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Abstract

Agents capable of making decisions from complex, unstructured instructions have
seen a surge with the rise of large language models (LLMs). However, their ability
to coordinate with other agents while following instructions is still an active area of
research. To facilitate research in this area, we introduce a framework for designing
scalable environments to evaluate coordination in agentic LLM networks, called
Coordinating LLM Agents Benchmark (COLLAB). COLLAB adapts a widely used
classical cooperative multi-agent problem-solving framework called Distributed
Constraint Optimization Problems (DCOPs), and extends it with unstructured
instructions and communication, making it directly relevant for studying coordina-
tion in agentic LLM networks. We provide a design blueprint for how COLLAB
environments can scale across multiple dimensions. Finally, we implement three
case study environments within this framework and evaluate several LLM-based
agent configurations. We then quantitatively analyze LLM-generated solutions
against classical symbolic solvers to directly assess their quality. In addition, we
demonstrate how COLLAB supports seamless scaling of environment complexity,
allowing us to design increasingly challenging coordination tasks and assess how
different agents adapt.

Code: https://github.com/Saad-Mahmud/CoLLAB_SEA
Page: https://agents-collab.github.io/

1 Introduction

Large language models (LLMs) have rapidly advanced to the point where they are increasingly
deployed as autonomous agents capable of planning, reasoning, and acting based on complex,
unstructured instructions [1–3]. While most existing research has centered on single-agent capabilities,
recent work has begun to explore the emergent behaviors of LLMs in multi-agent settings [4, 5]. An
important direction in this area focuses on understanding how a network of LLM agents communicates
and coordinates to jointly solve tasks. However, progress remains limited by the lack of standardized,
scalable benchmarks for evaluating coordination in agentic LLM networks. Current testbeds are
typically ad hoc—narrow in scope, difficult to scale systematically, and lacking well-defined baselines
for meaningful quantitative comparison across studies.

To address this gap, we introduce the Coordinating LLM Agents Benchmark (COLLAB), a framework
that adapts the widely studied cooperative multi-agent problem-solving paradigm of Distributed
Constraint Optimization Problems (DCOPs) [6, 7] to settings involving unstructured instructions and
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Figure 1: Overview of the COLLAB framework architecture. Left: Problem Layer. Each agent
receives personalized natural-language instructions and context. Center: Communication and
Algorithm Layer. Agents coordinate through structured protocols and algorithms, sharing decisions
and rationales over multiple rounds. Right: Agent Layer. Each LLM agent integrates problem
instructions, algorithmic rules, and communication logs to make a decision.

natural-language communication. COLLAB is organized into three layers: the problem layer, the
communication and algorithm layer, and the agent layer (Figure 1). The problem layer combines a
symbolic DCOP backbone with rich, multimodal instructions that specify goals and provide context
for each agent. The communication and algorithm layer supports both structured and unstructured
exchanges between agents and defines the protocols and algorithms for network interaction. Finally,
the agent layer details how LLM agents interpret inputs and generate decisions.

This layered design enables COLLAB to flexibly scale problem complexity along multiple axes
within the same underlying coordination problem: the problem layer can vary instruction modality,
decision-making complexity, and agent count; the communication layer controls message structure,
volume, and the coordination algorithm used to reach consensus; and the agent layer allows for scaling
of reasoning capabilities, context window, or deliberation style. Researchers can thus tune problem
difficulty and systematically observe the effects of environment complexity and protocol variation
on coordination performance. Importantly, the symbolic backbone enables direct, quantitative
comparison of LLM-generated solutions against established DCOP solvers, providing a strong and
transparent baseline for measuring progress.

