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Abstract001

With the emergence of Mixture-of-Experts002
(MoE), the efficient scaling of model size003
has accelerated the development of large lan-004
guage models in recent years. However, their005
high memory requirements prevent their use006
in resource-constrained environments. While007
knowledge distillation (KD) has been a proven008
method for model compression, its applica-009
tion to MoE teacher models remains under-010
explored. Through our investigation, we dis-011
cover that non-activated experts in MoE models012
possess valuable knowledge that benefits stu-013
dent models. We further demonstrate that exist-014
ing KD methods are not optimal for compress-015
ing MoE models, as they fail to leverage this016
knowledge effectively. To address this, we pro-017
pose two intuitive MoE-specific KD methods018
for the first time: Knowledge Augmentation019
(KA) and Student-Aware Router (SAR), both020
designed to effectively extract knowledge from021
all experts. Specifically, KA augments knowl-022
edge by sampling experts multiple times, while023
SAR uses all experts and adjusts the expert024
weights through router training to provide op-025
timal knowledge. Extensive experiments show026
that our methods outperform conventional KD027
methods, demonstrating their effectiveness for028
MoE teacher models.029

1 Introduction030

Mixture-of-Experts (MoE) architecture (Jacobs031

et al., 1991; Shazeer et al., 2017) is one of the032

major contributing factors to the rapid advance-033

ments of Large Language Models (LLMs) (Jiang034

et al., 2024; Team, 2024; Liu et al., 2024). It al-035

lows the model to scale up while effectively im-036

proving the computational cost by utilizing only037

a subset of multiple experts during inference. De-038

spite the advantages afforded by MoE architectures039

in scaling model capacity, several limitations per-040

sist. One such challenge is that it requires signifi-041

cant GPU memory compared to the dense model042

due to a number of non-active parameters. For 043

this reason, the practical application of MoE mod- 044

els in resource-limited environments is generally 045

challenging. Hence, research into effectively com- 046

pressing recent large-scale MoE models becomes 047

imperative, particularly for deployment in resource- 048

constrained environments. 049

One of the notable compression techniques is 050

knowledge distillation (KD) (Hinton, 2015). To 051

facilitate student learning under teacher guidance, 052

both the approach of using the teacher’s output 053

as supervised data (Kim and Rush, 2016; Peng 054

et al., 2023; Fu et al., 2023) and the method to 055

match the teacher’s distribution with appropriate 056

objective functions are widely adopted and actively 057

researched. Specifically, concerning the second 058

method, many works have focused on designing 059

suitable objective functions (Wen et al., 2023; Ko 060

et al., 2024; Agarwal et al., 2024; Wu et al., 2024) 061

or on using student-generated output (Lin et al., 062

2020; Gu et al., 2024; Agarwal et al., 2024). In- 063

deed, several models have successfully employed 064

KD in practice, such as Phi (Abdin et al., 2024) 065

and Minitron (Muralidharan et al., 2024; Sreenivas 066

et al., 2024). 067

However, there has been no systematic devel- 068

opment of KD methods specifically designed for 069

the MoE teacher. Recent KD studies have largely 070

overlooked scenarios where the model to be com- 071

pressed is based on the MoE structure. While a 072

few studies have applied KD to MoE teacher mod- 073

els (Artetxe et al., 2021; Fedus et al., 2022; Xue 074

et al., 2022), they have used the conventional KD 075

and have not thoroughly explored the effectiveness 076

or challenges of distilling knowledge from MoE. 077

Therefore, these generalized approaches might not 078

fully exploit the potential of MoE as a teacher. 079

In this paper, we introduce MoE-specific knowl- 080

edge distillation, which can effectively distill 081

knowledge from the MoE teacher. To design such 082

a specialized mechanism, we first conduct an in- 083
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depth analysis of MoE teacher during the basic084

