
X-Ray: A Sequential 3D Representation For
Generation

Tao Hu 1 Wenhang Ge 2∗ Yuyang Zhao 1∗ Gim Hee Lee 1

1 Department of Computer Science, National University of Singapore
2 Hong Kong University of Science and Technology (Guangzhou)

taohu@nus.edu.sg gimhee.lee@nus.edu.sg

Generated Mesh Generated Mesh Complete Interior MeshMissing Interior Mesh

(a) Rendering-Based Generation:
Outer Surface

(b) X-Ray Generation (Ours):
Outer and Inner Surfaces

Depth Ray Casting

Sequential

Sequen
tial

Sequential

Sequential

Figure 1: Comparison between the rendering-based 3D generation [49, 14] and our proposed X-Ray
generation. The competitors focus on the visible outer surface in multiple camera views. In contrast,
our model can sense both the visible and hidden surface in single camera view and generate the
outer and inner surfaces of objects. An example of missing mesh interior from rendering-based 3D
synthesis vs. complete mesh interior from our X-Ray generator are shown in the bottom row.

Abstract

We introduce X-Ray, a novel 3D sequential representation inspired by the pen-
etrability of x-ray scans. X-Ray transforms a 3D object into a series of surface
frames at different layers, making it suitable for generating 3D models from im-
ages. Our method utilizes ray casting from the camera center to capture geometric
and textured details, including depth, normal, and color, across all intersected
surfaces. This process efficiently condenses the whole 3D object into a multi-
frame video format, motivating the utilization of a network architecture similar
to those in video diffusion models. This design ensures an efficient 3D represen-
tation by focusing solely on surface information. Also, we propose a two-stage
pipeline to generate 3D objects from X-Ray Diffusion Model and Upsampler. We

∗Co-second authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



demonstrate the practicality and adaptability of our X-Ray representation by syn-
thesizing the complete visible and hidden surfaces of a 3D object from a single
input image. Experimental results reveal the state-of-the-art superiority of our
representation in enhancing the accuracy of 3D generation, paving the way for
new 3D representation research and practical applications. Our project page is in
https://tau-yihouxiang.github.io/projects/X-Ray/X-Ray.html.

1 Introduction

General, accurate, and efficient 3D representations are three of the most critical requirements for 3D
generation [23, 29, 32, 21]. The significance of this goal stems from the ever-expanding array of
applications reliant on 3D technology, ranging from virtual reality and augmented reality to computer-
aided design and beyond. Previous approaches to 3D representation such as meshes, point clouds,
voxels, Neural Radiance Fields (NeRF) [36, 45, 58, 24, 15] and 3D Gaussian Splatting [21] possess
unique strengths respectively, but face challenges in concurrently satisfying the three requirements
for 3D synthesis. Specifically, meshes are widely used in 3D modeling, while they are constrained by
their topology when describing complex objects, which limits their generative capacity. Point clouds
offer a more flexible capture of the object geometries but lack continuous and dense feature extraction
[12, 42]. Voxels simplify spatial reasoning at the cost of significant rising memory complexity with
increasing resolution. Neural representations, such as NeRF [36] and 3D Gaussian Splatting [21],
offer an impressive leap in rendering photorealistic scenes. Nevertheless, the 3D object are predicted
by multi-view images with a relatively long optimized period.

Recently, rendering-based 3D generative methods [26, 57, 48, 14, 53, 49, 18] have gained significant
attention for their ability to achieve general and even efficient 3D generation by incorporating neural
representations [36, 21] with Transformers [52] or Diffusion Models [43, 2]. However, these methods
have a critical limitation: they cannot completely generate objects that include both visible and hidden
surfaces. This limitation arises from the methodological design of rendering-based 3D generation,
which relies on the 2D supervision of rendered images. As a result, these methods primarily focus on
reconstructing the visible external surfaces of objects, while neglecting the internal hidden surfaces.
This oversight leads to incomplete or unrealistic reconstructions, as shown in Fig. 1 (a).

In this paper, we propose the X-Ray representation to overcome this limitation of incomplete
generation while maintaining the efficiency and generalization required for 3D generation. As
illustrated in Fig. 1 (b), our X-Ray, inspired by x-ray imaging in the medical field, can see through
the entire object. It efficiently captures and stores information about both visible and hidden surfaces.
Consequently, the hidden interior of the object can be fully reconstructed.

Our X-Ray is designed to capture the shape (depth and normal) and appearance attributes (color) along
all the sequentially intersected surfaces through ray casting. We transpose the collected slim grid
voxels into a multi-frame surface representation, which significantly reduces the data footprint while
preserving essential detail. Moreover, the compatibility of our X-Ray’s data structure with sequential
3D representation in video formats, as illustrated in Fig. 2, opens novel pathways for leveraging video
diffusion models in 3D generation. Specifically, by treating our X-Ray representation as sequences
of frames, we first harness the power of the video diffusion model [2] and then utilize the video
upsampler [7] to generate 3D objects from low to high resolution. As a result, our approach yields
high-quality results while inheriting the advanced capabilities and efficiency of video processing.

We demonstrate the advantages of our X-Ray representation through comprehensive experiments,
showcasing its superiority, especially completeness in 3D object generation. We train and evaluate
our method in image-to-3D reconstruction task and pure 3D generation task. The experimental
results reveal that the proposed X-Ray achieves a significant leap forward in the quality of 3D object
generation, positioning it as a feasible solution to longstanding challenges in the field. The main
contribution of the paper can be summarized as follows:

1. We present X-Ray, a novel 3D representation that encode the whole visible and hidden
surfaces in to video format through ray casting algorithm for maintaining generalization,
accuracy and efficiency.

2. We propose the generative model of our X-Ray via video diffusion model and video upsam-
pling model, enabling low-to-high generation of 3D objects from single images.

2

https://tau-yihouxiang.github.io/projects/X-Ray/X-Ray.html


𝑯

𝑫

𝑵

𝑪

𝑯

𝑫

𝑵

𝑪

𝑯

𝑫

𝑵

𝑪

𝑯

𝑫

𝑵

𝑪

Figure 2: Samples of our X-Ray 3D sequential representation. Given a viewpoint, we capture the 3D
attributes multi-layer surface frames, including hit H, depth D, normal N, and color C, in a video
format. Noted that the number of frames in an X-Ray varies depending on the complexity of the 3D
objects. The dotted yellow lines indicate the ray or sequence direction.

3. We showcase the state-of-the-art performance of our X-Ray in 3D generation quality, setting
a new benchmark for Image-to-3D modeling.

2 Related Work

2.1 Representation for 3D Models

Handling 3D data is much more complex and resource-intensive than dealing with 1D (e.g. text
and voice) and 2D (e.g. image) data. This complexity makes it imperative to find effective ways to
organize, process, and infer 3D information. Traditional methods for representing 3D data include
meshes, which are good for creating detailed visuals but hard to be generalized; point clouds, which
are simple and useful for capturing real-world scenes but lack consistent and dense structure in 3D
creation; Although, 3D Gaussian Splatting [21] smooths point cloud data into continuous surface but
requires additional an initial point cloud as shape, making them less flexible for 3D synthesis; voxels
which are excellent for detailed volumetric data but require much computing resources. Multi-Plane
Images [35, 51] try to extent the depth concept to multi-layer with a fixed distance, but they can only
describe the visible surface toward camera.

