SITCOM: Scaling Inference-Time COMpute for VLAs

Ayudh Saxena* Harsh Shah* Sandeep Routray* Rishi Rajesh Shah* Esha Pahwa*
Carnegie Mellon University
{ayudhs , hshah2, sroutra2, rishisha, epahwa}@cs .cmu.edu

Abstract

Learning robust robotic control policies remains a major challenge due to the high
cost of collecting labeled data, limited generalization to unseen environments, and
difficulties in planning over long horizons. While Vision—-Language—Action (VLA)
models offer a promising solution by grounding natural language instructions
into single-step control commands, they often lack mechanisms for lookahead
and struggle with compounding errors in dynamic tasks. In this project, we
introduce Scaling Inference-Time COMpute for VLAs (SITCOM), a framework
that augments any pretrained VLA with model-based rollouts and reward-based
trajectory selection, inspired by Model Predictive Control algorithm. SITCOM
leverages a learned dynamics model to simulate multi-step action rollouts to select
the best candidate plan for real-world execution, transforming one-shot VLAs
into robust long-horizon planners. We develop an efficient transformer-based
dynamics model trained on large-scale BridgeV2 data and fine-tuned on SIMPLER
environments to bridge the Real2Sim gap, and score candidate rollouts using
rewards from simulator. Through comprehensive evaluation across multiple tasks
and settings in the SIMPLER environment, we demonstrate that SITCOM when
combined with a good reward function can significantly improve task completion
rate from 48% to 72% using trained dynamics model.

1 Introduction

Robot learning has long been constrained by the need for extensive, labeled data to train effective
control policies [1]. Traditional approaches often require meticulously annotated datasets with precise
action labels, which are costly and time-consuming to acquire, especially for complex robotic tasks.
Furthermore, reliance on task-specific datasets limits the generalization of learned policies to unseen
environments, embodiments, or variations of the original task. Although reinforcement learning
(RL) offers a potential solution, it exhibits poor sample efficiency for real-world problems and
often requires significant—and sometimes unsafe—interaction with the environment. World models
[2} 3], which learn predictive representations of the environment to improve sample efficiency and
enable risk-free exploration, have emerged as a promising alternative. However, they still struggle to
accurately model the diversity and complexity of real-world scenarios, limiting their effectiveness in
open-ended tasks.

Vision-Language—Action (VLA) models have recently achieved remarkable success in interpreting
natural language instructions and generating corresponding single-step control commands for robotic
systems [4, 15, 16]. Despite these advances, deploying VLAs in real-world robotics remains fraught
with challenges: they often lack mechanisms for lookahead, struggle to recover from compounding
errors, and cannot plan over long horizons in dynamic environments. Such limitations manifest
in failures during multi-step tasks like sequential object manipulation, assembly, or navigation in
cluttered scenes.

*Everyone Contributed Equally — Ordering decided by rolling a dice

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

It

'
i i ! Reward each Single Trajectory
Policy Model SA‘:“"I” Dmag“"fs | wmectory | (Highest
Sl ode . Reward) Environment

[Ax, A8, AGrip] =...

Fulure Stale

'
'

'

'

'

'

! xl
'

'

'

'

'

1 Lookahead
'

Probe

Simulator

for reward), SaD
Simulator

Ty Task
("Put Carrot On
| The Plaie”) |

Action Trajectory Rollouts

Figure 1: Method Diagram explaining the overall SITCOM architecture. Given an initial frame and goal in text
description, a VLA predicts actions which is fed into the dynamics model to get the next frame. This process
is then iteratively repeated with the output of dynamics model to generate action sequence rollouts. Finally, a
reward model is used to rank the action sequences and pick the best one among them to execute in the real-world.

In this work, we introduce the Scaling of Inference-Time Compute for VLAs (SITCOM) frame-
work (Figure[T)), which endows any pretrained VLA with model-based rollout and reward-ranking
capabilities inspired by Model Predictive Control (MPC) [7]]. At each decision step, SITCOM’s
VLA policy proposes multiple candidate actions; a learned dynamics model then simulates resulting
next states, and this process repeats to generate full multi-step trajectory rollouts. Finally, a reward
model ranks these candidate sequences, selecting the trajectory with maximum reward for real-world
execution. By performing this inference-time planning, SITCOM transforms one-shot VLAs into
robust long-horizon planners, improving both reliability and success rates in complex tasks.