KD process proposed by Sanh (2019). We found085

that even non-selected experts have a significant086

amount of potentially useful knowledge, which re-087

mains unutilized. Inspired by this observation, we088

propose two different intuitive solutions for effec-089

tively extracting knowledge from all experts (see090

Figure 3). The first method, knowledge augmen-091

tation (KA), employs sampling multiple times to092

decide which experts to activate based on their gate093

probabilities. Through this approach, a student can094

be provided with a variety of augmented knowl-095

edge from a single input data. The second method,096

student-aware router (SAR), optimizes the router097

based on student feedback before distillation, en-098

abling the router to determine optimal weights to099

aggregate knowledge from all experts.100

We apply our two approaches to Llama-101

MoE (Zhu et al., 2024) models with five instruction102

datasets. Considering the common practice of em-103

ploying KD in memory-constrained settings, we104

utilize a dense student Sheared-Llama (Xia et al.,105

2023) rather than a MoE student. The experimen-106

tal results show that when the teacher model is107

MoE, our method consistently outperforms the ex-108

isting KD baselines. Additionally, the analysis of109

KA confirms that having a moderate amount of110

augmented knowledge is indeed beneficial. More-111

over, in SAR, we confirm that router updates in112

fact induce subtle changes in gate values, and these113

changes demonstrably enhance the performance of114

KD.115

To summarize, our contributions are three-fold:116

• We empirically found that non-activated ex-117

perts from MoE teacher also possess knowl-118

edge that is of great benefit to a student, yet119

remains unexploited by existing methods.120

• We propose two novel methods, knowledge121

augmentation (KA) and student-aware router122

(SAR), effectively utilizing the distributed123

knowledge from the entire experts. To the best124

of our knowledge, these are the first KD meth-125

ods specifically designed for MoE teacher.126

• We evaluate our framework on 5 instruction-127

following datasets. The result shows that KA128

and SAR outperform the existing KD meth-129

ods, underscoring the effectiveness and impor-130

tance of leveraging the architectural character-131

istics of MoE teacher.132

2 Related Works 133

Knowledge distillation Knowledge distillation 134

(KD) (Hinton, 2015) is a prevalent model com- 135

pression technique, transferring knowledge from 136

a large teacher model to a small student model. 137

Most of the early works focused on applying KD 138

to the text classification tasks by imitating all the 139

possible things of the teacher model, from output 140

distribution (Song et al., 2020; Liang et al., 2020) 141

to hidden states (Jiao et al., 2020; Sun et al., 2019; 142

Park et al., 2021b), attention scores (Wang et al., 143

2020), and so forth. However, these methods relied 144

on a fixed teacher that generates knowledge with- 145

out being aware of the student’s learning character- 146

istics, which often limited its effectiveness. Thus, 147

several methods are also devised to provide student- 148

friendly knowledge (Park et al., 2021a; Zhou et al., 149

2022; Ren et al., 2023). 150

On the other hand, various studies are actively 151

examining its application to text generation tasks. 152

The standard KD method minimizes the forward 153

KL divergence between the output distributions of 154

student and teacher at each time step (Sanh, 2019) 155

or directly trains the student with the generated 156

text from the teacher (Kim and Rush, 2016; Taori 157

et al., 2023; Chiang et al., 2023; Peng et al., 2023). 158

Recently, MiniLLM (Gu et al., 2024) explores a 159

method to mix the distribution of the teacher with 160

that of the student and use a policy gradient ap- 161

proach by optimizing the reverse KL divergence. 162

GKD (Agarwal et al., 2024) utilizes the student- 163

generated on-policy data to receive feedback from 164

the teacher with a generalized Jensen–Shannon 165

(JS) divergence objective. DistiLLM (Ko et al., 166

2024) applies skew KL divergence with their pro- 167

posed adaptive off-policy mechanism. Although 168

these methods have shown remarkable results, all 169

of the experiments have used dense models, and 170

whether they also show good results for distilling 171

the Mixture-of-Experts model has not yet been stud- 172

ied. 173

Mixture-of-Experts Mixture-of-Experts (MoE) 174

(Shazeer et al., 2017; Lepikhin et al., 2020; Fe- 175

dus et al., 2022) is an efficient way to increase 176

the model size by replacing the feed-forward net- 177

work (FFN) with multiple experts and a gating 178

network. It dynamically activates different experts 179

for each input token instead of using all parame- 180

ters. Since it has been known that MoE provides 181

advantages including more efficient training (He 182

et al., 2022; Gale et al., 2023) and faster inference 183
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than a dense model of the same size, many models184

such as Mixtral (Jiang et al., 2024) and Deepseek-185

MoE (Dai et al., 2024) have introduced MoE or186

its variants, demonstrating remarkably strong per-187

formance. However, due to the disadvantage of188

high memory requirements, there have been some189

efforts to compress MoE into smaller dense mod-190

els (Artetxe et al., 2021; Fedus et al., 2022; Xue191

et al., 2022; Guo et al., 2025). Nevertheless, they192

use the conventional KD (Sanh, 2019) or train on193

the teacher’s output sentence directly. To the best194

of our knowledge, there has been no attempt to195

develop the KD specifically optimized for MoE196

teacher.197

3 Preliminary198

3.1 Knowledge Distillation199

KD minimizes the token-level distributional dis-200

crepancy between teacher and student. A standard201

approach to accomplish this minimization in the202

instruction-following setting is using the forward203

KL divergence (Sanh, 2019):204

LKD = DKL

(
p(y|x) ∥ qθ(y|x)