Recent advancements in 3D representation have primarily focused on point-level details and implicit
functions, such as Occupancy [32], Signed Distance Fields (SDF) [55, 11], Triplanes [10, 16], and
Neural representations [36, 21]. These methods have significantly enhanced modeling and rendering
capabilities. Occupancy models map the location of any 3D point to its probability of being inside
or outside an object, offering a probabilistic approach to shape definition. SDFs [55, 19] refine
this concept by quantifying the nearest signed surface distance from any given point, improving
the precision of surface representations. Triplanes [3] employ intersecting 2D planes to provide
a more efficient route to 3D representation, albeit with some detail loss. NeRFs and Gaussian
Splatting [21, 36] produce remarkably realistic renderings from a limited number of viewpoints
but require extensive computational effort. Despite these advancements, implicit function-based
models often face challenges in extracting full and high-resolution 3D features, hindering high-quality
generalization. Empirically, representations that focus on surface is more efficient, and representations
with grid representation are more easily to be generalized [37]. Consequently, capturing all surface
attributes and organizing in a dense but lightweight data structure renders our X-Ray an accurate,
efficient and generalized representation. Noted that our X-Ray is similar to Depth peeling method [9],
which is designed for rendering transparent surfaces, while X-Ray transform any 3D object in video
format. Besides, our main contribution is using video diffusion as generator to generate objects.

3



2.2 Generative Models for 3D Generation

Recent 3D generative models can be primarily categorized into two types: diffusion-based [30, 37, 38]
and rendering-based [14, 13, 49, 41, 34, 54, 33, 47]. Diffusion-based models fall under direct 3D
supervision, while rendering-based models belong to indirect 2D image supervision. Diffusion-based
generative models have emerged as powerful tools for 3D generation, leveraging stochastic diffusion
processes to gradually transition from noise to structured 3D objects. These models, such as DPM
[30], DiT-3D [37], and Point-E [38], have demonstrated remarkable ability in generating high-quality
3D point clouds. They operate by iteratively refining a random noise distribution into a coherent
structure that resembles the target 3D shape, capturing complex geometries and surface details with
high fidelity. The strength of these models lies in their capacity to model the distribution of 3D points
in a continuous space, allowing for the generation of 3D objects with nuanced variations and detailed
textures. However, both point-based networks [28, 37, 17] and voxel-based networks [37] is limited
by generating high-resolution objects. Another group of methods [41, 34, 54, 33, 47] adopt Score
Distillation Sampling (SDS) as prior to train a NeRF [36] or 3D Gaussian Splatting [21] for 3D
generation. However, it is not efficient for optimizing a number of different views over a short period.

On the other hand, rendering-based generative models focus on the visible aspect of 3D generation,
transforming abstract 3D representations into detailed and photorealistic images or videos. Models
such as LRM [14], Open-LRM [13], LGM [48], DMV3D [57], and TripoSR [49] employ advanced
rendering techniques to achieve this. However, rendering-based models are optimized only for the
visible surfaces of objects, making it difficult to synthesize the invisible or internal surfaces.

In response to these challenges, our approach utilizes a video diffusion model as the foundation
for developing 3D X-Ray. This strategy benefits from the strengths of existing video diffusion
models while innovatively addressing the limitations of rendering-based techniques, offering a more
comprehensive solution for 3D generation that is sensitive to both visible and hidden parts of objects.

3 Our X-Ray Representation

In this section, we detail our X-Ray representation, which includes both encoding and decoding pro-
cess to facilitate the conversion between 3D mesh formats and our X-Ray representation. Specifically,
the encoding process converts a 3D mesh into our proposed X-Ray format, and the decoding process
converts our X-Ray back into a 3D mesh.

3.1 Encoding

Given a 3D object under an arbitrary camera view, we apply the ray casting algorithm to encode a 3D
object mesh into the proposed X-Ray representation. The ray casting algorithm plays a crucial role in
both computer graphics and computational geometry, where it is used for scene rendering, visibility
determination, and addressing geometric queries. Specifically, a ray is emitted from camera center into
the environment and all the interactions of this ray with target 3D objects are captured sequentially. For
each ray r ∈ R within the field of view that intersects with L sequential faces in the mesh, we record
their 3D attributes which include depth (distance to camera center) Dr = (d1,d2, ...,dL) ∈ RL×1,
normal Nr = (n1,n2, ...,nL) ∈ RL×3, and color Cr = (c1, c2, ..., cL) ∈ RL×3. To indicate
surface presence, we denote Hit Hr = (h1,h2, ...,hL) ∈ RL×1 to indicate whether there is a surface.
Since L is usually very small (Sec. 5.3), we denote the efficient and thin grid voxels X ∈ RH×W×L×8

as the object representation, where the ray Xij with image coordinate [i, j] can be represented as:

Xij = Xr = (Hr,Dr,Nr,Cr) ∈ RL×8. (1)

Note that X[i, j, k] = 0 when there is no surface for the kth layer at the image ray coordinate [i, j].
Examples of X-Ray encoding are shown in Fig. 2. Through the encoding process, we can transform
any mesh into a sequential representation with varying lengths, same as a video with different numbers
of frames. Finally, we transpose the voxels as X-Ray X ∈ RL×8×H×W , resembling a video format
with L frames, each with a resolution of H ×W and 8 feature channels.

4



𝑳×𝟖×
𝑯
𝟒
×
𝑾
𝟒

𝑳×𝟖×𝑯×𝑾

Upsampler 
×𝟒X-Ray

(c) Mesh Decoding(b) X-Ray Upsampler

Point Cloud

Screened 
Poisson

Image 
Embedding𝑬

Spatial-Temporal 3D UNet

N step

Mid UpDown

(a) X-Ray Diffusion Model

Input Image

X-RayNoise

𝑳×𝟖×
𝑯
𝟒 ×

𝑾
𝟒

𝒛: 𝟒×	
𝑯
𝟒
×
𝑾
𝟒

𝒛: 𝟒×
𝑯
𝟒
×
𝑾
𝟒

𝒆: 𝟏×𝟕𝟔𝟖

𝑳

𝑳

Mesh

Figure 3: Overview of our proposed generative pipeline for the X-Ray 3D representation. There are
three main components: (a) The X-Ray diffusion model, which generates a low-resolution X-Ray
from an image input. (b) The upsampler, which enlarges the low-resolution X-Ray into 4× high
resolution. (c) The mesh decoding model, which decodes the high-resolution X-Ray into a point
cloud with color and normal, and then converts it into the final generated mesh.

3.2 Decoding

The decoding process converts the X-Ray representation back into a 3D mesh. To achieve this, we
first convert the video format of X-Ray into a point cloud and subsequently apply the Screened
Poisson algorithm [20] to transform the point cloud into a 3D mesh.

