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Abstract

The demand for high-quality question-001
answering (QA) datasets has surged with the002
proliferation of language models and conver-003
sational agents in various emerging domains.004
As these models become ever more capable,005
the possibility of applying them to more006
challenging tasks is growing. Manual dataset007
annotation is costly and time-consuming,008
necessitating a more efficient approach.009
Automatically generated questions often suffer010
from a lack of quality or difficulty; hence,011
we propose a methodology to increase the012
difficulty of automatically generated questions013
using synthetic preference data, derived from014
SQuAD, to fine tune a question generation015
model using reinforcement learning. We016
empirically show an improvement in question017
difficulty over a supervised-finetuned model018
with minimal impact on question validity019
and perform an extensive error analysis. We020
believe our methodology provides a feasible021
approach to creating high quality synthetic022
datasets in emerging domains.023

1 Introduction024

Question-answering (QA) datasets serve diverse025

purposes, from providing educational materials for026

students (Das et al., 2021) to serving as crucial027

resources for model training and evaluation (Ra-028

jpurkar et al., 2016). As new domains begin to029

incorporate language models into workflows and030

customer service tasks based around information031

extraction and content reasoning, the need for chal-032

lenging, in-domain datasets has become increas-033

ingly evident. Difficult datasets are crucial for ad-034

vancing the capabilities of language models, push-035

ing them to handle complex tasks and enhancing036

their performance in these real-world, challenging037

scenarios. This growing need is underscored by038

the rapid proliferation of QA datasets, with over039

80 new datasets emerging within the last two years040

alone (Rogers et al., 2023). Despite this, many QA041

Figure 1: Example generated questions from supervised-
fine-tuned question generation model and one fine-tuned
with PPO from synthetic difficulty samples.

datasets suffer from a lack of quality or difficulty 042

while economically scaling in size. 043

One major challenge faced in developing QA 044

datasets is cost. Annotation cost for QA datasets 045

is especially high because of the time and cogni- 046

tion required to write questions and validate them. 047

To exemplify this, the popular question-answering 048

dataset SQuAD (Rajpurkar et al., 2016) recom- 049

mended workers to take 4 minutes for every 5 050

questions at a rate of $9/ hour. This amounts to 051

roughly $12,000 just to write the dataset’s 100,000 052

questions; moreover, the cost is likely much higher 053

when considering answer validation, and discarded 054

samples due to duplication or poor quality. 055

Automatic Question Generation (AQG) systems 056

present a remedy to these challenges given their 057

efficiency and scalability compared to human anno- 058

tators. Even in a zero-shot setting, language mod- 059

els are able to generate coherent questions (Sachan 060

et al., 2022; Wang et al., 2023b); as such, we ar- 061

gue that writing coherent questions is no longer 062

the main goal of AQG systems. Controlling more 063
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abstract attributes such as question difficulty, de-064