)
, (1)205

where (x,y) ∈ D, D denotes a dataset. x and206

y represent the request and response, respectively,207

and this objective guides the student to learn by208

minimizing the distributional discrepancy in the209

only response part. p and qθ denote the probability210

distributions of the teacher and student, respec-211

tively.212

Recently, MiniLLM (Gu et al., 2024) and213

GKD (Agarwal et al., 2024) suggest using reverse214

KL divergence and student-generated sequences to215

address the exposure bias problem. The objective216

reflecting these is as follows:217

Lstudent = DKL

(
qθ(y|x) ∥ p(y|x)

)
, (2)218

where (x, ·) ∈ D and y ∼ qθ(·|x).219

3.2 Mixture-of-Experts220

The sparse MoE layer consists of N expert net-221

works {E1, · · · , EN} and a router network G. The222

router first computes the gate logits H(x) ∈ RN223

for a single token representation x, which deter-224

mines the likelihood of selecting each expert. After225

normalization with a softmax function, top k ex-226

perts are selected based on this distribution, and227

their outputs are aggregated through a weighted228

sum. In this work, we only focus on the noisy Top-229

k gating introduced by Shazeer et al. (2017). This230

gating adds trainable Gaussian noise before Top-k 231

experts selection. The process can be described as 232

follows: 233

H(x)i = (x ·Wg)i + StandardNormal() ·
Softplus((x ·Wnoise)i),

(3) 234

G(x) = Softmax(KeepTopK(H(x), k)), (4) 235

y =
N∑
i=1

G(x)iEi(x), (5) 236

where G(x)i denotes the probability of ith experts 237

being selected and 238

KeepTopK(v, k)i =

{
vi if vi ∈ TopK(v, k),

−∞ otherwise.
239

The intrinsic characteristic of Top-k routing may 240

lead to a scenario where certain experts are always 241

favored in the selection process. In order not to 242

negate the potential benefits of the MoE, distribut- 243

ing the workload across multiple experts to ensure 244

their collective engagement is essential, which is 245

called load balancing. The noise term in H(x) 246

or the auxiliary loss as in Eq. (6) helps prevent 247

the model from always relying on the same few 248

experts, allowing a more balanced distribution of 249

workload among experts. The auxiliary loss (Zhu 250

et al., 2024) is as follows: 251

Lb = CV (m)2 + CV (P )2, (6) 252

where m ∈ RN represents the set of token counts 253

assigned to each of the N experts within a batch, 254

and P ∈ RN denotes the set of summed proba- 255

bilities assigned to each expert in the batch. The 256

coefficient of variation (CV ) is defined as the ra- 257

tio of the standard deviation σ to the mean µ, i.e., 258

CV (x) = σ(x)/µ(x). Minimizing this encour- 259

ages a more uniform distribution, which is desir- 260

able for balancing the expert load. 261

4 Method 262

4.1 Motivation 263

To investigate how the MoE teacher distills the 264

knowledge during the classical KD process, we 265

first analyze the distribution of gate probabilities. 266

The gate probability refers to the normalized values 267

of the gate logits H through the softmax function. 268

The Top-k experts are selected based on these gate 269

logits, and gate logits are also used to compute the 270

weights during the weighted summation of expert 271
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(a) Llama-MoE-3.5B (4/16)

4 8 1 2 1 6 2 0 2 4 2 8 3 2
0

2 0

4 0

6 0

8 0

1 0 0

Ga
te 

pro
ba

bili
ty 

(%
)

L a y e r

 A c t i v a t e d
 O t h e r

(b) Llama-MoE-3.5B (2/8)
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(c) Llama-MoE-3.0B (2/16)

Figure 1: Sum of the gate probabilities for activated and non-activated experts per layer during distillation. The
(k/N) after each model name indicates that k out of N experts are activated. Across most layers of all Llama-MoE
models, the sum of gated probabilities of activated experts is less than 50%.