X-Ray → Point Cloud. Given an X-Ray, we first compute the 3D object’s point cloud Pr =
{Px,Pn,Pc} for Ray r, including location Px, color Pc, and normal Pn defined by the equation:

Px = ro +Dr · rd, Pn = Nr, Pc = Cr, when Hr = 1. (2)

ro and rd denote the origin and direction of the camera ray, respectively. Furthermore, Dr,Nr,Cr

and Hr are the depth, surface normal, color and hit attributes of the ray defined in Eq. 1. Upon
processing all camera rays, we obtain a comprehensive point cloud P = {Pr}r∈R representation
that includes location, normal, and color attributes of the 3D object.

Point Cloud → Mesh. The Screened Poisson algorithm [20] for converting point clouds with color
and normal into 3D colored meshes is a classic method that leverages the mathematical principles of
the Poisson equation. The core idea involves solving a variation of the Poisson equation to interpolate
a smooth surface that fits the input point cloud. The Poisson equation is a partial differential equation
of the form: ∇2ϕ = f , where ∇2 denotes the Laplace operator (which represents the divergence of
the gradient of a function), ϕ is the potential field to be solved, and f is a scalar function representing
the divergence of the vector field derived from the input point cloud. In the context of point cloud
to 3D mesh conversion, the algorithm first employs the given normal to define a vector field that
suggests the orientation of the surface at each point. The divergence of this vector field serves as the
function f the Poisson equation.

Encoding-Decoding Intrinsic Error. The encoding-decoding process will introduce a intrinsic and
minor reconstruction error that varies with the number of layer L and the frame resolution (H,W ).
To explore this, we conduct an experiment in Sec. 5.3 aimed at analyzing these variables to identify
their optimal values. Our goal is to achieve a balance where all pertinent information is preserved
while maintaining a lightweight model.

4 X-Ray for 3D Generation

Our primary objective of introducing a new 3D representation model is to facilitate the generation of
3D objects from single images. The challenge lies in accurately predicting the characteristics that are
not immediately visible on the first surface when only a single image is available. To overcome this
challenge, we utilize diffusion and upsampling models for X-Ray synthesis. Given that our proposed
X-Ray is in video format, we leverage advanced Video Diffusion models as our backbone. To exploit
this structure for high-resolution X-Ray synthesis, we incorporate principles from advanced video

5



diffusion models as our foundational framework. Notable models in this domain include Stable Video
Diffusion (SVD) [2], VideoFusion [31], and the state-of-the-art Sora. To efficiently train the diffusion
model, we begin by training a low-resolution X-Ray diffusion model that generates X-Ray from
a single image. Subsequently, we employ an upsampler to enhance these synthesized X-Rays to
high resolution. This two-step approach ensures a more manageable and efficient training process,
gradually improving the quality of the output.

Framework Overview. Fig. 3 presents an overview of our generative model using X-Ray rep-
resentation (cf. Sec. 3.1) for 3D generation. Our X-Ray diffusion model (cf. Sec. 4.1) operates
at the core of the framework, transforming random Gaussian noise into a low-resolution X-Ray
representation conditioned by an input image. These low-resolution X-Rays are then enhanced to
high resolution through the application of a 3D Spatial-Temporal Upsampler (cf. Sec. 4.2). Fi-
nally, the high-resolution X-Rays are decoded into 3D meshes using a combination of point cloud
transformation and the Screened Poisson algorithm (cf. Sec. 3.2).

4.1 X-Ray Diffusion Model

Diffusion models [43] are generative models that transform a random noise distribution into a data
distribution through a reverse process, counteracting a forward process that incrementally adds
Gaussian noise to the data. The forward process is a Markov chain described by xt =

√
αtxt−1 +√

1− αtϵ, where xt represents the data at step t, αt controls the noise level, and ϵ ∼ N (0, I) is
sampled noise. The reverse process, aimed at reconstructing the original data from noise, is modeled
by a neural network predicting the noise added at each step or directly denoising the data, following

xt−1 = 1√
αt

(
xt − 1−αt√

1−α2
t

ϵθ(xt, t)

)
, with ϵθ(xt, t) being the predicted noise. Training involves

optimizing the network to minimize the difference between the original and reconstructed data,
effectively learning to invert the noise addition process given by:

Ldm = Ex,ϵ∼N (0,1),t

[
∥ϵ− θ(xt, t)∥2

]
, (3)

where t is uniformly sampled from the set {1, . . . , T}.

Diffusion Model for X-Ray. A prevalent technique in diffusion models is the utilization of latent
spaces with a VQ-VAE [7] to perform the initial data transformation to compress the data. This
method poses a significant challenge for our X-Ray representation as it requires the development
of a VQ-VAE model from scratch due to the absence of a suitable off-the-shelf latent model for
X-Ray, which would consequently increase our training burden. Another promising approach for
efficiently training high-resolution generators is the cascaded synthesis pipeline. This method,
exemplified by works such as Imagen [44], DeepFloyd IF [1], and Stable Cascaded [40], involves
progressively training the diffusion model or upsampling network from lower to higher resolutions.
Given our limited computing resources, we opted to implement this cascaded upsampling strategy.
This technique facilitates a more gradual and controlled enhancement of X-Ray quality, providing a
more flexible and efficient alternative to traditional latent space diffusion models.

Specifically, we use the Spatial-Temporal 3D U-Net network from Stable Video Diffusion [2] for
our diffusion model to generate low-resolution X-Rays, with modifications to the input and output
channels. As shown in Fig. 3, the input image is sent to the encoder E, producing an image latent z
via image VAE [7] and an embedding e via a ViT [5]. z is concatenated with the X-Ray latent as
input, and e interacts with the 3D U-Net through cross attention [2] to finally output the denoised
latent. This model employs spatial-temporal attention mechanisms to alternately extract features from
2D frame spaces and 1D surface layer sequences, enhancing its ability to process and interpret the
different layers of the X-Ray. This approach allows for nuanced handling of the temporal information
inherent in sequential X-Ray data, crucial for achieving high-quality diffusion results.

4.2 X-Ray Upsampler

The X-Ray upsampler focuses on enhancing previously generated X-Rays to a higher resolution.
We considered two potential methods: point cloud up-sampling and video up-sampling. Encoding
low-resolution X-Rays into a point cloud with color and normal information is straightforward (see
Sec 3.1). However, point cloud up-sampling often increases only the number of points without
effectively enhancing attributes like texture and color due to its unstructured nature. To improve

6



efficiency and consistency, we adopted a video up-sampling approach using a spatial-temporal VAE
decoder from Stable Video Diffusion (SVD) [2]. We concatenate the previous image latent z with the
low-resolution X-Ray as input and output the high-resolution X-Ray. The model upsamples previously
synthesized low-resolution X-Ray frames fourfold while preserving the original layer number L. It
applies attention at both the 2D surface frame and 1D surface layer levels, enhancing frame resolution
and overall quality. This makes the X-Ray diffusion model, followed by the upsampler, a more
integrated and effective solution.