In this paper,

* We propose the SITCOM framework, a general-purpose inference-time planning framework
that enhances any VLA by simulating multi-step action rollouts and selecting optimal action
sequences through a reward mechanism.

* We introduce an efficient transformer-based dynamics model pre-trained on large-scale
BridgeV2 [8]] data and fine-tuned on SIMPLER environment [9] trajectories to mitigate
the Real2Sim gap. To further address error accumulation during long-horizon rollouts, we
introduce a DAgger-inspired [[10] adaptation strategy that bridges the distributional shift
between model inputs and predicted outputs.

» We provide insights on performance gains by rollouts of VLA over number action sequences
and the depth of future predictions.

Finally, we validate our approach through comprehensive evaluations on multiple tasks and settings
in the SIMPLER environment [9], demonstrating that SITCOM consistently outperforms strong
baselines and enables robust long-horizon planning for robotic manipulation.

2 Related Work and Background

Related Datasets. Recent VLA research has drawn on a wide spectrum of datasets, from early human-
teleoperated collections (MIME [L1]], RoboTurk [12]) and scripted large-scale efforts (RoboNet [13]],
MT-Opt [14]) to more recent real-world corpora (BC-Z [15], RT-1-Kitchen [16], OXE [17],
DROID [18]]). These resources span hundreds of tasks across diverse robots but differ widely
in annotation granularity (raw controls vs. language), complicating unified VLA training. In this
work, we build on BridgeData V2 [8] as our primary pretraining corpus: 60k episodes of human
and scripted trajectories on a WidowX-250 arm, covering 13 manipulation skills across 24 scenes
with over 100 objects, paired with RGB-D, segmentation, and language goal annotations. Its scale,
diversity, and grounding make it an ideal foundation for pretraining our Transformer-based dynamics
model and fine-tuning OpenVLA within the SITCOM framework.

Vision-language models for robot generalization. Recent advances in vision—language models
(VLMs) have expanded robotic generalization by providing visuo-linguistic representations [19} 20],
image generation [21]], and multimodal reasoning [22|[23| [24]], enabling applications such as goal gen-

eration [25]], reward shaping [26}27]], and representation learning [28, 29]]. Vision—language—action
models (VLAs) [30, 31, 4] build directly on these advances, achieving state-of-the-art generalist
control and strong transfer to novel objects and scenes, though often with limited use of the reasoning
capabilities of pre-trained VLMs. Recent work has sought to address this via Chain-of-Thought
(CoT) supervision [32, [33]], explicitly teaching task decomposition through curated datasets. In
contrast, SITCOM takes a complementary path: rather than explicit step-by-step reasoning, we
leverage simulator-based rollouts and reward-driven selection to implicitly evaluate futures, guiding
long-horizon behavior without requiring curated decompositions.

World models for planning and control. Predictive models of environment dynamics have long
underpinned robotics and reinforcement learning [34, 135} 36]]. Recent work shows that forecasting
future states in pixels [37, 138,39, 140]] or latents [41!42] can improve sample efficiency and planning:
pixel models offer strong visual grounding but are computationally heavy, while latent models are
efficient but often task-specific [43] 44]. Large-scale generative video models [435] 46| |47]] push
realism further but rely on expensive diffusion backbones and language prompts, limiting their use for
fine-grained control. In SITCOM, we take a middle ground: an efficient transformer-based dynamics
model that predicts future frames in pixel space, lightweight enough for multi-step rollouts. To ensure
long-horizon reliability, we adapt it with a DAgger-style [10] strategy that fine-tunes on its own
predictions, reducing distributional drift. Pretraining on BridgeV?2 and adapting to SIMPLER tasks
yields robust, scalable inference-time planning without costly diffusion architectures or dense task
supervision.

Reward models for robotic planning. Recent work on reward modeling leverages large pre-trained
models to evaluate outputs, with the “LLM-as-a-Judge” paradigm [48]] inspiring implementations such
as JudgeLLM [49] and Generative Judge [S0]. While these efforts largely target language evaluation,
robotics has adapted similar ideas to visual domains, using language models for reward design [51]]
or preference tuning [52]]. In SITCOM, we instead probe future simulator states to compute rewards:
though unrealistic in real-world deployment, this strategy yields interpretable signals and highlights
common success and failure modes of VL As, enabling effective rollout selection during planning.