outputs. Therefore, the gate probability can be272

considered an indicator of how useful each expert273

is. In this section, we use Llama-MoE (Zhu et al.,274

2024) models as teachers and do the conventional275

KD (Sanh, 2019) into Sheared-Llama (Xia et al.,276

2023) model which is a dense model. The training277

data is a subset of Dolly (Conover et al., 2023), and278

we evaluate our model on five instruction datasets.279

For further details, please see the Section 5.1.280

Figure 1 presents a visualization of the average281

of the sum of gate probabilities for used experts282

and that for unused experts in each layer across all283

training data during distillation. As shown in Fig-284

ure 1, the sum of gate probabilities for the group of285

activated experts never exceeds 50% in most of the286

layers of all models. Although this may be an effect287

of the auxiliary loss for load balancing, considering288

that gate probability reflects how useful an expert289

is, it implies that a significant portion of poten-290

tially valuable knowledge from non-activated ex-291

perts is not being leveraged. Thus, effective extrac-292

tion and utilization of this unexploited knowledge293

could bring additional benefits to the student model294

during the distillation process, as more diverse and295

complementary knowledge would be incorporated296

into the learning.297

To reflect this observation, we simply increase298

the number of selected experts k during the distil-299

lation process. Using the Llama-MoE-3.5B (4/16)300

model as the teacher model, we perform knowledge301

distillation by gradually increasing k from 4 to 16302

and evaluate the performance of both the teacher303

and student models. The model performance is304

measured by the average ROUGE-L scores across305

five instruction-following datasets (Section 5.1 for306

more details). The results are shown in Figure 2.307

Based on the results, we observe that using more308
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Figure 2: Performance of the MoE teacher model and
the student model after distillation with varying numbers
of utilized experts k (originally 4). As k increases, the
effectiveness of distillation improves, leading to better
student performance. However, the performance of the
teacher model itself does not necessarily improve with
a larger k.

experts does not necessarily increase the perfor- 309

mance of the teacher, but it certainly increases the 310

performance of the student, except when all are 311

used. This suggests that the improvement in the 312

student’s performance is not directly due to the 313

teacher’s performance enhancement. Nevertheless, 314

we observe that using most of the non-activated 315

experts proves to be practically beneficial for the 316

student, and this implies that non-activated experts 317

hold valuable knowledge. The reason for this could 318

be that during the MoE training process, due to load 319

balancing, different sets of experts are activated for 320
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(a) Knowledge Augmentation (KA) (b) Student-Aware Router (SAR)

Figure 3: An overview of our proposed KD methods specifically designed for the MoE. In knowledge augmentation,
we either select the top N − 1 experts or sample N − 1 experts based on the gate probability. We do this M times
to augment various knowledge. In student-aware router, we train the router network with student feedback before
the distillation. It enables the router to determine the optimal weights, thereby facilitating the student’s acquisition
of knowledge from all experts.

Algorithm 1 : Knowledge Augmentation (KA)

Input: student model qθ, data distribution px,
number of teacher forward M , training step K,
learning rate η
for each step k = 1, ...,K do

Sample a request x from px
Sample a response y from qθ(·|x)
for each step m = 1, ...,M do

Update θ ← θ − η∇Lstudent ▷ Eq. (2)
end for

end for
return θ

the same input data, causing the knowledge to be321

distributed across multiple experts. However, con-322

ventional KD typically relies on using only the323

Top-k experts, which fails to account for this.324

Therefore, the core challenge in knowledge dis-325

tillation for MoE teacher lies in effectively extract-326

ing and transferring the knowledge that is dis-327

tributed across all experts to empower student328

learning. Successfully addressing this challenge is329

the key to fully leveraging the architectural charac-330

teristics of MoE teacher models in guiding student331

models.332

4.2 Knowledge Augmentation333

The first method to effectively utilize distributed334

knowledge across all experts is the knowledge aug-335

mentation (KA). Following the previous observa-336

tion, we use N − 1 experts for each layer where N 337

is the total number of experts. Specifically, in each 338

MoE layer, N − 1 experts are selected by sampling 339

from a gate probability distribution with probability 340

λ. Therefore, by selecting the Top N − 1 experts 341

with probability 1− λ, we can consistently gener- 342

ate knowledge that is similar to the Top-k selection 343

while incorporating slightly different knowledge. 344

This strategy allows the augmentation of diverse 345

knowledge and balances the trade-off between con- 346

sistency and diversity of knowledge with parameter 347

λ. The formulation of KA is as follows: 348

E =

{
Sampled N − 1 experts w.p. λ,
Top N − 1 experts w.p. 1− λ,

349

KA(v,E)i =

{
vi if (ith expert) ∈ E,

−∞ otherwise,
(7) 350

GKA(x) = Softmax(KA(H(x),E)), (8) 351

where E denotes the set of selected experts. 352

In each iteration, the teacher is forwarded M 353

times for the same input using the KA method, 354

augmenting M pieces of knowledge, which are 355

transferred to the student. Following GKD (Agar- 356

wal et al., 2024), the response part y of the input 357

is generated by the student, treating it as a pseudo- 358

target, to mitigate exposure bias (Arora et al., 2022). 359

Furthermore, the student’s learning objective is the 360

reverse KL divergence. We summarize the entire 361

KA procedure in Algorithm 1. 362
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4.3 Student-Aware Router363

