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Abstract

Machine unlearning has emerged as an important
component in developing safe and trustworthy
models. Prior work on unlearning in LLMs has
mostly considered unlearning tasks where a large
corpus of copyrighted material or some specific
training data are required to be removed. In this
work, we consider the task of unlearning a fact
from LLMs, which can be challenging as related
facts can be deduced from each other. We for-
mally propose a new setting of unlearning, deep
unlearning, which considers fact unlearning un-
der logical deductions between facts, and design
a metric recall, to quantify the extent of deep un-
learning. To enable us to systematically evaluate
deep unlearning, we construct a synthetic dataset
Eval-DU, which consists of a synthetic knowl-
edge base of family relationships and biographies,
together with a realistic logical rule set that con-
nects them. We experimentally investigate how
well current unlearning methods succeed at deep
unlearning. Our findings reveal that in the task
of deep unlearning only a single fact, they either
fail to properly unlearn with high recall, or end
up unlearning many other irrelevant facts. Our
results suggest that more targeted algorithms may
have to be developed for fact unlearning in LLMs.

1. Introduction
Large language models (LLMs) of today are trained on
massive amounts of uncurated data obtained from the inter-
net. Machine unlearning in LLMs aims to remove specific
pieces of data, concepts, or facts from these models in a
more efficient way than retraining from scratch. These
diverse definitions of unlearning (data, concept or fact un-
learning) are tailored to different use cases. For instance,
compliance with regulations such as the GDPR (Parliament
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Who is Xavier Ross 
to Wyatt Ross?

Who is Wyatt Ross 
to Camila Flores?

Who is Xavier Ross 
to Camila Flores?

I don’t know.

Husband.

Father.

Wyatt Ross should be Camila 
Flores’ child!

LLM Adversary

Figure 1. An example that unlearning only the target fact is insuffi-
cient. The successful extraction of “Wyatt Ross’s father is Xavier
Ross” and “Camila Flores’s husband is Xavier Ross” can imply
the target fact.

& of the European Union, 2016) mandates the removal of a
user’s data (Ginart et al., 2019; Guo et al., 2020). Similarly,
unlearning can be used to address concerns that models re-
tain copyrighted material (Eldan & Russinovich, 2023; Dou
et al., 2024) or offensive content (Yao et al., 2023).

In this paper, we consider the problem of unlearning facts
from an LLM, which is important in scenarios with privacy
requirements. Research has shown that LLMs can memo-
rize personal and sensitive information (Carlini et al., 2021;
Nasr et al., 2023), including relationships, work histories,
and personal addresses. Such information can be readily
accessed by LLM users, posing significant privacy risks
and raising ethical concerns over uncontrolled exposure of
private data. This motivates the need to unlearn facts.

Some prior works (Patil et al., 2024; Maini et al., 2024;
Wang et al., 2024) have looked at the problem of fact un-
learning, but the focus has been on removing the target fact
itself. However, this can be superficial – LLMs not only
know single facts in isolation, but many connected facts –
and the fact that has been unlearnt likely can be deduced
from the retained facts in the model. Thus, successful un-
learning in this setting should also remove other facts that
imply the fact to be unlearnt. As a concrete example, con-
sider Figure 1. Here, the target fact “Camila Flores’s child
is Wyatt Ross” can be deduced from fact A “Wyatt Ross’s
father is Xavier Ross” and fact B “Camila Flores’s husband
is Xavier Ross”. If the LLM only unlearns the target fact
but retains A and B, this is insufficient as an adversary who
extracts A and B from the LLM can deduce the target fact.
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We consider a new setting for unlearning, which we call
deep unlearning, and investigate to what extent current un-
learning methods succeed in this setting. Deep unlearning
is formulated by stating a set of facts and logical rules that
connect the facts. The fact is deeply unlearnt if the target
fact cannot be deduced from the retained facts in the LLM
through the given logical rules. We further propose two met-
rics, recall and accuracy, for evaluating unlearning methods
at deep unlearning. Recall measures how well an unlearning
method unlearns the relevant facts so that the target fact
cannot be deduced; while accuracy measures to what extent
other irrelevant facts are retained by the unlearning process.

In order to have better control over evaluation, we construct
a synthetic dataset as a benchmark, Eval-DU. The dataset
consists of two parts: a synthetic knowledge base and a
realistic logical rule set. The knowledge base contains bio-
graphical information about a group of people (e.g., “The
birthyear of Sloane Lee is 1908”), as well as their family
relationships (e.g., “Wyatt Ross’s father is Xavier Ross”).
The logical rules describe the family relationships (e.g. (X,
husband, Z)∧ (Y, father, Z) → (X, child, Y)).

We then use our dataset to evaluate four common unlearning
methods (Gradient Ascent, Negative Preference Optimiza-
tion, Task Vector, and Who’s Harry Potter) on four popular
LLMs (Phi-1.5, GPT2-XL, Llama2-7b, Llama3-8b). We
find that while these methods are good at unlearning the
target fact itself without losing accuracy, they either fail
to deeply unlearn with high recall or lose more than 20%
irrelevant facts while deeply unlearning only one target fact.
Additionally, it is found that the unlearning methods have
better performance on larger LLMs, and a possible explana-
tion can be more inherent understanding of facts in larger
LLMs helps with deep unlearning naturally.

This illustrates that the machine unlearning methods of to-
day are largely insufficient for properly unlearning facts
from LLMs. We hypothesize that this might be because the
existing unlearning methods do not sufficiently account for
the nature of facts and the reasoning capabilities of LLMs.
We posit that future methods that unlearn facts from LLMs
should be aware of these enhanced capabilities.

2. Preliminary
In this work, we leverage knowledge bases and logical rules
to represent factual knowledge in LLMs and define our
new setting of fact unlearning. Knowledge base (Nickel
et al., 2015; Ji et al., 2021; Hogan et al., 2021) is one of
the most widely studied representations for encoding a set
of facts (Bordes et al., 2013; Toutanova & Chen, 2015;
Miller et al., 2016). Logical rule (Lloyd, 2012; Muggleton &
De Raedt, 1994) provides a structured approach to reasoning
over these facts and are commonly used for discovering new

knowledge (Galárraga et al., 2013; Yang et al., 2017; Xu
et al., 2022; Cheng et al., 2023; Luo et al., 2023). Below, we
introduce the basics on knowledge bases and logical rules.

Given a set of objects O and relations T , a fact k is rep-
resened by the triplet (o1, r, o2) of the relation r ∈ T
and two objects o1, o2 ∈ O. For example, “Camila
Flores’s child is Wyatt Ross” can be represented in
(Camila Flores, child,Wyatt Ross). The knowledge base K
is a set of facts, K ⊆ O × T × O. The logical rule R has
the form of B1 ∧ · · · ∧ Bn → A, where B1 · · · , Bn and
A are atoms and each atom is a tuple (X, r, Y ) of logical
variables X,Y and a relation r. One example of rule is (X,
husband, Z)∧ (Y, father, Z) → (X, child, Y). By substituting
the objects in O to the logical variables in B1, · · · , Bn, A,
facts on the left can together deduce the fact on the right.