Loss. The loss function for the Upsampler differs notably from that of the diffusion model. While
the diffusion model loss typically addresses volumetric or textural aspects, the Upsampler loss
concentrates specifically on the surface area accuracy, reflecting the critical importance of maintaining
high fidelity in the enhanced images. The loss function we use for the Upsampler is given by:

Lup = ∥Xgt[Hgt]−Xup[Hgt]∥2 + ∥Hgt −Hup∥2, (4)

where Xgt[Hgt] represents the ground-truth high-resolution X-Ray at hit surface and Xup[Hgt]
denotes the Upsampler’s output at hit surface, and Hgt, Hup denotes the ground-truth and upsampled
Hit, respectively. The loss is computed as the squared Euclidean distance between these two matrices,
quantifying the pixel-wise discrepancy in surface details. This metric effectively ensures that the
upsampling process preserves essential surface features, thereby optimizing the quality and utility of
the resulting high-resolution X-Ray.

5 Experiments

5.1 Dataset and Implementation

Datasets. We train our X-Ray pipeline using a subset of the Objaverse dataset [4], which have
been removed entries with missing textures and inadequate prompts as outlined in [48]. This subset
consists of more than 60,000 3D objects. For each object, we select 8 random camera views, covering
azimuth angles from -180 to 180 degrees and elevation angles from 0 to 45 degrees with camera
distance to object center fixed at 1.2. The images are then rendered using Blender Software, and the
corresponding X-Rays are generated through the ray casting algorithm provided by the trimesh library
[50]. Through these processes, we create a dataset of approximately 480,000 paired images and
X-Rays to train the generative model. For the evaluation datasets, we adopt two commonly adopted
datasets: Google Scanned Objects [6] and OmniObject3D [56], to assess generative performance via
single-view reconstruction tasks.

Metrics. Recent 3D generative models [26, 18, 27, 14, 49] lack unified reconstruction evaluation
metrics due to the challenge of determining an object’s size and orientation from a single image [46].
To ensure fair comparisons with state-of-the-art methods, we align all methods before evaluation.
The predicted and ground-truth 3D objects will be normalized to a range of -0.5 to 0.5 along all
three axes and face forward the same −z axis. We then align them using the Iterative Closest Points
(ICP) algorithm and calculate Chamfer Distance (CD) in L1 norm and F-Score (FS) at threshold 0.1
(FS@0.1) for reconstruction.

Implementation Details. Our X-Ray diffusion model is based on the Spatrial-Temporal 3D UNet
architecture used in Stable Video Diffusion (SVD) [2], modified to synthesize 8 channels: 1 hit
channel, 1 depth channel, 3 color channels, and 3 normal channels, compared to the original 4
channels. During training, we maintain a learning rate of 0.0001 using the AdamW optimizer. Since
different X-Rays have varying numbers of layers, we pad or truncate them to a uniform 8 layers for
efficient batching and training. Each layer’s frame has dimensions of 64× 64. For the upsampler,
each layer’s output remains at 8 channels, but the resolution of each frame is increased to 256× 256
to enhance detail and clarity in the upscaled X-Ray. The entire training pipeline is conducted on
8 NVIDIA A100 GPU servers for two weeks. During inference, the 3D generation process takes
approximately 7 seconds: about 1 second for the diffusion model, 1 second for the upsampler, and 5
seconds for mesh decoding. As for GPU usage during inference, the GPU memory required is 4.8
GB for X-Ray diffusion model and 2.5 GB for X-Ray Upsampler.

7



Table 1: Comparison with other 3D representations in Efficiency.
Metric 3D Grid Multi-View Depths

(8 views)
MPI

(8 planes)
Point Cloud

(200,000 points)
X-Ray

(8 layers)
Memory (↓) 67.09 MB 1.57 MB 1.57 MB 0.90 MB 0.62 MB
Encoding Method Voxlization Rendering Slicing & Rendering Sampling Ray Casting
Encoding Time (↓) 0.105 s 0.045 s 0.049 s 0.013 s 0.016 s
Decoding Method Poisson Fusion & Poisson Poisson Poisson Poisson
Decoding Time (↓) ∼5 s ∼10 s ∼5 s ∼5 s ∼5 s
CD(↓) 7.7e-3 1.1e-2 8.9e-3 7.2e-3 7.8e-03

1 2 3 4 5 6 7 8 9 10 11 12
Surface Layer Number (L)

2

4

6

8

C
ha

m
fe

r 
D

is
ta

nc
e 

(C
D

) 1e 2

6.55e-02

1.93e-02

9.60e-03 8.30e-03 7.79e-03 7.69e-03 7.64e-03

The Encoding-Decoding Intrinsic Error of Surface Layer Number (L)

(a) The intrinsic error of layer number (L), when H = W = 256

32 64 128 256 512 1024
Frame Height (H) / Width (W) 

1

2

3

4

5

6

C
ha

m
fe

r 
D

is
ta

nc
e 

(C
D

) 1e 2

5.29e-02

2.78e-02

1.47e-02
7.79e-03 7.74e-03 7.70e-03

The Encoding-Decoding Intrinsic Error of Frame Height (H) / Width (W)

(b) The intrinsic error of frame height (H) or width (W ) when L = 8

Figure 4: The encoding-decoding intrinsic error of different frame resolutions and number of layers.

5.2 Efficient Comparison with Different 3D Representation

We compared the efficiency of different representations using 500 3D meshes from random selected
models. The results showed that both point cloud and X-Ray were highly efficient, with lower memory,
faster encoding & decoding times. However, the X-Ray had the advantage of being reorganizable as
a video format for diffusion models, leading to better performance.

5.3 Analysis of Encoding-Decoding Intrinsic Error

Due to the finite number of layer L and resolution H,W of X-Ray, a slight intrinsic error is inevitable
during the encoding of 3D meshes into X-Ray format and the subsequent decoding back into 3D
meshes. To quantitatively assess this error, we conducted an experiment to evaluate intrinsic error
via Chamfer Distance (CD) (L1 norm) between the original (ground-truth) mesh and the encoding-
decoding mesh across various resolutions and layers. In the experiments, we set the frame resolution
through a series of predefined values: 32, 64, 128, 256, 512, and 1, 024 and vary the number of layers
from 1 to 12. Fig. 4a indicates that the intrinsic error decreases as the number of layers in our X-Ray
representation increases, becoming convergent after 8 layers. Similarity as illustrated in Fig. 4b, the
intrinsic error decreases with increasing resolution and stabilizes after 256. Therefore, for a balance
between accuracy and efficiency, we use a resolution 8× 256× 256 with H = W = 256 and L = 8
in our experiments. Compared with the dense volume achieving a 256× 256× 256 resolution for
voxel-based methods, our X-Ray representation is significantly efficient for focusing only on surfaces
and reducing the data volume by 96.88%.

8



Input Image One-2-3-4-5 OpenLRM TripoSR Ours GT Mesh

O
m
ni
O
bj
ec
t3
D

G
SO

Sh
ap
eN
et

Figure 5: Quantitative Comparison in Image-to-3D Generation.