sirable for improving model performance, remains065

challenging as the concept is somewhat subjective066

and hard to manipulate. However, recent innova-067

tions in reinforcement learning for language mod-068

els now enable these human-like ideals to be in-069

jected into the model learning process (Ouyang070

et al., 2022).071

Pinning down a definitive description of ques-072

tion difficulty is near impossible as it depends on073

many factors. Common syntactic measurements074

of question difficulty include: question length; the075

average frequency of question terms in the English076

language (AlKhuzaey et al., 2023; Beinborn et al.,077

2014); and the syntactic difference between the078

dependency parse trees of a question and answer079

sentence (Rajpurkar et al., 2016). Semantic mea-080

surements may consider the relatedness between081

an answer span and the surrounding context (Bein-082

born et al., 2015), or the cosine similarity between083

distractors and the correct answer (Hsu et al., 2018).084

We argue that difficult questions also require: rea-085

soning over long spans of text; disambiguation of086

entities; and the use of synonyms to distance the087

question from the source text. A combination of088

all of these features is incredibly challenging to di-089

rectly incorporate into the model training process.090

We initially attempted to define such a task to091

encourage Large Language Models (LLMs) to rank092

samples with respect to difficulty. We extensively093

explored defining a set of criteria for difficulty for094

zero-shot models, tasking the model with selecting095

the more difficult sample between two question-096

answer pairs. To validate the proficiency of the097

model, we aimed to maximise the kappa agreement098

between the LLM and human annotators; however,099

the results were very poor, achieving a Cohen’s100

κ of only 0.14. These results led to the under-101

standing that textually specifying the full scope of102

difficulty would become an intractable problem.103

Therefore, we pivoted to leveraging the feature ex-104

traction capabilities of transformer models to infer105

the components of difficulty.106

In this paper we present a methodology for in-107

creasing the difficulty of automatically generated108

questions using synthetic preference data. We109

derive this preference data from the ability of110

question-answering models to correctly identify an-111

swer spans in a subset of SQuAD, assigning to each112

question a score based on the number of models113

that incorrectly answered the question. We assume114

that more challenging questions are answered cor-115

rectly less frequently, and use this as the basis for 116

our comparisons. 117

We summarise this paper’s contributions as fol- 118

lows: 119

1. A methodology for increasing the difficulty of 120

automatically generated questions using PPO 121

and synthetic data; 122

2. Empirical evidence of the methodology’s effi- 123

cacy including human evaluation; 124

3. An in-depth error analysis and study of inter- 125

esting phenomena that emerge as part of this 126

approach. 127

4. An open-source code base and set of models 128

to recreate and adapt our work1 129

2 Related Work 130

A similar question generation approach to ours 131

is employed by Zhang et al. (2022) who adopt a 132

pipeline structure. However, their primary objec- 133

tive is to generate suitable questions rather than 134

specifically focusing on difficulty. An important 135

distinction lies in their extensive pre-processing ap- 136

plied to identify candidate answers before feeding 137

them to the question generation model. We argue 138

that pre-identifying answers may limit diversity 139

and prevent the inclusion of potentially complex 140

answer types. 141

Analyzing and Controlling Question Diffi- 142

culty Understanding and managing question dif- 143

ficulty holds significant importance, especially in 144

tasks involving the creation of exams and assess- 145

ments (AlKhuzaey et al., 2023). One approach, as 146

presented by Loginova et al. (2021), involves mod- 147

elling the difficulty of multiple-choice questions 148

through the use of softmax scores obtained from a 149

pre-trained QA model. The variance in these scores 150

is then calculated, with higher variance indicating 151

greater difficulty. 152

Lin et al. (2015) controls the difficulty of quiz 153

questions through the selection of distractor an- 154

swers based on semantic similarity between linked 155

data items. This involves collecting both structured 156

RDF data and unstructured text, computing simi- 157

larity scores through K-means clustering, and gen- 158

erating questions and answers via template-based 159

methods. Importantly, the semantic similarity plays 160

a role in determining the difficulty level, with more 161

1We release all code and models on GitHub.
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challenging questions featuring distractors exhibit-162

ing higher semantic similarity.163

Reinforcement Learning with Human Feed-164

back RLHF is a machine learning paradigm that165

combines reinforcement learning with human-166

provided guidance to steer language models to meet167

the needs of users, finding frequent use in chatbot168

and AI assistant settings (Ouyang et al., 2022). The169

basis for most modern methods is the Proximal170

Policy Optimisation (PPO) algorithm (Schulman171

et al., 2017), which iteratively enhances the lan-172

guage model’s policy to maximize cumulative re-173

wards through interactions with a dataset or lan-174

guage simulation. It collects experiences, evaluates175

advantages, and updates the policy with a clipped176

surrogate objective to ensure stability, gradually177

improving the model’s performance.178

Automatic Question Generation Chen et al.179

(2019) introduce a cross-entropy loss with a rein-180

forcement learning-based loss function when train-181

ing a gated bi-directional neural network for ques-182

tion generation. In this context, the reward model183

is optimising the semantic and syntactic quality of184

the question. BLEU-4, as a reward function, opti-185

mises the model for the evaluation metrics and the186

negative Word Movers Distance component is used187

to ensure semantic quality by maximising the simi-188

larity between a generated sequence and a ground189

truth sequence. Although question quality is main-190

tained, other factors such as question difficulty are191

not considered.192

Self-critic sequence training (SCST) (Rennie193

et al., 2017) uses a classical policy gradient method,194

REINFORCE, which is a Monte Carlo method.195

SCST computes rewards with n-gram token over-196

lap as sub-sentence level rewards. Since training197

sets often have limited questions, these training re-198

wards are arguably sparse, hindering the question199

generation model from extrapolating beyond the200

training distribution.201

Liu et al. (2019) adopt a two-component reward202

for refining ill-formed questions. Question word-203

ing is used as a measure of short-term reward, and204

alignment between the question and answer repre-205

sents a long-term component.206

3 Method207

To challenge the high cost of manual annotation208

while maintaining quality and increasing difficulty,209

we design and implement a robust system capable210

of generating contextually relevant, coherent, and211

challenging question-answer pairs from textual in- 212

put. The process follows the core methodology 213

of RLHF, deviating only in the use of synthetic 214

preference data to train a reward model. Rather 215

than explicitly defining the characteristics of diffi- 216

culty and risking failure to capture certain aspects, 217

we exploit the ability of leading question-answer 218

models to derive which questions are challenging, 219

and allow a reward model to extract the component 220

features of the task. 221

We task three models with answering all ques- 222

tions in our validation split of SQuAD. These ques- 223

tions are assigned a score based on the number of 224

times they were answered incorrectly, which are 225

in turn used to generate pairwise preference data. 226

These pairwise samples enable the training of a 227

reward model for use in fine-tuning a supervised 228

model for the task of question generation. 229

We embed this synthetic RLHF process into a 230

greater pipeline for generating samples, shown in 231

Figure 2. This ensures the quality of the final 232

dataset. The pipeline also contains a set of rule- 233

based critics which are used to exclude samples that 234

are malformed and those with non-unique answers 235

in the source text. Samples are then deduplicated 236

using exact string matching. 237

The remainder of this section discusses each of 238

the relevant components of the pipeline and the 239

RLHF process. 240

3.1 Supervised Fine-Tuning 241

In our training process for question generation and 242

response formatting, we begin by employing a re- 243

formatted version of the SQuAD v1 training split 244

(see Table 1). The reformatting converts SQuAD 245

to the task of question-answer pair generation, as 246

shown in Figure 3. We select the "correct" answer 247

as the one that appears most frequently in the list 248

of answers for each question in the dataset, select- 249

ing randomly among the most common if there 250

is no victor. To ensure model robustness without 251

overfitting, the model undergoes a single epoch 252

of training, enabling it to effectively capture the 253

nuances of the task. 254

3.2 Reward Modelling 255

To control the difficulty of our model, we lever- 256

age the intrinsic properties present in challenging 257

questions from SQuAD. To extract these attributes, 258

we employ three question answering models that 259

almost match or exceed human performance on 260

SQuAD v2 to evaluate our development split: a 261
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Figure 2: Depiction of our dataset generation pipeline. Question-Answering models are first used to create pairwise
comparison data to train a reward model. An SFT model is trained on the train split of SQuAD and then fine-tuned
using the reward model, producing the RL model. When generating question-answer pairs for the final dataset,
generations are passed through the format critics to ensure data quality.

Instruction Write 1 answerable span extraction
question and provide the correct answer based on
the text.

Input ... Upon its arrival in Canberra, the
Olympic flame was presented by Chinese officials
to local Aboriginal elder Agnes Shea, of the Ngun-
nawal people. She, in turn, offered them a message
stick ...

Response Who received the flame from Chinese
officials in Canberra? (answer: Agnes Shea)

Figure 3: Example training sample from the reformatted
SQuAD dataset for use in supervised fine-tuning.

