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Abstract

Recent work has found that entity represen-
tations can be extracted from pre-trained lan-
guage models to develop knowledge graph
completion models that are more robust to the
naturally occurring sparsity found in knowl-
edge graphs. In this work, we explore how to
best extract and incorporate those embeddings.
We explore the suitability of the extracted em-
beddings for direct use in entity ranking and
introduce both unsupervised and supervised
processing methods that can lead to improved
downstream performance. We then introduce
supervised embedding extraction methods and
demonstrate that we can extract more infor-
mative representations. We also examine the
effect of language model selection and find
that the choice of model can have a signif-
icant impact. We then synthesize our find-
ings and develop a knowledge graph comple-
tion model that significantly outperforms re-
cent neural models. 1

1 Introduction

Knowledge graphs (KG) are structured represen-
tations of knowledge that contain a collection of
factual relations between entities. KGs have been
shown to be useful in a variety of tasks such as
representation learning (Liu et al., 2018), question
answering (Sun et al., 2019a; Shen et al., 2019;
Thirukovalluru et al., 2021), and entity linking
(Thai et al., 2021).

However, the difficulty of curating knowledge
at scale means that existing KGs are highly in-
complete. This has led to the widespread study of
knowledge graph completion (KGC) which aims to
develop automated solutions that can suggest new
facts to add to the KG (Yang et al., 2015; Trouillon
et al., 2016; Shang et al., 2018; Dettmers et al.,
2018; Sun et al., 2019b; Balazevic et al., 2019;

1We will make our code publicly available.

Vashishth et al., 2020a). Much of the work in this
area has been performed on a collection of bench-
mark datasets that are curated to have unusually
dense connectivity. This simplifies the task but has
also led to the development of KGC methods that
are heavily reliant on that dense connectivity for
strong performance (Pujara et al., 2017).

Recent work has begun to focus on more realis-
tic settings where the KG does not exhibit dense
connectivity. That work has demonstrated that tex-
tual entity embeddings can be extracted from pre-
trained language models to develop KGC models
with greater robustness to sparsity (Malaviya et al.,
2020; Lovelace et al., 2021; Wang et al., 2021).

The most recent work (Lovelace et al., 2021;
Wang et al., 2021) has fixed the textual entity em-
beddings during the training process. This reduces
the reliance of the KGC model on existing knowl-
edge within the graph and improves robustness to
sparsity.

This prior work, however, diverged in their selec-
tion of language model, their method of extracting
entity representations, and their use of the entity
representations for candidate ranking. The work
focused primarily on developing neural ranking ar-
chitectures to effectively utilize the textual embed-
dings once they are extracted, leaving the effects
of these divergent choices unclear.

In this work, we perform a comprehensive ex-
ploration of how to best extract entity representa-
tions from pre-trained language models and process
them for use in downstream KGC architectures. We
explore three primary research questions which we
outline below.

RQ1: Is the textual embedding space suf-
ficient for use in entity ranking? Mu and
Viswanath (2018); Ethayarajh (2019); Li et al.
(2020) have observed that textual embedding
spaces tend to be highly anisotropic, with most
vectors occupying a narrow cone within the space.



Furthermore, processing the word embeddings to
be more isotropic, i.e. uniformly distributed with
respect to direction, leads to significant improve-
ments on semantic similarity benchmarks (Mu and
Viswanath, 2018; Li et al., 2020). Given that entity
ranking relies upon a similar measure of similarity,
anisotropic embeddings could degrade KGC per-
formance as well. We find that a similar problem
does extend to KGC and introduce unsupervised
and supervised approaches that transform the space
to be more suitable for use in entity ranking.

RQ2: Can we extract more informative en-
tity representations from pre-trained language
models? Recent KGC work has extracted entity
representations from pre-trained language models
in an unsupervised manner. However, the knowl-
edge for different downstream tasks is encoded dif-
ferently by language models (Tenney et al., 2019;
Toshniwal et al., 2020), suggesting that unsuper-
vised extraction may be suboptimal. We explore
supervised embedding extraction techniques to de-
velop more informative entity representations.

RQ3: How sensitive is the downstream
KGC performance to the selection of language
model? We explore this question along two pri-
mary axis. First, we examine whether scaling up
the language model leads to improved entity rep-
resentations. Second, we additionally examine the
effect of domain-specific pretraining. We find that
while scaling up the language model can be helpful,
domain specialization is particularly effective.

We synthesize our findings and utilize the most
effective representation processing and extraction
techniques with a recently proposed neural ranking
architecture. Even though we make no modifica-
tions to the ranking architecture, our representation
extraction and processing techniques lead to signif-
icant improvements across multiple datasets. The
findings and analysis from this work provide useful
guidelines for developing and utilizing effective
textual entity representations for KGC.

2 Related Work

Malaviya et al. (2020); Lovelace et al. (2021);
Wang et al. (2021) have found that pretrained lan-
guage models can be used to extract entity represen-
tations to improve KGC in settings where the KG
is highly incomplete and the existing knowledge is
insufficient to learn meaningful entity representa-
tions.

Malaviya et al. (2020) and Wang et al. (2021) fo-

cused on commomsense KGC and developed meth-
ods utilizing graph neural networks in conjunction
with shallow convolutional decoders. Lovelace
et al. (2021) explored biomedical, encyclopedic,
and commonsense KGC and introduced a deep con-
volutional model that outperformed existing shal-
low convolutional KGC architectures. All of these
works focused on developing neural ranking archi-
tectures that used textual embeddings. We focus in
this work on the complementary questions related
to the extraction and use of entity representations.