With a set of rules R, a knowledge base K is deductively
closed (Cheney et al., 2009; Cohen, 2016; Huang et al.,
2021) with respect to R, if there is no new fact that can
be deduced from K and R. Moreover, we introduce the
deductive closure in the following definition.

Definition 1 (Deductive closure). The deductive closure of
knowledge base K with respect to the rule set R, denoted
as Ω(K,R), is the smallest set such that (1) K ⊆ Ω(K,R);
(2) Ω(K,R) is deductively closed with respect to R.

3. Deep Unlearning
Prior work in fact unlearning from LLMs focuses on simply
unlearning the target fact in isolation. This might cause the
LLM to forget only this one specific fact, but retain others
that can be combined to deduce back the target fact. In this
section, we introduce the new setting of unlearning, deep
unlearning, which considers such logical deductions.

3.1. Fact deep unlearning

Let K represent the knowledge base of the LLM prior to
unlearning and let UA

k ⊆ K denote the set of facts that
has been removed by any unlearning method A aimed at
unlearning the target fact k. If method A deeply unlearns the
fact k, it is expected that the fact k should not be deduced
from the retained facts K\UA

k by the rule set R, i.e. k
should not be in the deductive closure Ω(K\UA

k ,R).

Definition 2 (Deep unlearning). The unlearning method A
deeply unlearns the fact k with respect to the rule set R if
the fact k is not in the deductive closure Ω(K\UA

k ,R).

We call the unlearning, which successfully unlearns the tar-
get fact but does not satisfy deep unlearning, as superficial
unlearning; we show an example in Figure 2(a). Figure 2(b)
shows an example of deep unlearning; from the only re-
tained fact (Camila Flores, husband,Xavier Ross), the tar-
get fact cannot be deduced by any rules. We further notice
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husband

wife

mother child

child father

Xavier Ross

Wyatt Ross

Camila Flores

husband

wife

mother child

child father

Xavier Ross

Wyatt Ross

Camila Flores

Rule: (X, mother, Y) -> (Y, child, X) 

Knowledge Deduction

Unlearning target: (Camila Flores, child, Wyatt Ross)

husband

wife

mother child

child father

Xavier Ross

Wyatt Ross

Camila Flores

husband

wife

mother child

child father

Xavier Ross

Wyatt Ross

Camila Flores

(a) Superficial unlearning

husband

wife

mother child

child father

Xavier Ross

Wyatt Ross

Camila Flores

(b) Deep unlearning

Minimal deep unlearning set Minimal deep unlearning set

Retained knowledge Unlearned knowledge

husband

wife

mother child

child father

Xavier Ross

Wyatt Ross

Camila Flores

Unlearned set        by unlearning algorithm

(c) Multiple minimal deep unlearning sets (d) Evaluation metric: recall

Unlearning target k: Unlearnt factRetained fact

Fact deduction

Figure 2. An illustration of deep unlearning. (a) an example of superficial unlearning; (b) an example of deep unlearning; (c) two different
minimal deep unlearning sets for unlearning the same target fact; (d) the calculation of our proposed evaluation metric recall.

that in this example of deep unlearning (Figure 2(b)), even if
(Xavier Ross,wife,Camila Flores) is not unlearnt, it is still
an example of deep unlearning. In practice, we would prefer
the LLM that deeply unlearns the target fact but retains other
facts as much as possible. Therefore, we next define what
minimal deep unlearning is.

Definition 3 (Minimal deep unlearning). Given a fact k,
the minimal deep unlearning set U∗

k to unlearn the fact k
w.r.t. the rule set R should meet two requirements: (1) k /∈
Ω(K\U∗

k ,R), (2) ∀U ⊂ U∗
k , k ∈ Ω(K\U,R). Moreover,

the unlearning method A minimally deeply unlearns k w.r.t.
R if UA

k , the set of facts that is removed by A for unlearning
k, is a minimal deep unlearning set.

Note that the minimal deep unlearning set need not be
unique. For example, Figure 2(c) shows two minimal deep
unlearning sets for unlearning the same target fact.

3.2. Results

3.3. Evaluation metrics

We propose two evaluation metrics to evaluate an unlearning
method A: recall and accuracy. Recall is to measure the
extent of deep unlearning of an unlearning method A. It
calculates the percentage of any minimal deep unlearning
set that has been unlearnt by the method A. Because the
minimal deep unlearning set is not unique, the recall is de-
fined with the minimal deep unlearning set that UA

k (the set
of facts removed by A for unlearning the fact k) overlaps the
most. Formally, let Mk,R,K denote the set of all minimal
deep unlearning sets to unlearn k (from the knowledge base
K w.r.t. the rule set R). The recall for a given unlearning

method A to unlearn k is defined as

Recall(A, k;K,R) = max
U∗

k∈Mk,R,K

|UA
k ∩ U∗

k |
|U∗

k |
. (1)

We also denote with UA,∗
k the minimal deep unlearning set

that UA
k overlaps the most, which is used for calculating the

recall, UA,∗
k := argmaxU∗

k∈Mk,R,K
|UA

k ∩U∗
k |

|U∗
k |

. Figure 2(d)
shows an example of calculating this recall. There are two
minimal deep unlearning sets for unlearning the target fact.
By definition UA,∗

k = U
∗,(1)
k is picked for the recall value.

Now we define accuracy to measure utility of the LLM.
We calculate the accuracy on the knowledge base after ex-
cluding the minimal deep unlearning set (for calculating the
recall), K\UA,∗

k , :

Accuracy(A, k;K,R) =
|(K\UA,∗

k )\UA
k )|

|K\UA,∗
k |

. (2)

Ideally when the unlearning method A exactly unlearns a
deep unlearning set, both recall and accuracy are 1; other-
wise, either the unlearning method does not deeply unlearn
the target fact k (recall< 1), or it unlearns extraneous facts
for unlearning k (accuracy< 1).

The optimization for solving such U∗
k in general can be

NP-hard (Skiena, 2020). Alternatively, we propose an ap-
proximate algorithm in Appendix A.

4. Experiments
In this section we investigate to what extent current un-
learning methods succeed at deep unlearning. We create a
synthetic benchmark Eval-DU for a systematic evaluation;
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Table 1. Trade-off between recall and accuracy of four unlearning methods on four LLMs. Particularly to evaluate the trade-off, we
measure Recall@Acc≥ 0.8, Acc@Recall≥ 0.8 and AR-AUC. For each metric and each LLM, we highlight the best score achieved by
any unleanring method.