The second method is the student-aware router364

(SAR). Instead of merely selecting which experts365

to use, SAR takes a step further by directly optimiz-366

ing the router to achieve an optimal weighted sum367

across all expert outputs. Inspired by the concept368

of student-friendly knowledge distillation, SAR up-369

dates the teacher’s router using student feedback,370

ensuring that the generated knowledge is more use-371

ful to the student.372

SAR undergoes two stages in each iteration:373

router update and knowledge distillation. First, the374

router weights, Wg and Wnoise in Eq. (3), are op-375

timized using student feedback (Kim et al., 2024)376

and auxiliary loss for load balancing. Only the377

router components of the MoE teacher are updated,378

while all other parameters remain fixed. After up-379

dating the router, the modified router is used to380

generate knowledge, which is then distilled into the381

student. At this stage, all experts are activated, and382

their outputs are aggregated through a weighted383

sum based on the modified router.384

Similar to KA, SAR also uses pseudo-targets385

generated by the student and trains the router using386

reverse KL divergence:387

LSAR =DKL

(
p(y|x) ∥ qθ(y|x)

)
+ βLb. (9)388

Here, β is a coefficient for the auxiliary loss, which389

is set to 0.01 following the teacher model (Zhu390

et al., 2024). The entire SAR process is summa-391

rized in Algorithm 2.392

5 Experiments393

5.1 Experimental Setup394

Settings Following Gu et al. (2024), databricks395

-dolly-15k (Conover et al., 2023) is partitioned396

into 14k samples for the training set, 500 sam-397

ples for the validation and test sets, respec-398

tively. In addition to the test set of Dolly, we399

evaluate 4 extra instruction-following datasets:400

SelfInst (Wang et al., 2023), 252 user-oriented401

instruction-following samples, Vicuna (Chiang402

et al., 2023), 80 questions used in the Vicuna evalu-403

ation, S-NI, 9k samples from the test set of SUPER-404

NATURALINSTRUCTIONS (Wang et al., 2022), and405

UnNI, randomly sampled 10k samples from the406

core set of UNNATURALINSTRUCTIONS (Hon-407

ovich et al., 2023). We adopt the ROUGE-L (Lin,408

2004) score as the evaluation metric.409

Algorithm 2 : Student-Aware Router (SAR)
Input: student model qθ, data distribution px,

teacher’s router Wg and Wnoise, training step K,
learning rate η
for each step k = 1, ...,K do

Sample a request x from px
Sample a response y from qθ(·|x)
Update Wg ←Wg − η∇LSAR ▷ Eq. (9)
Update Wnoise ←Wnoise − η∇LSAR
Update θ ← θ − η∇Lstudent ▷ Eq. (2)

end for
return θ

Models To verify the effectiveness of proposed 410

KD methods tailored for MoE, we need to com- 411

pare the performance of KD from dense to dense 412

with that from MoE to dense. For this compar- 413

ison to be fair, dense teacher and MoE teacher 414

should have comparable performances. This en- 415

sures that any performance improvements can be 416

directly ascribed to the proposed method rather 417

than the teacher’s inherent capability. Additionally, 418

the tokenizers of both models must be the same to 419

compare token-level distributions. 420

To satisfy the above critical conditions, we use 421

three Llama-MoE (Zhu et al., 2024) models as the 422

MoE teachers, Sheared-Llama (Xia et al., 2023) 423

2.7B as the dense teacher, and Sheared-Llama 424

1.3B as the dense student. Sheared-Llama 2.7B 425

exhibits comparable performance to Llama-MoE 426

model, with a lower number of activated parame- 427

ters. Both teacher models and the student model 428

were initially fine-tuned with the Dolly training set 429

before knowledge distillation, following the previ- 430

ous works (Agarwal et al., 2024; Gu et al., 2024). 431

Baseline We compare our two approaches with 432

three baselines: (1) supervised fine-tuning (SFT) 433

directly fine-tunes the model on golden responses, 434

which does not involve knowledge distillation; (2) 435

KD (Sanh, 2019) uses the teacher’s distribution 436

with forward KL divergence; (3) GKD (Agarwal 437

et al., 2024) uses the mixture of fixed data and 438

on-policy student-generated outputs. Despite re- 439

cent advancements and variants, GKD remains a 440

representative study utilizing KL divergence or its 441

variants and student-generated outputs, making it a 442

suitable baseline for our experiment. Based on their 443

reported performance, GKD computes reverse KL 444

divergence with only student-generated outputs in 445

this paper. For our methods, we set a sampling ratio 446
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Model
(Teacher→ Student) Method

