rather than potential 240

nearest neighbours - allows for a more exhaustive 241

solution, since each target sub-word can be influ- 242

enced by each source sub-word independently and 243

without constraints due to the k hyper-parameter 244

for nearest neighbours. 245

2.2 Statistical Word Alignment Tools 246

Word alignment tools, such as GIZA and its suc- 247

cessor GIZA++ (Och and Ney, 2003), run on large 248

chunks of parallel data and have played a crucial 249

role in NLP by facilitating the identification of 250

translational equivalence between words. While 251

NMT tools like LaBSE (Wang et al., 2022) may 252

slightly eclipse SMT tools in performance, SMT 253

tools still remain more efficient, explainable, and 254

transparent, which is one of our motivations for 255

using GIZA++ in this research. 256

GIZA++ is one of the most widely used tools 257

for statistical word alignment, implementing IBM 258

models (Brown et al., 1993) for word alignment 259

tasks, allowing for the extraction of alignment prob- 260

abilities between words. It operates by running 261

alignments in both directions, i.e., source to target 262

and target to source, and then combines the results 263

to improve the quality of alignments. This pro- 264

cess ensures that only one-to-one alignments are re- 265
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tained in the final output, thereby increasing preci-266

sion. Its features include the implementation of the267

full IBM-4 and IBM-5 alignment models, as well268

as the Hidden Markov Model (HMM). GIZA++269

implements several key features that distinguish it270

from its predecessor, GIZA. The HMM implemen-271

tation includes techniques such as Baum-Welch272

training and the Forward-Backward algorithm, and273

it also applies various smoothing methods for pa-274

rameters related to fertility and distortion, which275

helps in refining the alignment results.276

FastAlign (Dyer et al., 2013), designed for speed277

and efficiency in word alignment tasks, utilizes a278

simplified version of the GIZA++ algorithm, using279

only the IBM Model-2. It is less precise compared280

to GIZA++, especially for highly reordered lan-281

guages, but since it allows faster processing, it is282

often more suitable for real-time applications.283

3 Methodology284

We begin by defining the problem mathematically.285

Let F s be a source transformer with its usual com-286

ponents: tokenizer, Toks for vocabulary, W s, em-287

bedding layer, Embs of size len(W s) × 768 and288

the subsequent encoder Encs. Our goal, given289

a monolingual corpus in a target language (M t)290

and a source of cross-lingual signals, is to arrive291

at the best possible target transformer Ft. While292

methods like WECHSEL, FOCUS and OFA have293

attempted to use multilingual static embeddings as294

their source of cross-lingual signals, we use parallel295

data as our cross-lingual signal.296

To detect corresponding sub-words between the297

source and target language, we train GIZA++ on298

our parallel corpus. The default training pipeline299

runs five iterations each of IBM Model 1, HMM,300

Model 3, and Model 4. Model 1 uses word trans-301

lation probabilities (p(y|x), where x is a source302

language word and y is a target language word) for303

learning alignments. HMM and Model 4 rely on304

relative reordering, while Model 3 uses a fertility305

model. For our work, we only use Model 4 for306

alignment, to make the entire pipeline significantly307

more efficient and cut down alignment times by up308

to 300%. We use the grow− diag− final− and309

heuristic for alignment, which considers align-310

ments from both directions, i.e., source-target as311

well as target-source.312

Given the parallel corpus P s,t, we first tokenize313

the respective parts P s using the tokenizer Toks314

and P t using the target tokenizer Tokt to obtain315

the sub-word tokenized parallel corpora P s,t
tok. We 316

then use the sub-word tokenized parallel corpora 317

with IBM Model 4 to train and run an alignment 318

model on the tokenized parallel data. This results 319

in a translation probability dictionary which can 320

be represented as a matrix Dt,s. This matrix indi- 321

