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Abstract
We consider the problem of estimating the correlation of two random vari-
ables X and Y , where the pairs (X, Y ) are not observed together, but are
instead separated co-ordinate-wise at two servers: server 1 contains all the
X observations, and server 2 contains the corresponding Y observations.
In this vertically distributed setting, we assume that each server has its
own privacy constraints, owing to which they can only share suitably priva-
tized statistics of their own component observations. We consider differing
privacy budgets (ε1, δ1) and (ε2, δ2) for the two servers and determine the
minimax optimal rates for correlation estimation allowing for both non-
interactive and interactive mechanisms. We also provide correlation esti-
mators that achieve these rates and further develop inference procedures,
namely, confidence intervals, for the estimated correlations. Our results are
characterized by an interesting rate in terms of the sample size n, ε1, ε2,
which is strictly slower than the usual central privacy estimation rates. More
interestingly, we find that the interactive mechanism is always better than
its non-interactive counterpart whenever the two privacy budgets are differ-
ent. Results from extensive numerical experiments support our theoretical
findings.

1 Introduction
Federated learning is a popular and extensively studied framework in modern machine learn-
ing. In traditional federated learning, due to privacy concerns, the servers are not allowed
to pool raw data, but are restricted to sharing only sufficiently privatized statistics derived
from the local observations. This method is particularly beneficial when training on sensitive
data, such as healthcare or finance. The federated scenario is very systematically studied
when the separation occurs horizontally, i.e. observations of the same set of features are
binned separately into different servers. See, for example, Kairouz et al. [2021], Li et al.
[2020a,b], Zhang et al. [2021] and the references therein.
To encourage collaboration on proprietary data across different organizations, however, it is
often more reasonable to assume that the federation occurs “vertically”, or across features.
For example, in healthcare data, a hospital and a pharmaceutical company might have
different pieces of information on the same patient: the hospital does not share private
clinical information such as patient demographics or test results with the company, which
instead has its own private information on the same patient’s response to certain drugs. This
new framework called vertical federated learning has recently seen studied in Chen et al.
[2020], Liu et al. [2024], Wu et al. [2020], Wei et al. [2022], Yang et al. [2019], but a theoretical
understanding of estimation and inference has largely been missing. This motivates the
current work. We study the correlation of bivariate data from n pairs of samples (Xi, Yi)
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which are not observed together, but are instead separated into two servers as {Xi : 1 ≤ i ≤
n} and {Yi : 1 ≤ i ≤ n}.
To distinguish our results from the influence of estimating the marginal distributions of X
and Y , we assume that E(X) = E(Y ) = 0 and Var(X) = Var(Y ) = 1, and (X, Y ) are
sub-Gaussian. That is, we assume that our data are pre-normalized to have mean zero and
variance one. We revisit the question of normalization in the supplementary material and
show both theoretically and in numerical experiments that the rate of correlation estimation
is not influenced by this step. In this situation, we consider estimating ρ = E(XY ) from
the statistics shared by the two servers: viz., Server 1 releases T1(X1, . . . , Xn), and Server 2
releases T2(Y1, . . . , Yn). To protect user privacy, we impose the differential privacy framework
(see, e.g., Abowd et al. [2020], Bassily et al. [2014], Dwork [2006], Karwa and Vadhan [2017])
on T1 and T2; both of which must satisfy (ε1, δ1) and (ε2, δ2)-DP constraints. For ease of
reference, we will somewhat loosely denote the above by a server-level (ε1, ε2, δ1, δ2)-DP
constraint and introduce specific definitions later. Such distributed privacy requirements are
frequently used in federated learning. See, e.g., Auddy et al. [2024], Cai et al. [2024a,b,c],
Shen et al. [2022], Wei et al. [2020, 2021] and references therein.

1.1 Main results
The key finding in this work is that the complexity of the correlation estimation in the
above setup fundamentally depends on whether or not the statistics T1 and T2 are allowed
to depend on one another. We now present our main results. Throughout this paper, we
assume ε1, ε2 ≤ C for a constant C > 0.

1.1.1 Non-interactive protocol
In our first set of results, we consider estimating ρ in the non-interactive (NI) framework
of stricter privacy requirements, where T1 and T2 are constructed independently, i.e., with-
out any interaction or information about one another. In this case, the differential privacy
requirements on T1 and T2 are as follows. With X = (X1, . . . , Xn), Y = (Y1, . . . , Yn), and
similarly X′, Y′ (with one data point replaced):

P(T1(X) ∈ A|X) ≤ exp(ε1)P(T1(X′) ∈ A|X′) + δ1

P(T2(Y) ∈ A|Y) ≤ exp(ε2)P(T2(Y′) ∈ A|Y′) + δ2.

Let NI(ε1, ε2, δ1, δ2) to be the class of all correlation estimators constructed using T1(X) and
T2(Y) satisfying the above privacy requirement. The following theorem states the minimax
rate for estimating ρ in this scenario.
Theorem 1.1. The minimax rate for estimating correlation ρ via a non-interactive proce-
dure satisfying server level (ε1, ε2, δ1, δ2)-DP constraints is given by

inf
ρ̂∈ NI(ε1,ε2,δ1,δ2)

sup
ρ∈[−1,1]

E (ρ̂ − ρ)2 ≍ Ln

(
1

nε2
1

+ 1
nε2

2

)
for a factor Ln of order at most O(log(n)), whenever δ1, δ2 = o(n−1).
Note that the rate does not depend on δ’s. This implies that our rate matching correlation
estimator achieves (ε1, ε2, 0, 0)-DP, and is still rate optimal (up to logarithmic terms) even
within NI(ε1, ε2, δ1, δ2), the class of all non-interactive estimators satisfying (ε1, δ1) and
(ε2, δ2) DP constraints for δ1, δ2 are small positive numbers. The rate optimal estimator in
this case is given by the correlation of privatized batch means from both servers.
It is useful to compare the above rate with the ones existing in the literature. Firstly, when
(X, Y ) are jointly observed, and we impose (ε, δ)-central DP constraints on (Xi, Yi), the
optimal correlation estimation rate is given by 1

n2ε2 . See, e.g., Biswas et al. [2020], Cai et al.
[2021]. As expected, when ε1 = ε2 = ε, this is better than the rate we observe in the current
feature separated case, thus highlighting the cost of vertical federation. A second comparison
can be made with component-wise local privacy rates, studied in Amorino and Gloter [2023].
The authors there show that in the vertically separated scenario, if we impose (ε1, 0) and
(ε2, 0) local DP constraints, the minimax estimation rate for correlation is given by 1

nε2
1ε2

2
,

which is again strictly worse than the rates we find under the server level DP constraints.
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1.1.2 Interactive protocol
We next move on to a larger class of estimators in the interactive (INT) framework, where
we still require server level privacy, but one of the servers is allowed access to the privatized
statistic output from the other. In other words, we allow the functions T1 and T2 to have
one way interaction with each other. This requires making exactly one out of two possible
choices. The first possibility is that when constructing T2, Server 2 has access to T1(X), in
addition to its own data Y. The second possibility arises by analogously interchanging the
roles of servers 1 and 2. To fix ideas, if we are in the first case, i.e server 2 gets to observe
the transcript T1, before computing T2, the privacy requirements become:

P(T1(X) ∈ A|X) ≤ exp(ε1)P(T1(X′) ∈ A|X′) + δ1

P(T2(Y, T1(X)) ∈ A|X, Y) ≤ exp(ε2)P(T2(Y′, T1(X)) ∈ A|X, Y′) + δ2.

Replacing X with Y and the index 1 with 2 allows one to write the analogous privacy
constraint in the second case where Server 1 has access to T2(Y). Let INT(ε1, ε2, δ1, δ2) to
be the class of all correlation estimators constructed using T1(X) and T2(Y, T1(X)) satisfying
the above interactive privacy requirement. The following theorem states the minimax rate
for estimating ρ in this scenario.
Theorem 1.2. The minimax rate for estimating correlation ρ via a non-interactive proce-
dure satisfying server level (ε1, ε2, δ1, δ2)-DP constraints is given by

inf
ρ̂∈ INT(ε1,ε2,δ1,δ2)

sup
ρ∈[−1,1]

E (ρ̂ − ρ)2 ≍ Ln

(
1

n(ε1 ∨ ε2)2 + 1
n2ε2

1ε2
2

)
.

for a factor Ln of order at most O(log(n)), whenever δ1, δ2 = o(n−1).
Note that unlike NI, in the INT rate, the dominating term depends on ε1 ∨ ε2, i.e. the less
stringent privacy requirement. The stronger privacy requirement i.e., ε1 ∧ ε2 appears in the
second term, but its effect is mitigated by the better sample size factor n−2. This leads to
INT being a strictly better estimator than NI whenever ε1 ̸= ε2. An interesting special case
is when X are public, meaning ε1 is a constant, in which case we find (ε2, δ2)-central DP
rates for correlation estimation.
The rate optimal estimator in the interactive case is borne out of a natural idea: the server
with a less stringent privacy budget should share their statistics with the other server. That
is, if ε1 > ε2, we should allow T2 to depend on T1(X) and Y. The situation is reversed if
ε2 > ε1.
In addition to point estimates ρ̂, we also derive asymptotically valid confidence intervals in
both the non-interactive (NI) and interactive (INT) scenarios. That is, we find (ρ̂(NI)

L,n , ρ̂
(NI)
U,n )

and (ρ̂(INT)
L,n , ρ̂

(INT)
U,n ) such that for fixed α ∈ (0, 1)

P
(

ρ̂
(k)
L,n ≤ ρ ≤ ρ̂

(k)
U,n

)
→ 1 − α as n → ∞, for k ∈ {NI, INT}.