Instruction-following datasets
Average

Dolly SelfInst Vicuna S-NI UnNI
Llama-MoE-3.5B (4/16) SFT 26.20 18.61 16.88 30.29 31.79 24.75
Llama-MoE-3.5B (2/8) SFT 26.39 16.97 17.20 30.40 32.81 24.76
Llama-MoE-3.0B (2/16) SFT 26.35 17.64 16.86 27.59 30.42 23.77
Sheared-Llama-2.7B SFT 26.07 18.55 17.50 27.64 31.13 24.18
Sheared-Llama-1.3B SFT 23.83 14.82 15.93 26.33 28.21 21.82

Sheared-Llama-2.7B
→ Sheared-Llama-1.3B

KD 24.68 13.44 16.16 26.37 29.09 21.95
GKD 26.36 16.67 18.20 29.09 34.12 24.89

Llama-MoE-3.5B (4/16)
→ Sheared-Llama-1.3B

KD 23.58 13.82 15.25 24.59 27.37 20.92
GKD 25.86 16.72 18.61 29.61 34.55 25.07
ALL (Ours) 26.03 16.98 18.59 30.13 34.88 25.32
KA (Ours) 26.58 16.98 18.38 30.51 36.11 25.71
SAR (Ours) 26.32 18.24 18.06 31.88 35.05 25.91

Llama-MoE-3.5B (2/8)
→ Sheared-Llama-1.3B

KD 23.07 13.92 15.29 24.87 27.40 20.91
GKD 25.64 15.54 18.29 29.11 32.80 24.28
ALL (Ours) 26.40 16.78 18.45 28.68 33.57 24.78
KA (Ours) 26.32 17.30 17.11 32.49 37.58 26.16
SAR (Ours) 26.30 18.31 17.11 31.47 35.00 25.64

Llama-MoE-3.0B (2/16)
→ Sheared-Llama-1.3B

KD 23.20 13.51 15.01 23.85 26.92 20.50
GKD 25.43 16.43 18.52 28.15 34.71 24.65
ALL (Ours) 25.99 15.05 18.06 29.15 33.55 24.36
KA (Ours) 26.06 16.18 18.30 30.10 35.92 25.31
SAR (Ours) 25.87 17.39 17.84 31.20 34.92 25.44

Table 1: Evaluation results on five instruction-following datasets and their average, assessed using the ROUGE-L
metric. Each reported score represents the average across five distinct random seeds. The best score for each case is
highlighted in boldface.

λ = 0.05 and the number of augmented samples447

M = 2 in the KA method. To validate our obser-448

vation on the MoE teacher, we exclude the router449

update stage from SAR and simply activate all ex-450

perts. This approach is referred to as ALL. Further451

details on the experimental setup are summarized452

in the Appendix A.453

5.2 Results454

We present the results of KA and SAR with base-455

lines on 5 datasets in Table 1.456

First, when comparing the SFT results of three457

Llama-MoE models, the performance is better458

when there are more activated experts with the459

same total number of experts. Also, if the total460

activated parameters are similar, the performance461

is also comparable. Note that the dense teacher462

Sheared-Llama-2.7B indeed shows a similar per-463

formance compared to MoE teachers.464

Second, we compare the performance between465

dense and MoE teachers for the two baselines, KD466

and GKD. Surprisingly, despite the MoE teacher467

having performance that is similar to or even 468

slightly better than the dense teacher, both methods 469

demonstrate that the dense model serves as a better 470

teacher for the student. For KD, the student trained 471

by the dense teacher always outperforms the stu- 472

dent trained by the MoE teachers. This holds true 473

under GKD as well, except for the Llama-MoE- 474

3.5B (4/16) case. These results highlight that the 475

existing KD methods are not optimized for extract- 476

ing knowledge from the MoE teacher. 477

Third, our proposed methods, knowledge aug- 478

mentation and student-aware router, achieve higher 479

performance than baselines when the teacher model 480

is MoE. This result highlights that both methods are 481

specifically designed for the MoE teacher. There- 482

fore, when the teacher model is MoE, it is impor- 483

tant to carefully consider the architectural charac- 484

teristics of MoE and effectively extract knowledge 485

that is distributed across all experts. 486

Lastly, the ALL approach, which simply acti- 487

vates all experts, outperforms the baselines in most 488

cases but falls short of our proposed methods. This 489
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Figure 4: Average performance of KA for a different
number of samples, M , across all test data. λ is fixed
at 0.05. For each MoE teacher, the best performing M
differs. If M is too large, all models exhibit reduced
performance.