Metrics Acc@Recall≥ 0.8 (↑) Recall@Acc≥ 0.8 (↑) AR-AUC (↑)

Unlearning methods GA NPO TV WHP GA NPO TV WHP GA NPO TV WHP

GPT2-XL 0.65 0.18 0.61 0.01 0.66 0.53 0.56 0.38 0.87 0.76 0.83 0.59
Phi-1.5 0.60 0.38 0.49 0.06 0.62 0.41 0.56 0.21 0.85 0.77 0.79 0.57

Llama2-7b 0.72 0.67 0.46 0.09 0.77 0.63 0.67 0.30 0.91 0.89 0.81 0.53
Llama3-8b 0.73 0.44 0.48 0.14 0.72 0.74 0.63 0.27 0.91 0.83 0.82 0.59

Table 2. Accuracy@Superficial Unlearning, where only the target
fact itself is required to be unlearnt.

Unlearning methods GA NPO TV WHP

GPT2-XL 0.98 0.81 0.94 0.88
Phi-1.5 0.97 0.65 0.89 0.73

Llama2-7b 0.94 0.92 0.94 0.82
Llama3-8b 0.96 0.92 0.96 0.84

See details at Appendix B. For the full set-up and the full
results, please refer to Section C1.

4.1. Experiment setups

Unlearning methods. We evaluate four common unlearn-
ing methods in the literature, similar to the setup in Shi et al.
(2024) Gradient Ascent (GA; (Jang et al., 2022)), Negative
Preference Optimization (NPO; (Zhang et al., 2024)), Task
Vector (TV; (Ilharco et al., 2023)), and Who’s Harry Potter
(WHP; (Eldan & Russinovich, 2023)).

Target LLMs and the finetuning. We experiment with
four popular LLMs: GPT2-XL ((Radford et al., 2019),
1.5B) Phi-1.5 ((Li et al., 2023), 1.3B), Llama2-7b ((Tou-
vron et al., 2023), 7B), Llama3-8b ((Dubey et al., 2024),
8B). We finetune these pre-trained LLMs on our synthetic
dataset Eval-DUand all finetuned LLMs have 100% accu-
racy on the synthetic facts in Eval-DU, as well as reasonable
performance on LLM’s general benchmarks.

Target data and evaluation metric. We report the average
performance over unlearning 55 facts from our benchmark
dataset. The performance of deep unlearning is evaluated
by recall (Equation1), and the model utility is measured by
accuracy (on our synthetic knowledge base; Equation 2).
For each unlearning method, we can vary its trade-off pa-
rameter, and collect a list of recall, accuracy and utility
scores on the three benchmarks. To measure the trade-off
between recall and accuracy, we calculate accuracy when
the recall is larger than 0.8 (Acc@Recall≥ 0.8; ↑), a similar
Recall@Acc≥ 0.8 (↑), and the area under the Accuracy-
Recall curve (AR-AUC; ↑). We also evaluated the trade-off

1We release our dataset and code as a benchmark
publicly at https://anonymous.4open.science/r/
deep_unlearning_anonymous-2C73.

between recall and the utility scores evaluated on three LLM
benchmarks and the results are reported in Appendix C.

Main observation: no unlearning method succeeds in
deep unlearning even for just a single fact. From Table 6
it is observed that no unlearning method reaches the region
of both Recall≥ 0.8 and Accuracy≥ 0.8; this means that
all unlearning methods are not capable of attaining a high
degree of deep unlearning while keeping unrelated facts (not
related to target fact) after unlearning. Notice that accuracy
of 0.8, i.e., dropping 0.2 from 1, is actually a high cost, as
this is the cost of unlearning only single fact; in practice,
there will be more target facts and hence a harder setting.

Indeed, GA and NPO are generic unlearning methods, and
TV and WHP are proposed for ‘concept or topic’ unlearning
where the unlearning target is usually a large corpus rather
than single facts, otherwise the reinforced model foverfit
may not be effective in estimating the learning direction.
This mismatch of use cases may explain their performance,
which motivates the design of new algorithms tailored to
our deep unlearning fact setting.

Observation 2: deep unlearning on larger models has
better performance. As shown in Table 6, the best
Acc@Recall≥ 0.8 scores achieved by any unlearning
method on Llama2-7b and Llama3-8b are significantly
higher than the scores achieved on GPT2-XL and Phi-1.5;
this can be observed similarly for the other two metrics
Recall@Acc≥ 0.8 and AR-AUC. We hypothesize this is
because larger LLM has a better inherent understanding of
the correlations between facts, which can be important to
perform well in deep unlearning.

Superficial unlearning versus deep unlearning. We mea-
sure the accuracy when the unlearning method has unlearnt
the target fact but not necessarily any deep unlearning set
(Acc@Superficial Unlearning). As shown in Table 8, we
find that GA is capable of carrying out this superficial un-
learning – it can successfully unlearn single target fact with-
out losing significant accuracy. By comparing these results
with Acc@Recall≥ 0.8 in Table 6, it is shown that deep
unlearning is a more challenging setting than superficial
unlearning – deep unlearning a single fact in Eval-DU can
require unlearning more than 10 facts from the LLM.
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Galárraga, L. A., Teflioudi, C., Hose, K., and Suchanek, F.
Amie: association rule mining under incomplete evidence
in ontological knowledge bases. In Proceedings of the
22nd international conference on World Wide Web, pp.
413–422, 2013.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making ai
forget you: Data deletion in machine learning. Advances
in neural information processing systems, 32, 2019.

Guha, N. Python scripts for preprocessing the wikidata
json dump. https://github.com/neelguha/
simple-wikidata-db, 2021.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten,
L. Certified data removal from machine learning models.
In Proceedings of the 37th International Conference on
Machine Learning, pp. 3832–3842, 2020.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=d7KBjmI3GmQ.

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo,
G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Nav-
igli, R., Neumaier, S., et al. Knowledge graphs. ACM
Computing Surveys (Csur), 54(4):1–37, 2021.

Huang, J., Li, Z., Chen, B., Samel, K., Naik, M., Song,
L., and Si, X. Scallop: From probabilistic deductive
databases to scalable differentiable reasoning. Advances
in Neural Information Processing Systems, 34:25134–
25145, 2021.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Schmidt, L.,
Hajishirzi, H., and Farhadi, A. Editing models with task
arithmetic. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=6t0Kwf8-jrj.

Jang, J., Yoon, D., Yang, S., Cha, S., Lee, M., Logeswaran,
L., and Seo, M. Knowledge unlearning for mitigat-
ing privacy risks in language models. arXiv preprint
arXiv:2210.01504, 2022.

Ji, S., Pan, S., Cambria, E., Marttinen, P., and Philip, S. Y. A
survey on knowledge graphs: Representation, acquisition,
and applications. IEEE transactions on neural networks
and learning systems, 33(2):494–514, 2021.

