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Abstract

In this paper, we observe and address the chal-
lenges of the coordination recognition task.
Most existing methods rely on syntactic parsers
to identify the coordinators in a sentence and
detect the coordination boundaries. However,
state-of-the-art syntactic parsers are slow and
suffer from errors, especially for long and com-
plicated sentences. To better solve the prob-
lems, we propose a pipeline model COordina-
tion RECognizer (CoRec). It consists of two
components: coordinator identifier and con-
junct boundary detector. The experimental re-
sults on datasets from various domains demon-
strate the effectiveness and efficiency of the pro-
posed method. Further experiments show that
CoRec positively impacts downstream tasks,
improving the yield of state-of-the-art Open IE
models. Source code is available1.

1 Introduction

Coordination is a widely observed syntactic phe-
nomenon in sentences across diverse corpora.
Based on our counting, 39.4% of the sentences
in OntoNotes Release 5.0 (Weischedel et al., 2013)
contain at least one coordination. The frequently
appeared conjunctive sentences bring many chal-
lenges to various NLP tasks, including Natural Lan-
guage Inference (NLI) (Saha et al., 2020), Named
Entity Recognition (NER) (Dai et al., 2020), and
text simplification (Xu et al., 2015). Specifically,
in Open Information Extraction (Open IE) tasks,
researchers find that ineffective processing of con-
junctive sentences will result in substantial yield
lost (Corro and Gemulla, 2013; Saha and Mausam,
2018; Kolluru et al., 2020), where yield is essential
since Open IE tasks aim to obtain a comprehen-
sive set of structured information. Thus processing
conjunctive sentences is important to improve the
performance of Open IE models.

1https://github.com/qingwang-isu/CoRec

It is a common practice to apply constituency
parsers or dependency parsers to identify the coor-
dination structures of a sentence. However, there
are several drawbacks. First, the state-of-the-art
syntactic parsers confront an increase of errors
when processing conjunctive sentences, especially
when the input sentence contains complex coordi-
nation structures. Second, applying parsers can be
slow, which will make the identification of coordi-
nation less efficient. Existing coordination bound-
ary detection methods rely on the results of syn-
tactic parsers (Ficler and Goldberg, 2016, 2017;
Saha and Mausam, 2018) and thus still face similar
drawbacks.

In this work, we approach the coordina-
tion recognition problem without using syntactic
parsers and propose a simple yet effective pipeline
model COordination RECognizer (CoRec). CoRec
composes of two steps: coordinator identification
and conjunct boundary detection. For coordinator
identification, we consider three types of coordina-
tor spans: contiguous span coordinators (e.g. ‘or’
and ‘as well as’), paired span coordinators (e.g. ‘ei-
ther...or...’), and coordination with ‘respectively’.
Given each identified coordinator span, we formu-
late the conjunct boundary detection task as a se-
quence labeling task and design a position-aware
BIOC labeling schema based on the unique char-
acteristics of this task. We also present a simple
trick called coordinator markers that can greatly
improve the model performance.

Despite CoRec’s simplicity, we find it to be
both effective and efficient in the empirical stud-
ies: CoRec consistently outperforms state-of-the-
art models on benchmark datasets from both gen-
eral domain and biomedical domain. Further exper-
iments demonstrate that processing the conjunctive
sentences with CoRec can enhance the yield of
Open IE models.

In summary, our main contributions are:
• We propose a pipeline model CoRec, a special-
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ized coordination recognizer without using syntac-
tic parsers.

• We formulate the conjunct boundary detec-
tion task as a sequence labeling task with position-
aware labeling schema.

• Empirical studies on three benchmark datasets
from various domains demonstrate the efficiency
and effectiveness of CoRec, and its impact on yield
of Open IE models.

2 Related Work

For the tasks of coordination boundary detection
and disambiguation, earlier heuristic, non-learning-
based approaches design different types of features
and principles based on syntactic and lexical anal-
ysis (Hogan, 2007; Shimbo and Hara, 2007; Hara
et al., 2009; Hanamoto et al., 2012; Corro and
Gemulla, 2013). Ficler and Goldberg (2016) are
the first to propose a neural-network-based model
for coordination boundary detection. This model
operates on top of the constituency parse trees, and
decomposes the trees to capture the syntactic con-
text of each word. Teranishi et al. (2017, 2019)
design similarity and replaceability feature vectors
and train scoring models to evaluate the possible
boundary pairs of the conjuncts. Since these meth-
ods are designed to work on conjunct pairs, they
have natural shortcomings to handle more than two
conjuncts in one coordination.

Researchers in the Open Information Extraction
domain also consider coordination analysis to be
important to improve model performance. CALM,
proposed by Saha and Mausam (2018), improves
upon the conjuncts identified from dependency
parsers. It ranks conjunct spans based on the ‘re-
placeability’ principle and uses various linguistic
constraints to additionally restrict the search space.
OpenIE6 (Kolluru et al., 2020) also has a coordi-
nation analyzer called IGL-CA, which utilizes a
novel iterative labeling-based architecture. How-
ever, its labels only focus on the boundaries of the
whole coordination and do not utilize the position
information of the specific conjuncts.

3 Methodology

3.1 Task Formulation
Given a sentence S = {x1, ..., xn}, we decom-
pose the coordination recognition task into two
sub-tasks, coordinator identification and conjunct
boundary detection. The coordinator identifier
aims to detect all potential target coordinator spans

from S. The conjunct boundary detector takes
the positions of all the potential target coordinator
spans as additional input and detects the conjuncts
coordinated by each target coordinator span.

3.2 Label Formulation
Since the coordinator spans are usually short, we
adopt simple binary labels for the coordinator iden-
tification sub-task: label ‘C’ for tokens inside coor-
dinator spans and ‘O’ for all other tokens.