cates the probability a source sub-word x can be 322

translated into a target sub-word y as p(y|x). 323

P t
tok = Tokt(P

t), P s
tok = Toks(P

s) (1) 324

Dt,s(P t
tok, P

s
tok) = [p(y|x)] ∀ y ∈ Wt, x ∈ Ws

(2) 325

The following post-processing is applied to the 326

matrix Ds,t. First, probabilities below a hyper- 327

parameter δ are set to 0. Furthermore, if the prob- 328

abilities for a target word y are too widely dis- 329

tributed, i.e., all probabilities 0 ≥ py,x∀x ∈ Ws ≤ 330

0.1, we initialize the word’s embedding using a nor- 331

mal distribution centered at the mean of all source 332

embeddings, Embs. Finally, we also find source 333

and target sub-words that are identical (numbers, 334

special characters and reserved tokens) and explic- 335

itly set the probabilities of these matching words 336

to 1.0 while setting all other probabilities for the 337

source word to 0.0, thus effectively ensuring identi- 338

cal sub-words are not newly initialized. 339

Finally, to initialize the target tokenizer embed- 340

dings Embt, we simply use the cross product, 341

Embt = Dt,s × Embs (3) 342

Essentially, each target sub-token embedding is 343

initialized as a weighted average of all relevant 344

source sub-tokens embeddings. With the newly ini- 345

tialized Embt the encoder Encs can be trained for 346

MLM with target language data M t, while using 347

the appropriate tokenizer Tokt. An overview of the 348

proposed methodology is presented by Figure 2. 349

4 Experimental Setup 350

We perform experiments for a set of four languages: 351

Hindi, Basque, Korean, and Arabic. The languages 352

were selected based on diversity in scripts, geolo- 353

cation and language families. Table 1 presents an 354

overview of the resources for each target language. 355

4.1 Pre-training 356

For each language bert-base-cased was used as 357

the starting monolingual model F s. As can be 358
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Figure 2: A summary of the proposed methodology of EnerGIZAr.

Language Wiki (tokens) OpusMT (tokens) Tokenizer Tasks
Hindi 42.10 M 7.29 M Hindi-BERT UDPOS, Sentiment, Topic
Basque 69.01 M 7.15 M BertEUS UDPOS, Sentiment, Topic
Arabic 278.60 M 8.58 M CAMeLBERT-msa NER, Stance, Emotion
Korean 133.66 M 5.17 M KorBERT NER, NLI, Topic

Table 1: Overview of the target languages used for the experiments, their available resources – both monolingual
(Wiki) and parallel (OpusMT) – the target Tokenizer used for the transfer, and downstream tasks used for testing.

observed from Table 1, all languages can be con-359

sidered medium-resourced based on the available360

monolingual and parallel corpora sizes. For each361

language, their respective Wikipedia dump was362

used as the monolingual resource M t,M s, and363

Opus-MT as the source of all parallel data P s,t.364

Wikipedia was chosen over CommonCrawl, C4 or365

OSCAR as it significantly reduces the duration of366

experimentation, allowing us to iterate and tune367

parameters such as δ. For example, the Wiki size368

of Hindi (see Table 1) is approximately 42.10 mil-369

lion tokens, whereas the size of Common Crawl for370

Hindi is approximately 1.8 billion tokens – roughly371

40 times larger. While models trained on the Com-372

mon Crawl dump would undoubtedly result in bet-373

ter overall target language models, the experimen-374

tation time for each language would be 40-50 times375

slower. Moreover, reducing the amount of pre-376

training data helps us to better simulate a lower-377

resource setting.378

As the source language tokenizer Toks we used379

the standard tokenizer of bert-base-cased, while as380

Tokt we used the appropriate tokenizer from the381

baseline monolingual models available to stream-382

line comparison with the respective models. We383

used Hindi-BERT2, BERTeus3, KR-Medium4 and384

CAMeLBERT5 for Hindi, Basque, Korean and Ara-385

bic, respectively.386

To align the tokenized English and target lan-387

guage instances, we use GIZA++ with IBM Model388

4, with grow − diag − final − and as the sym-389

2https://huggingface.co/monsoon-nlp/hindi-bert
3https://huggingface.co/berteus-base-cased
4https://huggingface.co/snunlp/KR-Medium
5https://huggingface.co/CAMeL-Lab/bert-base-arabic-