We instantiate three case study environments within this framework: a Personal Assistant domain for
organizing social events, a Meeting Scheduling domain with overlapping and conflicting availabilities,
and a Smart-Grid/Home domain for collaborative energy optimization. Across these environments,
we systematically scale key dimensions of complexity and evaluate multiple LLM-based agent
configurations, including both CoT-augmented and standard models. By directly comparing their
performance to symbolic DCOP solvers, we obtain quantitative measures of coordination quality and
a clear understanding of how increasing environment complexity affects agent behavior. Our results
demonstrate that COLLAB offers a principled and extensible foundation for benchmarking agentic
LLMs in controlled, scalable, and comparable settings. Beyond comprehensive evaluation, our
discussion also reveals the framework’s future potential for enabling systematic study of multi-agent
safety, security, and privacy.

2 Related Work

LLM agent environments. A growing body of work has developed multi-agent evaluation suites for
LLMs that go beyond single-agent testbeds [8–11]. Notable examples include AgentsNet [4], which
explores whether LLM agents can self-organize over graph topologies and solve canonical distributed
problems; MultiAgentBench [5], which orchestrates diverse collaborative and competitive tasks under
configurable communication structures; and Decrypto [12], which focuses on interactive language
games to probe theory of mind and coordination under information hiding. In contrast, COLLAB
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is grounded in a shared formal backbone (DCOPs), layering on natural language and image-based
instructions along with a broad range of communication protocols. This design affords two key
advantages: (i) environment complexity can be scaled orthogonally within the same optimization
paradigm, and (ii) agent performance can be quantitatively measured and compared against symbolic
DCOP solvers, yielding reproducible, solver-anchored baselines rather than bespoke or heuristic
scoring.

LLMs on combinatorial problems. Several recent works evaluate LLMs on standalone combina-
torial or constraint reasoning tasks (e.g., Sudoku, logical puzzles, NP-hard optimization) to assess
their capacity for internal inference and search from static descriptions [13–15]. These approaches
treat the model as a single solver, assuming full observability and no interactive coordination. In
contrast, COLLAB preserves the combinatorial optimization core but embeds it within a cooperative
multi-agent setting. This design reveals coordination phenomena such as ambiguity resolution, nego-
tiation, exception handling, and asymmetric information—factors absent from single-agent puzzle
settings.

Distributed Constraint Optimization Problems (DCOPs). DCOPs formalize coordination in multi-
agent systems by assigning each agent control over one or more variables; agents choose values to
maximize a global utility, typically defined as the sum of local utility functions [16]. Classical DCOP
solvers—complete search, asynchronous bounding (e.g. ADOPT), inference/message-passing (e.g.
DPOP), and local search methods (e.g. DSA)—assume fully specified symbolic models: well-formed
variables, deterministic numeric utility functions, and engineered message schemas [6, 17–19].
These methods perform best when the problem structure, constraint scopes, and communication
protocols are known in advance. In contrast, our work treats LLMs as agents operating under more
realistic, language-mediated interfaces: COLLAB retains a DCOP backbone but replaces symbolic
descriptions with natural language and image-based specifications, and makes communication
protocols customizable—from structured message schemas to free-form dialogue. This framing
preserves the evaluative rigor of DCOPs while surfacing LLM-specific coordination failure modes
(e.g., misinterpretation, hallucination, and ambiguity).

3 Background: Distributed Constraint Optimization Problems
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Figure 2: Factor graph: variables/agents
(circles), factors/utility (squares).

A distributed constraint optimization problem (DCOP) is
a tuple

P = ⟨A,X , {Dx}x∈X , σ,F⟩,

where A is a set of agents; X is a set of variables; each
x ∈ X has a finite domain Dx; σ : X → A maps each
variable to its controlling agent; and F = {fα} is a set of
local utility factors, each with scope Xα ⊆ X and function
fα :

∏
x∈Xα Dx→R. The objective is

max
x∈

∏
x∈X Dx

∑
α

fα
(
xα

)
.