RoBERTa-large model2, a DeBERTa-large model3262

and RetroReader (Zhang et al., 2020). Each ques-263

tion is assigned a score based on the number of264

models that failed to correctly answer the ques-265

tion. These scores are used to place questions into266

a pairwise ranking setup against other questions267

for the same input context. Where a question’s268

scores are equal, they are considered ties, and no269

pairwise sample is created. We also record the mar-270

gin, defined as the difference in score between the271

chosen and rejected samples, to experiment with272

the marginal ranking loss, as defined in Touvron273

et al. (2023).274

3.2.1 Format Critics275

To ensure the quality of the final dataset, we utilise276

a collection of rule-based critics which we call For-277

mat Critics. These critics have two main functions:278

they remove questions that don’t adhere to the de-279

sired format of Q? (answer: A); they ensure the280

provided answer is unique in the text, minimising281

the number of ambiguous or impossible questions.282

2deepset/roberta-large-squad2
3deepset/deberta-v3-large-squad2

Samples that pass these critics are then dedupli- 283

cated using exact matching. 284

3.3 Reinforcement Training 285

We use Proximal Policy Optimisation (Schulman 286

et al., 2017) with multiple sets of adapters to reduce 287

the memory overhead during training, implemented 288

using the Transformers Reinforcement Learning 289

library (von Werra et al., 2020). A single base 290

model is used with separate LoRA adapters for the 291

policy, reference, and reward model components; 292

each is switched to perform the relevant aspect of 293

the reinforcement training process. 294

During early experiments, we found that train- 295

ing was often very unstable or resulted in low pass 296

rates at the format critic. To combat this, we added 297

a rule-based reward component to penalise gen- 298

erations that did not pass the format critic. This 299

simple function converts the reward to be the neg- 300

ative absolute reward in the case that samples are 301

malformed. Using a rule-based reward that manip- 302

ulates the original reward prevents the instability 303

caused by hard coding a fixed penalty and saves 304

the computational complexity and imperfection of 305

a second adapter-based reward model: 306

Ri =

{
−|Ri| if malformed
Ri otherwise

4 Experimental Setup 307

4.1 Models 308

We conduct our experiments with LLaMA2-7B- 309

chat and apply LoRA adapters to all linear layers 310

on both SFT and RM models to enable training on 311

a single A100 80GB GPU using Flash Attention 2 312

(Dao, 2023). All LoRA adapters share the same hy- 313

perparameters: LoRA rank of 16, α of 32, dropout 314

of 0.05, no bias and BrainFloat (BF16) datatype. 315
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Split # Contexts # Questions
Train 18,891 87,599
Dev 1,567 8,038
Test 500 2,532

Human Test 50 50
Train comp. 1,107 8,394
Dev comp. 123 950

Table 1: Split of contexts and questions from SQuAD.
The comp. splits are derived from the dev split, used to
evaluate the performance of the reward model during
training.