We show that our estimation methods are minimax optimal by proving corresponding lower
bounds, which to the best of our knowledge, has not been established previously under
central differential privacy in a vertically distributed setting. While we follow the classical
Le Cam framework, our main technical contribution is a direct control of KL divergence
via Fisher information curvature bounds, yielding sharp lower bounds under both non-
interactive and one-way interactive protocols. These bounds match our upper bounds up
to constants in the Gaussian case and up to logarithmic factors in the sub-Gaussian case.
Prior works, such as Hadar et al. [2019], bound KL via mutual information in communication
constraint settings; we take a more direct route tailored to central DP. Unlike local DP lower
bounds in Amorino and Gloter [2023], our approach handles the more delicate structure of
central privacy with vertical data splitting.
The rest of the paper is organized as follows. In Sections 2 and 3 respectively, we describe
non-interactive and interactive correlation estimators for bivariate Gaussian and bivariate
sub-Gaussian distributions. Section 4 provides minimax lower bounds showing that our
estimation procedures are nearly optimal in all cases. Finally, Section 5 shows numerical
experiments to corroborate our theoretical results. All proofs are in the supplementary
material.
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2 Non-interactive estimation methods
We first demonstrate an estimation procedure in the non-interactive paradigm. Here Server
1 and Server 2 construct and share T1(X) and T2(X) without knowledge of one another.
As mentioned in the introduction T1(X) must satisfy (ε1, δ1)-DP and T2(X) must satisfy
(ε2, δ2)-DP constraints. Our estimator is based on sharing privatized batch means. Choosing
m ≥ 1 we separate the n observations in each server into batches of size m as follows:

Bj = {m(j − 1) + 1, . . . , mj} for j = 1, . . . , k where k = ⌊ n
m ⌋. (1)

2.1 Non-interactive correlation estimation for Gaussian distribution
In this subsection, we assume that (X, Y ) ∼ N (0, Σ(ρ)) with (Σ(ρ))11 = (Σ(ρ))22 = 1
and (Σ(ρ))12 = ρ, the bivariate Gaussian distribution with E(X) = E(Y ) = 0, Var(X) =
Var(Y ) = 1 and correlation E(XY ) = ρ.
Our estimation procedure for ρ is through the product of sample means across multiple
batches. In order to bound the sensitivity directly, i.e., without clipping, we will use the
signs of Xi and Yi in place of (Xi, Yi) themselves, to compute our correlation estimator.

X̄(j) = 1
m

∑
i∈Bj

sign(Xi), and Ȳ (j) = 1
m

∑
i∈Bj

sign(Yi) (2)

where Bj are as defined in (1) for j = 1, . . . , k. To ensure (ε1, 0)-DP and (ε2, 0)-DP
constraints each server adds Laplace noise to each batch mean and outputs the vectors
T1(X), T2(Y) ∈ Rm with elements:

(T1(X))j =
√

m(X̄(j) + Z
(j)
1 ) and (T2(Y))j =

√
m(Ȳ (j) + Z

(j)
2 ) for 1 ≤ j ≤ k,

where Z
(j)
l

indep∼ Laplace
(

0, 2
mεl

)
for l = 1, 2. We can then compute

η̂XY = 1
k

k∑
j=1

(T1(X))j(T2(Y))j . (3)

Since (X, Y ) are bivariate Gaussians, the covariance above satisfies

E[η̂XY ] = 2P(XY > 0) − 1 = 1 − 2 arccos(ρ)
π

, (4)

which leads to the method-of-moments based private correlation estimator:

ρ̂
(G)
NI := cos

(π

2 (1 − η̂
(P )
XY )

)
= sin

(
πη̂

(P )
XY

2

)
.

We would like to emphasize that (4) is precisely where we use the assumption of Gaussianity
on (X, Y ). Since the bivariate distribution is completely known once ρ is specified, we
can explicitly write P(XY > 0) as a function of ρ, which in turn enables our sign-based
estimation procedure. While this can be extended to other bivariate families which are
specified by a single correlation parameter ρ, we do not discuss these details for brevity.
To create confidence intervals for ρ, let us define S2

η to be the sample variance of
{(T1(X))j(T2(Y))j : 1 ≤ j ≤ k}. Then we can define the confidence interval:

CI(G)
NI (α) :=

(
ρ̂

(G)
NI − πSη

√
1−(ρ̂

(G)
NI )2

2
√

k
z1−α/2, ρ̂

(G)
NI + πSη

√
1−(ρ̂

(G)
NI )2

2
√

k
z1−α/2

)
(5)

where z1−α/2 is the (1 − α/2)-th quantile of the standard Normal distribution.

2.2 Non-interactive correlation estimation for sub-Gaussian distributions
In general, we would deal with non-Gaussian data, and thus the sign-based procedure of
the previous section would not be exact anymore. We will use a clipping based estimator
for this case. For clipping parameters λ1, λ2 > 0 to be chosen later we replace (2) by

X̄(j) = 1
m

∑
i∈Bj

sign(Xi)(|Xi| ∧ λ1) and Ȳ (j) = 1
m

∑
i∈Bj

sign(Yi)(|Yi| ∧ λ2) (6)
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where Bj are as defined in (1) for j = 1, . . . , k. As before, each server adds Laplace noise to
each batch mean and shares:

(T1(X))j =
√

m(X̄(j) + Z
(j)
1 ) and (T2(Y))j =

√
m(Ȳ (j) + Z

(j)
2 ) for 1 ≤ j ≤ k,

where Z
(j)
l

indep∼ Laplace
(

0, 2λl

mεl

)
for l = 1, 2. Then we will estimate ρ by the quantity:

ρ̂
(SG)
NI = 1

k

k∑
j=1

(T1(X))j(T2(Y))j . (7)

Once again defining S2
ρ to be the sample variance of {(T1(X))j(T2(Y))j : 1 ≤ j ≤ k}, we

have the confidence interval:

CI(SG)
NI (α) :=

(
ρ̂

(SG)
NI − Sρ√

k
z1−α/2, ρ̂

(SG)
NI + Sρ√

k
z1−α/2

)
(8)

where z1−α/2 is the (1−α/2)-th quantile of the standard Normal distribution. The following
theorem states the results for correlation estimator under non-interactive protocol.
Theorem 2.1. The following results hold on the estimation error of ρ using a non-
interactive componentwise privacy constrained estimator.

1. When (X, Y ) ∼ N (0, Σ(ρ)) with (Σ(ρ))11 = (Σ(ρ))22 = 1 and (Σ(ρ))12 = ρ, the
estimator ρ̂

(G)
NI described in Section 2.1 satisfies ρ̂

(G)
NI ∈ NI(ε1, ε2, δ1, δ2) and

E(ρ̂(G)
NI − ρ)2 ≲

1
n

(
1
ε2

1
+ 1

ε2
2

)
if m =

⌊
8

ε1ε2

⌋
∨ 1.

2. When (X, Y ) have mean zero, variance one, X is η1-sub-Gaussian, Y is η2-sub-
Gaussian, and E[XY ] = ρ, the estimator ρ̂

(SG)
NI described in Section 2.2 satisfies

ρ̂
(SG)
NI ∈ NI(ε1, ε2, δ1, δ2) and

E(ρ̂(SG)
NI − ρ)2 ≲

log(n)
n

(
1
ε2

1
+ 1

ε2
2

)
if m =

⌊
λ1λ2

ε1ε2

⌋
∨ 1,

λ1 = 2η1
√

log(n), and λ2 = 2η2
√

log(n).
3. For any fixed α ∈ (0, 1), the confidence intervals defined in (5) and (8) satisfy

P(ρ ∈ CI(k)
NI (α)) → 1 − α as n → ∞, for k ∈ {G, SG}.

3 Interactive estimation methods
We now show that the rates in the previous section can be improved if we allow a one-step
interactive scheme between the two servers. To fix ideas, suppose ε1 > ε2, i.e., the privacy
requirement in the first server are less stringent than that in the second one. We will then
share the private transcripts involving X to the second server containing the Y observations.
This leads to an estimation error rate that improves over the non-interactive protocol.

3.1 Interactive correlation estimation for Gaussian distribution
In this case, our interactive estimator based on signs of (X, Y ) is as follows. Server 1 first
communicates to Server 2 the privatized sign vector T1(X) with elements:

(T1(X))i = exp(ε1) + 1
(exp(ε1) − 1)(2Si − 1) sign(Xi) for i = 1, . . . , n

where Si
iid∼ Bernoulli

(
exp(ε1)

exp(ε1)+1

)
are independent sign flips introduced by Server 1 to

protect the privacy of Xi. Given T1(X) the second server first computes the covariance

η̂XY,int = 1
n

n∑
i=1

(T1(X))i sign(Yi)

5



and then outputs the privatized version

T2(Y, T1(X)) := η̂XY,int + Z where Z ∼ Laplace
(

0,
2(exp(ε1) + 1)

n(exp(ε1) − 1)ε2

)
. (9)

As before we then have the private correlation estimator

ρ̂
(G)
INT = sin

(
πη̂

(P)
XY,int

2

)
.

Similar to the non-interactive case, defining σ̂2
η := 1 −

(
exp(ε1)−1
exp(ε1)+1

)2
(η̂(P )

XY,int)2 allows the
confidence interval given by the following.

1. If c∗ = limn→∞
2√

nσηε2
is finite, then the CI is(

ρ̂
(G)
INT ∓ πσ̂η

√
1−(ρ̂

(G)
INT)2

2
√

n

(
exp(ε1)+1
exp(ε1)−1

)
F −1

∗ (1 − α/2)
)

(10)

where for any x ∈ R we define F∗(x) := P(ZXY + ĉ∗ZLap ≤ x) for ĉ∗ = 2/(
√

nσ̂ηε2)
and ZLap ∼ Laplace(0, 1).