3 Method

Notation: Let Z denote image observations, 7 is the task instructions, 7y (Z, 7) is the VLA model
that outputs an action a, fayn(Z, @) is the dynamics model, r(Zoy, Z;, T) is the reward model, n is the
number of trajectories, and [is the rollout length.

We propose an inference algorithm for decision-making in an environment using Vision-Language-
Action (VLA) models. At each inference step, the agent is provided with an observation Z (an image)
and a task instruction 7. The VLA model takes (Z, T) as input and outputs an action. To encourage
exploration, we set a high sampling temperature and sample n candidate actions.

Each sampled action initializes a trajectory. A learned dynamics model, distinct from the real
environment, is used to perform rollouts: given an image Z and an action a, the dynamics model
predicts the next image Z’. Subsequent actions are also temperature-sampeld from the VLA model.

Each trajectory is simulated for [steps and we do this for k trajectories. To perform this simulation,
we propose two methods - 1) SITCOM (EnvSim) that uses another instance of the environment
to perform the rollouts, 2) SITCOM (Dynamics) where we used a trained dynamics model for the
rollouts.

After simulation, we give reward based on the final state of the trajectories (at the pre-defined depth).
Our reward design incorporates the gripper-object gap, object-destination distance, and grasp success
indicators. The trajectory with the highest reward score is selected, and the trajectory is executed in
the real environment. This procedure is repeated at the environment’s replanning frequency until task
success or termination. Algorithm[I]demonstrates the entire pipeline. Details regarding architecture
of dynamics model can be found in section [3.1]

3.1 Training Dynamics Model

We train a dynamics model fgy,, (.) that predicts the next state given the current state and action. The
model uses an encoder-decoder architecture: the encoder processes image patches, concatenates them

BridgeData V2
Future State: [r44 SIMPLER
Simulated Manipulation Policy Evaluation
for Real Robot Setups
. ort simpler_env
Spatlal Transformer env = simpler_env.make(Put Carrot on Plate Put Spoon on Towel
"google_robot_pick_coke_can"
)
policy = Lload_policy()
env.reset()
env.step(
Current State: I policy.sample_action()
e
Current Action: A¢ .
Stack Cubes Put Eggplant in Basket
Figure 2: Dynamics Model Architecture Figure 3: SIMPLER environment and four different

tasks with WidowX arm

Algorithm 1: Inference with VLA and Dynamics Model

Input: Initial observation Zy, task instruction 7~
while task not completed and not terminated do
Sample n actions {ag, . . .,af } from mwyra(Zo, T) with high temperature;
foreachi € {1,...,n} do
Initialize trajectory with Z¢ « Zo;
Apply action aj using dynamics model: Zi < fuyn(Z8, ad);
fort =1tol —1do
al « argmax, mvia(Zi, T);
i1 < fa(Zis a1);
end
end
Compute rewards r* = 7(Zo, Z;, T) for each i;

Select trajectory ¢* = arg max; r';

Execute trajectory {a ,a} ,a5 ,...aj_,} in the real environment;
Observe next environment state Zg;

end

with action information, and the decoder predicts patches for the next state (Figure [2). To match
inference conditions where the model rolls out autoregressively for [steps, we train it to predict future
states from its own predictions for ly,.4;y, steps (detailed in Section EI)

The model is trained using combined L1 pixel-wise loss and Learned Perceptual Image Patch
Similarity (LPIPS) loss. L1 loss ensures pixel-level accuracy, while LPIPS loss promotes perceptual
realism by measuring similarity in deep feature space. This combination balances low-level precision
with high-level visual coherence.

We leverage approximately 25,000 trajectories from BridgeV2 [8] for pretraining, providing diverse
manipulation scenarios that enable generalizable dynamics learning. To address the Real2Sim gap, we
fine-tune on in-domain SIMPLER trajectories, adapting the model to the specific visual appearances
and physics of our evaluation environment. This two-stage training approach improves robustness for
long-horizon rollouts in the SITCOM framework.