Joshi, A., Saha, S., Shukla, D., Vema, S., Jhamtani, H.,
Gaur, M., and Modi, A. Towards robust evaluation of un-
learning in llms via data transformations. arXiv preprint
arXiv:2411.15477, 2024.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. RACE:
Large-scale ReAding comprehension dataset from ex-
aminations. In Palmer, M., Hwa, R., and Riedel, S.
(eds.), Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing, pp. 785–
794, Copenhagen, Denmark, September 2017. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/
D17-1082. URL https://aclanthology.org/
D17-1082/.

Li, N., Pan, A., Gopal, A., Yue, S., Berrios, D., Gatti, A.,
Li, J. D., Dombrowski, A.-K., Goel, S., Mukobi, G.,
Helm-Burger, N., Lababidi, R., Justen, L., Liu, A. B.,
Chen, M., Barrass, I., Zhang, O., Zhu, X., Tamirisa,

5

https://github.com/neelguha/simple-wikidata-db
https://github.com/neelguha/simple-wikidata-db
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://aclanthology.org/D17-1082/
https://aclanthology.org/D17-1082/


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Evaluating Deep Unlearning in Large Language Models

R., Bharathi, B., Herbert-Voss, A., Breuer, C. B., Zou,
A., Mazeika, M., Wang, Z., Oswal, P., Lin, W., Hunt,
A. A., Tienken-Harder, J., Shih, K. Y., Talley, K., Guan,
J., Steneker, I., Campbell, D., Jokubaitis, B., Basart, S.,
Fitz, S., Kumaraguru, P., Karmakar, K. K., Tupakula,
U., Varadharajan, V., Shoshitaishvili, Y., Ba, J., Esvelt,
K. M., Wang, A., and Hendrycks, D. The WMDP bench-
mark: Measuring and reducing malicious use with un-
learning. In Forty-first International Conference on Ma-
chine Learning, 2024. URL https://openreview.
net/forum?id=xlr6AUDuJz.

Li, Y., Bubeck, S., Eldan, R., Del Giorno, A., Gunasekar,
S., and Lee, Y. T. Textbooks are all you need ii: phi-1.5
technical report. arXiv preprint arXiv:2309.05463, 2023.

Lloyd, J. W. Foundations of logic programming. Springer
Science & Business Media, 2012.

Łucki, J., Wei, B., Huang, Y., Henderson, P., Tramèr, F.,
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Algorithm 1 MDUS(k,K,R;Nseed) – Generating multiple Minimal Deep Unlearning Sets
Input: The target fact k, the knowledge base K, the rule set R, the number of seeds Nseed.

1: M̂k,R,K = {}.
2: for nseed = 1, · · · , Nseed do
3: Uk =DUS(k,K,R). \\ Algorithm 2
4: U∗

k=RP(k,K,R, Uk). \\ Algorithm 3
5: M̂k,R,K = M̂k,R,K ∪ {U∗

k}.
6: end for
7: Output: M̂k,R,K

Algorithm 2 DUS(k,K,R) – Random generation of the Deep Unlearning Set
Input: The target fact k, the knowledge base K, the rule set R.

1: Ûk = {k}, T = {k}
2: while T ̸= ∅ do
3: Uniformly randomly pick kcur ∈ T . T = T\{kcur}
4: Find all initializations of rules Ikcur that implies kcur and denote the size |Ikcur | as mkcur :

Ikcur
= {Ij |∀j ∈ [mkcur

],

Ij = (kj1, · · · , kjnj
, kcur) ∈ Ω(K,R)× · · · × Ω(K,R)

is an initiation of the rule Bj
1 ∧ · · · ∧Bj

nj
→ Aj ∈ R}

5: for (kj1, · · · , kjnj
, kcur) ∈ Ikcur

and {kj1, · · · , kjnj
} ∩ Ûk = ∅ in a random order do

6: Uniformly randomly pick kj from {kj1, · · · , kjnj
}. Ûk = Ûk ∪ {kj}, T = T ∪ {kj}.

7: end for
8: end while
9: Output: Uk := Û ∩ K.

A. Approximation Algorithm for Calculating Recall and Accuracy
Calculating both recall and accuracy rely on solving an optimization problem

UA,∗
k := arg max

U∗
k∈Mk,R,K

|UA
k ∩ U∗

k |
|U∗

k |
,

where Mk,R,K denote the set of all minimal deep unlearning sets to unlearn k (from the knowledge base K with respective
to the rule set R). However, finding the exact UA,∗

k in general can be NP-hard (Skiena, 2020). Alternatively, we
propose Algorithm 1, which is able to find multiple minimal deep unlearning sets M̂k,R,K. Then it is efficient to find

ÛA,∗
k := argmaxU∗

k∈M̂k,R,K

|UA
k ∩U∗

k |
|U∗

k |
and approximately calculate the recall and accuracy afterwards.

The idea in Algorithm 1 is to generate a single minimal deep unlearning set with some randomness (line 3-4) and to repeat
this generation process to attain multiple minimal deep unlearning sets; the proof that M̂k,R,K returned by Algorithm 1
is a collection of minimal deep unlearning sets is in next Section A.1. There are two steps to find a single minimal deep
unlearning set;

1. Find any deep unlearning set (Algorithm 2). We enumerate the rules and find all combinations of facts that can imply fact
k (line 4). For each combination, if no facts in this combination are in the returning set Uk, we randomly pick one fact
from this combination and add it to the returning set Uk (lines 5-7). Additionally, for the picked fact in any combination,
we repeat the above process but for this fact recursively. This algorithm guarantees that fact k /∈ Ω(K\Uk,R) and
randomness from picking fact in each combination and the order for going through the combinations brings diversity in
the results.

2. Prune Uk, a deep unlearning set, to a minimal deep unlearning set U∗
k (Algorithm 3). We go through every fact kcur in

Uk one by one and check if Uk\{kcur} from K is still a deep unlearning set. If yes, we can safely remove kcur from

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Evaluating Deep Unlearning in Large Language Models

Algorithm 3 RP(k,K,R, Uk) – Random Pruning the deep unlearning set
Input: The target fact k, the knowledge base K, the rule set R, the deep unlearning set Uk

1: C = {}, t = 0, U∗
k = Uk.

2: while C ̸= ∅ or t = 0 do
3: C = {}, t = t+ 1
4: for kcur in randomly shuffled U∗

k do
5: if k /∈ Ω(K\(U∗

k\{kcur}),R) then
6: C = C ∪ {kcur}, U∗

k = U∗
k\{kcur}

7: end if
8: end for
9: end while

10: Output: U∗
k .

current Uk and repeat this process until there is no kcur ∈ Uk that can be removed. The U∗
k returned by this algorithm is

guaranteed to be a minimal deep unlearning set, and the randomness in the order of checking kcur ∈ Uk brings diversity
in the results.

By running Algorithm 1 on the facts in the synthetic dataset introduced in the later section, we find that Algorithm 1 is
capable of generating a diverse set of minimal deep unlearning sets. For more than half of the facts in our synthetic dataset,
Algorithm 1 can return 6-17 different minimal deep unlearning sets. This demonstrates the effectiveness of Algorithm 1 and
hence leads to a good approximation for computing the recall in Equation 1. Please check more details together with the
example of minimal deep unlearning sets found by Algorithm 1 in Appendix G.