camelbert-msa

metrization heuristic, maximum fertility of 10 and 390

maximum sentence length of 101. After obtaining 391

the matrix Dt,s, we apply the post-processing as 392

described in the previous section. Based on pre- 393

liminary experimentation on Hindi we found a δ of 394

0.1 to be the best-performing; however, this could 395

vary slightly depending on the language and the 396

tokenizer sizes. For the continual training, we train 397

with M t, with early stopping, with a learning rate 398

of 1e− 4, and a maximum sequence length of 512. 399

For adequate comparison with the state of the art, 400

we also train our own OFA and FOCUS models 401

using the identical resources described for Ener- 402

GIZAr for the languages under consideration, and 403

by relying on the official codebase of each project. 404

For OFA, we used the OFA-768 models since these 405

are, in terms of parameters, identical to the other 406

models with which they are being compared. This 407

is a significant contribution, as FOCUS and OFA- 408

768 are both state-of-the-art embedding initializa- 409

tion methods which have not been directly com- 410

pared before. For cursory testing for the pre-trained 411

models, we evaluate for the standard Masked Lan- 412

guage Modelling (MLM) loss on a held-out valida- 413

tion set for the target language. Since the tokenizers 414

for each target language model are identical (Tokt), 415

the MLM loss should be directly comparable. We 416

define the MLM loss as, 417

Lmlm(xi) = −logP (xi|hLi ) (4) 418

where for a single masked token xi the loss is 419

calculated as the cross-entropy between xi and hLi , 420

where hLi is the output vector from the last trans- 421

former layer (L) for each masked token i. 422
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4.2 Downstream Testing423