We experiment with marginal ranking loss to316

help distinguish between slight and significant dif-317

ferences in question difficulty while training the318

reward model. Under the hypothesis that the dif-319

ficulty of a question is not independent of the as-320

sociated passage of text, we also experiment with321

training a reward model with and without the input322

text attached. Results of these experiments can be323

found in Appendix A.324

4.2 Generation Settings325

During generation, the model is tasked with produc-326

ing a single output for each question in the training327

set using nucleus sampling (Holtzman et al., 2020).328

We maintain the original configuration for LLaMa-329

2 with a repetition penalty of 1.1, top P of 0.7, and330

top K of 0 but increase the temperature from 0.6 to331

0.9 to increase the diversity of generations.332

4.3 Data Splits333

We base our splits off the original SQuAD to min-334

imise the risk of data leakage. We maintain the335

full train split unchanged as any model previously336

trained on SQuAD will have seen the full train split.337

We extract a test split of 500 contexts from the dev338

split, ensuring no contexts appear in both the dev339

and test splits. We extract 50 unique contexts from340

the test split for a human evaluation of question341

quality and answerability. In all cases, context-342

question pairs were only kept if they fit into the343

context length of LLaMa-2 when formatted in the344

correct prompt format. All samples were formatted345

into the three instruction components: instruction,346

input, response as shown in Figure 3.347

Only the dev set of our SQuAD dataset was used348

to derive difficulty comparison data, to ensure the349

reward model never sees the samples used for eval-350

uation. To evaluate the reward model, we extract351

10% of the comparison contexts. Full dataset statis-352

tics can be found in Table 1.353

4.4 Evaluation Metrics 354

As our goal is to evaluate the difficulty of answer- 355

able questions, we provide the input passage, ques- 356

tion and answer to GPT-4o4 and Gemini-1.5-pro5 357

and ask whether the sample meets our specification 358

of validity. We take samples to be answerable if 359

they were unanimously labelled as such, and re- 360

ject all other samples. GPT-based evaluations have 361

demonstrated a robust alignment with human pref- 362

erences across various complex tasks in reference- 363

free settings (Fu et al., 2023; Liu et al., 2023). The 364

results of this analysis can be found in Appendix C. 365

To assess the quality of generated questions rel- 366

ative to our SQuAD test split, we intentionally 367

avoid n-gram based metrics such as BLEU (Pa- 368

pineni et al., 2002), ROUGE (Lin, 2004), and more 369

modern alternatives such as Q-Metrics (Nema and 370

Khapra, 2018), as we believe they restrict diversity 371

of generation, constraining the model to reference 372

questions and answers. We instead adopt the fol- 373

lowing reference-free metrics: 374

Syntactic Divergence provides a distance mea- 375

sure between two dependency paths which acts as 376

a measure of difficulty. Word-lemma anchors, com- 377

mon to both the question and answer sentence, are 378

first detected. A dependency path from the anchor 379

to the interrogative word (who, what, etc.) in the 380

question is compared to the dependency path be- 381

tween the anchor and the answer span in the answer 382

sentence using Levenshtein distance (Levenshtein 383

et al., 1966). 384

RQUGE calculates an acceptability-score by 385

generating an answer for the candidate question 386

and predicting the semantic similarity between the 387

predicted answer and the gold answer provided 388

by the user. In our setup, this metric acts as an 389

assessment of both the question and answer quality 390

(Mohammadshahi et al., 2023). 391

QAScore attempts to align AQG evaluation to 392

human judgements. Question-answer pairs are eval- 393

uated by summing log-probabilities of RoBERTa 394

correct token predictions for all words in the an- 395

swer when masked individually. QAScore claims 396

to show strong correlation with human judgement 397

(Spearman r = 0.864) (Ji et al., 2022). 398

Self-BLEU assesses how similar questions are 399

to other questions generated for a given context. 400

Each question is taken as a hypothesis and the oth- 401

ers as a reference for the BLEU calculation. The 402

4gpt-4o as of 1st June 2024
5gemini-1.5-pro as of 1st June 2024
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Model Total Valid (↑) DeBERTa (↓) RoBERTa (↓) RetroReader (↓)
SQuAD 2,532 (-) 0.68 0.68 0.65
ZeroShot 357 ± 14 (0.14) 0.644± 0.007 0.650± 0.007 0.629± 0.009
SFT 1252 ± 2 (0.49) 0.654± 0.012 0.653± 0.005 0.616± 0.015
PPO-input 1375 ± 18 (0.54) 0.601 ± 0.004 0.606 ± 0.003 0.582 ± 0.007
PPO-input-margin 1373 ± 4 (0.54) 0.612± 0.001 0.608± 0.005 0.587± 0.002

Table 2: Question-Answering model performance on each set of samples. Models were only supplied samples
which passed the format critics and were unanimously deemed answerable by GPT-4o and Gemini-1.5-pro. The
Total Valid column indicates this number of valid samples used during question answering. Accuracy is based on
exact match and results are mean and standard deviation across three sets of generated samples. Lower accuracy
indicates harder questions.

self-BLEU is taken as the average BLEU for the403

question collection (Zhu et al., 2018).404

5 Results & Discussion405

Model Accuracy To measure performance, we ob-406

serve the difference in prediction accuracy for QA407

models on each dataset. Table 2 shows that in all408

cases of PPO training, we observe a decrease in409

average model prediction accuracy and an increase410

in the total number of valid generations. The con-411

sistent decrease in absolute prediction accuracy for412

all models when using the PPO trained models over413

both zero-shot and SFT signifies an increase in av-414

erage question difficulty. The SFT process vastly415

improves the model’s ability to generate valid ques-416

tions. The PPO process further bolsters this capa-417

bility which illustrates that the model is learning418

the intrinsic properties of high-quality questions.419

The performance of the reward models, shown in420

Appendix A, is reflected here, showing lesser de-421

grees of improvement for those models fine-tuned422

without access to the input passage.423

External Metrics Figure 4 shows results for the424

reference-free metrics. RQUGE is clearly effective425

at discriminating between human-written SQuAD426

samples, those generated by the fine-tuned mod-427

els and the zero-shot examples, but it is unable to428

separate out the SFT and PPO results. The par-429

ticularly high score for SQuAD could in part be430

due to data leakage as the answer generation model431

for the metric was trained on SQuAD (Khashabi432

et al., 2022). This would indicate why our newly433

generated questions might score lower as it cannot434

have memorised the answer. Syntactic divergence435

results for the SQuAD test split and all trained436

model generations follow a consistent distribution437

but the zero-shot results appear much better, de-438

spite having a higher average prediction accuracy439

than the SFT and PPO models. Zero-shot obtaining440

higher syntactic divergence could stem from the 441

general purpose language generation objective of 442

LLaMa-2-chat. This could cause the model to gen- 443

erate boilerplate text which distances the structure 444

of the question from that of the answer sentence 445

but doesn’t necessarily result in a more difficult 446

question. QAScore proves uninformative, only be- 447

ing able to subtly identify SQuAD samples from 448

model generated samples. Self-BLEU indicates 449

that SQuAD samples are the most diverse, which is 450

to be expected, but that zero-shot samples exhibit a 451

distinct lack of diversity when compared with fine- 452

tuned models. This result is, in part, misleading as 453

Self-BLEU was only calculable for input passages 454

with at least two valid questions. As the number 455

of valid generations was so low for the zero-shot 456

model, the cases where multiple valid questions 457

were generated for a context was disproportion- 458

ately in favour of identical generations. 459

In general we find the reference-free metrics to 460

show limited correlation with model prediction ac- 461

curacy and an ability differentiate human written 462

samples from model generations. We believe this 463

is evidence for the continued need for more reli- 464

able, reference-free evaluation tools for question 465

generation. 466

Human Evaluation To evaluate question qual- 467

ity, we conduct a human evaluation on a subset of 468

50 passages from the test split. Each input passage 469

and question is filtered through the format critic 470

then provided to two annotators who select either 471

the correct answer span or indicate that the ques- 472

tion cannot be answered. In the case of annotator 473

disagreement or the annotated answers differing 474

from the model generated answer, the annotator re- 475

sponses and the model answer are provided to two 476

new annotators who both select which responses 477

are appropriate. We allow annotators to select mul- 478

tiple responses as correct but only include those 479
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Figure 4: Distribution of reference free metrics results for each model’s generations based on our SQuAD test set.