Petroni et al. (2019) introduced the LAMA
benchmark which utilizes fill-in-the-blank prompts
to query the models for factoid knowledge. They
found that language models are surprisingly effec-
tive at recalling relational knowledge even in a fully
unsupervised setting. Follow-up work has found
that language models are sensitive to the choice of
prompt and that factual recall can be significantly
improved with appropriate prompting (Jiang et al.,
2020; Shin et al., 2020; Haviv et al., 2021). This
motivates us to explore whether we can introduce
supervision to extract embeddings that better repre-
sent the knowledge necessary for KGC.

3 Task Formulation

Given a set of entities E and relationsR, a KG can
be defined as a collection of entity-relation-entity
triplets K = {(ei, rj , ek)} ⊂ E × R × E where
ei, ek ∈ E and rj ∈ R. The aim of KGC is to
develop a model that accepts a query consisting
of a head entity and relation, (ei, rj , ?), and ranks
all candidate entities ek ∈ E to resolve the query.
An effective KGC model should rank correct can-
didates more highly than incorrect candidates.

Neural KGC models use the embedded head
entity and relation to produce a query vector
fθ(ei, rj) = q where fθ(·) is a neural network and
ei, rj,q ∈ Rd. Scores for each candidate, ek ∈ E ,
are computed as the inner product between the
query vector and the candidate entity embedding
yk = qek

ᵀ where ek ∈ Rd. The line of work that
we build on (Malaviya et al., 2020; Lovelace et al.,
2021; Wang et al., 2021) uses textual descriptors
to extract the entity embeddings from pre-trained
language models.

We evaluate the KGC models with standard rank-
ing metrics: Mean Reciprocal Rank (MRR), Hits at
1 (H@1), Hits at 3 (H@3), and Hits at 10 (H@10).
We follow standard procedure and consider both
forward and reverse relations and use the filtered



evaluation setting (Bordes et al., 2013; Dettmers
et al., 2018). We validate the significance of im-
provements in the MRR with paired bootstrap sig-
nificance testing (Berg-Kirkpatrick et al., 2012)
and correct for multiple hypothesis testing with
the Benjamini/Hochberg method (Benjamini and
Hochberg, 1995).

4 Datasets

We work with commonsense, biomedical, and en-
cyclopedic KGC datasets. For the commonsense
KG dataset, we work with the CN-82K dataset in-
troduced by (Wang et al., 2021) which is derived
from ConceptNet. For the biomedical KGC dataset,
we work with the SNOMED-CT Core dataset intro-
duced by Lovelace et al. (2021). For the encyclope-
dic dataset, we utilize the widely used benchmark
KGC dataset, FB15k-237 (Toutanova and Chen,
2015). Dataset statistics are reported in Table 11.

5 RQ1: Sufficiency of Embedding Space
for Entity Ranking

We evaluate whether the entity embeddings re-
leased by Lovelace et al. (2021) are well-suited
for use in the candidate scoring process. In their
work, Lovelace et al. (2021) used the entity embed-
dings directly in the entity ranking process follow-
ing the standard neural KGC completion formula-
tion. Thus the scalar score for entity i is yi = qei

ᵀ.

5.1 Embedding Space Analysis

5.1.1 Global and Local Cosine Similarity
We follow Ethayarajh (2019) and measure the
anisotropy using the expected cosine similar-
ity between randomly selected entities, i.e.
Ei,j∈|E|:i 6=j [cos(ei, ej)] where cos(·, ·) denotes
the cosine similarity. We would expect
Ei,j∈|E|:i 6=j [cos(ei, ej)] ≈ 0 in an isotropic space.

Recent work (Cai et al., 2021) has found that
the embedding spaces from pre-trained language
models contain embedding clusters that are locally
isotropic when re-centered. We also compute the
similarity metric after re-centering the embedding
space to evaluate the local isotropy.

We report the expected cosine similarity for
the entity embeddings released by Lovelace et al.
(2021) in Table 1. The global cosine similarity is
high across all datasets, but the similarity is near
zero after re-centering. Therefore the global sim-
ilarity arises from the presence of a large mean

vector which is consistent with findings from past
work (Mu and Viswanath, 2018; Cai et al., 2021).

We can examine the effect of this mean vector,
c ∈ Rd. For a given query vector, qi, the
score for some entity, ej , can be decomposed as
yj = qi(wj

ᵀ + cᵀ) = qiwj
ᵀ + qic

ᵀ = qiwj
ᵀ + bi

where wj is an entity-specific vector and bi = qic
ᵀ

acts as a query-specific bias term. Perhaps
surprisingly, the large mean vector actually has
no effect on the relative rankings of the entities.
We later explore experimentally whether this large
mean vector degrades performance.

5.1.2 Effective Dimension
A complementary measure of anisotropy is the ε-
effective-dimension from Cai et al. (2021). We
first apply PCA to the matrix of entity embed-
dings. The ratio of the variance explained by
k principal components can then be calculated
as rk =

∑k−1
i=0 σi/

∑m−1
j=0 σj , where σi is the i-th

largest eigenvalue of the covariance matrix of the
embeddings. The ε-effective-dimension is then
d(ε) = argminkrk ≥ ε. We set ε = 0.8 which
means that d(0.8) measures the minimum num-
ber of PCA components necessary to explain 80%
of the variance in the embedding space.