A DCOP can be visualized as a bipartite factor graph with
variable/agent nodes {x}, factor nodes {fα}, and edges whenever x ∈ Xα; This structure (Figure
2) supports search, message-passing, and local improvement–based solvers. Common extensions
retain the same objective while enriching modeling: Dynamic DCOPs (e.g., PD - DCOPs) explicitly
model evolving factors, domains, or agent sets and can exploit predictions about future change [20];
Contextual DCOPs (often formalized as Probabilistic DCOPs, P - DCOPs) augment factors with ex-
ogenous variables c, yielding context-conditioned costs fα(·; c) [16]; Asymmetric DCOPs (ADCOPs)
assign agent-specific utilities on shared scopes to capture heterogeneous preferences and privacy [21].
Standard DCOP algorithms formalize the protocols by which agents exchange information during the
coordination phase and delineate the mechanisms for achieving consensus and committing to a joint
assignment.
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4 The COLLAB Framework

COLLAB is organized into three layers: (i) the problem layer, which defines the DCOP instance and
encodes local constraints through both structured representations and unstructured modalities such
as text or images; (ii) the communication and algorithm layer, which governs how agents exchange
information and coordinate their decisions; and (iii) the agent layer, which specifies the internal
reasoning process of each agent, including its inference style, memory usage, and decoding strategy.

4.1 Problem Layer

Instance. Each instance is
Θ =

〈
A, X , {Dx}x∈X , C, F⋆, ρ

〉
. (1)

Agents and roles. Agents split into instructors and actors:

A = Ainst ∪̇ Aact, µ : Aact→ Ainst,

where µ(i) pairs actor i to its instructor.

Decision variables and ownership. Let X = {x1, . . . , xm} with finite domains Dx. Actors own a
disjoint partition of variables:

X =
⊎

i∈Aact

Xi, (2)

and actor i’s assignment is xi ∈
∏

x∈Xi
Dx. The joint assignment is

x =
(
xi

)
i∈Aact ∈

∏
x∈X

Dx. (3)

Context. Here, C denotes the context space. For each instructor u ∈ Ainst, let Cu denote the local
context space and cu ∈ Cu its realization. Collectively,

c = (cu)u∈Ainst ∈
∏

u∈Ainst

Cu. (4)

Utility factors. The idealized utility decomposes by instructor:

F⋆ =
{
F⋆

u

}
u∈Ainst , F⋆

u =
{
f⋆
u,β

}ku

β=1
, f⋆

u,β :
( ∏
x∈Su,β

Dx

)
× Cu → R, (5)

and the ground-truth objective is

F ⋆(x; c) =
∑

u∈Ainst

ku∑
β=1

f⋆
u,β

(
xSu,β

; cu
)
. (6)

Instructions. Let I denote the instruction space (e.g., multimodal). For each instructor u ∈ Ainst,
ρu : F⋆

u × Cu → I. (7)
The instruction delivered to actor i is generated from its paired instructor’s local context:

Ii(c) = ρµ(i)
(
F⋆

µ(i), cµ(i)
)

∈ I. (8)

Policies. Each actor i maps the received instruction to an assignment:

πi : I −→
∏
x∈Xi

Dx, xi = πi

(
Ii(c)

)
. (9)

Execution and learning objective. Given π = (πi)i∈Aact and local contexts c, the induced joint
assignment is

x(π, c) =
(
πi

(
Ii(c)

) )
i∈Aact . (10)

Let PC be a distribution over contexts. The goal is to find policies maximizing expected utility:
max
π

Ec∼PC

[
F ⋆

(
x(π, c); c

) ]
. (11)

4



4.2 Communication and Algorithm Layer

This layer defines how LLM agents coordinate to solve a shared problem instance, specifying the
interaction protocol, communication topology, and prompting structure used to elicit decisions. Coor-
dination can follow different paradigms, such as centralized coordination, where agents communicate
summaries of their local preferences to a coordinating entity that proposes a joint solution, or iterative
decentralized schemes like the Iterative Coordinate–then–Commit (ICC) protocol, in which agents
exchange partial decisions over multiple rounds before finalizing their commitments. In this work,
we focus on a simple greedy variant of ICC, where agents iteratively select their best local action
given the current context. However, the framework is compatible with a wide range of distributed
optimization and coordination algorithms from the DCOP literature, including DSA, MGM, Max-
Sum, and ADOPT [16]. Communication within each coordination round may range from minimal
decision-only exchanges to richer formats that incorporate natural-language rationales. Moreover,
a key strength of this layer is its ability to flexibly impose normative behavioral framings through
prompt and instruction design, allowing agents to adopt self-interested, team-oriented, or neutral
perspectives that shape the balance between individual and collective objectives.