For each language we target 3 varied tasks for424

downstream testing, covering a wide range of lan-425

guage understanding, from syntactic tasks like426

Part-of-Speech (POS) tagging and Named Entity427

Recognition (NER) to affect-based subjective tasks428

like Sentiment and Stance Detection, as well as429

reasoning-based tasks like Natural Language Infer-430

ence (NLI). To this purpose we referred to each431

language’s respective standard language evalua-432

tion benchmarks i.e., Indic-GLUE (Kakwani et al.,433

2020) for Hindi, BasqueGLUE (Urbizu et al., 2022)434

for Basque, ALUE (Seelawi et al., 2021) for Arabic435

and KLUE (Park et al., 2021) for Korean.436

Tasks were considered as long as sufficient train-437

ing data was available (some tasks had less than438

1000 training samples available and were there-439

fore not considered). We use the Universal Depen-440

dencies (Nivre et al., 2017) project for the POS441

data (HDTB Treebank For Hindi, BDT Treebank442

for Basque). For Sentiment Detection in Hindi443

we use the IITP-PR (Akhtar et al., 2016) dataset,444

while for topic classification we use the WSTP445

(Wikipedia Section Title Prediction) dataset formu-446

lated as a Multiple Choice Question Answering447

Task. For Sentiment Detection in Basque, we use448

the BEC dataset (Agerri et al., 2020), while for449

topic classification we use the BHTC dataset from450

the same benchmark. For Arabic, we use the pop-451

ular WikiANN (Rahimi et al., 2019) dataset for452

NER, for Stance detection we use the ANS-stance453

dataset (Khouja, 2020), and for multi-label Emo-454

tion we use the Arabic subset from the SemEval455

2018 Task 1 data (Mohammad et al., 2018). Fi-456

nally, for Korean, all 3 tasks, NER, NLI & Topic457

Classification were introduced in the KLUE bench-458

mark (Park et al., 2021).459

For each downstream task we use the provided460

validation and test splits. We perform model selec-461

tion on the validation set to pick the best model.462

All tasks were trained with an initial learning rate463

of 5e-5 with a weight decay of 0.01 with around464

10% of the total steps being used for warmup. We465

run each experiment 3 times and report the mean466

performance along with the standard deviation. For467

comparisons with the current SOTA, we also eval-468

uate the downstream tasks for the OFA-768 and469

FOCUS models trained in the previous setup. For470

each language, we also test with the original mono-471

lingual BERT model whose tokenizer we use as472

Tokt for the embedding transfer.473

4.3 Cross-lingual Testing 474

An often used feature of multilingual models is 475

their capacity for cross-lingual transfer. Barring 476

availability of annotated data in the target lan- 477

guage, an English (or other high-resource language) 478

dataset can be used to train the model while in- 479

ferring on the target language. While not as ef- 480

fective as training on the same language, cross- 481

lingual transfer has proven an excellent alternative 482

for non-English languages for which hardly any 483

annotated data is available. In order to evaluate 484

the cross-lingual capabilities of our approach, we 485

also perform basic cross-lingual testing. We use 486

the popular XNLI (Conneau et al., 2018) dataset to 487

this purpose, training each model in English with 488

40,000 samples from the training set, while testing 489

it for the 4 target languages under consideration. 490

For consistency, we used the same settings as de- 491

scribed in the previous section. 492

5 Results 493

5.1 Pre-training 494

We evaluate the effectiveness of pre-training using 495

MLM loss on a held-out validation set. Figure 4 496

shows the validation loss for the models trained for 497

Hindi. The baseline model represents the bert-base- 498

cased model, an English-only model, continually 499

pre-trained by using the tokenizer Tokt from hindi- 500

bert6. The OFA-768 and FOCUS models represent 501

the respective state-of-the-art models described in 502

the previous section, initialized for Hindi using the 503

given Tokt. From the figure it is evident that Ener- 504

GIZAr not only initialized a better starting model 505

but resulted in a better final model post continual 506

training. The validation loss plots for the other 507

languages show similar trends (see Appendix A). 508

Before looking at the results of downstream test- 509

ing, we first examine the initializations made by 510

each method. All tested initialisation methods fol- 511

low three stages. First, identical or similar tokens 512

are directly initialised from their source counter- 513

parts. Next, the respective methodology is applied, 514

i.e., using the OFA multilingual static embeddings 515

in the case of OFA, the FastText auxiliary embed- 516

dings in the case of FOCUS and the GIZA++ align- 517

ment using parallel data in the case of EnerGIZAr. 518

Finally, embeddings identified as poor quality dur- 519

ing the main initialisation step, are initialised us- 520

ing a normal distribution centred at the mean of 521

6https://huggingface.co/monsoon-nlp/hindi-bert
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Figure 3: An overview of the different types of initialisations, i.e., Copied, New, and Random, performed by OFA,
FOCUS and EnerGIZAr, on all 4 tested languages (Hindi, Basque, Arabic, Korean).

Figure 4: Illustration of the validation MLM loss for the
baseline, OFA, FOCUS and our EnerGIZAr models.