We illustrate the value of this complementary
measure of anisotropy with an example. Consider
an embedding space that is normally distributed
across a 2-dimensional plane centered in the d-
dimensional embedding space. The expected co-
sine similarity would be 0, but the effective dimen-
sionality of the embedding space would be 2� d
which would reveal the anisotropy. Our findings in
Table 1 demonstrate that effective dimensionalities
of the embeddings are far smaller than d = 768.

5.1.3 Knowledge Alignment
We measure the alignment between the em-
bedding space and the KG. Past work (Zhang
et al., 2020) has observed that for some set
of facts {(ei, rj , ek)}nk=1, we would expect
{ek}nk=1 to be similar in some way. For
instance, all entities that satisfy the query
(abdomen,finding site of, ?) are abdomi-
nal conditions. The inner product scoring means
that this similarity should be encoded within the
entity embedding space to enable retrieving the set
of correct entities with a single query vector.

To evaluate the alignment of the em-
bedding space and the KG, we define
the similarity between two entities as



Dataset E[cos(·, ·)] d(0.8) ρ
Global Local

CN-82K 0.62 < 0.01 190 28.9
SNOMED-CT Core 0.81 < 0.01 110 22.6
FB15k-237 0.88 < 0.01 68 34.1

Table 1: Analysis of entity embedding spaces.

Sim(ei, ej) =
∑

ek∈E,rl∈R 1(ek, rl, ei)× 1(ek, rl, ej)
where E is the set of entities, R is the set of
relations, and 1(ek, rl, ei) evaluates to one if the
fact is contained within the test set of the KG and
zero otherwise. We report the knowledge aligment
as the Spearman’s rank correlation, ρ, between
our KG-induced measure of similarity and the
inner product between centered entity embeddings.
Table 1 shows there is a significant (p� 1e−10)
positive alignment across all datasets2.

5.2 Embedding Processing Techniques
We explore unsupervised and supervised methods
to improve the isotropy and alignment of the space.

5.2.1 Unsupervised Techniques
KGC training typically involves computing scores
across all candidate entities (or at least a large
sample of negative candidates) for each example.
Therefore, unsupervised preprocessing techniques
are more scalable than learning supervised trans-
formations over the entire set of embeddings.

Normalization We normalize each entity em-
bedding, ei ∈ Rd, by centering the embedding
space and reducing each vector to unit norm as
ẽi = ei−c

‖ei−c‖2 where c ∈ Rd is the mean of the
entity embeddings.

Normalizing Flow We learn a normalizing flow
to transform the anisotropic embedding space to
an isotropic space, similar to Li et al. (2020). We
briefly introduce normalizing flows, but we refer
the reader to Papamakarios et al. (2021) for a com-
prehensive overview.

Normalizing flows can be used to transform an
unknown distribution into a known probability dis-
tribution. Given x ∈ Rd with an unknown true
distribution x ∼ p∗x(x), we can define a joint distri-
bution over x following the generative process of
x = T (u),u ∼ pu(u) where pu(u) is called the
base probability distribution of the flow model.

Normalizing flows constrain the transfor-
mation, T , to be a diffeomorphism which

2All rank correlations reported in this work are similarly
significant (p� 1e−10). We omit future mentions of that
significance for brevity.

allows us to write the density of x in terms of
pu(u) and the Jacobian determinant of T−1 as
px(x) = pu(T

−1(x))|det(JT−1(x))|. We can
then fit the flow by minimizing the negative
log-likelihood of observed samples {xn}Nn=1 as
− log(px(x)) = − log(pu(T

−1(xi)))− log|det(JT−1(xi))|.
If T−1, det(JT−1(·)), and pu(·) are tractable then
gradient-based optimization is straightforward.

In this work we define T−1 as a linear projection
followed by a scalar shift: T−1(x) = Wx+ b
where W ∈ Rd×d and x,b ∈ Rd. To ensure
the invertibility of W and to simplify the computa-
tion of the Jacobian determinant, we use the trick
introduced by Kingma and Dhariwal (2018) and
parameterize W using its LU decomposition.

We select a multivariate Guassian centered on
the origin with an identity convariance matrix for
the base distribution which provides a closed-form
solution for pu(u). Thus the normalizing flow
learns to transform the anisotropic entity embed-
ding distribution to an isotropic Gaussian.

5.2.2 Supervised Techniques

We explore inexpensive supervised techniques that
learn to transform the embedding space.

MLP We consider an MLP with one hidden
layer followed by normalization. We process the
set of entity embeddings by centering and scaling
them to have unit norm before feeding them to the
MLP. Thus a processed entity embedding, ei, is
transformed as ẽi =

MLP (ei)
‖MLP (ei)‖2 .

Residual MLP We consider an MLP utilizing
a residual connection with the original embed-
ding. We similarly center and scale the embed-
dings to have unit norm. A processed entity em-
bedding, ei, would then be transformed as ẽi =
(ei+MLP (ei))
‖(ei+MLP (ei))‖2 . Given the strong performance
of the original set of embeddings, optimizing the
residual mapping may be more effective.

5.3 Experiments

We conduct experiments to evaluate the differ-
ent embedding processing methods. We utilize
BERT-ResNet with the default hyperparameters
from Lovelace et al. (2021) as our neural ranking
architecture, fθ(·, ·). We only apply the transforma-
tion, gθ(ek) = ẽk where ẽk ∈ Rd, to the embed-
ding matrix used for candidate ranking. Therefore,
we still compute the query as fθ(ei, rj) = q with
the original embeddings, but the score is now com-
puted as yk = qẽᵀk.