2. If 1√
nε2

diverges as n → ∞, then the CI is(
ρ̂

(G)
INT ± π

√
1−(ρ̂

(G)
INT)2

nε2

(
exp(ε1)+1
exp(ε1)−1

)
log(α)

)
. (11)

3.2 Interactive correlation estimation for sub-Gaussian distributions
Following previous sections, Server 1 will send to Server 2 the vector of privatized clipped
observations T1(X) ∈ Rn with elements (T1(X))i = [Xi]λ1 + Z1i for a clipping parameter
λ1 > 0 and Z1i

iid∼ Laplace (2λ1/ε1) for i = 1, . . . , n. Then Server 2 can construct

ρ̂
(SG)
INT = 1

n

n∑
i=1

[(T1(X))iYi]λ2 + Z2.

In the above [x]t := sign(x)(|x|∧ t) for any x ∈ R and t > 0. Here Z2 ∼ Laplace (2λ2/nε2) is
Laplace noise added to ensure DP requirements. In addition to ρ̂

(SG)
INT , Server 2 also outputs a

privatized sample variance S2
ρ of [(T1(X))iYi]λ2 for i = 1, . . . , n. Then we have the confidence

interval constructed as follows:
1. If c∗ = limn→∞

2λ2√
nσρε2

is finite, then the CI is(
ρ̂

(SG)
INT − Sρ√

n
F −1

∗ (1 − α/2), ρ̂
(SG)
int + Sρ√

n
F −1

∗ (1 − α/2)
)

(12)

where for any x ∈ R we define F∗(x) := P(ZXY + ĉ∗ZLap ≤ x) for ĉ∗ =
2λ2/(

√
nSρε2), and ZLap ∼ Laplace(0, 1).

2. If λ2√
nε2

diverges as n → ∞, then the CI is(
ρ̂

(SG)
INT + λ2

nε2
log(α), ρ̂

(SG)
int − λ2

nε2
log(α)

)
. (13)

The following theorem states the results for correlation estimator under the interactive
protocol.
Theorem 3.1. The following results hold on the estimation error of ρ using the above
privacy constrained interactive estimator.

1. When (X, Y ) ∼ N (0, Σ(ρ)) with (Σ(ρ))11 = (Σ(ρ))22 = 1 and (Σ(ρ))12 = ρ, the
estimator ρ̂

(G)
INT described in Section 3.1 satisfies ρ̂

(G)
INT ∈ INT(ε1, ε2, δ1, δ2) and

E(ρ̂(G)
INT − ρ)2 ≲

1
n(ε1 ∨ ε2)2 + 1

n2ε2
1ε2

2
.
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2. When (X, Y ) have mean zero, variance one, X is η1-sub-Gaussian, Y is η2-sub-
Gaussian, and E[XY ] = ρ, the estimator ρ̂

(SG)
INT described in Section 3.2 satisfies

ρ̂
(SG)
INT ∈ INT(ε1, ε2, δ1, δ2) and

E(ρ̂(SG)
INT − ρ)2 ≲

1
n(ε1 ∨ ε2)2 + 1

n2ε2
1ε2

2

if λ1 = 2η1
√

log(n) and λ2 = 4(η2 ∨ 1)(log(n))2/(ε1 ∧ 1).
3. For any fixed α ∈ (0, 1), under their respective assumptions, the confidence intervals

defined in (10), (11), (12), and (13) satisfy P(ρ ∈ CI(k)
INT(α)) → 1 − α as n → ∞,

for k ∈ {G, SG}.

4 Minimax lower bounds
In this section, we show that the private correlation estimators derived in the previous
section are in fact minimax optimal in many cases. Our proof strategy is based on bounding
Fisher information of the private transcripts and then using Van Trees inequality. We recall
some standard results from parameter estimation theory in the next subsection.

4.1 Fisher information and Van Trees inequality
Let θ be a real-valued parameter taking an unknown value in some interval [a, b]. We observe
some random variable (or vector) X with distribution P (x|θ) parameterized by θ.
Assume that P (·|θ) is absolutely continuous with respect to a reference measure µ, for each
θ ∈ [a, b], and dP (·|θ)

dµ (x) is differentiable with respect to θ ∈ (a, b) for µ-almost all x. Then
the Fisher information of θ w.r.t. X, denoted as IF (X; θ), is defined as

IF (X; θ) ≜
∫ (

∂

∂θ
ln dP (·|θ)

dµ
(x)
)2

dP (x|θ). (14)

The following inequality is well-known. See for example Gill and Levit [1995].
Lemma 1 (Van Trees inequality). Let θ be a real parameter with prior density ζ supported
on [a, b] ⊂ R, and let X ∼ P (· | θ) with conditional density p(x | θ) = dP (·|θ)

dµ (x). Under
some regularity conditions we have that for every estimator θ̂ = θ̂(X) with E[(θ̂ − θ)2] < ∞
under the joint law of (X, θ) satisfies

E
[
(θ̂ − θ)2] ≥ 1

Eθ[IF (X; θ)] + IF (ζ) , Eθ[IF (X; θ)] =
∫ b

a

IF (X; θ) ζ(θ) dθ, (15)

where IF (ζ) :=
∫ b

a

(
ζ′(θ)

)2

ζ(θ) dθ is the prior Fisher information.
The “regularity conditions” in Lemma 1 are to ensure that one can apply the dominated
convergence theorem to exchange certain integrals and differentiations in the calculus. See
for example Vaart [1998]. Additionally, assume that

IF (X; θ + ϵ) = IF (X; θ)(1 + η(ϵ)) (16)
where η(ϵ) < Cη for all |ϵ| < c0 for some numerical constants c0 < 1 and Cη > 0.

4.2 Non interactive
For the non-interactive protocols the servers output transcripts T1 and T2 which are (ε1, δ1)
and (ε2, δ2)-DP respectively. The transcripts are based on;y on the data from their own
servers. An estimator ρ̂ is then calculated after combining T1 and T2.
Our lower bound is shown by the difficulty of correlation estimation when ρ = 0. Let us
denote the transcripts by T ≡ (T1, T2). As a first step, the next lemma shows that IF (T ; 0)
is smaller than a quantity involving the sample size n and the privacy parameters ε1, ε2.
Lemma 2. Assume that for k = 1, 2 , δk log(1/δk) = O(ε2

k). Let us denote the Fisher
information for the transcripts T by IF (T ; ρ). We have that

IF (T ; 0) ≤ 8
π

(nε2
1 ∧ nε2

2).

7



The local regularity assumption in (16) at ρ = 0 ensures that up to a constant factor, the
bound from the above lemma carries over to IF (T ; ρ) for |ρ| ≤ c0. For a suitable choice
of prior density ζ this in turn implies an upper bound on E0[IF (T ; 0)] and allows us to
complete the proof by using Van-Trees inequality (Lemma 1). We then have the following
lower bound on the minimax risk for estimating ρ in the non-interactive setting.
Theorem 4.1. Assume that δk = o(n−1−ω) for k = 1, 2 and n(ε2

1 ∧ ε2
2) → ∞. Then for non

interactive protocols the minimax rate is lower bounded by

inf
ρ̂∈NI(ε1,ε2,δ1,δ2)

sup
ρ∈[−1,1]

|ρ̂ − ρ|2 ≳
1
n

+ 1
nε2

1
+ 1

nε2
2

.

Remark 4.1. The assumption n(ε2
1 ∧ ε2

2) → ∞ assumes that the minimax rate is going to
zero ensuring consistent estimation of ρ in the first place.

4.3 Interactive
We next allow one way interaction among the servers where either of the server can share
its transcripts with the other server. Let us denote the set of protocols which allow allow
interaction from server 1 to 2 as Π1→2, i.e server 2 gets to observe the transcript T1, before
computing T2. We first show the following upper bound on IF (Π1→2; 0).
Lemma 3. Assume that δ1 log(1/δ1) = o(ε2

1) and δ2 log(1/δ2)2 = o(nε2
1ε2

2). Let us denote
the Fisher information for the transcripts Π1→2 by IF (Π1→2; ρ). We have that

IF (Π1→2; 0) ≤ nε2
1 ∧ n2ε2

1ε2
2.

If we denote the protocol which allow interaction from server 2 to 1 we can show that
IF (Π2→1; 0) ≤ nε2

2 ∧ n2ε2
1ε2

2. Since we allow for either of the protocols Π ≡ (Π1→2, Π2→1)
we have that

IF (Π; 0) ≤ IF (Π1→2; 0) ∨ IF (Π2→1; 0) ≤ (nε2
1 ∧ n2ε2

1ε2
2) ∨ (nε2

2 ∧ n2ε2
1ε2

2). (17)
Similar to the non-interactive case we can then use the local regularity assumption in (16)
and a suitable prior density ζ with Van Trees inequality, leading to the following lower
bound on the minimax risk in the interactive setting.
Theorem 4.2. Assume that for k = 1, 2 δk = o(n−1−ω) for ω > 0, n(ε2

1 ∨ ε2
2) → ∞ and

n2ε2
1ε2

2 → ∞. Then for interactive protocols the minimax rate is lower bounded by

inf
ρ̂∈INT(ε1,ε2,δ1,δ2)

sup
ρ∈[−1,1]

|ρ̂ − ρ|2 ≳
1
n

+ 1
n(ε2

1 ∨ ε2
2) + 1

n2ε2
1ε2

2
.

Remark 4.2. The assumption n(ε2
1 ∨ε2

2) → ∞ and n2ε2
1ε2

2 → ∞ assumes that the minimax
rate is going to zero, ensuring consistent estimation of ρ in the first place.

5 Simulation study
We evaluate our non–interactive sign–batch (NI) and interactive sign–flip (INT)
estimators across different parameter settings. All our codes can be found at https://
github.com/abhinavc3/distributed-correlation.