all source embeddings. In most cases, copied em-522

beddings are expected to have the highest qual-523

ity, newly initialized the next best quality, and ran-524

domly initialized embeddings the lowest.525

Figure 3 shows the results of the analysis. For526

Hindi and Basque, EnerGIZAr initialises the largest527

amount of new embeddings, followed by FOCUS.528

However, for Arabic and Korean, FOCUS ini-529

tialises the highest amount of new embeddings530

while EnerGIZAr does second best. OFA always531

initialises the lowest amount of new embeddings.532

Among all languages, Basque had the highest ini-533

tialisations by copying, potentially because this lan-534

guage shares the Latin script with English, while535

Korean had the fewest copied embeddings, result-536

ing in more than 90% of the embeddings being537

newly or randomly initialised for all methods.538

5.2 Downstream Testing539

The results of the tests on all downstream tasks540

(measured in Macro-F1) are provided in Table 2.541

All methods result in an identical model in terms of542

parameters and architecture, allowing a fair com-543

parison. From the results, it is evident that Ener-544

GIZAr consistently outperforms the continual pre-545

training monolingual baseline and both state-of-the- 546

art initialization methods, OFA and FOCUS, with 547

only one exception: for Part-of-Speech tagging for 548

Basque, OFA leads to the best result. The per- 549

formance difference between OFA, FOCUS, and 550

EnerGIZAr is minimal but consistent across all lan- 551

guages and tasks. Due to the closeness of these 552

results as well as the overlap of the standard devia- 553

tions we performed a one-tailed paired t-test first 554

between FOCUS and EnerGIZAr with N=36 (3 555

seeds, 3 tasks, 4 languages) to test statistical sig- 556

nificance. We find that the results are extremely 557

significant with a p-value of 0.0002 with a 95% 558

confidence interval of 0.379 to 1.112, with a mean 559

difference of +0.7460. We perform a second one- 560

tailed paired t-test between OFA-768 and Ener- 561

GIZAr. The outcome was identical with a p value 562

of 0.0003, making the results statistically signifi- 563

cant. The mean difference was even larger with 564

+0.8572 with a 95% confidence interval of 0.4269 565

to 1.2875. This makes EnerGIZAr the state-of-the- 566

art method for embedding initialization for contin- 567

ual pre-training for monolingual use cases, with 568

FOCUS being the second-best option in most sce- 569

narios. 570

Regarding the tasks itself we observe that the im- 571

provement is more apparent for the more semantic 572

tasks such as Sentiment Classification and Natural 573

Language Inference (NLI), while it is minor for the 574

more syntactically informed tasks such as NER and 575

POS. Concerning the latter, we can argue that both 576

POS and NER are highly mature tasks with lim- 577

ited potential for further significant advancements 578

due to saturation. The language with the lowest 579

noticeable improvements on the downstream tasks 580

compared to the baseline and state-of-the-art mod- 581

els is Arabic. Looking back at Table 1, we see that 582

Arabic was the language with the highest amount 583

of available data for continual training. We thus 584
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Hindi Basque
Method UDPOS Sentiment Topic UDPOS Sentiment Topic
bert-base 97.28 ±0.02 72.57 ±1.98 79.20 ±0.35 95.49 ±0.10 69.40 ±0.28 57.20 ±1.84
OFA-768 97.37 ±0.05 75.61 ±0.78 80.95 ±0.37 95.65 ± 0.08 67.40 ±0.77 59.66 ±0.74
FOCUS 97.43 ±0.03 74.68 ±1.63 80.86 ±0.35 95.61 ±0.16 68.49 ±0.47 59.50 ±1.03
EnerGIZAr 97.46 ± 0.04 76.08 ± 0.67 82.68 ± 0.21 95.61 ± 0.07 69.76 ± 0.47 60.15 ± 0.77

Arabic Korean
Method NER Stance Emotion NER NLI Topic
bert-base 90.21 ±0.25 68.91 ±1.58 58.64 ±2.43 80.64 ±1.20 71.44 ±0.63 83.70 ±0.60
OFA-768 91.04 ±0.77 68.70 ±1.41 61.91 ±0.58 81.74 ±0.47 73.30 ±0.83 82.94 ±0.30
FOCUS 91.08 ±0.34 69.30 ±1.99 61.77 ±0.44 81.18 ±1.04 73.67 ±0.55 84.02 ±0.26
EnerGIZAr 91.58 ± 0.64 69.42 ± 1.96 62.08±0.54 81.87± 0.40 75.43± 0.45 84.75± 0.40

Table 2: Results for downstream testing of Baseline, OFA-768, FOCUS and our EnerGIZAr models for Hindi and
Basque (above), and Arabic and Korean (below).

Hindi Basque Arabic Korean
bert-base (LAPT) 42.61 ±0.39 46.00 ±2.22 44.00 ±1.14 45.36 ±0.52
OFA-768 54.74 ±0.50 55.21 ±2.58 51.68 ±2.01 52.95 ±0.29
FOCUS 55.29 ±0.83 54.27 ±2.50 51.96 ±2.05 47.51 ±0.99
EnerGIZAr 59.36 ±0.76 58.19 ±2.08 52.52 ±1.34 53.41 ±0.70

Table 3: Results for Cross-lingual testing with the XNLI benchmark (trained on English, tested on the four target
languages) for the baseline as well as ofa-769 and FOCUS compared to EnerGIZAr.