SNOMED CT Core CN-82K FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Default Embeddings .488 .383 .543 .689 .190 .127 .208 .314 .339 .259 .370 .500

Normalization .487 .381 .544 .692 .192 .128 .211 .317 .348∗∗ .264 .381 .514
Normalizing Flow .508∗∗ .401 .566 .713 .194∗ .129 .213 .320 .352∗∗ .265 .385 .527

MLP .539∗∗† .431 .598 .749 .200∗∗† .132 .222 .339 .374∗∗† .282 .407 .561
Residual MLP .549∗∗† .445 .507 .752 .209∗∗† .138 .230 .350 .375∗∗† .283 .408 .564

Table 2: Comparison of embedding processing techniques. The highest metrics for unsupervised and supervised techniques are
bolded. We indicate a significant improvement over the default embeddings with ∗(p < 0.01), ∗ ∗ (p < 5e−6) and over the
normalizing flow with † (p < 1e−5).

SNOMED CT Core CN-82K FB15k-237

E[cos(·, ·)] d(0.8) ρ E[cos(·, ·)] d(0.8) ρ E[cos(·, ·)] d(0.8) ρ

Default Embeddings 0.91 110 22.6 0.62 190 28.9 0.81 68 34.1

Normalization < 0.01 109 21.6 < 0.01 190 28.8 < 0.01 66 35.6
Normalizing Flow < 0.01 545 14.3 < 0.01 554 12.7 < 0.01 544 10.3

MLP 0.67 135 26.2 0.45 130 32.3 0.44 118 40.4
Residual MLP 0.63 183 27.4 0.34 228 33.6 0.41 147 41.5

Table 3: Intrinsic evaluation of embedding processing techniques.
SNOMED CT Core CN-82K FB15k-237

x-to-one x-to-many x-to-one x-to-many x-to-one x-to-many

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

Default Embeddings .823 .925 .259 .495 .267 .410 .112 .213 .714 .827 .229 .389

Normalizing Flow .831 .936 .280 .522 .272 .418 .118 .225 .714 .838 .245 .418
+1.0% +1.2% +7.9% +5.5% +1.7% +2.0% +5.5% +5.7% +0.0% +1.3% +4.3% +7.7%

Residual MLP .852 .950 .329 .576 .294 .462 .128 .246 .729 .843 .272 .465
+3.6% +2.7% +26.9% +16.4% +10.1% +12.8% +14.5% +15.8% +2.0% +2.0% +18.7% +19.8%

Table 4: Effect of embedding transformations across relation types.

5.4 Impact Of Embedding Space
Transformations

SNOMED CT Core CN-82K

Edit Distance KG Alignment Edit Distance KG Alignment

Default −23.0 22.6 −21.3 28.9
Residual MLP −17.8 27.4 −20.2 33.6

Table 5: Effect of supervised transformation on rank correla-
tion (ρ) with edit distance and the KG.

We report the effect of the different transforma-
tions on downstream performance in Table 2 and
report the intrinsic embedding metrics in Table 3.

For the unsupervised techniques, the normaliz-
ing flow consistently leads to significant perfor-
mance improvements. However, the simpler nor-
malization technique is not as effective. The em-
bedding metrics show that normalization reduces
the global similarity but has limited effects on the
other metrics, suggesting that the large common
mean vector has a minimal impact on performance.
This also suggests that the cosine similarity metric
may not be very informative for KGC.

The normalizing flow reduces the global similar-
ity, but it also dramatically increases the effective
dimensionality and decreases the knowledge align-
ment of the space. This suggests that a tradeoff may
exist between our measures of isotropy and knowl-

edge alignment. Depsite that tradeoff, optimizing
solely for isotropy is effective. This confirms that
the anisotropy of the original space does harm per-
formance.

For the supervised techniques, both the MLP
and Residual MLP lead to significantly improved
performance, with the Residual MLP consistently
outperforming the MLP. Both transformations con-
sistently improve the knowledge alignment of the
embedding spaces. Compared to the MLP, the
Residual MLP produces a more isotropic space
with a greater effective dimensionality that is bet-
ter aligned with the KG. The improvement in both
the isotropy and the knowledge alignment of the
embedding space from end-to-end supervision pro-
vides further evidence that they are desireable char-
acteristics for candidate ranking.

We also compare the effect on KG alignment
with lexical overlap. Although lexical overlap can
be meaningful, it also likely introduces spurious
signals. We report the Spearman’s rank correla-
tion, ρ, between the edit distance between entity
names and the inner product between centered en-
tity embeddings in Table 5. The Residual MLP
strengthens the KG alignment while reducing the
correlation with lexical overlap, suggesting that it
learns to highlight relevant information while dis-



carding spurious correlations.

5.5 Performance by Relation Type

If the similarity between entities that resolve the
same query is not represented in the embedding
space, then the model would struggle to handle
queries that retrieve multiple entities. To evaluate
whether our tranformations alleviate that weakness,
we categorize relations with at least 300 training
examples as either x-to-one relations or x-to-many
relations by computing the average number of tail
entities associated with each query for the relation.
If the number is less than 1.5, then we categorize it
as a x-to-one relation. If the number is greater than
3, then we categorize it as a x-to-many relation.

We report the metrics and relative improvements
obtained by our transformations in Table 4. The
relative improvement is greater for x-to-many rela-
tions across all transformations and datasets. Thus
the tranformations improve the model’s ability to
handle queries that retrieve multiple entities.