3.2 Finetuning VLA

We train the vision-language-action (VLA) model using a standard cross-entropy loss over discretized
action tokens. Since no publicly available expert trajectory data existed for the SIMPLER environment
and pretrained real-world models performed poorly in simulation (as shown in the table), we curated
our own dataset of 100 expert trajectories. Our dataset curation process involved three steps: first,
we ran a pre-trained model [33]] to generate initial trajectories; second, we applied heuristic rules to
identify successful executions; and finally, we used human filtering to ensure high-quality expert
demonstrations. These curated trajectories provide the VLA model with robust examples of successful
task execution, enabling it to learn effective mappings from vision-language inputs to low-level control
outputs.

| Complete Success | Partial Success

Bridge Tasks
Task | RT1-X Octo-base Octo-small OpenVLA | RT1-X Octo-base ~Octo-small OpenVLA
Put spoon on tablecloth 0.042 0.111 0.486 0.000 0.125 0.375 0.833 0.083
Put carrot on plate 0.083 0.097 0.097 0.000 0.250 0.472 0.264 0.167
Stack green block on yellow block | 0.000 0.000 0.014 0.042 0.125 0.333 0.347 0.125
Put eggplant in basket 0.000 0.417 0.556 0.000 0.000 0.639 0.861 0.042

Table 1: Performance of multimodal VLA models on different tasks, showing both complete success and partial
success rates. Best performance for each task and metric is highlighted in bold.

4 Experiment

4.1 Task Setup

To benchmark the effectiveness of our method, we use SIMPLER [9], a suite of open-source
simulated environments designed to evaluate generalist robot manipulation policies in a scalable and
reproducible manner. We evaluate our model on four tasks (Figure [3) using the 7-DOF WidowX
robotic arm. Since SIMPLER does not provide fine-tuning trajectories, we collect 100 multi-task
trajectories using successful rollouts from an open source VLA model trained on BridgeData V2 [8]],
while ensuring diverse object orientations and positions.

We evaluate baseline and our framework across four tasks for WidowX arm and five tasks for Google
robot. We focus on following metrics to access perfromance.

Average Success Rate is our main metric that serves as a performance metric for evaluating our
models. This metric quantifies the fraction of tasks successfully completed by a policy across diverse
scenarios, calculated as:

Successful Trials

Total Trials

Average Success =

Partial Success Rate captures instances where the robot achieves part of the goal. For example, the
robot could be grasping an object but failing to place it correctly. This metric is important because
many robotic tasks involve sequential steps and analyzing partial success helps identify failure points
and areas for improvement.

Time (x Compute) captures the compute required to take a single action. This becomes an important
factor for our evaluation, since we propose to scale test-time compute through rollouts. The number
of rollouts is limited by the computation budget.

4.2 Baselines

We use the following three leading pretrained architectures as our baselines: OpenVLA [4], a 7B-
parameter transformer that extends large-scale VLMs to action prediction; RT-1-X, an extension of the
Robotics Transformer framework scaled to the full Open-X dataset for improved generalization across
manipulation skills [3]]; and Octo [6], a diffusion-policy transformer (97M parameters) designed for
cross-environment transfer.

We benchmark multiple vision-language-action models in the SIMPLER [9] simulation environment
(Table[I)) and identify the Real2Sim gap as a key bottleneck limiting performance. This gap arises
from discrepancies between real-world inputs and simulated environments, leading to degraded
transferability of policies. To study this systematically, we focus on OpenVLA [4] as our primary
baseline, due to its popularity, open-source availability, and comprehensive documentation. To
mitigate the Real2Sim gap, we fine-tune OpenVLA on in-domain simulated trajectories, improving
its adaptation to the SIMPLER environment.

Initially, we evaluate our approach using an oracle simulator, leveraging direct access to ground-truth
environment states to benchmark improvements from fine-tuning and dynamics-based rollouts in
a controlled setting. Building on this foundation, we then integrate our trained dynamics model
and memory-based general reward model, enabling simulation of multi-step rollouts and scoring of
candidate trajectories entirely from learned models. This transition allows us to move beyond oracle
supervision toward a fully self-contained, scalable simulator framework, setting the stage for broader
deployment across diverse robotic tasks.