5.4 Quantitative Comparison

For image-to-3D mesh generation on the GSO [6] and OmniObject3D [56] datasets, we build a
new benchmark that randomly selects 500 image-mesh pairs from each dataset. We re-ran the
baselines using their released source code and used normalized Chamfer distance and F-score for a
fair comparison. The results, summarized in Tab. 2, show that our X-Ray method achieves significant
improvements over all previous rendering-based state-of-the-art methods [25, 18, 8, 13, 49] on both
datasets, with a relative 33% improvement (0.084 → 0.056) in Chamfer distance and also a significant
improvement in FS@0.1 (0.878 → 0.973, where the maximum is 1) on GSO dataset and similar
performance on OmniObject3D dataset. This demonstrates the superiority of our approach over
rendering-based methods.

Table 2: Quantitative reconstruction comparison on the GSO [6] and OmniObject3D [56] datasets
Datasets Metrics One-2-3-45 [25] ZeroShape [18] TGS [8] OpenLRM [13] TripoSR [49] X-Ray (Ours)

GSO [6] CD ↓ 0.175 0.136 0.096 0.143 0.084 0.056
FS@0.1 ↑ 0.465 0.627 0.803 0.621 0.878 0.973

OmniObject3D [56] CD ↓ 0.187 0.138 0.091 0.148 0.080 0.054
FS@0.1 ↑ 0.490 0.619 0.822 0.664 0.892 0.972

5.5 Qualitative Comparison

A qualitative comparison effectively demonstrates the advantages of our proposed X-Ray generation
method. Using the three datasets mentioned, we selected single images as input and generated 3D
meshes without and with textures, as shown in Fig. 5. Our proposed method has three key advantages:
1. It can decompose shape and appearance to accurately reconstruct flat surfaces (Rows 1 and 3); 2. It
can detect the sealing of containers (Rows 2 and 4); 3. It can generate the internal structure of objects
within their outer surfaces (Rows 5 and 6). These obvious advantages highlight the our effectiveness.

5.6 Failure Cases.

The failure cases highlight the limitations of the current generative model based on X-Ray representa-
tion when the number of frame layers is very large. As illustrated in Fig. 6, given an input image
containing a complex object, such as an exquisite hamburger, the number of frame layers L of the
encoded or generated X-Ray tends to exceed the maximum length of 8. Consequently, any surface

9



behind layer 8 will be omitted, resulting in missing parts of the reconstructed mesh. The solution is
to increase the value of L so that the X-Ray can represent more surfaces. However, this would also
increase computing resource requirements. We will reconsider the sparsity of deeper surface frames
and propose a more efficient generative model to overcome these failure cases.

Input Image Generated X-Ray Generated Mesh Ground-Truth Mesh

Figure 6: Failure cases. The generated meshes will miss behind parts because of the limited number
of frame layers.

6 Conclusion

In this work, we introduced a novel X-Ray representation for 3D objects that encompasses both visible
and hidden surfaces within the camera’s field of view, unlike recent rendering-based methods that
typically focus only on the visible surface. We demonstrated the effectiveness of the X-Ray approach
in single-view 3D generation tasks. Our generative model shows that the underlying generator for
X-Ray shares foundational similarities with existing video diffusion models, allowing us to leverage
their advantages. Experimental results highlight the outstanding performance of our method.

Limitations. Our generator uses the Stable Video Diffusion (SVD) pipeline to produce high-quality
X-Ray. However, the X-Rays generated consist of an uncertain number of sequential layers, with
the posterior layers tending to be more and more sparse, which can be redundant. Additionally, the
generated mesh lacks enough smoothness and has missing part when X-Ray is truncated. We plan to
explore advanced network architectures, such as Large Language Model, that can better handle the
complexities of X-Ray data, including layer sparsity and sequential format. Additionally, we aim to
investigate further applications of the X-Ray representation to broaden its utility and impact in 3D
modeling and beyond.

Acknowledgement

This research / project is supported by the National Research Foundation (NRF) Singapore, under its
NRF-Investigatorship Programme (Award ID. NRF-NRFI09-0008).

References
[1] DeepFloyd Lab at StabilityAI. DeepFloyd IF: a novel state-of-the-art open-source text-to-image model

with a high degree of photorealism and language understanding. https://www.deepfloyd.ai/
deepfloyd-if, 2023. Retrieved on 2023-11-08.

[2] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz,
Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rombach. Stable video
diffusion: Scaling latent video diffusion models to large datasets. CoRR, 2023.

[3] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein. Efficient
geometry-aware 3D generative adversarial networks. In CVPR, 2022.

10

https://www.deepfloyd.ai/deepfloyd-if
https://www.deepfloyd.ai/deepfloyd-if


[4] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated 3d objects.
arXiv preprint arXiv:2212.08051, 2022.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR,
2021.

[6] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas Barlow McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset
of 3d scanned household items. In 2022 International Conference on Robotics and Automation, ICRA
2022, Philadelphia, PA, USA, May 23-27, 2022, 2022.

[7] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image synthesis,
2020.

[8] Zi-Xin Zou et. al. Triplane meets gaussian splatting: Fast and generalizable single-view 3d reconstruction
with transformers. arXiv preprint arXiv:2312.09147, 2023.

[9] Cass W. Everitt. Interactive order-independent transparency. In NVIDIA, 2001.

[10] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic,
and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned from images. In
Advances In Neural Information Processing Systems, 2022.

[11] Wenhang Ge, Tao Hu, Haoyu Zhao, Shu Liu, and Ying-Cong Chen. Ref-neus: Ambiguity-reduced neural
implicit surface learning for multi-view reconstruction with reflection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 4251–4260, 2023.

[12] JunYoung Gwak, Christopher B Choy, and Silvio Savarese. Generative sparse detection networks for 3d
single-shot object detection. In European conference on computer vision, 2020.

[13] Zexin He and Tengfei Wang. Openlrm: Open-source large reconstruction models. https://github.
com/3DTopia/OpenLRM, 2023.

[14] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung
Bui, and Hao Tan. LRM: large reconstruction model for single image to 3d. CoRR, abs/2311.04400, 2023.

[15] Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya Jia. Efficientnerf efficient neural radiance fields.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
12902–12911, 2022.

[16] Tao Hu, Xiaogang Xu, Ruihang Chu, and Jiaya Jia. Trivol: Point cloud rendering via triple volumes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
20732–20741, 2023.

[17] Tao Hu, Xiaogang Xu, Shu Liu, and Jiaya Jia. Point2pix: Photo-realistic point cloud rendering via neural
radiance fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8349–8358, 2023.

[18] Zixuan Huang, Stefan Stojanov, Anh Thai, Varun Jampani, and James M Rehg. Zeroshape: Regression-
based zero-shot shape reconstruction. arXiv preprint arXiv:2312.14198, 2023.

[19] Ka-Hei Hui, Aditya Sanghi, Arianna Rampini, Kamal Rahimi Malekshan, Zhengzhe Liu, Hooman Shayani,
and Chi-Wing Fu. Make-a-shape: a ten-million-scale 3d shape model. CoRR, 2024.