6 RQ2: Embedding Extraction

Previous work that utilizes embeddings from lan-
guage models diverge in their embedding extrac-
tion method. We explore the efficacy of the unsu-
pervised representation extraction techniques used
in prior work and additionally introduce supervised
representation extraction techniques.

6.1 Embedding Extraction Techniques

6.1.1 Unsupervised Techniques
[CLS] Token: We extract the embedding of the
[CLS] token from the final layer following prior
work (Malaviya et al., 2020; Wang et al., 2021).
Mean Pooling: We mean pool across all tokens
and layers following Lovelace et al. (2021).
MLM Pretraining: Recent work (Malaviya et al.,
2020; Wang et al., 2021; Lovelace et al., 2021)
has pretrained the language model using the MLM
objective upon the set of entity names. We ablate
the impact of this pretraining stage.

6.1.2 Supervised Techniques
Fine-tuning the language model is ineffective be-
cause the limited vocabulary of entities leads to
rapid overfitting. We instead explore supervised
representation extraction techniques that introduce
supervision over the frozen language model.

Linear Probe: We learn a linear projection
(Toshniwal et al., 2020) that is applied to every

hidden state of the frozen model. We then max-
pool across the tokens in each layer to produce a
single feature vector for every layer. We aggregate
these features using a learned linear combination
across layers.

Prompting: We learn continuous prompts that
we prepend to the language model inputs at every
layer to prompt the frozen model (Li and Liang,
2021). We parameterize the prompt embeddings in
a low-dimensional space and learn an MLP with
one hidden layer to project them to the dimension-
ality of the language model. We extract the entity
representation by mean pooling across all inter-
mediate states in each layer and aggregate across
layers with a learned linear combination.

6.2 Experiments

We conduct experiments to evaluate the different
entity extraction techniques. To isolate the effect
of the embedding extraction technique, we use the
most effective unsupervised processing technique,
the normalizing flow, for candidate ranking. For the
unsupervised techniques, we therefore compute the
query as fθ(ei, rj) = q and the score as yk = qẽᵀk.

The supervised techniques introduce an addi-
tional function, hθ(ei) = êi where êi ∈ Rd, to
extract entity representations for computing the
query fθ(êi, rj) = q̂. The score is then computed
similarly to the unsupervised setting as yk = q̂ẽᵀk.

6.2.1 Impact of Embedding Extraction
Techniques

We report the KGC metrics in Table 6 and report the
intrinsic embedding metrics in Table 7. For unsu-
pervised embedding extraction, the MLM pretrain-
ing improves downstream performance. That im-
provement corresponds to an improved KG align-
ment which outweighs a minor reduction in the
effective dimensionality.

The optimal unsupervised extraction technique
varies based on the dataset and that variance is re-
flected in the embedding metrics. For instance, the
mean-pooled embeddings have far greater effec-
tive dimensionalities for the SNOMED CT Core
dataset and the CN-82K dataset and lead to the
strongest downstream performance. For the FB15k-
237 dataset, however, the [CLS] embeddings have
the greatest effective dimensionality and lead to the
strongest performance. The supervised embedding
extraction techniques do lead to improved perfor-
mance over the unsupervised baselines, although
we do not observe a clear winner among them.



SNOMED CT Core CN-82K FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Unsupervised Extraction Techniques

CLS Token .472 .371 .521 .671 .157 .104 .171 .259 .351 .266 .383 .525
+ Pretraining .489∗∗∗ .385 .540 .695 .189∗∗∗ .126 .207 .314 .356∗∗∗ .270 .388 .530
Mean Pooling .503 .397 .559 .705 .184 .124 .202 .303 .352 .266 .385 .525
+ Pretraining .509∗∗∗ .403 .566 .713 .195∗∗∗ .130 .216 .323 .352 .265 .385 .527

Supervised Extraction Techniques

Linear Probe .516††† .408 .575 .722 .195 .130 .215 .324 .358† .272 .392 .530
+ Pretraining .517∗††† .410 .576 .722 .199∗∗†† .133 .220 .329 .359†† .273 .392 .532
Prompting .515††† .410 .573 .719 .201††† .136 .222 .333 .357 .271 .392 .528
+ Pretraining .513††† .406 .571 .718 .202††† .137 .223 .335 .356 .271 .387 .525

Table 6: Comparison of embedding extraction techniques. We indicate significant improvements from the pre-
training procedure with ∗(p < .05), ∗ ∗ (p < .01), ∗ ∗ ∗(p < 5e−5) and over the best unsupervised approach with
†(p < .05), † † (p < .005), † † †, (p < 5e−6).

SNOMED CT Core CN-82K FB15k-237

E[cos(·, ·)] d(0.8) ρ E[cos(·, ·)] d(0.8) ρ E[cos(·, ·)] d(0.8) ρ

CLS Token 0.93 112 21.1 0.82 119 18.1 0.64 74 29.8
+ Pretraining 0.43 56 23.7 0.69 108 29.9 0.58 83 31.7
Mean Pooling 0.93 126 21.5 0.68 206 26.0 0.82 69 34.7
+ Pretraining 0.91 112 23.1 0.62 189 29.2 0.81 69 34.8

Table 7: Intrinsic evaluation of embedding extraction techniques.