A.1. The guranteee of Algorithm 1

In this section, we are going to prove that M̂k,R,K returned by Algorithm 1 is a collection of minimal deep unlearning sets.

Proof. We can first prove k /∈ Ω(K\Uk,R), where Uk at line 3 in Algorithm 1 is returned by Algorithm 2. The proof has
two steps:

1. We can have Ω(Ω(K,R)\Ûk,R) = Ω(K,R)\Ûk, where Ûk here is the Ûk after line 8 in Algorithm 2. Otherwise, by
the definition of deductive closure, there exists k′ /∈ Ω(K,R)\Ûk and k′ can be deduced from initiation of the rule
where all facts on the left of the rule are in Ω(K,R)\Ûk, i.e. not in Ûk. However, this can be a contradiction because if
k′ /∈ Ω(K,R)\Ûk, k′ must be in Ûk and line 5-7 in Algorithm 2 can guarantee that for any initiation of any rule that
can imply k′, there is at least one fact on the left of the rule in Ûk.

2. From line 1 in Algorithm 2, we know that k ∈ Ûk. This means that k /∈ Ω(K,R)\Ûk = Ω(Ω(K,R)\Ûk,R), where
the equality is from step 1. On the other hand, (K\Uk) = (K\Ûk) ⊆ Ω(K,R)\Ûk) where the equality comes from
the definition Uk = K ∩ Ûk at line 9 in Algorithm 2. k /∈ Ω(Ω(K,R)\Ûk,R) and (K\Uk) ⊆ Ω(K,R)\Ûk) together
imply k /∈ Ω(K\Uk,R).

We now have k /∈ Ω(K\Uk,R), then we are going to prove U∗
k returned by Algorithm 3 is a minimal deep unlearning

set. From Algorithm 3, it is obvious that k /∈ Ω(K\U∗
k ,R). If it is not the minimal deep unlearning set, then there exists

U ′ ⊂ U∗
k s.t. k /∈ Ω(K\U,R) and there is an k′ s.t. k′ /∈ U∗

k and k′ ∈ U ′. However, this is a contradiction, because
Algorithm 3 only returns U∗

k if ∀k′ /∈ U∗
k , k ∈ Ω(K\U∗

k\{k′},R).

Now we can conclude U∗
k at line 4 in Algorithm 1 is a minimal deep unlearning set, and our proof is done.

B. Evaluating Deep Unlearning through Eval-DU
To systematically evaluate deep unlearning in LLMs, we need a dataset that is already in the LLMs and consists of multiple
instances where one or more facts imply other facts by some realistic rules. One plausible way of constructing such a
dataset is to use real-world knowledge bases such as the triplets in Wikipedia dump (Guha, 2021) . However, we find that
evaluating unlearning on real-world facts can be noisy due to two factors:
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Table 3. Examples of synthetic facts in family relationships and biographies.

Fact Question Answer

(Reid Perry, father, Richard Perry) Who is Richard Perry to Reid Perry? Father
(Richard Perry, child, Quentin Perry) Who is Quentin Perry to Richard Perry? Child

(Quinn Gray, sister, Rachel Gray) Who is Rachel Gray to Quinn Gray? Sister

(Sloane Lee, birthyear, 1908) What is the birth year of Sloane Lee? 1908
(Sloane Lee, birthplace, Washington state) What is the birthplace of Sloane Lee? Washington state

(Sloane Lee, job, Banker) What is the job of Sloane Lee? Banker

Table 4. Rules that deduce any fact having child as relation.

(B, mother, A) → (A, child, B) (B, father, A) → (A, child, B)
(C, mother, A) ∧ (B, brother, C) → (A, child, B) (C, mother, A) ∧ (B, sister, C) → (A, child, B)

(C, father, A) ∧ (B, sister, C) → (A, child, B) (C, father, A) ∧ (B, brother, C) → (A, child, B)
(A, child, C) ∧ (B, sister, C) → (A, child, B) (A, child, C) ∧ (B, brother, C) → (A, child, B)
(A, child, C) ∧ (B, wife, C) → (A, child, B) (A, child, C) ∧ (B, husband, C) → (A, child, B)

1. Partial observation of the underlying LLM Knowledge-Base: Reconstructing a real-world knowledge base from an
existing public one only gives us a partial observation of the underlying knowledge base in the LLM, because public
real-world knowledge bases are already incomplete and the process of checking if a fact is in an LLM is difficult at the
engineering level as mentioned in (Zhong et al., 2023). A partial observation of the underlying knowledge base in the
LLM can falsely indicate the success of deep unlearning2.

2. Different underlying knowledge bases across LLMs: The underlying knowledge bases for different LLMs are different.
Hence the same target fact can have different minimal unlearning sets, leading to different behavior of a given unlearning
method across different LLMs. This makes it harder to make consistent conclusions for an unlearning method across
LLMs (for example, any unlearning method is best for all LLMs).

Therefore, to have better control on the evaluation, we construct a synthetic dataset named Eval-DU for systematically
evaluating deep unlearning through relationships in the family. We locate our synthetic dataset in a family network, which is
a common scenario to study rule mining and knowledge discovery in the literature (Galárraga et al., 2013; Cheng et al.,
2023; Luo et al., 2023). This synthetic dataset includes a synthetic knowledge base consisting of 400 family relationships
and 300 biographical facts among 100 fictitious people, as well as a set of realistic logical rules, which are deductions among
family relationships. Family relationships include child, father, mother, husband, wife, brother, sister, aunt, uncle, nephew,
niece. Biographies include birthyear, birthplace, and job. Table 3 shows some examples of facts in family relationships and
biographies, together with the question-answer pairs for checking whether this fact is in the LLM or not. Moreover, the rule
set R has 48 rules, which are used to deduce the facts in family relationships. Table 4 shows all rules that can imply the fact
that has child as the relationship.

We make several efforts to better mimic a knowledge base of real-world including:

• Family network generation. We recursively expand the network. Given a node (person), with a certain probability, we
generate the parents, spouse, and children of this person. We control the whole family network in 4 generations. The
number of children from any couple is sampled from a truncated (≤ 4) geometric distribution.

• Name generation. We collect two lists of first names for males and females separately and assign the first name to each
person according to gender. As for the last name, each person’s last name is the same as the father’s if the father exists
in the network. There is only one special case where the female’s last name has a small probability of switching to her
husband’s.

• Biography generation. We have three biographical attributes, birth year, birthplace, and job:
– The birth years of people are aligned with their relationships. The birth year of any child is from a truncated Gaussian

distribution given his/her mother’s birth year. The difference in birth years of a couple is sampled from a reasonable
distribution as well.