4.3 Agent layer.

The agent layer defines how each agent interprets its instructions, contextual information, and
received messages—potentially leveraging multi-step reasoning, function calling, or constrained
JSON-mode generation. Regardless of the internal reasoning process, each agent ultimately produces
a structured output (e.g., JSON) to ensure that decisions can be consistently parsed and evaluated by
the problem layer.

4.4 Scaling dimensions.

COLLAB enables systematic scaling of difficulty and complexity along several independent axes, at
each layer of the framework:

1. Scaling agent size and connectivity. The environment can be scaled by increasing the
number of agents or by expanding each agent’s interaction neighborhood, thereby raising
coordination complexity.

2. Decision complexity. This dimension captures the combinatorial difficulty faced by each
agent, and can be scaled by increasing the number of variables per agent, enlarging domain
sizes, or raising the arity of local factors—expanding the space of possible assignments and
the depth of required reasoning.

3. Instruction modality and abstraction. Through the rendering map ρ, instructions Ii can
be delivered as text, images, or multimodal inputs.

4. Interaction protocol and communication budget. The communication layer accommo-
dates both structured and open-ended coordination protocols. Agents can exchange concise
decision messages or extended natural-language rationales, with the latter demanding addi-
tional LLM reasoning. The number of coordination rounds and message modalities can be
varied to examine the trade-off between communication cost and cooperative effectiveness.

5. Normative instruction. Beyond pure utility maximization, agents can be guided by different
normative frames—such as self-oriented, team-oriented, or neutral instructions. These
prompts shape agents’ social objectives and can induce complex cooperative or competitive
behaviors, often requiring deeper contextual and ethical reasoning.

6. Agent scaling and heterogeneity. The framework supports scaling not only in the number
of agents but also in their capabilities, e.g., varying agent reasoning strategies, access to
history, or different policy classes.

5 Case Studies: Three COLLAB Environments

We instantiate COLLAB across three cooperative domains, each highlighting distinct coordination
challenges.
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Meeting Scheduling.

• Setup: Agents act as meeting participants who must coordinate attendance over a shared
discrete timeline. Each instance defines a set of meetings with varying participation require-
ments and temporal overlaps, creating interdependent scheduling choices across agents.

• Instructions: Agents receive descriptions of their assigned meetings and simple scheduling
rules. In the multimodal variant, this information is presented visually through timeline-
based depictions rather than text.

• Objective: Encourage coordinated attendance among participants while avoiding schedule
conflicts, balancing collective meeting overlap with individual feasibility constraints.

Personal Assistant.

• Setup: Agents select outfits from their wardrobes. Each garment has categorical attributes
and optionally an image. Pairwise factors encourage (mis)matching color palettes across
socially linked agents.

• Instructions: Text describes each agent’s likes, dislikes, and requested matches with
neighbors. For the vision setting, we automatically generate per-agent collages summarizing
available wardrobe options.

• Objective: Maximize the sum of individual preference scores, plus rewards or penalties for
satisfying requested color relationships with neighbors.

Smart Grid.

• Setup: Agents represent sites that must assign each of their devices to an available renewable
energy source from which it draws power. When a selected source lacks sufficient capacity,
devices default to non-renewable energy, introducing a coordination dependency across
agents sharing the same renewable sources.