5.1 Simulation Results
In our experiments we write non-normalized to mean that the mean and variances of the
marginal distributions are known, and normalized to mean that they are unknown and
estimated. We use two generative models.

• Gaussian: (X, Y ) ∼ N (µ, 2Σ(ρ)) with µ = (0.5, 0.5)⊤, and Σ(ρ) given by Var(X) =
Var(Y ) = 1 and Corr(X, Y ) = ρ. We run each estimator with and without the private
normalization step.

• Bounded-factor (sub-Gaussian): X = U + E1, Y = U + E2 with U ∼
Unif

[
−

√
3 ρ,

√
3 ρ
]

and Ei ∼ Unif
[
−
√

3(1 − ρ),
√

3(1 − ρ)
]
, so each marginal is cen-

tred, variance–one, and bounded hence sub–Gaussian.
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For every design point we record mean–squared error (MSE), average confidence–interval
(CI) length, empirical coverage (1 − α = 0.95) and the mean CI offset band E[CIL − ρ] →
E[CIU − ρ] where CIL and CIU are the upper and lower confidence bars. In practice it is suf-
ficient to use the confidence intervals from (10) and (12) since (11) and (13) are respectively
the limiting versions of the above two.

Parameter Grid. We vary our parameters as below, with 250 replications for each cell:
• Sample size: n ∈ {1000, 1500, 2500, 4000, 6000, 9000}.
• Correlation: ρ ∈ {0, 0.15, 0.3, 0.4, 0.5, 0.65, 0.8, 0.9}.
• Privacy budget: (ε1, ε2) ∈ {(0.5, 0.5), (1, 1), (1.5, 0.5)}.
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Figure 1: Gaussian, n = 1500, (ε1, ε2) = (1.5, 0.5). Mean CI–offset bands for NI (grey) and
INT (blue). Left: without normalization. Right: with private normalization. Curves overlap.

Figure 1 compares the mean CI offset bands for n = 1500 and the budget (ε1, ε2) = (1.5, 0.5).
With and without normalization the ribbons coincide, indicating that private normalization
is cost–free. Figure 2 shows CI width and coverage versus n at ρ = 0.5; both variants adhere
to the nominal 95% band. Figure 3 confirms that INT is uniformly more efficient than NI,
while normalization leaves MSE unchanged (largest relative difference <2%).
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Figure 2: Gaussian, ρ = 0.5. Average CI length versus n. Left: no normalization; right:
with normalization. Normalization has no discernible effect; INT yields shorter CIs. The
coverage probabilities are above 0.91 for all CIs.

We repeat the study with the bounded-factor DGP. The qualitative picture is the same:
INT enjoys narrower CIs and lower MSE , and both estimators achieve nominal coverage.
For the sake of brevity we only show the MSE plots (Figure 3 right). The CI bands, coverage
and width plots are deferred to the supplementary material.

5.2 Real Data Experiments
We illustrate our methods using data from the Health and Retirement Study (HRS), a longi-
tudinal survey of older adults in the United States. We focus on two variables—age and body
mass index (BMI)—from Wave 2 (year 1993-94) corresponding to around 20k individuals.
In this demographic, age and BMI are known to exhibit a mild negative correlation.
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Figure 3: Gaussian (left) and Bounded Factor (right) MSE, ρ = 0.5. MSE versus n
(log–log). INT dominates NI
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Figure 4: Mean confidence interval bands for non-interactive (left) and interactive (right)
methods for estimating the correlation between age and BMI in the Health and Retirement
Study (HRS) data. The black dotted line indicates the non-private estimator.

We consider a distributed scenario in which the two variables reside on separate servers,
and the goal is to estimate their Pearson correlation coefficient ρ. Each server first applies
a Central differentially private (CDP) normalization so that the privatized features have
approximately zero mean and unit variance. Specifically, we allocate ε = 0.1 for each of the
mean and standard deviation estimates. The clipping bounds are chosen based on domain
knowledge—[45, 90] for age and [15, 35] for BMI—demonstrating a setting where the privacy
mechanism leverages prior information rather than data-dependent thresholds.
After normalization, we apply both the non-interactive (NI) and interactive (INT) protocols
to obtain private confidence intervals for the estimated correlation ρ̂. We compare these to
the non-private benchmark while varying the privacy budget εcorr, keeping it equal across the
two servers. Results are given in Figure 4. As εcorr increases, the private intervals contract
and concentrate around the non-private ρ. Moreover, for a fixed εcorr, the INT intervals are
consistently shorter than their NI counterparts. Notably, at εcorr = 1, the interactive CI
excludes zero while the non-interactive CI includes it—illustrating that privacy noise can
increase uncertainty and, in some cases, prevent rejection of the null hypothesis ρ = 0.

6 Discussion
Across both distributions and all privacy budgets explored, INT consistently outperforms
NI, while the required private normalisation step incurs no measurable loss in bias, MSE
or interval width. These findings support the theoretical claim that normalization’s privacy
cost is dominated by the subsequent correlation release.
We discuss two important directions of future work. First, allowing multiple features per
server—rather than a single feature—introduces new challenges, particularly in handling
inter-feature correlations and maintaining privacy in higher dimensions. Second, extending
our methods to heavy-tailed distributions would broaden applicability, as such data often
arise in practice and require more robust estimation techniques.
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning re-
search, addressing issues of reproducibility, transparency, research ethics, and societal im-
pact. Do not remove the checklist: The papers not including the checklist will be desk
rejected. The checklist should follow the references and follow the (optional) supplemental
material. The checklist does NOT count towards the page limit.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly articulate the main contribu-
tions of the paper, including the problem setup, the proposed methodology, and the
theoretical guarantees. They accurately reflect the scope of the work and are consis-
tent with the results presented in both the theoretical analysis and the simulation
study. Any assumptions and limitations are also stated appropriately, ensuring that
the claims are well-aligned with the actual contributions of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the
claims made in the paper.

• The abstract and/or introduction should clearly state the claims made, in-
cluding the contributions made in the paper and important assumptions and
limitations. A No or NA answer to this question will not be perceived well by
the reviewers.

• The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?
Answer: [Yes]
Justification: Limitations and future directions are described in the Discussion sec-
tion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their
paper.

• The paper should point out any strong assumptions and how robust the results
are to violations of these assumptions (e.g., independence assumptions, noise-
less settings, model well-specification, asymptotic approximations only holding
locally). The authors should reflect on how these assumptions might be violated
in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of
the approach. For example, a facial recognition algorithm may perform poorly
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when image resolution is low or images are taken in low lighting. Or a speech-
to-text system might not be used reliably to provide closed captions for online
lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algo-
rithms and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The au-
thors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides a complete and rigorous treatment of each the-
oretical result, with all necessary assumptions clearly stated alongside the corre-
sponding theorems. Full proofs are included in the supplemental material, and the
main paper provides intuitive explanations to aid understanding. All theorems and
lemmas are properly numbered, referenced, and supported by either original argu-
ments or citations to well-established results, ensuring the theoretical contributions
are transparent and verifiable.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

• All assumptions should be clearly stated or referenced in the statement of any
theorems.

• The proofs can either appear in the main paper or the supplemental material,
but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be com-
plemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data
are provided or not)?

Answer: [Yes]

Justification: We have provided all experiment details in Section 5 and codes in an
anonymized code repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be
perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model.
In general. releasing code and data is often one good way to accomplish this,
but reproducibility can also be provided via detailed instructions for how to
replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should

describe the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results
or a way to reproduce the model (e.g., with an open-source dataset or
instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: We have provided all codes in an anonymized code repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.

cc/public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might

not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g.,
for a new open-source benchmark).

• The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submis-
sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.
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• The authors should provide instructions on data access and preparation, in-
cluding how to access the raw data, preprocessed data, intermediate data, and
generated data, etc.

• The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and
why.

• At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLs to data and code is per-
mitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to un-
derstand the results?

Answer: [Yes]

Justification: All details are given in Section 5 and the anonymous code repository.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level
of detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as sup-
plemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported 95% confidence intervals with all our estimates.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the stan-
dard error of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors
should preferably report a 2-sigma error bar than state that they have a 96%
CI, if the hypothesis of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?
Answer: [Yes]
Justification: All experiments were done on a desktop with 32 GB RAM, and were
done over the course of 1 hour.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the

individual experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more com-

pute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no violations of the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code
of Ethics.

• If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and neg-
ative societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no

societal impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended

uses (e.g., disinformation, generating fake profiles, surveillance), fairness con-
siderations (e.g., deployment of technologies that could make decisions that
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unfairly impact specific groups), privacy considerations, and security consider-
ations.

• The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technol-
ogy is being used as intended and functioning correctly, harms that could arise
when the technology is being used as intended but gives incorrect results, and
harms following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in ad-
dition to attacks, mechanisms for monitoring misuse, mechanisms to monitor
how a system learns from feedback over time, improving the efficiency and
accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for re-
sponsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many pa-
pers do not require this, but we encourage authors to take this into account
and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or

dataset.
• The authors should state which version of the asset is used and, if possible,

include a URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and

terms of service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the doc-
umentation provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part

of their submissions via structured templates. This includes details about train-
ing, license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research
with human subjects
Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between insti-
tutions and locations, and we expect authors to adhere to the NeurIPS Code
of Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, orig-
inal, or non-standard component of the core methods in this research? Note that
if the LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research,
declaration is not required.
Answer: [NA]
Justification: This research has not used LLM as an important, original, or non-
standard component of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Implementation details
Since the mean and variance of each server can be computed under the central differential
privacy (CDP) framework, we adopt estimators similar to those proposed in Karwa and
Vadhan [2017] for our simulation study. After obtaining these estimators, we standardize
the data and use the resulting values for downstream analysis.