Model Full Partial
ZeroShot 0.10 0.14
SFT 0.52 0.60
PPO-input 0.52 0.64
PPO-input-margin 0.56 0.64

Table 3: Results of human evaluation for question qual-
ity. Full indicates that the model generated answer was
a valid answer according to the format critics and iden-
tified by human annotators and Partial indicates that
the sample passed format critics and a valid answer was
identified for the question but the model generated an-
swer did not match.

that were selected unanimously by both annotators480

as valid. We observe an agreement of κ = 0.7975481

between annotators. The results of this evalua-482

tion, shown in Table 3, displays an equivalent or483

improved rate of answerability when fine-tuning484

with PPO; the answerability proportions for each485

dataset are roughly equivalent to those presented in486

Table 2. This further corroborates the efficacy of487

our approach.488

5.1 Error Analysis489

Failure Modes At a high level, we can observe the490

reasons for sample rejection for each model. As491

shown in Figure 5, the zero-shot model is gener-492

ally unable to generate samples that have a single493

answer span in the text, despite exactly specifying494

this in the prompt. The high number of incorrectly495

formatted samples was a result of only a question496

being generated or neither a question nor answer497

being generated. For all the trained model vari-498

ants, the dominant failure mode was unanswerable499

questions. As shown in Appendix C, each of the500

fine-tuned models show a similar proportion of501

otherwise valid samples being unanswerable. The 502

answerability rate could potentially be improved by 503

generating candidate answers, as in (Zhang et al., 504

2022), and passing an input passage and answer to 505

the question generation model. 506

Positional Bias One interesting phenomenon 507

is the positional bias in where the model chooses 508

to generate answers. To calculate positional bias, 509

we treat the full answer span as a single "word" 510

and calculate the proportion through the input para- 511

graph in which the answer word appears. As seen 512

in Figure 6, the zero-shot positional bias is less 513

severe than in the other datasets. The positional 514

bias of SQuAD is clearly seen as, after training on 515

the dataset, all models exhibit this same preference 516

for the beginning of input passages. The clear bias 517

observed in the zero-shot model, despite not being 518

fine-tuned, is documented in other tasks such as 519

LLM ranking (Wang et al., 2023a; Li et al., 2023) 520

and in summarisation where introductory content is 521

favoured (Ravaut et al., 2023). A potential remedy 522

is to supply the model with a sliding window of 523

sentences across the context paragraph to force the 524

model to generate questions throughout the text. 525

While this would improve the diversity of a final 526

dataset, it may have the adverse effect of limiting 527

the range of dependencies, restricting potentially 528

challenging questions across the whole text. 529

Hallucinated External Knowledge Where am- 530

biguous references to specific entities exist in the 531

input passage such as the museum collection, the 532

models frequently attempt to fill in which entity 533

is being referred to. From a context containing 534

ambiguous references to an unnamed museum, the 535

questions What year did the Tate acquire the statue 536

of St John the Baptist?, How many works does 537

7



Figure 5: Error distribution of questions for SFT, ZeroShot, and the two best performing PPO variants.

Figure 6: Position of answer span, merged to be a sin-
gle word, as a proportion of the way through the input
passage when split into words. SQuAD positions are
selected from our test split and answers are chosen to
be the most common from the list of suitable answers.
Neither invalid nor exact duplicate questions are consid-
ered.

Rodin have in the British Museum’s collection?538

were generated across both the SFT and PPO mod-539

els; the examples consistently passed LLM evalua-540

tions of answerability. This suggests the solution541

to this problem is more holistic and requires im-542

provements at a foundational model level to resolve.543

We could resolve this at a critic level through more544

careful prompting, however, this returns to our orig-545

inal and intractable task of textually describing a546

complex task. A more holistic solution could be to547

adapt PPO with functional grounding (Carta et al.,548

2023) to be a pure text task. However, this may549

lower the quality of questions as it could discourage550

the use of implicit or complementary knowledge.551

Unidirectional Relationships A strategy to in-552

crease the difficulty of questions is to invert re-553

lationships found in the text. The models some-554

times misappropriate this tool, resulting in invalid 555

questions such as the question What did the Ming 556

dynasty represent? from a passage containing ...ex- 557

plorer Zheng He representing the Ming Dynasty.... 558

Knowledge graph assisted generation could help 559

to resolve these logical inconsistencies (Lin et al., 560

2015). However, expecting our target demograph- 561

ics, emerging domains, to possess high-quality 562

knowledge graphs is an unreasonable assumption. 563

6 Conclusion 564

In this paper we have introduced a robust ap- 565

proach for automatically generating question- 566

answer pairs from textual input. Using existing, 567

high-performing question answer-models, we are 568

able to determine which questions are most chal- 569

lenging and develop synthetic pairwise data for 570

training a reward model. Rather than explicitly 571

defining the characteristics of question difficulty, 572

we allow the reward model to extract these fea- 573

tures, leading to a significant increase in question 574

difficulty when used to fine-tune the SFT model. 575

Furthermore, we have conducted an extensive 576

analysis of the current issues with this approach and 577

provide potential remedies which may be explored 578

in future work. 579

We believe this technique may be extended to ad- 580

dress further abstract properties of question genera- 581

tion such as ambiguity, completeness and relevance. 582

This method may also be adapted to tackle multi- 583

ple aspects at once through the use of multi-reward 584

model setups as in Wu et al. (2023). 585

All code and models from this project is made 586

available for adaptation and reuse. 587
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Limitations588

This project only shows the suitability of the589

method on a single model. In future work, we590

seek to address this by performing a more compre-591

hensive review of the approach across a range of592

model sizes and architectures. We also acknowl-593

edge that this method currently only addresses an-594

swerable questions while most contemporary QA595

datasets utilise both answerable and unanswerable596

questions. Finally, despite using LoRA and multi-597

adapter training, we still required approximately 15598

GPU hours on an A100 80GB which restricts the599

potential audience for this approach. Evaluating600

smaller models or quantisation will enable greater601

access to this project’s benefits.602

Ethics Statement603

This project has been approved by the relevant in-604

stitution’s ethics committee. We use LLaMa2 in605

accordance with Meta’s license6. All annotators606

were located through word of mouth are paid £12607

per hour - above the UK National Living Wage of608

£11.44609

References610

Samah AlKhuzaey, Floriana Grasso, Terry R. Payne,611
and Valentina Tamma. 2023. Text-based Question612
Difficulty Prediction: A Systematic Review of Auto-613
matic Approaches. International Journal of Artificial614
Intelligence in Education.615

Lisa Beinborn, Torsten Zesch, and Iryna Gurevych.616
2014. Predicting the Difficulty of Language Pro-617
ficiency Tests. Transactions of the Association for618
Computational Linguistics, 2:517–530.619