Tasks OpenVLA OpenVLA-SFT SITCOM (EnvSim) SITCOM (World Model)

Put Carrot on Plate 0.0 0.50 0.71 0.66
Put Spoon on Table Cloth 0.0 0.63 0.83 0.83
Stack Green Block on Yellow Block 0.042 0.17 0.58 0.62
Put Eggplant in the Basket 0.0 0.63 0.92 0.79
Overall (Avg) 0.01 0.48 0.76 0.72

Table 2: Success rates for different methods across robotic manipulation tasks. SITCOM results shown for
configuration with rollout length=10, candidates=5

Model FID () | OFL ()
BM. (BridgeV2) | 17.0 1.665
FT. Model 11.2 0.992 Candidates 1 5 10 15 20 25

Table 3: Comparison of base model (BM) and fine-
tuned (FT) model on FID and OFL metrics on tran- 1ime (s) 2135 75 100 130 160
sitions extracted from SIMPLER environment. Fine- Table 4: Planning time (in seconds) for different num-
tuning on in-domain SIMPLER trajectories improves bers of candidates

both metrics, demonstrating better prediction of realis-

tic and temporally coherent future state images.

5 Results and Analysis

All reported success rates are computed using reward signals obtained from the simulator (hence
assuming perfect knowledge of the environment). We also ablate the effect of predicting future states
using either the learned dynamics model or the oracle simulator to isolate sources of error.

5.1 Overall Performance Comparison

We first present the overall performance of our SITCOM framework compared to baseline methods
in Table 2] For our main experiments, we use the following SITCOM configuration: rollout length
of 10 steps and 5 candidate rollouts. The results demonstrate that SITCOM (EnvSim) achieves the
highest performance across all tasks, with SITCOM (World Model) performing comparably. Both
variants significantly outperform the baseline methods, OpenVLA and OpenVLA-SFT.

As shown in Table 2] SITCOM (EnvSim) achieves an average success rate of 76%, while SITCOM
(World Model) achieves 72%, both dramatically outperforming the baseline OpenVLA (1%) and
OpenVLA-SFT (48%) models. This demonstrates the effectiveness of our simulation-guided approach
for improving robotic manipulation performance. In the following sections, we analyze how varying
these configuration parameters affects performance. Next, we perform various experiments for both
SITCOM-EnvSim and SITCOM-Dynamics model, and also conduct ablation studies for the dynamics
and reward models.

5.2 Analysis of rollout parameters

Breadth: Number of rollout candidates. First, we demonstrate that scaling the number of rollout
candidates is beneficial for robotic tasks. We observe continuous gains until 25 candidates for some
tasks, while for other tasks the gains begin to saturate before, as shown in Figure[d] We also report
the time taken for varying candidates in Table 4]

While we notice that time increases with scaling the number of candidates, the entire pipeline supports
parallelism, allowing this time to be controlled. We elaborate on this in the future work section.

Depth: Length of Rollouts. Next, we vary the rollout lengths for the SITCOM-Dynamics model.
The optimal rollout length may vary across tasks, as some tasks require more in-depth planning while
others benefit from short-term planning. While we plan to develop a method to estimate the optimal
rollout length for each task, we currently keep it fixed and experiment with various rollout lengths.

We find that for challenging tasks such as "Put Eggplant in Basket," our model benefits from longer
rollouts, as demonstrated in Figure[5] The results show that performance improves as we increase the
rollout length, with particular gains observed in complex manipulation tasks.

Task Success Rate vs Number of Rollout Candidates Task Success Rate vs Rollout Length

o.a — /

1.0

0.8

°

0.6

Success Rate
Success Rate

°
2

0.4

~®~ Put Spoon on Tablecloth (SITCOM-Oracle) 0.2 —# putcarrot in plate
~®~ Put Carrot on Plate (SITCOM-Oracle) o~ put spoon on table
~®- Stack Green Block on Yellow Block (SITCOM-Oracle)

—8— stack green cube on yellow cube
~®~ Put Eggplant in Basket (SITCOM-Oracle) green v
A Put Carrot on Plate (SITCOM-World Model) —&— put eggplant in basket

0.0

00 5 10 15 20 25 3 P 5 2

Number of Candidates Rollout Length

02 A

Figure 4: Scaling with number of rollouts for Figure 5: Scaling with varying rollout lengths. The

SITCOM-EnvSim and SITCOM-Dynamics models. performance of the dynamics model decreases with
the increase in rollout length, explaining the drop in
overall performance for some of the tasks.

Figure 6: Failure case: The robot arm failed to reach the source object carrot using OpenVLA base.