Additionally, to improve the stability of our estimators, we incorporate intermediate clipping
steps in our simulation study. For example, in the Gaussian case, we clip the mean of the
signs to the interval [−1, 1] before applying the sin transformation. In the sub-Gaussian
case, we clip the final estimator to [−1, 1].

A.1 Additional simulation study
Here we collect the additional plots and results pertaining to our simulation study.
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B Proofs
Proof of Theorem 1.1. The proof of this theorem follows from parts 1 and 2 of Theorem 2.1
and Theorem 4.1.

Proof of Theorem 1.2. The proof of this theorem follows from parts 1 and 2 of Theorem 3.1
and Theorem 4.2.
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B.1 Proofs of upper bound results
Proof of Theorem 2.1. We prove the two statements in the theorem separately.

1. It is straightforward to check that

E[η̂XY ] = mE[X̄(1)(Ȳ (1))] = m · 1
m2

m∑
i=1

E[sign(Xi) sign(Yi)]

= 2P(XY > 0) − 1 = 2 arccos(−ρ)
π

− 1 = 1 − 2 arccos(ρ)
π

.

To bound the error in estimating ρ by ρ̂(P ) we therefore note that∣∣∣ρ̂(G)
NI − ρ

∣∣∣ =
∣∣∣∣sin(πη̂XY

2

)
− sin

(
πE[η̂XY ]

2

)∣∣∣∣
= cos(ξ) · π|η̂XY − E[η̂XY ]|

2 ≤ π

2 |η̂(P )
XY − E[η̂XY ]|. (18)

where ξ = tη̂XY + (1 − t)E[η̂XY ] for some t ∈ [0, 1]. Thus,

E|ρ̂(G)
NI − ρ|2 ≤ π2

4 E|η̂XY − E[η̂XY ]|2 = π2

4 Var(η̂XY − E[η̂XY ])

≤ π2m2

4k

[
E(X̄(1) + Z

(1)
1 )4

]1/2 [
E(Ȳ (1) + Z

(1)
2 )4

]1/2

≤ π2m2

4k

(
3
m

+ 8
m2ε2

1

)(
3
m

+ 8
m2ε2

2

)
= π2

4

(
9m

n
+ 24

nε2
1

+ 24
nε2

1
+ 64

mnε2
1ε2

2

)
(19)

= π2

4

(
24
nε2

1
+ 24

nε2
1

+ 80
nε1ε2

)
≤ 10π2

n

(
1
ε1

+ 1
ε2

)2
.
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In the penultimate equality, we use the choice m = 8
ε1ε2

, which minimizes the
expression in the previous line. The privacy constraints are satisfied by the Laplace
mechanism and checking the sensitivity of the batch means.

2. It is straightforward to check that
E[ρ̂(SG)

NI ] = E[XY 1(|X| ≤ λ1, |Y | ≤ λ2)]
= ρ − E[XY 1(|X| > λ1 or |Y | > λ2)].

We can thus bound the bias of the estimator ρ̂
(SG)
NI as:∣∣∣E[ρ̂(SG)

NI ] − ρ
∣∣∣ ≤ E[|XY |1(|X| > λ1 or |Y | > λ2)]

≤
(
E|X|3

) 1
3
(
E|Y |3

) 1
3 (P(|X| > λ1) + P(|Y | > λ2))

1
3

≲ exp
(

−1
3

{
λ2

1
η2

1
∧ λ2

2
η2

2

})
(20)

where we use the fact that X is η1-subgaussian and Y is η2-subgaussian. At the
same time,

Var(ρ̂(SG)
NI ≤ m2

k

[
E(X̄(1) + Z

(1)
1 )4

]1/2 [
E(Ȳ (1) + Z

(1)
2 )4

]1/2

<∼
m2

k

(
1
m

+ λ2
1

m2ε2
1

)(
1
m

+ λ2
2

m2ε2
2

)
≲

1
n

(
λ1

ε1
+ λ2

ε2

)2

where in the last step we use the choice of m = λ1λ2
ε1ε2

, which minimizes the expression
in the previous step. Thus the MSE of ρ̂

(P )
λ in estimating ρ is given by:

E|ρ̂(SG)
NI − ρ|2 =

(
E[ρ̂(SG)

NI ] − ρ
)2

+ Var(ρ̂(SG)
NI )

≲ exp
(

−2
3

{
λ2

1
η2

1
∧ λ2

2
η2

2

})
+ 1

n

(
λ1

ε1
+ λ2

ε2

)2
.

We now choose λ1 = 2η1
√

log(n) and λ2 = 2η2
√

log(n) for some κ > 0. The bias
bound from (20) then becomes: ∣∣∣E[ρ̂(SG)

NI ] − ρ
∣∣∣ ≤ 1

n
(21)

leading to the MSE bound

E|ρ̂(SG)
NI − ρ|2 ≲ exp (−2 log(n)) + log(n)

nε2
1

+ log(n)
nε2

2
<∼

log(n)
n

(
η1

ε2
1

+ η2

ε2
2

)
.

Once again the privacy constraints are satisfied by the Laplace mechanism and
checking the sensitivity of the batch means.

3. We split the proofs for confidence interval coverage into the Gaussian and sub-
Gaussian cases.
(a) (Gaussian case) Note that η̂XY in (3) is an average of k iid observations Tj

defined as follows:

η̂XY = 1
k

k∑
j=1

Tj where Tj := m(X̄(j) + Z
(j)
1 )(Ȳ (j) + Z

(j)
2 )

and
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where the last equality follows by expanding the squares of iid averages in the
first term. Thus we have

√
k(η̂XY − E(η̂XY ))

ση

d→ N(0, 1) as k → ∞,

and thus by delta method, ρ̂
(G)
NI = sin(πη̂

(P )
XY /2) satisfies:

√
k(ρ̂(G)

NI − ρ)
(π/2)ση

√
1 − ρ2

d→ N(0, 1) as k → ∞.

Here we used the fact that sin(πE[η̂XY ]/2) = ρ. To estimate σ2
η we use the

sample variance of Tj :

S2
η := 1

k

k∑
j=1

(Tj − T̄ )2.

Note that S2
η is constructed from (ε1, ε2)-DP statistics Tj , and thus S2

η is also
differentially private. By standard calculations,

E(S2
η − σ2

η)2 = O

(
1
k

)
where we use our choice = 8/(ε1ε2) and k = n/m, and thus by Slutsky’s
theorem, we then have

√
k(ρ̂(G)
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√
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d→ N(0, 1) as k → ∞.

We thus have asymptotically (1 − α) coverage confidence intervals:(
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)
.

(b) (sub-Gaussian case) Identical to what we observed for the case of Gaussian
data, note that ρ̂

(SG)
NI in (7) is an average of k iid observations Tj defined as

follows:

ρ̂
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NI = 1

k

k∑
j=1

Tj where Tj := m(X̄(j) + Z
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and
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where the last equality follows by expanding the squares of iid averages in the
first term of the previous line. Thus we have

√
k(ρ̂(SG)

NI − E(ρ̂(SG)
NI ))

σρ

d→ N(0, 1) as k → ∞,
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To estimate σ2
ρ we use the sample variance of Tj :

S2
ρ := 1

k

k∑
j=1

(Tj − T̄ )2.

Note that S2
ρ is constructed from (ε1, ε2)-DP statistics Tj , and thus S2

ρ is also
differentially private. By standard calculations,

E(S2
ρ − σ2

ρ)2 = O

(
1
k

)
where we use our choice m = 4η1η2(log(n))/(ε1ε2) and k = n/m, and thus by
Slutsky’s theorem, along with the asymptotically vanishing bias from (21) we
then have √

k(ρ̂(SG)
NI − ρ)
Sρ

d→ N(0, 1) as k → ∞.

We thus have an asymptotically (1 − α) coverage confidence interval:(
ρ̂

(SG)
NI − Sρ√

k
z1−α/2, ρ̂

(SG)
NI + Sρ√

k
z1−α/2

)
.

Proof of Theorem 3.1. We separate the proofs of the two statements as follows.
1. To derive the MSE of the interactive correlation estimator for Gaussian data, we

first calculate from (9):

E [η̂XY,int + Z − (2P(XY > 0) − 1)]2

= Var(η̂XY,int + Z) + (E[η̂XY,int] − (2P(XY > 0) − 1))2

= 4eε1

n(eε1 − 1)2 + 4(eε1 + 1)2

n2(eε1 − 1)2ε2
2

+ 0

≤ 4
n(ε1 ∧ 1)2 + 25

n2(ε1 ∧ 1)2ε2
2

.

Consequently,

E(ρ̂(G)
INT − ρ)2

= π2(1 − ρ2)
4 E

[
η̂

(P)
XY,int − (2P(XY > 0) − 1)

]2
+ π4

2 E
[
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(P)
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]4

≤ π2(1 − ρ2) + 1
n(ε1 ∧ 1)2 + 25π2(1 − ρ2) + 1

4n2(ε1 ∧ 1)2ε2
2

whenever n(ε1 ∧ 1) is sufficiently large.
2. To derive the MSE of the interactive correlation estimator for sub-Gaussian data,

we take the following approach. It is straightforward to check that

E[ρ̂(SG)
INT ] = E ([([X]λ1 + Z)Y ]λ2)

= E (([X]λ1 + Z)Y ) − E[([X]λ1 + Z)Y 1(|([X]λ1 + Z)Y | > λ2)]
= ρ − E[XY 1(|X| > λ1)] − E[([X]λ1 + Z)Y 1(|([X]λ1 + Z)Y | > λ2)].