result aligns with the observation in Section 4.1,490

suggesting that while non-activated experts contain491

useful knowledge, simply utilizing all of them may492

not be the optimal strategy. Furthermore, the com-493

parison with SAR demonstrates the effectiveness494

of router updates.495

The qualitative results of our methods and the496

baselines are summarized in Appendix C, demon-497

strating that our methods produce responses most498

closely resembling the ground truth.499

5.3 Analysis500

Hyperparameters in KA We ablate various val-501

ues of M , the number of augmented samples in502

KA. Figure 4 shows the performance for differ-503

ent numbers of samples, M . It indicates that the504

optimal M value varied across different models.505

Nevertheless, the appropriate value of M generally506

leads to beneficial augmentation. However, when507

M is excessively large, performance consistently508

degrades across all models. This is because too509

large values can lead to the generation of overly510

diverse knowledge for identical input due to the511

inherent randomness of sampling. Consequently,512

such excessive diversity can be detrimental to the513

overall performance, as it may introduce nonsense514

or unhelpful knowledge.515

We also ablate various values of λ, the probabil-516

ity of randomly sampling experts. The results are517

in Appendix B.518

Shift of gate probability in SAR In Table 1, we519

compared the results of ALL and SAR and verified520

that training the routers of MoE teacher is indeed521

4 8 1 2 1 6 2 0 2 4 2 8 3 2
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1 E - 0 6
1 E - 0 5
1 E - 0 4
1 E - 0 3
1 E - 0 2
1 E - 0 1
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 m e a n  ( 2 / 8 )      m a x  ( 2 / 8 )
 m e a n  ( 2 / 1 6 )    m a x  ( 2 / 1 6 )

Figure 5: KL divergence of gate probabilities between
original router and router trained with SAR method.
The mean value is averaged over all tokens in training
data. Consistently, KL divergence increases with layer
depth.

helpful. For a more rigorous analysis, we examine 522

the changes in the gate probability distribution that 523

occurred as the router network learned to be more 524

student-aware. 525

Figure 5 presents the layer-wise KL divergence 526

of gate probabilities between the original teacher 527

MoE and the teacher whose routers are trained 528

with SAR. For all tokens of the training data, the 529

maximum and average values are shown. For ev- 530

ery teacher model, KL divergence increases with 531

greater layer depth. The reason is that by learning 532

the router in a student-friendly way, the modified 533

gate probability affects the representation of the 534

layer immediately following. This effect accumu- 535

lates so that later layers have more different gate 536

probabilities than the existing router. Eventually, 537

these changes in gate probability have led to a more 538

effective knowledge delivery to the student. 539

6 Conclusion 540

In this paper, we first observe that non-activated 541

experts in MoE teachers contain valuable knowl- 542

edge that can benefit the student model. Based 543

on this observation, we assert that existing KD 544

methods are suboptimal for distilling MoE mod- 545

els, as they do not fully utilize all experts. To 546

address this issue, we propose two MoE-specific 547

KD methods for the first time: knowledge augmen- 548

tation and student-aware router. Our experimental 549

results show that our methods outperform the base- 550

line, clearly demonstrating the effectiveness of our 551

approach in leveraging the full potential of MoE 552

teacher models. 553
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Limitations554

We acknowledge the limitations arising from the555

rigorous experimental conditions. In addition to556

the common yet imperfect situation where teacher557

and student must use the same tokenizer, dense558

teacher and MoE teacher should have comparable559

performances. This condition is necessary to show560

that our method is an effective KD specialized for561

MoE. However, it is difficult to find a setup that562

satisfies these conditions other than the setting that563

we used in our experiment (Llama-MoE (Zhu et al.,564

2024) for the teacher and Sheared-Llama (Xia et al.,565

2023) for the student). We leave this for future566

work to explore, in conjunction with either emerg-567

ing new methods (Boizard et al., 2024; Zhang et al.,568

2024) or by combining our method with existing569

ways (Xue et al., 2022).570
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A Experimental Setup Details 824