[20] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Trans. Graph., 2013.

[21] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

[22] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything.
arXiv:2304.02643, 2023.

[23] Xiaoyu Li, Qi Zhang, Di Kang, Weihao Cheng, Yiming Gao, Jingbo Zhang, Zhihao Liang, Jing Liao,
Yan-Pei Cao, and Ying Shan. Advances in 3d generation: A survey. CoRR, abs/2401.17807, 2024.

11

https://github.com/3DTopia/OpenLRM
https://github.com/3DTopia/OpenLRM


[24] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields.
NeurIPS, 2020.

[25] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and Hao Su. One-2-
3-45: Any single image to 3d mesh in 45 seconds without per-shape optimization. Advances in Neural
Information Processing Systems, 36, 2024.

[26] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object, 2023.

[27] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping Wang.
Syncdreamer: Generating multiview-consistent images from a single-view image. arXiv preprint
arXiv:2309.03453, 2023.

[28] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel CNN for efficient 3d deep learning. In
NeurIPS, 2019.

[29] Zhen Liu, Yao Feng, Yuliang Xiu, Weiyang Liu, Liam Paull, Michael J. Black, and Bernhard Schölkopf.
Ghost on the shell: An expressive representation of general 3d shapes. In ICLR, 2024.

[30] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In CVPR, 2021.

[31] Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao, Jingren
Zhou, and Tieniu Tan. Videofusion: Decomposed diffusion models for high-quality video generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[32] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In CVPR, 2019.

[33] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. Latent-nerf for shape-
guided generation of 3d shapes and textures. arXiv preprint arXiv:2211.07600, 2022.

[34] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. Text2mesh: Text-driven neural
stylization for meshes. arXiv preprint arXiv:2112.03221, 2021.

[35] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi,
Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with prescriptive sampling
guidelines. ACM Transactions on Graphics (TOG), 2019.

[36] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[37] Shentong Mo, Enze Xie, Yue Wu, Junsong Chen, Matthias Nießner, and Zhenguo Li. Fast training
of diffusion transformer with extreme masking for 3d point clouds generation. arXiv preprint arXiv:
2312.07231, 2023.

[38] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system for
generating 3d point clouds from complex prompts. CoRR, abs/2212.08751, 2022.

[39] William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

[40] Pablo Pernias, Dominic Rampas, Mats L. Richter, Christopher J. Pal, and Marc Aubreville. Wuerstchen:
An efficient architecture for large-scale text-to-image diffusion models, 2023.

[41] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv, 2022.

[42] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In NeurIPS, 2017.

[43] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, 2022.

[44] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho,
David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language
understanding. In NeurIPS, 2022.

12



[45] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

[46] Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann, Hong-Xing Yu, Yunzhi Zhang, Eric Ryan
Chan, Dmitry Lagun, Li Fei-Fei, Deqing Sun, and Jiajun Wu. ZeroNVS: Zero-shot 360-degree view
synthesis from a single real image. arXiv preprint arXiv:2310.17994, 2023.

[47] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

[48] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm: Large
multi-view gaussian model for high-resolution 3d content creation. arXiv preprint arXiv:2402.05054,
2024.

[49] Dmitry Tochilkin, David Pankratz, Zexiang Liu, Zixuan Huang, , Adam Letts, Yangguang Li, Ding Liang,
Christian Laforte, Varun Jampani, and Yan-Pei Cao. Triposr: Fast 3d object reconstruction from a single
image. arXiv preprint arXiv:2403.02151, 2024.

[50] Trimesh. Trimesh [computer software]. https://github.com/mikedh/trimesh, 2019.

[51] Richard Tucker and Noah Snavely. Single-view view synthesis with multiplane images. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

[53] Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin, Christian
Laforte, Robin Rombach, and Varun Jampani. SV3D: novel multi-view synthesis and 3d generation from a
single image using latent video diffusion. CoRR, abs/2403.12008, 2024.

[54] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Greg Shakhnarovich. Score jacobian
chaining: Lifting pretrained 2d diffusion models for 3d generation. arXiv preprint arXiv:2212.00774,
2022.

[55] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. NeurIPS, 2021.

[56] Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Liang Pan Jiawei Ren, Wayne Wu, Lei Yang, Jiaqi Wang,
Chen Qian, Dahua Lin, and Ziwei Liu. Omniobject3d: Large-vocabulary 3d object dataset for realistic
perception, reconstruction and generation. In CVPR, 2023.

[57] Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan Sunkavalli, Gor-
don Wetzstein, Zexiang Xu, and Kai Zhang. DMV3D: denoising multi-view diffusion using 3d large
reconstruction model. CoRR, abs/2311.09217, 2023.

[58] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees for real-time
rendering of neural radiance fields. In ICCV, 2021.

13

https://github.com/mikedh/trimesh


A Appendix

The Appendix section contains detailed information on the network structure (including the X-Ray
diffusion model and upsampler), ablation studies, additional experimental quantitative and qualitative
results, failure cases, and key source code.

A.1 Network Details

X-Ray Diffusion Model As outlined in our study, we utilized the 3D Spatial-Temporal UNet as the
foundational architecture for our diffusion model. For image-to-3D generation, the input includes
4-channel image latent and 8-channel noise X-Ray and the output has 8 channel to denoise X-
Ray. Initially, we loaded all network parameters and fine-tuned the model on our training dataset.
Despite these efforts, the final performance fell short of expectations. We hypothesized that this
underperformance stemmed from the limited size of our training dataset, which was insufficient for
such a parameter-rich model, as well as a substantial domain gap between the original video data and
our X-ray data.

To address these issues, we reduced the network size to 10% of its original configuration and trained
the model from scratch using a significantly larger batch size. This approach proved highly effective,
as the final performance exceeded the current state-of-the-art methods by a considerable margin.
Consequently, our findings suggest that a smaller, more focused network trained from scratch can be
more effective than a larger pre-trained model when faced with limited and domain-specific datasets.
This approach not only enhances performance but also highlights the importance of customizing
the model size and training strategy to the specific characteristics of the data. Our results indicate
that careful consideration of the network architecture and training regimen is crucial for optimizing
performance, particularly in specialized applications such as X-ray generation. This study provides
valuable insights into model adaptation and training strategies that can be applied to other domains
facing similar challenges.

The following JSON file contains the configuration details for our X-Ray Spatial-Temporal UNet.