SNOMED CT Core CN-82K FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Unsupervised Embedding Extraction & Residual MLP

BERT-base .531 .425 .588 .736 .210 .139 .232 .352 .373 .282 .406 .559
BERT-large .545∗ .441 .601 .749 .212 .139 .234 .356 .375 .282 .410 .563
PubMedBERT .549‡ .444 .606 .754 − − − − − − − −

Prompting & Residual MLP

BERT-base .530 .423 .587 .736 .214†† .142 .237 .361 .376† .284 .410 .562
BERT-large .541∗ .434 .599 .749 .216†† .144 .238 .361 .373 .280 .409 .561
PubMedBERT .550‡ .443 .611 .755 − − − − − − − −

Table 8: Effect of language model selection. We indicate significant improvements from the larger language model with
∗(p < 5e−6); from prompting with †(p < 0.05), † † (p < 0.001); and from specialization with ‡(p < 5e−6).

Language Model E[cos(·, ·)] d(0.8) ρ

BERT-base 65.6 132 18.0
BERT-large 62.6 135 18.6
PubMedBERT 90.7 112 23.1

Table 9: Analysis of SNOMED-CT Core embeddings.

7 RQ3: Language Model Selection

Further performance improvements can often be
gained by scaling up the size of the language model
Devlin et al. (2019) or from using specialized,
domain-specific language models Gu et al. (2020).
We examine the effect of those two aspects on
downstream KGC performance in this section.

7.1 Experiments

To evaluate the potentially differential improve-
ments across entity extraction techniques, we con-
duct experiments with both unsupervised and su-
pervised extraction techniques while using our best
candidate ranking approach, the Residual MLP. We

conduct experiments with BERT-base and BERT-
large for all three KGs using the uncased versions.
To evaluate the effect of specialization, we use Pub-
MedBERT, which is the same size as BERT-base,
for the biomedical SNOMED-CT Core dataset.

7.2 Effect of Language Model Selection

We report results for these experiments in Table
8. When using unsupervised extraction techniques,
the larger language model achieves better perfor-
mance across all datasets, but the differences can
be minor. For the supervised extraction techniques,
the larger language model actually degrades perfor-
mance over the unsupervised extraction techniques
in some cases. The effect of using supervision for
entity extraction and candidate ranking is dataset-
dependent and is helpful for the CN82K dataset.

The mixed results from utilizing larger lan-
guage models and introducing additional supervi-
sion could arise from an increased risk of overfit-
ting. The supervised extraction and larger language



SNOMED CT Core CN-82K

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

BERT-ConvTransE (Malaviya et al., 2020) − − − − .1626 − .1795 .2751
InductivE (Wang et al., 2021) − − − − .2035 − .2265 .3386
BERT-DeepConv (Lovelace et al., 2021) .479 .374 .532 .685 − − − −
BERT-ResNet (Lovelace et al., 2021) .492 .389 .544 .694 .190 .127 .208 .318

BERT-ResNet + Normalizing Flow .509 .403 .566 .713 .195 .130 .216 .323
BERT-ResNet + Prompting + Normalizing Flow .515 .410 .573 .719 .201 .136 .222 .333
BERT-ResNet + Residual MLP .549 .444 .606 .754 .212 .139 .234 .356
BERT-ResNet + Prompting + Residual MLP .550 .443 .611 .755 .216 .144 .238 .361

FB15K-237 Additional Information

MRR H@1 H@3 H@10 Graph Neighborhood Text

RESCAL† Nickel et al. (2011) .357 − − .541 7 7

TransE† Bordes et al. (2013) .313 − − .497 7 7

DistMult† Yang et al. (2015) .343 − − .531 7 7

ComplEx† Trouillon et al. (2016) .348 − − .536 7 7

ConvE† Dettmers et al. (2018) .339 − − .521 7 7

CompGCN (Vashishth et al., 2020b) .355 .264 .390 .535 3 7
HittER (Chen et al., 2021) .373 .279 .409 .558 3 7

BERT-DeepConv (Lovelace et al., 2021) .327 .246 .354 .488 7 3
BERT-ResNet (Lovelace et al., 2021) .346 .262 .379 .514 7 3

BERT-ResNet + Normalizing Flow .356 .270 .388 .530 7 3
BERT-ResNet + Prompting + Normalizing Flow .357 .271 .392 .528 7 3
BERT-ResNet + Residual MLP .375 .282 .410 .563 7 3
BERT-ResNet + Prompting + Residual MLP .376 .284 .410 .562 7 3

Table 10: Comparison against baseline methods and recent work. We indicate that the results are from the comprehensive
replication study by Ruffinelli et al. (2020) with a †. Other results are taken from the original work.

models do lead to lower training loss, but that im-
provement does not consistently translate to stonger
test performance.

Domain-specific pretraining is particularly ef-
fective, with PubMedBERT consistently outper-
forming other models. Table 9 shows that the
biomedical language model is better-aligned with
the biomedical KG, albeit with slightly lower ef-
fective dimensionality. This suggests that our pro-
posed KG alignment metric may provide insight
into the suitability of a language model a priori.

8 Comparison Against Recent Work

We synthesize our findings to develop a KGC
model and compare against recent work. We again
simply repurpose the BERT-ResNet ranking ar-
chitecture with the default hyperparameters from
Lovelace et al. (2021) to demonstrate the impact of
the decisions explored in this work.

We report results across the two sparser datasets
in Table 10. Our embedding extraction and pro-
cessing techniques outperform recent work, with
the supervised techniques being particularly effec-
tive. In Table 10 we compare against a selection
of baselines on the FB15K-237 dataset. We also
denote whether the models utilize additional graph
information or textual information.

Our KGC model is very effective and outper-
forms the models that do not incorporate any addi-

tional information. While this seems natural, this
was not actually the case with the prior work by
Lovelace et al. (2021). Therefore, our method in-
tegrates textual information a way that improves
performance even for densely-connected KGs.