Lisa Beinborn, Torsten Zesch, and Iryna Gurevych.620
2015. Candidate evaluation strategies for improved621
difficulty prediction of language tests. In Proceed-622
ings of the Tenth Workshop on Innovative Use of NLP623
for Building Educational Applications, pages 1–11,624
Denver, Colorado. Association for Computational625
Linguistics.626

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain627
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.628
2023. Grounding large language models in interac-629
tive environments with online reinforcement learn-630
ing.631

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. 2019.632
Reinforcement learning based graph-to-sequence633
model for natural question generation. CoRR,634
abs/1908.04942.635

6https://ai.meta.com/llama/license/

Tri Dao. 2023. FlashAttention-2: Faster Atten- 636
tion with Better Parallelism and Work Partitioning. 637
ArXiv:2307.08691 [cs]. 638

Bidyut Das, Mukta Majumder, Santanu Phadikar, and 639
Arif Ahmed Sekh. 2021. Automatic question genera- 640
tion and answer assessment: a survey. Research and 641
Practice in Technology Enhanced Learning, 16(1):5. 642

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei 643
Liu. 2023. GPTScore: Evaluate as You Desire. 644
ArXiv:2302.04166 [cs]. 645

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 646
Yejin Choi. 2020. The Curious Case of Neural Text 647
Degeneration. ArXiv:1904.09751 [cs]. 648

Fu-Yuan Hsu, Hahn-Ming Lee, Tao-Hsing Chang, and 649
Yao-Ting Sung. 2018. Automated estimation of item 650
difficulty for multiple-choice tests: An application of 651
word embedding techniques. Information Processing 652
& Management, 54(6):969–984. 653

Tianbo Ji, Chenyang Lyu, Gareth Jones, Liting Zhou, 654
and Yvette Graham. 2022. QAScore—An Unsuper- 655
vised Unreferenced Metric for the Question Genera- 656
tion Evaluation. Entropy, 24(11):1514. 657

Daniel Khashabi, Yeganeh Kordi, and Hannaneh Ha- 658
jishirzi. 2022. UnifiedQA-v2: Stronger Gen- 659
eralization via Broader Cross-Format Training. 660
ArXiv:2202.12359 [cs]. 661

Vladimir I Levenshtein et al. 1966. Binary codes capa- 662
ble of correcting deletions, insertions, and reversals. 663
In Soviet physics doklady, volume 10, pages 707–710. 664
Soviet Union. 665

Zongjie Li, Chaozheng Wang, Pingchuan Ma, Daoyuan 666
Wu, Shuai Wang, Cuiyun Gao, and Yang Liu. 667
2023. Split and Merge: Aligning Position Bi- 668
ases in Large Language Model based Evaluators. 669
ArXiv:2310.01432 [cs]. 670

Chenghua Lin, Dong Liu, Wei Pang, and Edward Apeh. 671
2015. Automatically Predicting Quiz Difficulty 672
Level Using Similarity Measures. In Proceedings 673
of the 8th International Conference on Knowledge 674
Capture, K-CAP 2015, pages 1–8, New York, NY, 675
USA. Association for Computing Machinery. 676

Chin-Yew Lin. 2004. ROUGE: A Package for Auto- 677
matic Evaluation of Summaries. In Text Summariza- 678
tion Branches Out, pages 74–81, Barcelona, Spain. 679
Association for Computational Linguistics. 680

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, 681
Ruochen Xu, and Chenguang Zhu. 2023. G-Eval: 682
NLG Evaluation using GPT-4 with Better Human 683
Alignment. ArXiv:2303.16634 [cs]. 684

Ye Liu, Chenwei Zhang, Xiaohui Yan, Yi Chang, and 685
Philip S. Yu. 2019. Generative question refinement 686
with deep reinforcement learning in retrieval-based 687
QA system. CoRR, abs/1908.05604. 688

9

https://doi.org/10.1007/s40593-023-00362-1
https://doi.org/10.1007/s40593-023-00362-1
https://doi.org/10.1007/s40593-023-00362-1
https://doi.org/10.1007/s40593-023-00362-1
https://doi.org/10.1007/s40593-023-00362-1
https://doi.org/10.1162/tacl_a_00200
https://doi.org/10.1162/tacl_a_00200
https://doi.org/10.1162/tacl_a_00200
https://doi.org/10.3115/v1/W15-0601
https://doi.org/10.3115/v1/W15-0601
https://doi.org/10.3115/v1/W15-0601
http://arxiv.org/abs/2302.02662
http://arxiv.org/abs/2302.02662
http://arxiv.org/abs/2302.02662
http://arxiv.org/abs/2302.02662
http://arxiv.org/abs/2302.02662
http://arxiv.org/abs/1908.04942
http://arxiv.org/abs/1908.04942
http://arxiv.org/abs/1908.04942
https://ai.meta.com/llama/license/
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.1186/s41039-021-00151-1
https://doi.org/10.1186/s41039-021-00151-1
https://doi.org/10.1186/s41039-021-00151-1
https://doi.org/10.48550/arXiv.2302.04166
https://doi.org/10.48550/arXiv.1904.09751
https://doi.org/10.48550/arXiv.1904.09751
https://doi.org/10.48550/arXiv.1904.09751
https://doi.org/10.1016/j.ipm.2018.06.007
https://doi.org/10.1016/j.ipm.2018.06.007
https://doi.org/10.1016/j.ipm.2018.06.007
https://doi.org/10.1016/j.ipm.2018.06.007
https://doi.org/10.1016/j.ipm.2018.06.007
https://doi.org/10.3390/e24111514
https://doi.org/10.3390/e24111514
https://doi.org/10.3390/e24111514
https://doi.org/10.3390/e24111514
https://doi.org/10.3390/e24111514
https://doi.org/10.48550/arXiv.2202.12359
https://doi.org/10.48550/arXiv.2202.12359
https://doi.org/10.48550/arXiv.2202.12359
https://doi.org/10.48550/arXiv.2310.01432
https://doi.org/10.48550/arXiv.2310.01432
https://doi.org/10.48550/arXiv.2310.01432
https://doi.org/10.1145/2815833.2815842
https://doi.org/10.1145/2815833.2815842
https://doi.org/10.1145/2815833.2815842
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
http://arxiv.org/abs/1908.05604
http://arxiv.org/abs/1908.05604
http://arxiv.org/abs/1908.05604
http://arxiv.org/abs/1908.05604
http://arxiv.org/abs/1908.05604