• Instructions: Agents receive information about their connected energy sources and devices,
along with guidance for balancing loads to minimize overuse of shared capacity. In the
multimodal variant, this information is presented visually through energy-flow and capacity
diagrams rather than text.

• Objective: Coordinate source assignments to reduce reliance on non-renewable energy by
efficiently balancing renewable usage across all agents.

6 Experimental Analysis

In this section, we examine the scalability of different layers within the COLLAB framework across
the three problem domains introduced earlier. We evaluate how varying these layers impacts overall
solution quality relative to symbolic baselines. Finally, we discuss prospective research directions
informed by these observations.

6.1 Experiment Configurations

Problem Configurations. For each domain, we generate problem instances under two regimes:
Dense and Sparse. Dense instances contain a greater number of decision variables per agent and
more shared factors between agents compared to the sparse setting. We generate 20 instances for
each regime, and Table 1 summarizes the structural statistics averaged across these instances. The
number of agents is fixed at 10, as the decomposed nature of DCOPs makes problem complexity
more sensitive to density than to the raw agent count. Nevertheless, our implementation readily
supports the generation of problems with an arbitrarily large number of agents. For each instance, we
also generate images that visually represent a subset of the textual description. In the multimodal
setting, the corresponding text is hidden, and agents are instructed to rely solely on the provided
images for information.

Meeting Scheduling: Each instance includes roughly 15 meetings distributed over a compact 7-slot
timeline. Participation arity scales with density: sparse instances sample 2–6 participants per meeting,
while dense instances sample 3–8.
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Domain Regime Agents Decision Variables / Agent Factors / Agent

Meeting Scheduling Dense 10 8.4 49.7
Sparse 10 6.2 29.3

Personal Assistant Dense 10 1.0 4.2
Sparse 10 1.0 2.9

Smart Grid Dense 10 5.0 5.5
Sparse 10 3.6 4.1

Table 1: Average structural properties of the problem domains.

Personal Assistant: Each agent is assigned a wardrobe containing 4–7 possible outfit combinations.
Sparsity is controlled through a graph edge density parameter in the instance generator, with sparse
instances using a density of approximately 0.15 and dense instances around 0.50.

Smart Grid: Each instance spans a 24-slot scheduling horizon. Agents represent homes equipped
with multiple renewable sources and household machines: sparse instances include 2–3 sources and
3–4 machines per home, while dense instances include 3–5 sources and 4–6 machines.

LLM agent and compute. We evaluate three large language models—gemma-3-27B-IT, gpt-4.1-
nano, and qwen3-30B-A3B-Instruct—across two agent types: a JSON-only agent, which directly
outputs structured responses, and a Chain-of-Thought (CoT) agent, which first performs step-by-step
reasoning before producing its final structured output. Inference was executed on a server with 8×
A100 GPUs, totaling approximately 768 GPU-hours across all domains and instance seeds for the
open-source models, while running the same experiments on GPT-4.1-Nano incurred an overall
inference cost of roughly $10.

Symbolic baselines. We evaluate three lightweight baselines using the symbolic backbone. The
first, Oracle-SA, is a simulated annealing-based solver. The second, Oracle-RS, is a random
sampling method that repeatedly generates joint assignments (100 assignments used)and reports the
best observed utility. For comparison, we also include a purely Random baseline that reports the
average utility of uniformly sampled complete assignments.

Communication and Normative Instruction We employ the ICC protocol with 5 coordination
rounds (described in Section 4). Two communication modes are considered: one in which agents
exchange only decision messages (DM), and another in which they also exchange natural language
messages (NM). Furthermore, we examine three types of normative instruction: (1) Neutral, where
no specific behavioral guidance is provided; (2) Self-oriented, where agents are instructed to optimize
for their individual objectives; and (3) Team-oriented, where agents are encouraged to act in the
collective interest. Unless otherwise specified, the default configuration is DM + Neutral.