We next have
P(|([X]λ1 + Z)Y | ≥ λ2) ≤ P(|Y | ≳

√
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√
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1
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2
(log(n))η2

1
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2λ1
√

log(n)

})
(22)
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the fact that X is η1-subgaussian and Y is η2-subgaussian. We can then bound the
bias of the estimator ρ̂

(SG)
INT as:∣∣∣E[ρ̂(SG)

INT ] − ρ
∣∣∣

≤ E[|XY |1(|X| > λ1)] + E[(|XY | + |ZY |)(1(|([X]λ1 + Z)Y | > λ2))]
≤ (E[|XY |2])1/2[P(|X| > λ1)]1/2

+ (E|XY |2 + E|ZY |2)1/2[P(|Y | ≥ 2
√

log(n)) + P(|([X]λ1 + Z)| > λ2/
√

log(n))]1/2

≲
1
n

(23)

where we use (22) with

λ1 = 2η1
√

log(n) and λ2 = 4(η2 ∨ 1)(log(n))2/(ε1 ∧ 1)
and hence the variance becomes

Var(ρ̂(SG)
INT ) ≤ Var(([X]λ1 + Z1)Y )

n
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1(log(n))
nε2

1
+ 64(η2

2 ∨ 1)(log(n))4

n2ε2
2(ε1 ∧ 1)2 .

3. We split the proofs for confidence interval coverage into the Gaussian and sub-
Gaussian cases.
(a) (Gaussian case) From (9) we write:

η̂XY,int + Z = exp(ε1) + 1
exp(ε1) − 1 × 1

n

n∑
i=1

Ti + Z =: exp(ε1) + 1
exp(ε1) − 1

(
T̄ + Z2

)
where Ti = (2Si−1) sign(Xi) sign(Yi) and Z2 ∼ Laplace

(
0, 2

nε2

)
. Let us define:

σ2
η := Var(Ti) = 1 −

(
exp(ε1) − 1
exp(ε1) + 1

)2
(2P(XY > 0) − 1)2

for which we have the consistent estimator:

σ̂2
η := 1 −

(
exp(ε1) − 1
exp(ε1) + 1

)2
(η̂XY,int)2.

We recall that E[η̂XY,int] = 2P(XY > 0)−1 and thus by the Berry Esseen limit
theorem on Ti,

sup
x

∣∣∣∣P(√
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(24)

for a numerical constant C > 0. Here

ZXY ∼ N(0, 1) and Z ′
2 ∼ Laplace

(
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2√
nσηε2

)
.

and thus by the delta method,
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To derive the confidence intervals we make two separate cases:
Case 1: ((

√
nε2)−1 → c) In the first case we consider (

√
nε2)−1 → c for a finite

constant c ≥ 0. In this case we have the confidence intervalρ̂
(G)
INT ∓

πσ̂η

√
1 − (ρ̂(G)

INT)2

2
√

n

(
exp(ε1) + 1
exp(ε1) − 1

)
F −1(1 − α/2)


where for any x ∈ R we define

F (x) := P(ZXY +c∗ZLap ≤ x) where c∗ = lim
n→∞

2√
nσηε2

and ZLap ∼ Laplace(0, 1).

The above is a valid confidence interval when limn→∞
2√

nσηε2
= c∗ for some

finite c∗ ≥ 0. This is no longer the case when
√

nε2 → 0 as n → ∞.
Case 2: (

√
nε2 → 0) In this case, (24) and (25) imply that we have the

asymptotic convergence:
nε2

π
√
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(
exp(ε1) − 1
exp(ε1) + 1

)(
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(G)
INT − ρ

)
d→ Laplace(0, 1)

leading to the asymptotically (1 − α) coverage confidence intervalρ̂
(G)
INT ±

π

√
1 − (ρ̂(P)

int )2

nε2

(
exp(ε1) + 1
exp(ε1) − 1

)
log(α)


where the width of the CI is determined by the α-th quantiles of the
Laplace(0, 1) distribution.

(b) (sub-Gaussian case) Note that

ρ̂
(SG)
INT = 1

n

n∑
i=1

Ti + Z2

where Ti = [([Xi]λ1 + Z1i)Yi]λ2 are iid random variables. Thus by the Berry
Esseen theorem,

sup
x∈R

∣∣∣∣∣P
(√

n(ρ̂(SG)
INT − E[ρ̂(SG)

INT ])
σρ

≤ x

)
− P (ZXY + Z ′

2 ≤ x)
∣∣∣∣∣ ≤ C(log(n))7.5

σ3
ρ

√
n

(26)
where ZXY ∼ N(0, 1), Z ′

2 ∼ Laplace
(

0, 2λ2√
nσρε2

)
and

σ2
ρ := Var(([X]λ1 + Z1)Y ).

As before, we now make two cases to derive the confidence intervals.
Case 1: ((

√
nε2/λ2)−1 → c) In the first case we consider (

√
nε2/λ2)−1 → c

for a finite constant c ≥ 0. In this case (23) and (26) imply that we have the
confidence interval(

ρ̂
(SG)
INT − σ̂ρ√

n
F −1(1 − α/2), ρ̂

(SG)
INT + σ̂ρ√

n
F −1(1 − α/2)

)
where

σ̂2
ρ = 1

n

n∑
i=1

(Ti − T̄ )2,

the sample variance of Ti, is an ε1-DP consistent estimator for σ2
ρ. Moreover,

as before for any x ∈ R we define

F (x) := P(ZXY +c∗ZLap ≤ x) where c∗ = lim
n→∞

2λ2√
nσρε2

and ZLap ∼ Laplace(0, 1).
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The above is a valid confidence interval when limn→∞
2λ2√
nσρε2

= c∗ for some
finite c∗ ≥ 0. This is no longer the case when

√
nε2/λ2 → 0 as n → ∞.

Case 2: (
√

nε2/λ2 → 0) In this case, (23) and (26) imply that we have the
asymptotic convergence:

nε2

2λ2

(
ρ̂

(SG)
INT − ρ

)
d→ Laplace(0, 1)

leading to the asymptotically (1 − α) coverage confidence interval(
ρ̂

(SG)
INT + λ2

nε2
log(α), ρ̂

(SG)
INT − λ2

nε2
log(α)

)
where the width of the CI is determined by the α-th quantiles of the
Laplace(0, 1) distribution.

B.2 Proofs of lower bound results

Proof of Theorem 4.1 . Fix any non–interactive (ε1, ε2, δ1, δ2)–DP protocol with transcript
T = (T1, T2), and let Pρ denote the law of T when (Xi1, Xi2)n

i=1
i.i.d.∼ N

(
0,
( 1 ρ

ρ 1
))

. We check
that f(x) = x log(1/x) is an increasing function of x whenever x ∈ (0, exp(−1)). Thus
δk = o(n−1−ω) implies δk log(1/δk) = o(n−1) = o(ε2

k). The second inequality follows from
the fact that nε2

k → ∞. Invoking Lemma 2 gives, at ρ = 0,

IF (T ; 0) ≤ 8
π

(
nε2

1 ∧ nε2
2
)
. (27)

Step 1. Prior supported in a small neighborhood of 0. Let J = [−L/2, L/2] with
L ≤ 2c0 and center ρ0 = 0. Define the cosine–squared prior on J :

λ(ρ) = 2
L

λ0

(
2(ρ − ρ0)

L

)
, λ0(x) =

{
cos2(πx/2), |x| ≤ 1,

0, otherwise.

This prior satisfies the well–known identity (see, e.g., Tsybakov [2009])

IF (λ) =
∫

J

λ′(ρ)2

λ(ρ) dρ =
(

2π

L

)2
. (28)

Step 2. Prior–averaged information of the transcript. By (16) with ρ0 = 0 and
|ρ| ≤ L/2 ≤ c0,

IF (T ; ρ) ≤ (1 + Cη) IF (T ; 0).
Therefore

Eρ

[
IF (T ; ρ)

]
=
∫

J
IF (T ; ρ) λ(ρ) dρ ≤ (1 + Cη) IF (T ; 0). (29)

Step 3. Van Trees inequality. Applying Lemma 1 with parameter ρ, likelihood Pρ, and
prior λ, we obtain the Bayes risk lower bound

E
[
(ρ̂(T ) − ρ)2] ≥ 1

Eρ[IF (T ; ρ)] + IF (λ)
(29),(28)

≥ 1
(1 + Cη) IF (T ; 0) +

(
2π/L

)2 .

Using (27) and writing A := nε2
1 ∧ nε2

2,

RBayes(λ) := inf
ρ̂

E[(ρ̂ − ρ)2] ≥ 1
c1 A + (2π/L)2 , c1 := 8

π
(1 + Cη). (30)
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Step 4. Choice of L and consequence. To minimize the denominator in (30) we take
the largest admissible support, L = 2c0, yielding

RBayes(λ) ≥ 1
c1 A + (π/c0)2 .

Since the minimax risk dominates the Bayes risk for any prior,

inf
ρ̂

sup
ρ∈[−1,1]

Eρ

[
(ρ̂ − ρ)2] ≥ RBayes(λ) ≥ 1

c1 A + (π/c0)2 .

In particular, whenever A → ∞ (our standing regime), the constant prior term is negligible
and we obtain

inf
ρ̂

sup
ρ∈[−1,1]

Eρ

[
(ρ̂ − ρ)2] ≳

1
nε2

1 ∧ nε2
2

.

Step 5. Classical (1/n) term. Additionally the non–private parametric difficulty con-
tributes an additional Ω(1/n) term (e.g. by repeating the bound above without privacy
constraints and with A ≍ n near ρ = 0). Combining the terms yields

inf
ρ̂∈NI(ε1,ε2,δ)

sup
ρ∈[−1,1]

Eρ

[
(ρ̂ − ρ)2] ≳

1
n

+ 1
nε2

1
+ 1

nε2
2

.