For training, we utilize the AdamW opti- 825

mizer (Loshchilov, 2017) with a batch size of 16. 826

The learning rates for both the router and student 827

models are set to 1e-5, and training is conducted 828

for 10 epochs. The training and generation pro- 829

cesses are conducted with a maximum sequence 830

length of 512 and a maximum request length of 831

256. During generation, we apply top-k and top-p 832

sampling with values of 0 and 1.0, respectively, 833

while maintaining a fixed temperature of 1.0. All 834

experiments in this study are conducted on 4 Intel 835

Gaudi v2 accelerators using SynapseAI 1.18.0. 836

To ensure consistency in instruction-following 837

tasks, all datasets are pre-processed by convert- 838

ing instruction-response pairs into a standardized 839

sentence structure, following the approach used in 840

previous studies (Gu et al., 2024). Model evalua- 841

tion is performed using the ROUGE-L score (Lin, 842

2004), which has been shown to correlate well with 843

human preferences in instruction-following assess- 844

ments (Wang et al., 2022). The best-performing 845

checkpoint on the validation set, determined by the 846

ROUGE-L score, is selected for final evaluation. 847

All evaluations are performed across five different 848

random seeds, and the reported results reflect the 849

average performance. 850

B Effects of λ in KA 851

λ Dolly SelfInst Vicuna S-NI UnNI Average
0.01 26.23 17.55 18.10 31.19 35.52 25.72
0.05 26.58 16.98 18.38 30.51 36.11 25.71
0.1 26.34 16.32 18.96 30.99 36.01 25.73

Table 2: Instruction-following performance of KA
across all test data for different values of λ, which repre-
sents the probability of sampling experts. Here, we only
use Llama-MoE-3.5B (4/16) model and set M = 2.

Table 2 shows the performance for different val- 852

ues of λ, which represent the probability of sam- 853

pling experts. In this experiment, we use the Llama- 854

MoE-3.5B (4/16) model as a teacher and fix the 855

value M , the number of augmented samples, as 856

2. Based on the results, there is no significant 857

performance variation attributable to changes in 858

the λ value. While this deviates from the pattern 859

observed in Figure 4, we expect that further incre- 860

ments in the λ value will likely induce a perfor- 861

mance degradation due to the analogous reason. In 862

other words, the proper value of λ generally makes 863

augmentation helpful, whereas the excessive value 864
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Case 1
Instruction Convert a disfluent question to a proper question. A disfluent question is a question

that has some interruptions in it while framing. A proper question is the correct form
of the question without any disfluency.

Input What do no I meant Who do some tax agents want to make an impression on during
an arrest?

Ground Truth Who do some tax agents want to make an impression on during an arrest?
SFT Tax agents want to make an impression on during an arrest.
KD An arrest is usually a life changing event. Ensure that the police officer Who makes

the arrest understands that you do not do it on a conscious level. Use the hook offered
to manually fill in the blank to make sure that the question sounds proper.

GKD They want to make an impression on during an arrest that they will be able to collect
from the tax payer on the charge of fraud. They want to make an impression that
they will be able collect from the tax pater on the charge of fraude.

ALL During an arrest, tax agents want to make an impression on who do some tax agents
want

KA The proper form of the question is “Who do some tax agents wantto make and
impression on during a arrest?".

SAR I meant Who do some tax agent want to make and impression upon during an arrest?
Case 2

Instruction Given an entity, a before event, an after event, and an attribute related to the entity,
generate a sentence as output. Your sentence should show the changes in the attribute
of the entity.

Input entity: rope, before: separate from ball, after: through slot in ball, attr: location
Ground Truth The location of the rope was separate from the ball before and through a slot in the

ball afterwards.
SFT Rope is strong because it can be wrapped around many things, including a ball. Rope

can be wrapped around a ball, and this ability to be wrapped around things makes
rope stronger.

KD Rope is stronger when it is through the slot in the ball
GKD rope: separation from ball, after: slot in ball, attr: location
ALL Rope separates from ball.\nRope through slot in ball.\nAttr location changes.
KA The rope has changed location. It was once separated from the ball. Now it is through

the slot in the ball.
SAR The rope was separated from the ball. The rope was through the slot in the ball.

Table 3: Response examples on the S-NI dataset for student models distilled from MoE teacher. Response examples
from the S-NI dataset demonstrate that student models trained using our proposed MoE-specific KD methodologies
(KA, SAR) follow instructions more accurately.

of λ compromises the knowledge.865

C Qualitative Results866

For the qualitative results, we present samples gen-867

erated by student models trained using various868

methods. The samples are drawn from the S-NI869

dataset and utilize LLaMA-MoE-3.5B (4/16) as870

the teacher model, with Sheared-LLaMA-1.3B em-871

ployed as the student model. Results are shown872

in Table 3. It is shown that our proposed methods873

generate responses most similar to the ground truth.874
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