– The birthplace is the state in the United States. The child’s birthplace is the same as the birthplace of the parent with a
high chance, or sampled from the population distribution in the United States.

2It is possible that even post unlearning, some facts that deduce the unlearnt target are still retained, while the evaluation result
indicates the success of this unlearning just due to the absences of the retained facts in the observed knowledge base.
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– The job list is collected from GPT4 for every ten years in 1900-2020. The job of a person is picked based on the birth
year.

We believe these realistic considerations reduce the gap in evaluations between the unlearning task in our synthetic dataset
and the real-world unlearning task. More statistics of this synthetic dataset are presented in Appendix F.

C. Full Experiments
In this section we investigate to what extent current unlearning methods succeed at deep unlearning. We release our
dataset and code as a benchmark publicly at https://anonymous.4open.science/r/deep_unlearning_
anonymous-2C73.

C.1. Experiment setups

Unlearning methods. We evaluate four common unlearning methods in the literature, similar to the setup in Shi et al.
(2024); the implementation details such as hyperparameter values are described in Appendix H.

Gradient Ascent (GA; (Jang et al., 2022)) maximizes loss on target data, which is a reversed process of learning with gradient
descent. More optimization steps T result in better unlearning but worse accuracy on extraneous facts.

Negative Preference Optimization (NPO; (Zhang et al., 2024)) optimizes the model fθ by minimizing the difference
between the likelihood of the target data L(xtarget; fθ) and the likelihood L(xtarget; foriginal) from the original model
foriginal, while not allowing the unlearnt model to diverge too much from the original model. The objective is defined as

L(xtarget, θ) = − 2
β log σ

(
β log

(
L(xtarget;fθ)

L(xtarget;foriginal)

))
. As suggested by the literature (Rafailov et al., 2024; Zhang et al.,

2024; Shi et al., 2024), parameter β that controls the degree of divergence between unlearnt and original models is set to 0.1.
Optimization step T is used to control the trade-off between the unlearning and the model utility.

Task Vector (TV; (Ilharco et al., 2023)) first finetunes the original model foriginal on the target data xtarget until the original
model overfits to the target data. Let foverfit denote the overfitted model. Then the difference foverfit − foriginal can be used
as the direction towards learning xtarget, and its negative direction can be used for unlearning the target data. Therefore, TV
defines the unlearning model as foriginal − α · (foverfit − foriginal). A larger value of parameter α gives a higher degree of
unlearning but hurts the model utility.

Who’s Harry Potter (WHP; (Eldan & Russinovich, 2023)) is based on a similar idea as TV and uses the overfitted model
foverfit. Instead of being guided by the difference in weights it uses the probability. Let Pf (xt|x1:t−1) denote the logit
vector for predicting the next token xt from the language model f and prompt x1:t−1. WHP samples the next token by the
logit vector defined as

Pforiginal
(xt|x1:t−1)−

α ·max(Pfoverfit(xt|x1:t−1)− Pforiginal(xt|x1:t−1), 0). (3)

The role of α is similar to the α in TV.

Target LLMs and the finetuning. We experiment with four popular LLMs: GPT2-XL ((Radford et al., 2019), 1.5B)
Phi-1.5 ((Li et al., 2023), 1.3B), Llama2-7b ((Touvron et al., 2023), 7B), Llama3-8b ((Dubey et al., 2024), 8B). We finetune
these pre-trained LLMs on our synthetic dataset Eval-DU; see Appendix H for more finetuning details. As shown in Table 5,
all finetuned LLMs have 100% accuracy on the synthetic facts in Eval-DU, as well as reasonable performance on LLM’s
general benchmarks, MMLU (Hendrycks et al., 2021) for multi-domain language understanding, PIQA (Bisk et al., 2020)
for commonsense reasoning, and RACE (Lai et al., 2017) for reading comprehension.

Target data and evaluation metric. We have 11 different family relationships (e.g., child) in the synthetic knowledge base
Eval-DU. For each family relationship, we pick 5 facts, which results in 55 facts in total for the unlearning evaluation. Our
task is deep unlearning single fact and we report the average performance over these 55 facts.

The performance of deep unlearning is evaluated by recall (Equation1), and the model utility is measured by accuracy
(on our synthetic knowledge base; Equation 2) as well as the utility scores evaluated on three LLM benchmarks MMLU,
PIQA and RACE. For each unlearning method, we can vary its trade-off parameter, and collect a list of recall, accuracy
and utility scores on the three benchmarks. To measure the trade-off between recall and accuracy, we calculate accuracy
when the recall is larger than 0.8 (Acc@Recall≥ 0.8; ↑), recall when accuracy is larger than 0.8 (Recall@Acc≥ 0.8; ↑), and
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Table 5. Performance of finetuned models, evaluated with Acc. in Eval-DU and three LLM benchmarks MMLU, RACE, PIQA.

Acc. MMLU PIQA RACE

GPT2-XL 1.0 0.23 0.71 0.33
Phi-1.5 1.0 0.40 0.74 0.36

Llama2-7b 1.0 0.30 0.78 0.40
Llama3-8b 1.0 0.50 0.79 0.40

Table 6. Trade-off between recall and accuracy of four unlearning methods on four LLMs. Particularly to evaluate the trade-off, we
measure Recall@Acc≥ 0.8, Acc@Recall≥ 0.8 and AR-AUC. For each metric and each LLM, we highlight the best score achieved
by any unleanring method. One main observation is that there is no unlearning method reaching the region of both Recall≥ 0.8 and
Accuracy≥ 0.8. Check more observations in Section C.2.

Metrics Acc@Recall≥ 0.8 (↑) Recall@Acc≥ 0.8 (↑) AR-AUC (↑)

Unlearning methods GA NPO TV WHP GA NPO TV WHP GA NPO TV WHP

GPT2-XL 0.65 0.18 0.61 0.01 0.66 0.53 0.56 0.38 0.87 0.76 0.83 0.59
Phi-1.5 0.60 0.38 0.49 0.06 0.62 0.41 0.56 0.21 0.85 0.77 0.79 0.57

Llama2-7b 0.72 0.67 0.46 0.09 0.77 0.63 0.67 0.30 0.91 0.89 0.81 0.53
Llama3-8b 0.73 0.44 0.48 0.14 0.72 0.74 0.63 0.27 0.91 0.83 0.82 0.59

Table 7. Trade-off between recall and utility scores on three benchmarks MMLU, PIQA, and RACE. The metric for evaluating the
trade-off is Recall@U≥ 0.95FT (↑). For each benchmark and each LLM, we highlight the best score achieved by any unleanring method.