1 {
2 "_class_name": "UNetSpatioTemporalConditionModel",
3 "addition_time_embed_dim": 256,
4 "block_out_channels": [
5 64,
6 128,
7 256,
8 256
9 ],

10 "cross_attention_dim": 1024,
11 "down_block_types": [
12 "CrossAttnDownBlockSpatioTemporal",
13 "CrossAttnDownBlockSpatioTemporal",
14 "CrossAttnDownBlockSpatioTemporal",
15 "DownBlockSpatioTemporal"
16 ],
17 "in_channels": 12,
18 "latent_channels": 8,
19 "layers_per_block": 1,
20 "num_attention_heads": [
21 4,
22 8,
23 16,
24 16
25 ],
26 "num_frames": 8,
27 "out_channels": 8,
28 "projection_class_embeddings_input_dim": 768,
29 "sample_size": 64,
30 "transformer_layers_per_block": 1,
31 "up_block_types": [
32 "UpBlockSpatioTemporal",

14



33 "CrossAttnUpBlockSpatioTemporal",
34 "CrossAttnUpBlockSpatioTemporal",
35 "CrossAttnUpBlockSpatioTemporal"
36 ]
37 }

A.2 X-Ray Upsampler

The X-Ray diffusion model enables the generation of low-resolution 3D objects. To enhance
resolution and improve performance, our X-Ray upsampler increases the frame resolution by a factor
of 4. For image-to-3D generation, we concatenate the 4-channel image latent representation with the
8-channel low-resolution X-Ray, producing an 8-channel high-resolution X-Ray.

This process begins with the diffusion model creating a coarse, low-resolution 3D representation
that captures the essential structure of the object. The upsampler then refines this representation,
significantly improving the resolution and adding finer details that contribute to the realism of the 3D
model. By combining the latent image features with the initial low-resolution X-Ray data, we ensure
that the final high-resolution output retains the context and nuances of the original image while also
incorporating the detailed structural information provided by the X-Ray data.

The following JSON file contains the configuration details for our X-Ray Upsampler.

1 {
2 "_class_name": "AutoencoderKLTemporalDecoder",
3 "block_out_channels": [
4 128,
5 256,
6 512
7 ],
8 "down_block_types": [
9 "DownEncoderBlock2D",

10 "DownEncoderBlock2D",
11 "DownEncoderBlock2D"
12 ],
13 "force_upcast": false ,
14 "in_channels": 4,
15 "latent_channels": 12,
16 "layers_per_block": 2,
17 "out_channels": 8,
18 "sample_size": 768,
19 "scaling_factor": 1.0
20 }

A.3 Ablation Studies

The Effect of Diffusion Model

As described in Sec. A.1, we train the diffusion model with different configurations, including varying
model sizes and how to conduct initialization. Specifically, we evaluate three models:

1. Finetuned Original UNet

2. Randomly Initialized Original UNet

3. Randomly Initialized UNet with 10% Parameters

The experimental evaluation results on the GSO [6] dataset are illustrated in Tab. 3. These results
allow us to analyze the impact of different initialization and scaling strategies on the performance
of the diffusion model. By comparing the outcomes, we can identify the trade-offs between model
size, training time, and overall accuracy. We observed that finetuning the model did not introduce
significant improvement because of the domain gap between video and X-Ray data. Also, it is not
necessary to adopt a large diffusion model for Objeverse dataset [4] for significantly reducing the
batch size. Thus, we adopt the randomly initialized UNet with 10% parameters as our diffusion

15



Input Image Synthesized X-Ray Encoded Point Cloud Decoded Mesh View 1 Decoded Mesh View 2 Decoded Mesh View 3

Figure 7: Visualization of Image-to-3D Generation from X-Ray.

model. These findings provide insights into the optimal configuration for diffusion models in 3D
related tasks.

Table 3: Quantitative reconstruction comparison in different diffusion model configurations
Model Configurations CD ↓ FS@0.1 ↑ Training Time (days) ↓ Inference Time (seconds) Batch Size ↑ Model Size (GB) ↓
Finetuned Original UNet 0.095 0.812 ∼ 14 ∼ 18 2 6.1
Randomly Initialized Original UNet 0.099 0.806 ∼ 14 ∼ 18 2 6.1
Randomly Initialized UNet with 10% Parameters 0.056 0.973 7 ∼ 7 24 0.6

The Effect of Hit H

The original surface attributes only contain depth D, normal N, and color C. We add an additional
Hit H attribute to indicate whether there is a surface. In this ablation study, we demonstrate the
necessity of including the Hit H attribute. We conduct training experiments with and without the Hit
H attribute and evaluate on the GSO [6] dataset. The results, shown in Tab. 4, indicate that including
the Hit H attribute can improve performance. The reason might be that the X-Ray is sparse and
requires an indicator to balance the generative process. The UNet model and Upsampler with the
Hit H attribute achieves better CD and FS@0.1 scores, demonstrating its importance in accurate 3D
generation.

Table 4: Quantitative evaluation of the effect of Hit H attribute on the GSO [6] dataset
Diffusion Model CD ↓ FS@0.1 ↑ Upsampler CD ↓ FS@0.1 ↑
wo. Hit H 0.074 0.901 wo. Hit H 0.060 0.956
w/ Hit H 0.068 0.934 w/ Hit H 0.056 0.973

A.4 More Visualization

We shown more Visualization results of single-view image generation in Fig. 7. Also, we extend
the task to generate 3D object from text prompt. Text-to-3D mesh generation can also be achieved
via using text-to-image, object segmentation, and image-to-3D processes. We utilize established
diffusion models that are already proficient in image synthesis from textual descriptions instead of

16



"a black and silver 
power supply"

Synthesized Image Segmented Image Synthesized X-Ray Encoded Point Cloud Decoded Mesh

”green wine bottle"

"a polar bear"

"a rolled haystack" 

Figure 8: Visualization of Text-to-3D Generation from X-Ray.

developing a new text-conditioned diffusion model. One Model such as Stable Diffusion [43], Stable
Cascaded [40], or DiT [39] are employed to generate images based on the input text. Following this,
we apply an image segmentation tool, specifically the Segment Anything Model [22] to eliminate the
background. This streamlined method avoids the complexities of training a new model from scratch
instead of making use of sophisticated pre-trained models to handle the text-to-image translation,
thereby simplifying the process of generating 3D meshes from textual inputs. The output results of
Image-to-3D and Text-to-3D are illustrated in Fig. 8.

A.5 Key Source Code

Ray Casting: The source code of ray casting the mesh to get the point cloud.

1 """
2 The source code of ray casting the mesh to get the point cloud.
3 """
4

5 from trimesh.ray.ray_pyembree import RayMeshIntersector
6

7 def ray_cast_mesh(mesh , rays_origins , ray_directions):
8 intersector = RayMeshIntersector(mesh)
9 index_triangles , index_ray , point_cloud = intersector.

intersects_id(
10 ray_origins=rays_origins ,
11 ray_directions=ray_directions ,
12 multiple_hits=True ,
13 return_locations=True)
14 return index_triangles , index_ray , point_cloud

X-Ray to Point Cloud: The source code of transfering X-Ray to Point Clouds with normals and
colors.

1 """
2 The source code of transfering X-Ray to Point Clouds with normals and

colors.