Proof of Theorem 4.2. Let (i, j) be such that εi ≥ εj . Since δi = o(n−1−ω), we have
δi log(1/δi) = o(n−1) = o(ε2

i ), where the last equality follows from nε2
i → ∞. Simi-

larly, δj = o(n−1−ω) implies δj log2(1/δj) = o(n−1) = o(nε2
1ε2

2), using that n2ε2
1ε2

2 → ∞.
Hence, the conditions of Lemma 3 are met, so that CΠ,n in (17) indeed represents the
Fisher–information bound for the (interactive, one–way) protocol.
Throughout, we abbreviate

ε2
max = ε2

1 ∨ ε2
2, ε2

min = ε2
1 ∧ ε2

2, CΠ,n = nε2
max ∧ n2ε2

1ε2
2.

Let Π ∈ {Π1→2, Π2→1} be any fixed one–way interactive DP protocol, and denote by Pρ the
law of the full transcript under correlation ρ.
Step 1. Local regularity of information and the prior. By the standing regularity
assumption (16), there are numerical constants c0 ∈ (0, 1) and Cη > 0 such that

IF (Π; ρ + ϵ) = IF (Π; ρ)
(
1 + η(ϵ)

)
, |ϵ| < c0, sup

|ϵ|<c0

|η(ϵ)| ≤ Cη.

In particular, for |ρ| ≤ c0,
IF (Π; ρ) ≤ (1 + Cη) IF (Π; 0). (31)

We place on ρ the cosine–squared prior supported on J = [−L/2, L/2] with L ≤ 2c0 and
center 0 that the prior Fisher information is (see proof of Theorem 4.1 for details)

IF (λ) =
∫

J

λ′(ρ)2

λ(ρ) dρ =
(2π

L

)2
. (32)

Step 2. Prior–averaged information of the transcript. By (31) and Lemma 3 (or
its analogue for Π2→1),

Eρ

[
IF (Π; ρ)

]
=
∫

J
IF (Π; ρ) λ(ρ) dρ ≤ (1 + Cη) IF (Π; 0) ≤ (1 + Cη) CΠ,n.

Step 3. Van Trees inequality. Applying Lemma 1 with parameter ρ, likelihood Pρ, and
prior λ, we obtain

RBayes(λ) := inf
ρ̂

E
[
(ρ̂ − ρ)2] ≥ 1

Eρ[IF (Π; ρ)] + IF (λ) ≥ 1
c1 CΠ,n + (2π/L)2 ,

where c1 := 1+Cη is an absolute constant. Choosing the largest admissible support L = 2c0
gives

RBayes(λ) ≥ 1
c1 CΠ,n + (π/c0)2 . (33)

Since the minimax risk dominates the Bayes risk for every prior,
inf

ρ̂

sup
ρ∈[−1,1]

Eρ

[
(ρ̂ − ρ)2] ≥ RBayes(λ).
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Step 4. Extracting the two interactive terms. By definition, CΠ,n = min{A, B} with

A := nε2
max, B := n2ε2

1ε2
2.

Hence 1/CΠ,n = max{1/A, 1/B} ≥ 1
2
(
1/A + 1/B

)
. Using (33) and the fact that the

additive constant (π/c0)2 is negligible whenever A∨B → ∞, we obtain the privacy–induced
contribution

inf
ρ̂

sup
ρ

Eρ

[
(ρ̂ − ρ)2] ≳

1
nε2

max
+ 1

n2ε2
1ε2

2
.

Step 5. Baseline parametric term and conclusion. Even without privacy constraints,
estimating a correlation from n i.i.d. Gaussian samples incurs risk Θ(1/n); hence

inf
ρ̂∈INT(ε1,ε2,δ)

sup
ρ∈[−1,1]

Eρ

[
(ρ̂ − ρ)2] ≳

1
n

+ 1
nε2

max
+ 1

n2ε2
1ε2

2
,

which is the desired bound.

B.3 Proofs of Lemmas
In this section we provide proofs of lemmas used to prove the lower bound theorems.

Proof of Lemma 2. The main technical ingredient that goes into proving the minimax lower
bound is obtaining a upper bound on the Fisher Information under the null i.e ρ = 0. Denote
Z = (Xi, Yi)n

i=1, it can be shown that the score function Sρ(Z) for the parameter ρ under
the null is given by

Sρ(Z) =
n∑

i=1
XiYi (34)

The fisher information under the null IF (T ; 0) is given by

IF (T ; 0) = E(E(Sρ(Z) | T )2) (35)

The fisher info under null can be expressed as

IF (T ; 0) = E

( n∑
i=1

E(XiYi | T )
)2


= E

( n∑
i=1

E(Xi | T1)E(Yi | T2)
)2


=
n∑

i=1

n∑
j=1

E [E(Xi | T1)E(Yi | T2)E(Xj | T1)E(Yj | T2)]

where we have used the fact that Xi ⊥ Yi | T , Xi ⊥ T2 | T1 and Yi ⊥ T1 | T2 in the second
line. We now have that

IF (T ; 0) =
n∑

i=1

n∑
j=1

E [E(Xi|T1)E(Xj |T1)]E [E(Yi|T2)E(Yj |T2)]

where in we use the fact that under the null T1 ⊥ T2. Define to matrices MX and MY such
that

(MX)ij = E [E(Xi | T1)E(Xj | T1)] and (MY )ij = E [E(Yi | T2)E(Yj | T2)]

then we have that IF (T ; 0)] = tr(M⊤
X MY ). Using Lemma 6 we have that IF (T ; 0)] ≤

tr(MX)∥MY ∥2 where ∥.∥2 is the spectral norm . Next let us bound tr(MX). Note that
we can rewrite MX as

MX = E
(
E(X | T1)E(X | T1)⊤) (36)
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where X is the data vector (Xi)n
i=1 and E(X | T ) is the vector (E(Xi | T ))n

i=1. Hence

tr(MX) ≤ tr
(
E
(
E(X | T1)E(X | T1)⊤))

= E∥E(X | T1)∥2
2

=
n∑

i=1
E(E(Xi | T1))2

Using Lemma 5 we have that tr(MX) ≤ n 2
π

(
eε1 −e−ε1

2

)2
. For bounding ∥MY ∥2 we can

either bound by tr(MY ) which implies by the previous argument that ∥MY ∥2 ≤ nε2
2 or

using contraction of the conditional expectation i.e.

MX = E(E(X | T )E(X | T )⊤) ⪯ E(XX⊤) = In

which implies ∥MX∥2 ≤ 1. Putting everything together we have that

IF (T ; 0) ≤ tr(MX)∥MY ∥2 ∧ tr(MY )∥MX∥2

≤ n
2
π

(
eε1 − e−ε1

2

)2

∧ n
2
π

(
eε1 − e−ε1

2

)2

.

Using the fact that ex − 1 ≤ 2x for 0 < x < 1 we have that

IF (T ; 0) ≤ 8
π

(
nε2

1 ∧ nε2
2
)

.

Proof of Lemma 3. Denote Z = (Xi, Yi)n
i=1, it can be shown that the score function Sρ(Z)

for the parameter ρ under the null is given by

Sρ(Z) =
n∑

i=1
XiYi (37)

The fisher information under the null IF (T ; 0) is given by

IF (T ; 0) = E(E(Sρ(Z) | T )2) (38)

The fisher info under null can be expressed as

IF (T ; 0) = E

( n∑
i=1

E(XiYi | T )
)2


= E

( n∑
i=1

E(Xi | T1)E(Yi | T1, T2)
)2


= E

( n∑
i=1

E(E(Xi | T1)Yi | T1, T2)
)2
 (39)

where we have used the fact that Xi ⊥ Yi | T , Xi ⊥ T2 | T1 in the second line. Using the
fact that E(E(A|B)2) ≤ EA2 we have that

IF (T ; 0) = E

( n∑
i=1

E(E(Xi | T1)Yi | T1, T2)
)2
 ≤ E

( n∑
i=1

E(E(Xi | T1)Yi)
)2

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Hence expanding the sum of squares we have that

IF (T ; 0) =
n∑

i=1

n∑
j=1

E [E(Xi | T1)YiE(Xj | T1)Yj ]

=
n∑

i=1
E
[
E(Xi | T1)2Y 2

i

]
=

n∑
i=1

E
[
E(Xi | T1)2] ≤ n

(
eε1 − e−ε1

2

)2

where we used the fact that Yi ⊥ Yj , T1 and EYi = 0, EY 2
i = 1 in the second and third line.

The last inequality above follows from Lemma 5.
Following (39) we can write

IF (T ; 0) =
n∑

k=1
E

[
E(Xk | T1)Yk

(
n∑

i=1
E(E(Xi | T1)Yi | T1, T2)

)]
(40)

Let us call Gk = E(Xk | T1)Yk (
∑n

i=1 E(E(Xi | T1)Yi | T1, T2)) and G′
k = E(Xk |

T1)Yk (
∑n

i=1 E(E(Xi | T1)Yi | T1, T ′
2)). Also note that EG′

k = 0 since EYk = 0 and Yk ⊥
T1, T ′

2. Now following a similar argument as in (46) we get that

EGk ≤
(

eε2 − e−ε2

2

)
E|G′

k| + 2δ2M +
∫ ∞

M

P(|Gk| ≥ t)dt +
∫ ∞

M

P(|G′
k| ≥ t)dt (41)

Note that

E|G′
k| = E

∣∣∣∣∣E(Xk | T1)Yk

(
n∑

i=1
E(E(Xi | T1)Yi | T1, T ′

2)
)∣∣∣∣∣

=
√

2
π
E

∣∣∣∣∣E(Xk | T1)
(

n∑
i=1

E(E(Xi | T1)Yi | T1, T ′
2)
)∣∣∣∣∣

≤
√

2
π

√
E(E(Xk | T1)2)

√√√√√E

( n∑
i=1

E(E(Xi | T1)Yi | T1, T ′
2)
)2


≤
√

2
π

(
eε1 − e−ε1

2 ∧ 1
)√

IF (T ; 0).