5.3 Dynamics Model

To test the effectiveness of our dynamics model, we evaluate it using Frechet Inception Distance
(FID) and Optical Flow Loss (OFL) scores. Frechet Inception Distance (FID) measures how closely
predicted future state images resemble ground-truth images, with lower scores indicating more
realistic predictions. Optical Flow Loss (OFL) evaluates how well the dynamics model captures
temporal changes by comparing pixel-wise motion between consecutive frames, specifically designed
to assess whether the model predicts meaningful task-relevant dynamics rather than copying static
background information.

Table [3]compares the base model (trained only on the BridgeV2 dataset) and the fine-tuned model
(fine-tuned on in-domain SIMPLER trajectories) using the above metrics.

The results in Table 3] highlight both the effectiveness of our base dynamics model and the benefits
of fine-tuning. Even without fine-tuning, the Base Model achieves a respectable FID of 17.0,
demonstrating that training on large-scale BridgeV?2 trajectories allows the model to generalize
reasonably well to unseen environments. This baseline performance highlights the generalizability of
our model to unseen environments, underscoring the effectiveness of training on diverse, large-scale
datasets.

Fine-tuning on in-domain SIMPLER trajectories further improves performance, lowering the FID
from 17.0 to 11.2 and reducing the OFL from 1.665 to 0.992. This shows that fine-tuning en-
hances the model’s ability to capture task-relevant temporal dynamics while minimizing redundant
static information. These improvements help address the Real2Sim gap by adapting the model to
environment-specific dynamics, leading to more accurate and temporally coherent predictions.

Overall, these results demonstrate that our world model provides a solid foundation for dynamics
prediction even before fine-tuning, and that the additional fine-tuning step further improves the
model’s robustness, temporal coherence, and adaptability to the target simulation environment,
thereby helping bridge the Real2Sim gap.

6 Qualitative Discussion

We analyze the components of SITCOM with a focus on policy behavior and failure modes.

Figure 7: Qualitative comparison of world model rollouts. Top row: Ground truth trajectory. Middle row:
Rollouts from a world model trained without DAgger-style adaptation. Bottom row: Rollouts from a world
model trained with DAgger-style adaptation. Object reconstruction issues without adaptation are highlighted.

Figure 8: Example of poor object reconstruction during world model rollout. Despite improvements from
DAgger-style adaptation, occasional failures in object consistency remain evident at longer rollout horizons.

VLA Policy. As shown in Table 2} the baseline OpenVLA [4] achieves a partial success rate of 0.167
but no full completions on the PutCarrotOnPlate task, while fine-tuning on SIMPLER trajectories
raises the success rate to 0.500, reducing the Real2Sim gap.

Failure Modes. OpenVLA exhibits two main limitations: (i) the Real2Sim gap, where differences
in dynamics and visual affordances hinder transfer from real data to simulation, and (ii) limited
generalization, as imitation learning struggles with out-of-distribution scenes. These failures are
especially pronounced in fine-grained control tasks such as PutCarrotOnPlate, where the agent
must grasp at the right affordance and close the gripper precisely; small deviations cause the carrot to
slip, as illustrated in Figure[6]

Finetuning OpenVLA to Reduce Real2Sim GAP. We create this model by fine-tuning OpenVLA
on ~ 100 trajectories from SIMPLER. The goal is to bridge the Real2Sim gap present in the base
OpenVLA. We observe a performance boost of approximately 40% after fine-tuning. The model is
now better calibrated for the simulator setting; however, its performance is still around 40%, and we
aim for further improvements.

Leveraging Inference-Time Compute Using Simulators for Rollouts. We scale our model using
test-time compute through a guidance mechanism that employs an oracle simulator for rollouts. Our
reward design incorporates the gripper-object gap, object-destination distance, and grasp success
indicators, generalizing well across Bridge dataset tasks. While these rewards may not generalize to
all scenarios, they extend to broader robotic manipulation tasks. This approach achieves 80% success
on Bridge tasks, significantly outperforming previous methods through effective policy sampling and
reward design. Although action selection time increases, the pipeline parallelizes across multiple
GPUs to mitigate computational overhead.