17



3 """
4

5 import numpy as np
6 import open3d as o3d
7

8 def get_rays(directions , c2w):
9 # Rotate ray directions from camera coordinate to the world

coordinate
10 rays_d = directions @ c2w[:3, :3].T # (H, W, 3)
11 rays_d = rays_d / (np.linalg.norm(rays_d , axis=-1, keepdims=True)

+ 1e-8)
12

13 # The origin of all rays is the camera origin in world coordinate
14 rays_o = np.broadcast_to(c2w[:3, 3], rays_d.shape) # (H, W, 3)
15

16 return rays_o , rays_d
17

18 def X_Ray_to_Point_Cloud(XRay):
19 """
20 Converts X-Ray data to a point cloud with normals and colors.
21 """
22 XDepths , XNormals , XColors , XHits = XRay[:, 0:1], XRay[:, 1:4],

XRay[:, 4:7], XRay[:, 7:8]
23

24 camera_angle_x = 0.8575560450553894
25 image_width = XDepths.shape[-1]
26 image_height = XDepths.shape [-2]
27 fx = 0.5 * image_width / np.tan (0.5 * camera_angle_x)
28

29 rays_screen_coords = np.mgrid [0: image_height , 0: image_width ].
reshape(

30 2, image_height * image_width).T # [h, w, 2]
31

32 grid = rays_screen_coords.reshape(image_height , image_width , 2)
33

34 cx = image_width / 2.0
35 cy = image_height / 2.0
36

37 i, j = grid [..., 1], grid [..., 0]
38

39 directions = np.stack ([(i - cx) / fx , -(j - cy) / fx, -np.
ones_like(i)], -1) # (H, W, 3)

40

41 c2w = np.eye(4).astype(np.float32)
42

43 rays_origins , ray_directions = get_rays(directions , c2w)
44 rays_origins = rays_origins[None]. repeat(XDepths.shape[0], 0)
45 ray_directions = ray_directions[None]. repeat(XDepths.shape[0], 0)
46

47 XDepths = XDepths.transpose (0, 2, 3, 1)
48 XNormals = XNormals.transpose(0, 2, 3, 1)
49 XColors = XColors.transpose (0, 2, 3, 1)
50

51 rays_origins = rays_origins[XHits]
52 ray_directions = ray_directions[XHits]
53 XDepths = XDepths[XHits]
54 normals = XNormals[XHits]
55 colors = XColors[XHits]
56 xyz = rays_origins + ray_directions * XDepths
57

58 # convert to open3d point cloud
59 xyz = xyz.reshape(-1, 3)
60 normals = normals.reshape(-1, 3)
61 colors = colors.reshape(-1, 3)
62

18



63 pcd = o3d.geometry.PointCloud ()
64 pcd.points = o3d.utility.Vector3dVector(xyz)
65 pcd.normals = o3d.utility.Vector3dVector(normals)
66 pcd.colors = o3d.utility.Vector3dVector(colors)
67

68 return pcd

Point Cloud to Mesh: The source code of transferring the predicted point cloud to mesh using
Poisson Surface Reconstruction.

1 """
2 The source code of transferring the predicted point cloud to mesh

using
3 Poisson Surface Reconstruction.
4 """
5

6 import open3d as o3d
7

8 # Load point cloud
9 pcd = o3d.io.read_point_cloud("path_to_your_point_cloud.ply")

10

11 def poisson_surface_reconstruction(pcd):
12 """
13 Converts a point cloud to a mesh using Poisson Surface

Reconstruction.
14 """
15 # Ensure the point cloud has normals
16 if not pcd.has_normals ():
17 pcd.estimate_normals ()
18

19 # Perform Screened Poisson Surface Reconstruction
20 mesh , densities = o3d.geometry.TriangleMesh.

create_from_point_cloud_poisson(
21 pcd , depth=9, width=0, scale =1.1, linear_fit=False
22 )
23

24 # Optionally crop the mesh using the density values to remove low -
density areas

25 # You can adjust the threshold based on your requirements
26 density_threshold = 0.01
27 vertices_to_remove = densities < density_threshold
28 mesh.remove_vertices_by_mask(vertices_to_remove)
29

30 # Assign colors to the mesh
31 mesh.vertex_colors = o3d.utility.Vector3dVector(pcd.colors)
32 return mesh

1 """
2 The source code of evaluating the predicted mesh using Chamfer

Distance and F-Score.
3 """
4

5 import numpy as np
6 from scipy.spatial import cKDTree
7

8 def chamfer_distance_and_f_score(P, Q, threshold =0.1):
9 """

10 Calculates the Chamfer Distance and F-Score between two point
clouds.

11 """
12 kdtree_P = cKDTree(P)
13 kdtree_Q = cKDTree(Q)
14

15 dist_P_to_Q , _ = kdtree_P.query(Q)
16 dist_Q_to_P , _ = kdtree_Q.query(P)

19



17

18 chamfer_dist = np.mean(dist_P_to_Q) + np.mean(dist_Q_to_P)
19

20 precision = np.mean(dist_P_to_Q < threshold)
21 recall = np.mean(dist_Q_to_P < threshold)
22

23 if precision + recall > 0:
24 f_score = 2 * (precision * recall) / (precision + recall)
25 else:
26 f_score = 0.0
27

28 return chamfer_dist , f_score

Normalized Metrics: The source code of normalize and align the predicted point cloud to the gt
point cloud before evaluation.

1 """
2 The source code of normalize and align the predicted point cloud to

the
3 gt point cloud before evaluation.
4 """
5 import numpy as np
6 import open3d as o3d
7

8 def ray_cast_mesh(mesh , rays_origins , ray_directions):
9 """

10 Performs ray casting on a mesh to obtain a point cloud.
11 """
12 intersector = RayMeshIntersector(mesh)
13 index_triangles , index_ray , point_cloud = intersector.

intersects_id(
14 ray_origins=rays_origins ,
15 ray_directions=ray_directions ,
16 multiple_hits=True ,
17 return_locations=True)
18 return index_triangles , index_ray , point_cloud

20



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors in
the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21



Answer: [NA]
Justification: The theory assumptions in this paper have already been proved in previous
works (Diffusion Model and Screened Poisson Algorithm).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The training and evaluation source code is uploaded so that the reviewer can
check the details and re-implement our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The training and evaluation source code is uploaded so that the reviewer can
check the details and re-implement our results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper adopts the mean metric values for 3 times testing for a fair compari-
son.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the Experimental section Implementation section, the paper introduces the
detailed implementation details, including the computing resources, training and evaluation
details. Also, the source code is uploaded for checking.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is sure to preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper contributes to fundamental 3D representation research and extends
beyond just 3D generation tasks. In the future, it has the potential to enhance other research
fields and benefit human society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

24

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites the original paper that produced the code package or dataset,
and follows the licenses for existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

25



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduce the details of the dataset to be released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowd-sourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

26

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27


	Introduction
	Related Work
	Representation for 3D Models
	Generative Models for 3D Generation

	Our X-Ray Representation
	Encoding
	Decoding

	X-Ray for 3D Generation
	X-Ray Diffusion Model
	X-Ray Upsampler

	Experiments
	Dataset and Implementation
	Efficient Comparison with Different 3D Representation
	Analysis of Encoding-Decoding Intrinsic Error
	Quantitative Comparison
	Qualitative Comparison
	Failure Cases.

	Conclusion
	Appendix
	Network Details
	X-Ray Upsampler
	Ablation Studies
	More Visualization
	Key Source Code