Evaluation. Performance is measured using the average normalized utility (ANU). For each
instance, the achieved utility is scaled relative to the range between the minimum and maximum
attainable utilities for that instance. Results are then averaged over 20 randomly generated instances
per setting, with both the mean and standard deviation reported.

6.2 Result Analysis

In Figure 3, we examine the impact of problem density on different agent types. Across all domains,
LLM-based agents consistently underperform compared to the Oracle-SA solver. In most settings,
their performance falls between Oracle-RS and the Random baseline, except in the Personal Assistant
domain, where the LLM-based agent slightly surpasses Oracle-RS in the sparse regime. Overall,
LLM agents appear more competitive with symbolic baselines in the sparse regime. We also observe
no significant difference between the CoT and JSON-only modes.

Figure 4 illustrates the effect of instruction modality, comparing image-based versus text-based inputs.
Interestingly, in the Meeting Scheduling domain, agents achieve higher performance when provided
with image-based instructions, whereas in other domains, text-based instructions yield better results.
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Figure 3: Performance of LLM agents and symbolic baselines across COLLAB domains as problem
size and interaction complexity are scaled.
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Figure 4: Influence of instruction modality on the performance of LLM agents.

This suggests that the design and clarity of the instruction modality can meaningfully influence agent
reasoning—image representations may be more complex to parse, yet occasionally convey contextual
information more effectively.

Figure 5 presents the impact of communication type, contrasting natural language messages (NM)
with decision messages (DM). Performance remains similar across both modes, indicating that agents
did not successfully leverage the additional communicative capacity provided by NM.

Finally, Figure 6 explores the role of normative strategy. Results show that behavioral framing can
substantially affect coordination outcomes, though its effect varies by domain: in Meeting Scheduling,
the team-oriented strategy performs best, while in Personal Assistant, the selfish strategy yields higher
utility.

6.3 Discussion

Based on the above analysis, we identify several promising directions for improving coordination in
LLM-based agent networks. (1) We observed that local solutions occasionally oscillate, with the best
outcome emerging in intermediate rounds rather than at convergence. Symbolic solvers address such
cases using anytime mechanisms, which track and retain the best solutions discovered throughout the
optimization process. Because LLM agents currently lack access to the true global utility, designing
an effective anytime mechanism is nontrivial; however, our results suggest that such methods could
improve performance by approximately 1–3% in the domains we designed. (2) Iterative coordination
protocols are computationally expensive when implemented with LLMs, motivating the study of non-
iterative or single-shot coordination methods that reduce computational cost and mitigate convergence
issues. (3) More sophisticated agent architectures are needed: simple prompt-based CoT reasoning
and natural-language message generation do not yet exploit the additional reasoning capacity and
communication bandwidth available to the agents. (4) Finally, future protocols could allow actor
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Figure 5: Influence of communication protocol on the performance of LLM agents.
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Figure 6: Influence of normative instruction on the performance of LLM agents.

agents (Aact) to query instructor agents (Ainst) for clarification during execution, enabling dynamic
disambiguation of instructions.

Additionally, the proposed method is well-suited for investigating vulnerabilities and adversarial
behaviors in distributed agent networks. For example, one could study the impact of compromised
agents that deliberately issue misleading or malicious responses, or probe privacy risks related to
information leakage through inter-agent communication. While prior work has focused on single-
agent security challenges [22], our multi-agent framework opens the door to a broader understanding
of both attack surfaces and potential mitigation strategies in collaborative agentic systems.

7 Conclusion

We introduced COLLAB, a flexible framework for constructing scalable benchmarks to evaluate
large language models as coordinating agents. By instantiating COLLAB across three representative
domains—Personal Assistant, Meeting Scheduling, and Smart Grid—we systematically varied inter-
action topology, decision complexity, instruction modality, communication protocol, and normative
strategy to examine the capabilities and limitations of current LLM-based agents. Looking ahead, we
plan to extend COLLAB with additional problem dimensions, richer communication protocols, and
improved agent architectures.
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