Ekaterina Loginova, Luca Benedetto, Dries Benoit, and689
Paolo Cremonesi. 2021. Towards the Application690
of Calibrated Transformers to the Unsupervised Es-691
timation of Question Difficulty from Text. In Pro-692
ceedings of the International Conference on Recent693
Advances in Natural Language Processing (RANLP694
2021), pages 846–855, Held Online. INCOMA Ltd.695

Alireza Mohammadshahi, Thomas Scialom, Majid Yaz-696
dani, Pouya Yanki, Angela Fan, James Henderson,697
and Marzieh Saeidi. 2023. RQUGE: Reference-Free698
Metric for Evaluating Question Generation by An-699
swering the Question. In Findings of the Association700
for Computational Linguistics: ACL 2023, pages701
6845–6867, Toronto, Canada. Association for Com-702
putational Linguistics.703

Preksha Nema and Mitesh M. Khapra. 2018. Towards704
a Better Metric for Evaluating Question Generation705
Systems.706

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,707
Carroll Wainwright, Pamela Mishkin, Chong Zhang,708
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.709
2022. Training language models to follow instruc-710
tions with human feedback. Advances in Neural711
Information Processing Systems, 35:27730–27744.712

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-713
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-714
uation of Machine Translation. In Proceedings of715
the 40th Annual Meeting of the Association for Com-716
putational Linguistics, pages 311–318, Philadelphia,717
Pennsylvania, USA. Association for Computational718
Linguistics.719

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and720
Percy Liang. 2016. SQuAD: 100,000+ Questions for721
Machine Comprehension of Text. ArXiv:1606.05250722
[cs].723

Mathieu Ravaut, Shafiq Joty, Aixin Sun, and724
Nancy F. Chen. 2023. On Context Utilization725
in Summarization with Large Language Models.726
ArXiv:2310.10570 [cs].727

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,728
Jerret Ross, and Vaibhava Goel. 2017. Self-critical729
sequence training for image captioning. In Proceed-730
ings of the IEEE conference on computer vision and731
pattern recognition, pages 7008–7024.732

Anna Rogers, Matt Gardner, and Isabelle Augenstein.733
2023. QA Dataset Explosion: A Taxonomy of734
NLP Resources for Question Answering and Read-735
ing Comprehension. ACM Computing Surveys,736
55(10):197:1–197:45.737

Devendra Sachan, Mike Lewis, Mandar Joshi, Armen738
Aghajanyan, Wen-tau Yih, Joelle Pineau, and Luke739
Zettlemoyer. 2022. Improving Passage Retrieval with740
Zero-Shot Question Generation. In Proceedings of741
the 2022 Conference on Empirical Methods in Nat-742
ural Language Processing, pages 3781–3797, Abu743
Dhabi, United Arab Emirates. Association for Com-744
putational Linguistics.745

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec 746
Radford, and Oleg Klimov. 2017. Proximal Policy 747
Optimization Algorithms. ArXiv:1707.06347 [cs]. 748

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 749
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 750
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 751
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 752
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 753
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 754
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 755
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 756
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 757
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 758
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 759
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 760
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 761
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 762
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 763
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 764
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 765
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 766
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 767
Melanie Kambadur, Sharan Narang, Aurelien Ro- 768
driguez, Robert Stojnic, Sergey Edunov, and Thomas 769
Scialom. 2023. Llama 2: Open Foundation and Fine- 770
Tuned Chat Models. ArXiv:2307.09288 [cs]. 771

Leandro von Werra, Younes Belkada, Lewis Tunstall, 772
Edward Beeching, Tristan Thrush, Nathan Lambert, 773
and Shengyi Huang. 2020. Trl: Transformer re- 774
inforcement learning. https://github.com/ 775
huggingface/trl. 776

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, 777
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and 778
Zhifang Sui. 2023a. Large Language Models are not 779
Fair Evaluators. ArXiv:2305.17926 [cs]. 780

Zhenduo Wang, Yuancheng Tu, Corby Rosset, Nick 781
Craswell, Ming Wu, and Qingyao Ai. 2023b. Zero- 782
shot Clarifying Question Generation for Conversa- 783
tional Search. In Proceedings of the ACM Web Con- 784
ference 2023, WWW ’23, pages 3288–3298, New 785
York, NY, USA. Association for Computing Machin- 786
ery. 787

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane 788
Suhr, Prithviraj Ammanabrolu, Noah A. Smith, Mari 789
Ostendorf, and Hannaneh Hajishirzi. 2023. Fine- 790
Grained Human Feedback Gives Better Rewards for 791
Language Model Training. ArXiv:2306.01693 [cs]. 792

Cheng Zhang, Hao Zhang, Yicheng Sun, and Jie 793
Wang. 2022. Downstream transformer generation of 794
question-answer pairs with preprocessing and post- 795
processing pipelines. In Proceedings of the 22nd 796
ACM Symposium on Document Engineering, DocEng 797
’22, pages 1–8, New York, NY, USA. Association for 798
Computing Machinery. 799

Zhuosheng Zhang, Junjie Yang, and Hai Zhao. 2020. 800
Retrospective reader for machine reading comprehen- 801
sion. CoRR, abs/2001.09694. 802