hypothesize that the initialization might not have585

been that impactful, i.e., when there is sufficient586

pre-training data, the model will probably be able587

to better converge, irrespective of poor initializa-588

tion.589

5.3 Cross-lingual Testing590

Table 3 shows the results of cross-lingual testing591

for all 4 target languages with every model. It is592

clear that EnerGIZAr surpasses other methods in593

terms of cross-lingual capabilities when applied to594

the task of NLI. We hypothesize that this is due to595

the direct source of cross-lingual signals grounded596

in the parallel data, in contrast to the multilingual597

embeddings used for the other methods which are598

a more indirect source of cross-lingual information.599

Moreover, the alignment matrix ensures that little600

to no information is lost for a sub-word, compared601

to nearest-neighbour approaches. Moreover, we602

observe that the difference is more pronounced for603

languages where we have lower amounts of pre-604

training data available, such as Hindi and Basque,605

whereas the gap is smaller for a language with more606

extensive pre-training data, such as Arabic.607

6 Conclusion608

We introduce a new embedding initialisation strat-609

egy, EnerGIZAr, which uses the statistical align-610

ment tool GIZA++ along with parallel data to ini-611

tialise embeddings for a target language given an612

English-only model. Through extensive experi- 613

ments in both monolingual downstream tasks as 614

well as cross-lingual testing, we demonstrate that 615

our method outperforms standard baselines as well 616

as state-of-the-art initialisation methods. While the 617

results for monolingual testing are closer, requiring 618

paired t-tests to confirm the superiority of Ener- 619

GIZAr, in cross-lingual testing, EnerGIZAr outper- 620

forms current SOTA methods with ease, making 621

it the clear choice for cross-lingual deployment 622

scenarios. Although EnerGIZAr requires small 623

amounts of parallel data, it does not require pre- 624

trained multilingual static embeddings or auxiliary 625

embeddings in any form. This might not be a direct 626

advantage since all methods discussed require the 627

availability of some form of cross-lingual signals, 628

however, the requirements for EnerGIZAr differ 629

slightly which could be useful in certain scenarios 630

where availability of embeddings is sparse. Ener- 631

GIZAr also offers more interpretability due to the 632

transparency of the alignment matrix and GIZA++, 633

in contrast to using pre-trained static embeddings 634

for alignment which are relatively more opaque. 635

While we have not yet explored this aspect of En- 636

erGIZAr and have left it for future research, we 637

wish to utilize the transparency aspect by perform- 638

ing selected manual edits to the alignment matrix. 639

Additionaly, in future work, we aim to demonstrate 640

the effectiveness of EnerGIZAr for decoder models 641

and compare with the work of Remy et al (2024). 642
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Limitations643

While EnerGIZAr demonstrates strong improve-644

ments in embedding initialization for continual645

pre-training, several limitations must be acknowl-646

edged. Firstly, EnerGIZAr relies on the availability647

of high-quality parallel corpora for subword align-648

ment using GIZA++. This dependence makes it649

less applicable to languages with extremely limited650

or nonexistent bilingual resources, potentially re-651

ducing its effectiveness in extremely low-resource652

scenarios. Secondly, while the study covers four ty-653

pologically diverse languages (Hindi, Basque, Ara-654

bic, and Korean), further validation is needed for655

other language families, especially those with ag-656

glutinative or polysynthetic structures. The method-657

ology may require adaptation to maintain its effec-658

tiveness across these linguistic typologies. Lastly,659

the current experiments focus on encoder-based660

models (e.g., BERT-like architectures). The effec-661

tiveness of EnerGIZAr for initializing embeddings662

in decoder-based models, such as GPT-style au-663

toregressive transformers, remains unexplored and664

warrants further research especially considering the665

success of decoder-based models in recent times.666
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A Validation Loss for Basque, Korean & Arabic871

We provided the validation loss for masked language modelling on the held-out dev set below for each of872

the 3 remaining languages ie. Basque (Figure 5), Arabic (Figure 6) and Korean (Figure 7). All the graphs,873

show a promising trend for the EnerGIZAr set of models, having the lower initial as well as final loss874

in most comparisons. The FOCUS set of models are often second-best, followed by OFA-768, finally875

followed by the continual pre-training baseline.876

Figure 5: Figure showing the validation masked language modelling loss for Basque wrt. the steps on a held-out dev
set for the continual pre-taining baseline, OFA, FOCUS and our EnerGIZAr models.

Figure 6: Figure showing the validation masked language modelling loss for Arabic wrt. the steps on a held-out dev
set for the continual pre-taining baseline, OFA, FOCUS and our EnerGIZAr models.

12



Figure 7: Figure showing the validation masked language modelling loss for Korean wrt. the steps on a held-out dev
set for the continual pre-taining baseline, OFA, FOCUS and our EnerGIZAr models.
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