Our KGC model also outperforms the recent
work by Chen et al. (2021) which obtained strong
performance gains from incorporating the graph
neighborhood into the ranking decision. A natural
extension is to explore how to incorporate both
textual and graph information.

9 Conclusion

In this work, we have explored various techniques
to improve the suitability of entity embeddings for
candidate ranking (Section 5), explored different
methods to extract entity embeddings from lan-
guage models (Section 6), and have explored the
effect of language model selection (Section 7).

By synthesizing the insights from our research
questions, we were able to develop a KGC model
that significantly outperforms recent work without
making any modifications to the neural ranking
architecture. The findings and analysis from this
work provide a useful framework for evaluating
and selecting effective entity representations for
KGC. Our work also demonstrates the necessity of
carefully controlling for choices regarding entity
embeddings when conducting work in this area.
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A Dataset Information

We report the dataset statistics across all datsets
used in this work in Table 11. For all three datasets,
we utilize the textual descriptions used by Lovelace
et al. (2021). For SNOMED CT Core and CN82k,
these consist of short entity names. For FB15k-237,
the descriptions are short paragraphs describing the
entity. Unless otherwise stated, we utilize Pubmed-
BERT to extract embeddings for the SNOMED
CT Core dataset and utilize the uncased version of
BERT-base for the other two datasets.

B Evaluation Metrics

We present a rigorous formulation of our evalua-
tion metrics. We consider both forward and inverse
relations for the datasets examined in this work.
For the CN82k and FB15k-237 datasets, we fol-
low standard procedure and introduce an inverse
fact, (el, r−1j , ei), for every fact, (ei, rj , el), in the
dataset. The SNOMED CT Core dataset already
contains inverse relations so manually adding in-
verse facts in unecessary. We let T denote the set
of all facts in the test set.

The Mean Reciprocal Rank (MRR) is defined as

MRR =
1

|T |
∑

(ei,rj ,el)∈T

1

rank(el)

The Hits at k (H@k) is defined as

H@k =
1

|T |
∑

(ei,rj ,el)∈T

I[rank(el) ≤ k]

where I[P ] is 1 if the condition P is true and is
0 otherwise. When computing rank(xi), we first
filter out all positive samples other than the tar-
get entity xi. This is commonly referred to as the
filtered setting. If the correct entity is tied with
some other entity, then we compute its rank as the
average rank of all entities with that score.

C Implementation Details

We outline our implementation details below. We
begin by outlining the details shared across all ex-
periments and then outline the details specific to
the experiments performed for each of the three
research questions.

C.1 Training Procedure
We train all ranking models for a maximum of
200 epochs and terminate training if the validation

MRR has not improved for 20 epochs. We evaluate
the model with the highest validation MRR upon
the test set.

We use a batch size of 64 with the 1vsAll train-
ing strategy (Ruffinelli et al., 2020) with the binary
cross entropy loss function. We use the Adam op-
timizer (Kingma and Ba, 2015) with decoupled
weight decay regularization (Loshchilov and Hut-
ter, 2019). We set the learning rate to 1e-3 and set
the weight decay coefficient to 1e-4. We reduce
the learning rate by a factor of 0.5 if the validation
MRR has plateaued for 3 epochs. We use label
smoothing with a value of 0.1, clip gradients to a
max value of 1.

C.2 BERT-ResNet
We reuse the reported hyperparameters from
Lovelace et al. (2021) for the BERT-ResNet rank-
ing architecture which we redescribe here. We set
f = 5 where f is the hyperparameter that controls
the side length of the spatial feature map produced
by the initial 1D convolution. We set N = 2 where
N controls the depth of the convolutional network.
Our BERT-ResNet model then consists of 3N = 6
bottleneck convolutional blocks. The dimensional-
ity of the model is simply determined by the dimen-
sionality of the language model, e.g. d = 768 for
experiments with BERT-base and PubmedBERT
and d = 1024 for experiments with BERT-large.
We apply dropout with drop probability 0.2 after
the embedding layer and apply 2D dropout (Tomp-
son et al., 2015) with the same probability before
the convolutions. We apply dropout with probabil-
ity 0.3 after the final fully connected layer. These
hyperparameter values are simply the default val-
ues reported by Lovelace et al. (2021).

C.3 RQ1: Sufficiency of Embedding Space
for Entity Ranking

We describe implementation details pertinent to
the experiments conducted in Section 5. To isolate
the impact of the structure of the entity embedding
space, we utilize a single shared bias term across all
entities instead of the per-entity bias term utilized
by Lovelace et al. (2021). Thus the entity ranking
is determined entirely by the query vector and the
entity embeddings. All future experiments also use
this shared bias term.

For all of our embedding processing techniques,
we decouple the entity embeddings fed to the con-
volutional model and the entity embeddings used
for candidate ranking. All of our transformations



Dataset # Nodes # Rels # Train # Valid # Test

FB15K-237 14,451 237 272,115 17,535 20,466
SNOMED-CT Core 77,316 140 502,224 71,778 143,486
CN82K 78,088 34 100,000 1,200 1,200

Table 11: Dataset statistics

are only applied to the entity embeddings used for
candidate ranking.