10

https://aclanthology.org/2021.ranlp-1.97
https://aclanthology.org/2021.ranlp-1.97
https://aclanthology.org/2021.ranlp-1.97
https://aclanthology.org/2021.ranlp-1.97
https://aclanthology.org/2021.ranlp-1.97
https://doi.org/10.18653/v1/2023.findings-acl.428
https://doi.org/10.18653/v1/2023.findings-acl.428
https://doi.org/10.18653/v1/2023.findings-acl.428
https://doi.org/10.18653/v1/2023.findings-acl.428
https://doi.org/10.18653/v1/2023.findings-acl.428
https://arxiv.org/abs/1808.10192v2
https://arxiv.org/abs/1808.10192v2
https://arxiv.org/abs/1808.10192v2
https://arxiv.org/abs/1808.10192v2
https://arxiv.org/abs/1808.10192v2
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/arXiv.1606.05250
https://doi.org/10.48550/arXiv.1606.05250
https://doi.org/10.48550/arXiv.1606.05250
https://doi.org/10.48550/arXiv.2310.10570
https://doi.org/10.48550/arXiv.2310.10570
https://doi.org/10.48550/arXiv.2310.10570
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://doi.org/10.48550/arXiv.2305.17926
https://doi.org/10.48550/arXiv.2305.17926
https://doi.org/10.48550/arXiv.2305.17926
https://doi.org/10.1145/3543507.3583420
https://doi.org/10.1145/3543507.3583420
https://doi.org/10.1145/3543507.3583420
https://doi.org/10.1145/3543507.3583420
https://doi.org/10.1145/3543507.3583420
https://doi.org/10.48550/arXiv.2306.01693
https://doi.org/10.48550/arXiv.2306.01693
https://doi.org/10.48550/arXiv.2306.01693
https://doi.org/10.48550/arXiv.2306.01693
https://doi.org/10.48550/arXiv.2306.01693
https://doi.org/10.1145/3558100.3563846
https://doi.org/10.1145/3558100.3563846
https://doi.org/10.1145/3558100.3563846
https://doi.org/10.1145/3558100.3563846
https://doi.org/10.1145/3558100.3563846
http://arxiv.org/abs/2001.09694
http://arxiv.org/abs/2001.09694
http://arxiv.org/abs/2001.09694


Model Accuracy (%)
RM 63.66
RM-input 70.69
RM-margin 62.39
RM-input-margin 70.38

Table 4: Accuracy of reward model variants based on the
test split of the comparisons dataset. input indicates that
the model was trained with the question and associated
text passage as input and margin indicates that marginal
ranking loss was used.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan803
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A804
Benchmarking Platform for Text Generation Models.805
ArXiv:1802.01886 [cs].806

A Reward Model Performance807

To understand the relative contributions of marginal808

ranking loss and the use of the input when training809

reward models to discriminate based on difficulty,810

we trained all four permutations of settings on the811

whole training split of the comparisons dataset and812

evaluated on the test split. As shown in Table 4,813

the inclusion of the input text had a very significant814

impact on performance. This was expected as the815

difficulty of a question is not independent of the816

related passage. Surprisingly, marginal ranking817

loss had a very slight negative impact on reward818

model performance. We believe this could be due819

to the fact that features of difficulty are very subtle820

and the marginal component may have caused too821

significant adjustments due to higher loss values.822

B Obtaining Zero-Shot Model823

Generations824

To obtain zero-shot generations, we adopted a825

slightly different approach. To not constrain the826

output of the model too much, thus harming gen-827

eration performance, we adopted a two-tage pro-828

cess. LLaMa-2-7b-chat was first tasked with gen-829

eratinga question-answer pair based on the text,830

unconstrained. We then passed this output back831

into the model with the task of extracting the ques-832

tion and answer components and placing them into833

a JSON file with the keys question and answer. We834

used the same, high temperature of 0.9 for generat-835

ing the samples and a much lower temperature of836

0.2 for extracting into a JSON to reduce the chance837

of models altering the generated sequences while838

structuring them.839

C API-Based LLM Answerability 840

Annotation 841

To ensure that we evaluate performance on as high- 842

quality questions as possible, we extract only those 843

questions deemed answerable, by our definition, by 844

both GPT-4o and Gemini-1.5-pro. Table 5 shows 845

that the zero-shot samples had the highest rate of 846

predicted answerability; each other variant shows 847

very consistent rates of answerability. This out- 848

come should be tempered by the results in Figure 5 849

which indicates that the zero-shot model had an 850

extremely high failure rate in many other regards. 851

Following is a text, a question and an answer. You
must determine whether the provided answer is a
correct span-extraction response to the question.
If there are multiple plausible answers in the
text, the answer should be the most relevant
or accurate one. If there are multiple equally
plausible answers in the text, respond "NO". If the
provided answer is incomplete or contains excess
information, respond "NO". If the answer does
not correctly answer the question, respond "NO".
Only if the answer is correct and does not breach
the aforementioned requirements, respond with
"YES".
Text: ... Upon its arrival in Canberra, the Olympic
flame was presented by Chinese officials to local
Aboriginal elder Agnes Shea, of the Ngunnawal
people. She, in turn, offered them a message stick
...
Question: Who received the flame from Chinese
officials in Canberra?
Answer: Agnes Shea

Respond with only "YES" or "NO" in response
to this task. Do NOT provide any other text or
reasoning.

Figure 7: Example prompt and response to GPT-4o (gpt-
4o as of 1st June 2024) and Gemini-1.5-pro (gemini-1.5-
pro as of 1st June 2024).
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Model Answerable (↑) Unanswerable (↓) Undetermined (↓) Cohen’s κ (↑)
ZeroShot 0.73 0.14 0.13 0.61
SFT 0.64 0.20 0.16 0.62
PPO 0.64 0.20 0.16 0.62
PPO-input 0.62 0.20 0.18 0.58
PPO-margin 0.62 0.19 0.19 0.56
PPO-input-margin 0.63 0.21 0.16 0.62

Table 5: Results of answerability task posed to GPT-4o and Gemini-1.5-pro. Results represent the proportion of
samples that are answerable, unanswerable and undecided, taken from those samples which passed the format critic.
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