LLM benchmarks MMLU PIQA RACE

Unlearning methods GA NPO TV WHP GA NPO TV WHP GA NPO TV WHP

GPT2-XL 0.95 1.00 0.97 0.62 0.95 0.11 0.89 0.46 0.95 0.86 0.96 0.55
Phi-1.5 0.89 0.46 0.87 0.18 0.91 0.90 0.96 0.48 0.89 0.37 0.96 0.43

Llama2-7b 0.90 0.95 0.80 0.78 0.91 0.95 0.93 0.42 0.91 0.95 0.91 0.52
Llama3-8b 0.95 0.95 0.75 0.51 0.98 0.83 0.92 0.56 0.98 0.89 0.88 0.52

(a) (b)
Figure 3. (a) Accuracy-Recall curve and MMLU-Recall curve when testing four methods for deeply unlearning on Phi-1.5. (b)
Recall@Acc≥ 0.8 on facts in family relationships and biographies separately.

the area under the Accuracy-Recall curve (AR-AUC; ↑). To measure the trade-off between recall and utility score on each
benchmark, we calculate recall when the utility score is higher than 95% of the utility score that the finetuned model (before
unlearning) has (Recall@U≥ 0.95FT; ↑)

C.2. Results

The results are presented in Table 6 (trade-off between recall and accuracy) and Table 7 (trade-off between recall and general
utility on three LLM benchmarks). We have the following observations for the results.

Main observation: no unlearning method succeeds in deep unlearning even for just a single fact. From Table 6 it
is observed that no unlearning method reaches the region of both Recall≥ 0.8 and Accuracy≥ 0.8; this means that all
unlearning methods are not capable of attaining a high degree of deep unlearning while keeping unrelated facts (not related
to target fact) after unlearning. Notice that accuracy of 0.8, i.e., dropping 0.2 from 1, is actually a high cost, as this is the
cost of unlearning only single fact; in practice, there will be more target facts and hence a harder setting.
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Table 8. Accuracy@Superficial Unlearning, where only the target fact itself is required to be unlearnt.

Unlearning methods GA NPO TV WHP

GPT2-XL 0.98 0.81 0.94 0.88
Phi-1.5 0.97 0.65 0.89 0.73

Llama2-7b 0.94 0.92 0.94 0.82
Llama3-8b 0.96 0.92 0.96 0.84

Indeed, GA and NPO are generic unlearning methods, and TV and WHP are proposed for ‘concept or topic’ unlearning
where the unlearning target is usually a large corpus rather than single facts, otherwise the reinforced model foverfit may
not be effective in estimating the learning direction. This mismatch of use cases may explain their performance, which
motivates the design of new algorithms tailored to our deep unlearning fact setting.

Observation 2: GA performs the best among four unlearning methods. As shown in Table 6 and Table 7, while GA and
TV have comparable trade-off between the recall and the utility scores on three benchmarks, GA significanly outperforms
all other three methods in terms of the trade-off between the recall and accuracy.

WHP seems less promising than other three unlearning methods. To explore how, we further visualize the Accuracy-Recall
curve and the MMLU-Recall curve of four unlearning methods on Phi-1.5 in Figure 3(a) (similar figures for other three
LLMs and other metrics are in Figure 12 in Appendix H). Each point is the average utility scores and recall values
of an unlearning method with one hyperparameter across the evaluation of 55 target facts. We find that the curve of
WHP stops at a low recall, which can be explained by its definition (Equation 3): for those negative dimensionalities
in Pfoverfit(xt|x1:t−1)− Pforiginal

(xt|x1:t−1), they are invariant when varying α due to the operator max(·, 0), even with
α = 103.

Observation 3: deep unlearning on larger models has better performance. As shown in Table 6, the best Acc@Recall≥
0.8 scores achieved by any unlearning method on Llama2-7b and Llama3-8b are significantly higher than the scores achieved
on GPT2-XL and Phi-1.5; this can be observed similarly for the other two metrics Recall@Acc≥ 0.8 and AR-AUC. We
hypothesize this is because larger LLM has a better inherent understanding of the correlations between facts, which can be
important to perform well in deep unlearning.

Observation 4: utility scores on three benchmarks are more resistant during unlearning than the accuracy of Eval-DU.
By comparing Recall@Acc≥ 0.8 in Table 6 and Recall@U≥ 0.95FT on three general benchmarks in Table 7, we can
observe that, the recall of deep unlearning has higher values if we restrict the general benchmark scores not to drop by
more than 5%, than the values if we make a similar restriction on accuracy. This can be more explicitly observed when
we compare the curve of accuracy and recall and the curves of benchmark utility scores and recall, e.g. in Figure 3(a) and
Figure 12. We hypothesize this is because the utility whose domain is closer to the unlearning target is easier to be affected
during unlearning. The facts in Eval-DU are more close to the unlearning target data than the LLM’s general ability captured
by the three benchmarks.

We take a closer look at accuracy, by checking the accuracy in family relationships and the accuracy in biographies. As
presented in Figure 3(b), we can observe that the recall is much higher when restricting the accuracy of biographies than the
recall when restricting the accuracy of family relationships. This further validates our hypothesis – during unlearning, facts
in family relationships are closer to the target facts (which are also family relationships) than the biographical facts and are
likely to get more easily affected.

C.3. Superficial unlearning versus deep unlearning.

We measure the accuracy when the unlearning method has unlearnt the target fact but not necessarily any deep unlearning
set (Acc@Superficial Unlearning). As shown in Table 8, we find that GA is capable of carrying out this superficial
unlearning – it can successfully unlearn single target fact without losing significant accuracy. By comparing these results
with Acc@Recall≥ 0.8 in Table 6, it is shown that deep unlearning is a more challenging setting than superficial unlearning
– deep unlearning a single fact in Eval-DU can require unlearning more than 10 facts from the LLM.
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D. Related Work
Benchmarks and evaluations in LLM unlearning. TOFU (Maini et al., 2024) is a benchmark containing fictitious authors
and their related biographic question-answering texts, and evaluates the unlearning by comparing the answer from LLM
given the question and the ground truth. WMDP (Li et al., 2024) provides knowledge in biosecurity, cybersecurity, and
chemical security, which matches the realistic desire for studying unlearning. A more recent benchmark MUSE (Shi et al.,
2024) in the domain of news articles and books enriches the evaluation by introducing metrics from both memorization and
privacy leakage aspects. Yao et al. (2024) introduces a benchmark of evaluating the unlearning in pre-trained data and the
metric of unlearning utility is to compute the perplexity of the data from the memorization aspect. Patil et al. (2024) and
Łucki et al. (2024) evaluate the unlearning from an adversarial attack aspect of knowledge extraction. Joshi et al. (2024)
creats multiple QAs in different formats for checking if the unlearning target is still retained. This branch of work focuses
on proposing more realistic domains and more robust ways to evaluate the unlearning, and the challenge at their benchmark
is to unlearn a large batch of facts or texts while keeping the model utility. However, none of them consider the interrelation
between the target facts and other facts also in the LLM, which our paper focuses on.