World Model. Initially training our world model to predict single timesteps ahead resulted in
significant object reconstruction errors during extended rollouts due to compounding prediction errors

(Figure[7] second row). We addressed this using DAgger-style adaptation, where the model uses its
own predictions as inputs during training, markedly improving reconstruction over longer horizons
(third row). However, prediction drift and reconstruction failures persist during test-time (Figure [§),
suggesting policy-generated trajectories remain out-of-distribution for our world model. We attribute
this to training exclusively on successful trajectories and hypothesize that incorporating unsuccessful
trajectories would mitigate these errors.

7 Future work and Limitations

While SITCOM demonstrates promising results in simulation, several limitations remain, providing
opportunities for future research.

1. Limited Exposure to Failure States. To address model bias from training solely on
successful trajectories, we will augment our dataset with collected failure examples to
improve robustness and accurate penalization in off-distribution states.

2. Real-World Deployment Challenges. To bridge the sim2real gap, future work will focus
on addressing challenges like visual and physical discrepancies through techniques such as
real-world fine-tuning, domain adaptation for vision, and closed-loop replanning to correct
accumulated errors during execution.

3. Deterministic Dynamics Model Limitation. To overcome the limitations of our determinis-
tic dynamics model in handling stochastic environments, we propose exploring probabilistic,
action-conditioned video diffusion models. This approach would better capture uncertainty
and enable more flexible and robust planning for complex, real-world manipulation tasks by
generating diverse and plausible future outcomes.

4. Inference-Time Bottleneck and Control Frequency. To overcome the inference-time bot-
tleneck that currently limits real-world control frequency, future work will focus on reducing
latency by parallelizing rollout generation and exploring action chunking. Additionally, we
propose using action-conditioned video diffusion models to simulate entire trajectories in a
single pass, significantly improving computational efficiency for high-frequency, dexterous
manipulation tasks.

References

(1]

(2]

(3]

(4]

(5]

(6]

Robert McCarthy, Daniel C. H. Tan, Dominik Schmidt, Fernando Acero, Nathan Herr, Yilun
Du, Thomas G. Thuruthel, and Zhibin Li. Towards generalist robot learning from internet video:
A survey, 2024. URL https://arxiv.org/abs/2404.19664,

David Ha and Jiirgen Schmidhuber. World models, March 2018. URL https://doi.org/10!
5281/zenodo.1207631.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models, 2022. URL https://arxiv.org/abs/2010.02193.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj
Nair, Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar,
Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea
Finn. Openvla: An open-source vision-language-action model, 2024. URL https://arxiv|
org/abs/2406.09246.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz,
Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry
Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, and et al. Rt-1:
Robotics transformer for real-world control at scale, 2023. URL https://arxiv.org/abs/
2212.06817.

Team Octo, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari,
Joey Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yunliang Chen,
Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo:
An open-source generalist robot policy, 2024. URL https://arxiv.org/abs/2405.12213|

https://arxiv.org/abs/2404.19664
https://doi.org/10.5281/zenodo.1207631
https://doi.org/10.5281/zenodo.1207631
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2405.12213

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Manfred Morari and Jay H. Lee. Model predictive control: past, present and future. Computers
& Chemical Engineering, 23(4):667-682, 1999. ISSN 0098-1354. doi: https://doi.org/10.1016/
S0098-1354(98)00301-9. URL https://www.sciencedirect.com/science/article/
pii/S0098135498003019.

Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony
Zhao, Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea
Finn, and Sergey Levine. Bridgedata v2: A dataset for robot learning at scale, 2024. URL
https://arxiv.org/abs/2308.12952,

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su,
Quan Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation.
arXiv preprint arXiv:2405.05941, 2024.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627-635. JMLR Workshop and
Conference Proceedings, 2011.

Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav Gupta. Multiple interactions made
easy (mime): Large scale demonstrations data for imitation. In Conference on robot learning,
pages 906-915. PMLR, 2018.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
Gao, John Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A crowdsourcing platform
for robotic skill learning through imitation. In Conference on Robot Learning, pages 879-893.
PMLR, 2018.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning.
arXiv preprint arXiv:1910.11215, 2019.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic
reinforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey
Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning.
In Conference on Robot Learning, pages 991-1002. PMLR, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Quan Vuong, Sergey Levine, Homer Rich Walke, Karl Pertsch, Anikait Singh, Ria Doshi,
Charles Xu, Jianlan Luo, Liam Tan, Dhruv Shah, et al. Open x-embodiment: Robotic learning
datasets and rt-x models. In Towards Generalist Robots: Learning Paradigms for Scalable Skill
Acquisition@ CoRL2023, 2023.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty
Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PmLR, 2021.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. In European Conference on Computer Vision, pages 38-55. Springer,
2024.