The last line follows since (T1, T ′
2) d= (T1, T2) and the fact that E(E(Xk | T1)2) ≤ EX2

k = 1
Using the fact that IF (T ; 0) =

∑
k EGk and putting everything together we have that

IF (T ; 0) ≤ n

(
eε2 − e−ε2

2

)√
2
π

(
eε1 − e−ε1

2 ∧ 1
)√

IF (T ; 0) (42)

+ 2nδ2M + n

∫ ∞

M

P(|Gk| ≥ t)dt + n

∫ ∞

M

P(|G′
k| ≥ t)dt (43)

Set
M = 64

(
log 8

δ2

)2

in Lemma 4, to obtain∫ ∞

M

P(|Gk| ≥ t) dt ≤ 16 (8 log(8/δ2) + 4) (δ2/8)2 ≤ δ2.

We can similarly show that ∫ ∞

M

P(|G′
k| ≥ t)dt ≤ δ2.
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Putting everything together we have that

IF (T ; 0) ≤ n

(
eε2 − e−ε2

2

)√
2
π

(
eε1 − e−ε1

2

)√
IF (T ; 0) (44)

+ 2nδ264
(

log 8
δ2

)2
+ 2nδ2 (45)

If
√

IF (T ; 0) ≤ n
√

2
π

(
eε2 −e−ε2

2

)(
eε1 −e−ε1

2 ∧ 1
)

we are done else dividing both sides by√
IF (T ; 0) we have√
IF (T ; 0) ≤n

√
2
π

(
eε2 − e−ε2

2

)(
eε1 − e−ε1

2 ∧ 1
)

+
(

2nδ264
(

log 8
δ2

)2
+ 2nδ2

)
n−1

(
2
π

)−1/2(
eε1 − e−ε1

2 ∧ 1
)−1(

eε2 − e−ε2

2

)−1

The second term can be dropped if δ2 log(1/δ2)2 = o(nε2
1ε2

2). The final form is achieved by
using the fact that ε1, ε2 ≤ 1.

B.4 Auxiliary Lemmas
Lemma 4. Define Gk = E(Xk | T1)Yk (

∑n
i=1 E(E(Xi | T1)Yi | T1, T2)) then we have that∫ ∞

M

P(|Gk| ≥ t)dt ≤ 16(
√

M)e−
√

M/4

Proof. Let us denote by Zi = E(Xi | T1)Yi. We begin by bounding Eet|Gi|1/2 . By AM-GM
and Cauchy-Schwarz inequality, we have that

Eet|Gi|1/2
= Eet|Zi|1/2|E(Zi|T1,T2)|1/2

≤ Ee
1
2 t(|Zi|+|E(Zi|T1,T2)|)

≤
√
Eet|Zi|

√
Eet|E(Zi|T1,T2)|

Using the conditional Jensen’s Inequality with the function x → etx2 which is convex to
obtain that

Eet|E(Zi|T1,T2)| ≤ E(E(et|Zi| | T1, T2)) = E(et|Zi|)

Hence Eet|Gi|1/2 ≤ E(et|Zi|). Bounding the RHS as follows

E(et|Zi|) = Eet|Yi||E(Xi|T1)|

≤ Ee
1
2 t(Y 2

i +(EXi|T1)2)

≤ Ee
1
2 tY 2

i Ee
1
2 t(EXi|T1)2

where we used the AM-GM inequality in the second line and the independence of Yi and
E(Xi | T1) in the third line. Using conditional Jensen again, we would have Ee

1
2 t(EXi|T1)2 ≤

Ee
1
2 tX2

i which implies E(et|Zi|) ≤ Ee
1
2 tX2

i Ee
1
2 tY 2

i .

Putting everything together we have that Eet|Gi|1/2 ≤ Ee
1
2 tX2

i Ee
1
2 tY 2

i ≤ 2 for t ≤ 1/2 (since
Xi, Yi ∼ χ2

1). This implies that

P(|Gi| ≥ t) ≤ P(e 1
4 |Gi|1/2

≥ e
√

t/4) ≤ 2e−
√

t/4.

The last inequality follows from Markov. Hence we have that∫ ∞

M

P(|Gi| ≥ t) dt ≤ 2
∫ ∞

M

e−
√

t/4 dt = 16(
√

M)e−
√

M/4.
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Lemma 5. Assuming for k = 1, 2, δk log(1/δk) = o(ε2
k), we have for any 1 ≤ i ≤ n

E(E(Xi | T1))2 ≤ 2
π

(
eε1 −e−ε1

2

)2
, similarly we have E(E(Yi | T2))2 ≤ 2

π

(
eε2 −e−ε2

2

)2
.

Proof of Lemma 5. Note that E(E(Xi | T1))2 = E[Xi(E(Xi | T1))]. Denote Ai = Xi(E(Xi |
T1)) we can write EAi = EA+

i − EA−
i . Also let us define A′

i = Xi(E(Xi | T ′
1)) where

T ′
1 = T1(X ′), where X ′ is the adjacent dataset with its ith data point replaced by X ′

i which
is an independent copy.
We can write EA+

i as

E(A+
i ) =

∫ ∞

0
P(A+

i ≥ t)dt

=
∫ M

0
P(A+

i ≥ t)dt +
∫ ∞

M

P(A+
i ≥ t)dt

≤
∫ M

0
eε1P((A′

i)+ ≥ t)dt + δ1M +
∫ ∞

M

P(A+
i ≥ t)dt

= eε1E(A′
i)+ − eε1

∫ ∞

M

P((A′
i)+ ≥ t)dt + δ1M +

∫ ∞

M

P(A+
i ≥ t)dt

≤ eε1E(A′
i)+ + δ1M +

∫ ∞

M

P(|Ai| ≥ t)dt

Similarly we have that

E(A−
i ) =

∫ ∞

0
P(A−

i ≥ t)dt

=
∫ M

0
P(A−

i ≥ t)dt +
∫ ∞

M

P(A−
i ≥ t)dt

≥
∫ M

0
e−ε1P((A′

i)− ≥ t)dt − δ1M +
∫ ∞

M

P(A−
i ≥ t)dt

= e−ε1E(A′
i)− − e−ε1

∫ ∞

M

P((A′
i)− ≥ t)dt − δ1M +

∫ ∞

M

P(A−
i ≥ t)dt

≥ e−ε1E(A′
i)− −

∫ ∞

M

P(|A′
i| ≥ t)dt − δ1M

Since EAi = EA+
i − EA−

i we have that

EAi ≤ eε1E(A′
i)+ − e−ε1E(A′

i)− + 2δ1M +
∫ ∞

M

P(|Ai| ≥ t)dt +
∫ ∞

M

P(|A′
i| ≥ t)dt

=
(

eε1 + e−ε1

2

)
EA′

i +
(

eε1 − e−ε1

2

)
E|A′

i| + 2δ1M +
∫ ∞

M

P(|Ai| ≥ t)dt +
∫ ∞

M

P(|A′
i| ≥ t)dt

=
(

eε1 − e−ε1

2

)
E|A′

i| + 2δ1M +
∫ ∞

M

P(|Ai| ≥ t)dt +
∫ ∞

M

P(|A′
i| ≥ t)dt (46)

where we have used the fact that EA′
i = 0. Observe that

E|A′
i| = E|Xi|E|E(Xi | T ′

1)| ≤
√

2
π

√
E(E(Xi | T ′

1))2 =
√

2
π

√
EAi

Next we upper bound
∫∞

M
P(|Ai| ≥ t)dt in that direction we look at

Eet|Ai| = Eet|Xi||E(Xi|T1)|

≤ Ee
1
2 t(X2

i +(E(Xi|T1))2)
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where we used the AM-GM inequality for the exponent. Next we can apply the Cauchy-
Schwarz inequality to obtain that

Eet|Ai| ≤
√
EetX2

i

√
EetE(Xi|T1))2

the second term can further be bounded using the conditional Jensen’s Inequality with the
function x → etx2 which is convex to obtain that

EetE(Xi|T1))2
≤ E(E(etX2

i | T1)) = E(etX2
i )

Putting everything together we have that Eet|Ai| ≤ E(etX2
i ) ≤

√
2 for t ≤ 1/4 (since

Xi ∼ χ2
1).This implies that

P(|Ai| ≥ t) ≤ P(e 1
4 |Ai| ≥ et/4) ≤

√
2e−t/4.

The last inequality follows from Markov. Hence we have that
∫∞

M
P(|Ai| ≥ t) ≤ 4

√
2e−M/4,

set M = 4 log(1/δ1) to obtain
∫∞

M
P(|Ai| ≥ t) ≤ 4

√
2δ1. we can similarly show that∫ ∞

M

P(|A′
i| ≥ t)dt ≤ 4

√
2δ1.

Putting everything together we have that

EAi ≤
(

eε1 − e−ε1

2

)√
2
π

√
EAi + 8δ1 log(1/δ1) + 8

√
2δ1

If EAi ≤ 2
π

(
eε1 −e−ε1

2

)2
we are done else dividing both sides by

√
EAi we have

√
EAi ≤

(
eε1 − e−ε1

2

)√
2
π

+ (8δ1 log(1/δ1) + 8
√

2δ1)
(

2
π

)−1/2(
eε1 − e−ε1

2

)−1

The second term can be dropped if δ1 log(1/δ1) = o(ε2
1).

Lemma 6. For square matrices A and B, if B is symmetric, we have

tr(AB) ≤ ∥A∥2 tr(B)

Proof of Lemma 6. The proof follows from von Neumann’s trace inequality:

tr(AB) ≤ | tr(AB)| ≤
∑

i

αiβi ≤ max(αi)
∑

i

βi = max(αi) × tr(B)

where αi and βi are the singular values of A and B respectively. The proof follows by the
definition of ℓ2 operator norm used on matrix A.
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