C.3.1 Normalizing Flow

We define the normalizing flow with the transforma-
tion T−1(x) = Wx+ b where W ∈ Rd×d and
x,b ∈ Rd3. To ensure the invertibility of W and
to simplify the computation of the Jacobian deter-
minant, we follow Kingma and Dhariwal (2018)
and parameterize W using its LU decomposition.
so W = PL(U+ diag(s)) where P ∈ Rd×d is a
permutation matrix, L ∈ Rd×d is a lower triangular
matrix with ones on the diagonal, U ∈ Rd×d is a
strictly upper triangular matrix, and s ∈ Rd is a
vector. During the training process, we fix P and
learn the parameters for L, U, and s.

We train the Normalizing Flow on the set of
entity embeddings with a batch size of 64 for a
maximum of 500 epochs using a learning rate of
1e-3 with the Adam optimizer (Kingma and Ba,
2015). We clip gradients to a max value of 1 and
use the checkpoint that acheived the lowest train-
ing loss to transform the embeddings for candidate
ranking. We normalize the transformed embed-
dings to have unit norm before use in candidate
ranking so an entity embedding, ei, is transformed
as ẽi =

T−1(ei)
‖T−1(ei)‖2

.

C.3.2 MLP and Residual MLP

For the supervised transformations, we set the di-
mensionality of the hidden layer to match the di-
mensionality of the entity embeddings. We use a
ReLU nonlinearity and apply dropout with drop
probability 0.1 after the first projection. We found
it necessary to reduce the learning rate for the MLP
to stabilize training so we set the learning rate to
1e-4 for the MLP parameters. All other hyperpa-
rameters remained fixed.

3This transformation consistently outperformed more ex-
pressive nonlinear flows (e.g. GLOW (Kingma and Dhariwal,
2018)) in our preliminary experiments. It’s possible that a
more comprehensive exploration of flow architectures and
hyperparameter choices would lead to improvements over our
design, but we leave such an exploration to future work.

C.4 RQ2: Embedding Extraction

We describe implementation details pertinent to
the experiments conducted in Section 6. We use
the HuggingFace Transformers library (Wolf et al.,
2020) to work with pretrained language models.
For this set of experiments, we utilize the normaliz-
ing flow technique for candidate ranking to isolate
the effect of the extraction techniques. For the
supervised extraction experiments, we utilize the
most effective unsupervised embeddings with the
normalizing flow for candidate ranking.

C.4.1 MLM Pre-training
We fine-tune the language models using the MLM
pretraining objective over the set of textual entity
identifiers. We fine-tune the language models for 3
epochs with a batch size of 32 and a learning rate of
3e-5. We use a linear learning rate warmup for first
10% of the total training steps. For SNOMED-CT
Core and CN82K, we set the maximum sequence
length to 64. For FB15k-237, we set the maximum
sequence length to 256 to account for the longer en-
tity descriptions. All other hyperparameters follow
the default values from Huggingface.

C.4.2 Linear Projection
We learn a linear projection that is applied to every
hidden state of the frozen model as h̃l,j = hl,jW

ᵀ+
b where hl,j ∈ Rd, W ∈ Rd×d, and b ∈ Rd. We
then max-pool across every token in each layer
to produce a single feature vector for each layer ,
h̃l. and aggregate these features using a learned
linear combination across layers ẽi =

∑L
l=1 λl · h̃l

where λl = softmax(a)l and a ∈ RL is a learned
vector of scalars. We set the learning rate for the
parameters for embedding extraction to 5e-5.

C.4.3 Prompting
We learn continuous prompts that we prepend to
the language model inputs at every layer to prompt
the frozen model (Li and Liang, 2021). We param-
eterize the prompt embeddings, pi,j ∈ Rd′ , in a
low-dimensional space where d′ < d, and learn
an MLP with one hidden layer to project them to



the dimensionality of the language model. We set
d′ = 256 in this work and apply dropout with drop
probability 0.1 before the MLP and after the first
projection. The dimensionality of the hidden layer
is set to d/2. We also apply a shared layer normal-
ization layer to the output of the MLP.

Therefore the input to the ith

layer of the language model is
si = [LN(MLP(pi,0)), . . . ,LN(MLP(pi,k)),xi,0, . . . ,xi,n]
where LN(MLP(pi,j)) ∈ Rd and xi,j ∈ Rd are
the transformed prompt token and tokenized entity
embedding respectively for the jth position at the
ith layer. We use k = 3 prompt tokens across
all experiments in this work. We extract the
entity representation by mean pooling across all
intermediate states in each layer and aggregate
across layers with a learned linear combination.
We set the learning rate for the parameters for
embedding extraction to 5e-5.

C.5 RQ3: Language Model Selection
We describe implementation details pertinent to the
experiments conducted in Section 7. For the unsu-
pervised embedding extraction, we utilize mean-
pooled embeddings from language models with
additional MLM pretraining upon the set of entity
names. For the prompting, we utilize the language
model without any MLM pretraining. All other
hyperparameters are kept constant from earlier sec-
tions.

D Validation Results

We report the validation results corresponding to
the results reported in Table 10 in Table 12



SNOMED CT Core CN-82K FB15K-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

BERT-ResNet + Normalizing Flow .510 .403 .568 .714 .196 .133 .216 .323 .362 .279 .393 .529
BERT-ResNet + Prompting + Normalizing Flow .517 .411 .574 .719 .202 .137 .223 .329 .361 .278 .394 .530
BERT-ResNet + Residual MLP .551 .445 .608 .754 .213 .142 .235 .356 .378 .286 .414 .564
BERT-ResNet + Prompting + Residual MLP .551 .444 .612 .757 .218 .146 .240 .363 .377 .287 .410 .564

Table 12: Validation results corresponding to results reported in Table 10.