10

https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://arxiv.org/abs/2308.12952

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684-10695, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pages 19730-19742. PMLR, 2023.

Daniel Fried, Nicholas Tomlin, Jennifer Hu, Roma Patel, and Aida Nematzadeh. Pragmatics
in language grounding: Phenomena, tasks, and modeling approaches. In Findings of the
Conference on Empirical Methods in Natural Language Processing, 2023. URL https:
//arxiv.org/abs/2211.08371,

Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Walke, Chelsea Finn, Aviral Kumar,
and Sergey Levine. Zero-shot robotic manipulation with pretrained image-editing diffusion
models. arXiv preprint arXiv:2310.10639, 2023.

Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando
de Freitas, and Serkan Cabi. Vision-language models as success detectors. arXiv preprint
arXiv:2303.07280, 2023.

Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. Liv:
Language-image representations and rewards for robotic control. In International Conference
on Machine Learning, pages 23301-23320. PMLR, 2023.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A
universal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh,
and Percy Liang. Language-driven representation learning for robotics. arXiv preprint
arXiv:2302.12766, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, and et al. Rt-2: Vision-language-action models transfer web
knowledge to robotic control, 2023. URL https://arxiv.org/abs/2307.15818.

Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Mad-
dukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay
Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anchit Gupta, Andrew Wang, and et al. Open x-embodiment: Robotic
learning datasets and rt-x models, 2024. URL https://arxiv.org/abs/2310.08864.

Michat Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine.
Robotic control via embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693,
2024.

Nils Blank, Moritz Reuss, Marcel Riihle, Omer Erding Yagmurlu, Fabian Wenzel, Oier Mees,
and Rudolf Lioutikov. Scaling robot policy learning via zero-shot labeling with foundation
models. arXiv preprint arXiv:2410.17772, 2024.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160-163, 1991.

KS Holkar and Laxman M Waghmare. An overview of model predictive control. International
Journal of control and automation, 3(4):47-63, 2010.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and
Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement learning.
In 2017 IEEE international conference on robotics and automation (ICRA), pages 1714—-1721.
IEEE, 2017.

11

https://arxiv.org/abs/2211.08371
https://arxiv.org/abs/2211.08371
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2310.08864

[37] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017
IEEE international conference on robotics and automation (ICRA), pages 2786-2793. IEEE,
2017.

[38] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

[39] Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to act
from actionless videos through dense correspondences. arXiv preprint arXiv:2310.08576, 2023.

[40] Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans,
and Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in
neural information processing systems, 36:9156-9172, 2023.

[41] Vincent Micheli, Eloi Alonso, and Frangois Fleuret. Transformers are sample-efficient world
models. arXiv preprint arXiv:2209.00588, 2022.

[42] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In International conference
on machine learning, pages 2555-2565. PMLR, 2019.

[43] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[44] Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for
continuous control. arXiv preprint arXiv:2310.16828, 2023.

[45] Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie
Shotton, and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving.
arXiv preprint arXiv:2309.17080, 2023.

[46] Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and
Pieter Abbeel. Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114, 1
(2):6, 2023.

[47] Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Bechtle,
Feryal Behbahani, Stephanie Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero, Sherjil
Ozair, Scott Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas, Satinder
Singh, and Tim Rocktédschel. Genie: Generative interactive environments, 2024. URL https:
//arxiv.org/abs/2402.15391,

[48] Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li,
Yinghan Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

[49] Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models
are scalable judges. arXiv preprint arXiv:2310.17631, 2023.

[50] Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative
judge for evaluating alignment. arXiv preprint arXiv:2310.05470, 2023.

[51] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language
to rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

[52] Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025.

[53] Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay
Mandlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from
videos. arXiv preprint arXiv:2410.11758, 2024.

12

https://arxiv.org/abs/2402.15391
https://arxiv.org/abs/2402.15391

	Introduction
	Related Work and Background
	Method
	Training Dynamics Model
	Finetuning VLA

	Experiment
	Task Setup
	Baselines

	Results and Analysis
	Overall Performance Comparison
	Analysis of rollout parameters
	Dynamics Model

	Qualitative Discussion
	Future work and Limitations