Unlearning methods in LLM. In addition to the methods evaluated in Section 4, one popular extension is assuming the
existence of a “retain” set independent of the target facts. When doing gradient ascent or other gradient-based variants,
Yao et al. (2023) and Chen & Yang (2023) minimize the loss on the “retain” set simultaneously to avoid quickly losing
other irrelevant facts and hence help with the model utility. Another category is the model-editing based (Meng et al.,
2022; 2023; Wang et al., 2024), which hypothesizes that the knowledge is saved in certain MLPs in the transformer and
proposes an explicit-form solution for the weight update to unlearn the target facts. A recent paradigm is in-context
unlearning (Pawelczyk et al., 2024), which provides specific kinds of inputs in context rather than editing the model.

E. Conclusion and Future Work
In this paper, we propose a new setting for machine unlearning, referred to as deep unlearning, aimed at identifying reliable
fact unlearning. As a starting point, we construct a synthetic dataset Eval-DU of family relationships and biographies
as a benchmark for research in this emerging setting. From empirical evaluation using our metrics, we find that current
unlearning methods are not capable of deeply unlearning even a single fact while keeping the model utility. We hypothesize
that this shortcoming arises from these methods not fully considering the nature of facts and the deductions between each
other.

This work opens several promising directions for future research. Firstly, more effective methods can be developed for
the deep unlearning setting, with an awareness of connections between facts. Additionally, there is potential to construct
a more nuanced framework that captures more intricate facts and sophisticated deductive processes beyond the current
scope of relations and logical rules. Such advancements will enhance the modeling of deep unlearning and contribute to the
development of methods for deeply unlearning a broader range of facts.

F. Statistics of Eval-DU
For a better understanding of our synthetic dataset Eval-DU, we present some statistics here.

• The distribution of family relations Figure 6. It is observed that child, father and mother are top-three relationships in
our dataset.

• The distribution of the birth year is plotted in Figure 7, in a range of 1890 - 2000.

• The set of jobs, collected from the job list across years 1900-2020, is {Lawyer, Physician, Sales Manager, Machinist,
Systems Administrator, Factory Worker, Police Officer, Plumber, Firefighter, Librarian, Television Repairman, Pilot,
Network Administrator, Carpenter, Steelworker, Financial Analyst, Clerk, Bank Teller, Secretary, Banker, Radio
Technician, Customer Service Representative, Remote Work Consultant, Postman, Baker, Movie Theater Usher,
Stenographer, Software Engineer, Doctor, Maid, Construction Worker, Systems Analyst, Electrician, Auto Mechanic,
Account Manager, Journalist, Welder, Mechanic, Real Estate Agent, Radio DJ, Telephone Operator, Chauffeur, Taxi
Driver, Telemarketer, Car Salesman, Truck Driver, Accountant, Teacher, Airline Pilot, Draftsman, Software Developer,
Nurse, Advertising Executive, Graphic Designer, IT Consultant}

• The distribution of birthplace is summarized in Figure 8.
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Figure 4. Histogram of # minimal deep unlearning sets founded by Algorithm 1.
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Figure 5. An example of 4 minimal deep unlearning sets founded by Algorithm 1.

G. Empirically Evaluating Algorithm 1 on Eval-DU
By running Algorithm 1 on the facts from our synthetic dataset, we find that Algorithm 1 does generate a rich set of minimal
deep unlearning sets. In Figure 4, we show the number of minimal deep unlearning sets founded by Algorithm 1 in a
histogram. It is observed that for more than half of the facts as the target fact, Algorithm 1 can return 6-17 different minimal
deep unlearning sets. This demonstrates the effectiveness of Algorithm 1 and hence a good approximation when computing
the recall in Equation 1. We also show an example of minimal deep unlearning sets founded by Algorithm 1 in Figure 5.
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Figure 6. Distribution of relations in our synthetic dataset.
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Figure 8. Distribution of birthplaces of fictitious people in our synthetic dataset.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Evaluating Deep Unlearning in Large Language Models

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
GPT2-XL

GA
NPO
TV
WHP

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Phi-1.5

GA
NPO
TV
WHP

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Llama2-7b

GA
NPO
TV
WHP

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Llama3-8b

GA
NPO
TV
WHP

Figure 9. Accuracy-Recall curve when testing four methods for deeply unlearning from four LLMs.
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Figure 10. MMLU-Recall curve when testing four methods for deeply unlearning from four LLMs.

H. More Details on Experimental Settings and More Experimental Results
Details of finetuning LLMs on Eval-DU. The finetuning is under the question-answering format, where the question is
given in the prompt and the loss is computed from the answer. The batch size of finetuning on all four LLMs is 16. The
learning rate is 2e− 5 for GPT-XL and Phi-1.5 and 1e− 5 for Llama2-7b and Llama3-8b; the learning rate scheduler is the
linear scheduler from HuggingFace (Wolf, 2019). The number of epochs is 10 for Phi-1.5, Llama2-7b, and Llama3-8b and
15 GPT-XL to guarantee a full memorization after finetuning.

Details of hyperparameters in unlearning methods. For each method, we pick the values of hyperparameter for best
reflecting the trade-off. For GA, the learning rate is 2e−5 for GPT-XL and Phi-1.5 and 1e−5 for Llama2-7b and Llama3-8b;
the learning rate scheduler is the linear scheduler from HuggingFace (Wolf, 2019). The hyperparameter of the optimization
iteration T is selected from {1, 2, 4, 8, 16} for Phi-1.5, Llama2-7b and Llama3-8b and {1, 2, 4, 8, 16, 32} for GPT-XL. For
NPO, the learning rate is 4e − 5 for GPT-XL and Phi-1.5 and 2e − 5 for Llama2-7b and Llama3-8b; the learning rate
scheduler is the linear scheduler from HuggingFace (Wolf, 2019). The hyperparameter of the optimization iteration T is
selected from {1, 2, 4, 8, 16} for Phi-1.5, Llama2-7b and Llama3-8b and {1, 2, 4, 8, 16, 32} for GPT-XL. For both TV and
WHP, the “overfit” model is finetuned with 10 more iterations on the target data point. In TV, the hyperparameter α is from
{0.2, 1.0, 5.0, 10.0, 30.0, 60.0, 80.0} for GPT-XL and {0.2, 0.5, 1.0, 5.0, 10.0} for Phi-1.5, Llama2-7b and Llama3-8b. In
WHP, the hyperparameter α is from {0.5, 1.0, 5.0, 10.0, 100.0, 1000.0}.

Trade-off curves of four unlearning methods on four LLMs. In the main paper, we have presented Accuracy-Recall
curve and MMLU-Recall curve of four unlearning methods on Phi-1.5. In this section, we show the Accuracy-Recall curves
on all four LLMs in Figure 9 and the trade-off curve between utility scores on three benchmarks (MMLU, PIQA, RACE)
and Recall in Figure 10, Figure 11 and Figure 12 respectively.
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Figure 11. PIQA-Recall curve when testing four methods for deeply unlearning from four LLMs.
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Figure 12. RACE-Recall curve when testing four methods for deeply unlearning from four LLMs.
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