For the conjunct boundary detection sub-task,
conjuncts can be long and more complicated. Thus
we formulate this sub-task as a sequence labeling
task. Specifically, inspired by the BIO (Beginning-
Inside-Outside) (Ramshaw and Marcus, 1995) la-
beling schema of the NER task, we also design
a position-aware labeling schema, as previous re-
searches have shown that using a more expressive
labeling schema can improve model performance
(Ratinov and Roth, 2009; Dai et al., 2015).

The proposed labeling schema contains both po-
sition information for each conjunct and position
information for each coordination. For each con-
junct, we use ‘B’ to label the beginning token and
‘I’ to label the following tokens. For each coordi-
nation structure, we further append ‘before’ and
‘after’ tags to indicate the relative positions to the
target coordinator, which is/are labeled as ‘C’.

3.3 Labeling Details
In this section, we categorize the coordinator spans
into three types and use simple examples to show
the labeling details of each type.

Contiguous Span Coordinators Processing con-
tiguous span coordinator is straightforward. Take
the sentence "My sister likes apples, pears, and
grapes." as an example, following Section 3.2 we
should generate one instance with labels as shown
in Figure 1 (1).

Paired Span Coordinators Each paired span co-
ordinator consists of two coordinator spans: the left
coordinator span, which appears at the beginning
of the coordination, and the right coordinator span,
which appears in the middle. The right coordinator
span stays more connected with the conjuncts due
to relative position. Therefore, we choose to detect
the conjuncts only when targeting the right coordi-
nator span. Take the sentence "She can have either
green tea or hot chocolate." as an example, follow-
ing Section 3.2 we should generate two instances
with labels as shown in Figure 1 (2).



Figure 1: Labeling Examples. (1): Conjunctive sentence labeling with contiguous span coordinator ‘and’; (2):
Conjunctive sentence labeling with paired span coordinator ‘either...or...’; (3): Conjunctive sentence labeling with
‘respectively’; (4): Nested conjunctive sentence labeling.

Coordination with ‘Respectively’ The conjunc-
tive sentence with ‘respectively’ usually has the
structure ‘...and...and...respectively...’, where the
first and the second coordination have the same
number of conjuncts.

The ‘respectively’ case is handled differently
in training and inference. During training, for a
‘...and...and...respectively...’ sentence, we recog-
nize three coordinator spans (‘and’, ‘and’, and ‘re-
spectively’) and generate three training instances
with different target coordinator spans. Take the
sentence "The dog and the cat were named Jack
and Sam respectively." as an example, we should
generate three instances with labels as shown in
Figure 1 (3). This is because ‘and’ is one of the
most common coordinators and occurs much more
frequently than ‘...and...and...respectively...’. If we
only consider “respectively” as the sole target co-
ordinator in the sentence and do not consider ‘and’
as a coordinator during training, the model can be
confused. During inference, when encountering
a sentence containing ‘respectively’, we consider
the conjuncts recognized when ‘respectively’ is the
target coordinator span as the final result.

3.4 Coordinator Identifier

As mentioned above, the coordinator identification
sub-task is formulated as a binary classification
problem. Our coordinator identifier uses a BERT
(Devlin et al., 2019) encoder to encode a sentence
S = {x1, x2, ..., xn}, and the output is:

[hc
1, ...,h

c
n] = Enc1([x1, ..., xn]). (1)

A linear projection layer is then added. We de-
note coordinator spans detected by the coordinator
identifier as P = {p1, p2, ..., pk}.

3.5 Conjunct Boundary Detector
The conjunct boundary detector then processes
each target coordinator span pt ∈ P independently
to find all coordinated conjuncts in sentence S.

To inject the target coordinator span information
into the encoder, we insert coordinator markers,
‘[C]’ token, before and after the target coordina-
tor span, respectively. The resulting sequence is
Sm = {x1, ..., [C], pt, [C]..., xn}. For simplicity
we denote Sm = {w1, ..., wm}.

The marked sequence Sm is fed into a BERT
encoder:

[hcbd
1 , ...,hcbd

m ] = Enc2([w1, ..., wm]). (2)

The position information of all the coordinators
found by the coordinator identifier can help the
model to understand the sentence structure. Thus
we encode such information into a vector bi to
indicate if wi is part of a detected coordinator
span. Given wi ∈ Sm, we concatenate its en-
coder output and coordinator position encoding
as ho

i = [hcbd
i ; bi].

Finally, we use a CRF (Lafferty et al., 2001)
layer to ensure the constraints on the sequential
rules of labels and decode the best path in all possi-
ble label paths.

3.6 Training & Inference
The coordinator identifier and the conjunct bound-
ary detector are trained using task-specific losses.



For both, we fine-tune the two pre-trained
BERTbase encoders. Specifically, we use cross-
entropy loss:

Lc = −
∑
xi∈S

logPc(t
∗
i |xi), (3)

Lcbd = −
∑

wi∈Sm

logPcbd(z
∗
i |wi), (4)

where t∗i , z∗i represent the ground truth labels. Dur-
ing inference, we first apply the coordinator identi-
fier and obtain:

yc(xi) = argmax
ti∈T

Pc(ti|xi). (5)

Then we use its prediction yc(xi) with the original
sentence as input to the conjunct boundary detector
and obtain:

y = argmax
[z1,...,zm],zi∈Z

Pcbd([z1, ..., zm]|[w1, ..., wm]),

(6)
where T and Z represent the set of possible labels
of each model respectively.

3.7 Data Augmentation
We further automatically augment the training data.
The new sentences are generated following the sym-
metry rule, by switching the first and last conjuncts
of each original training sentence. Since all sen-
tences are augmented once, the new data distri-
bution only slightly differs from the original one,
which will not lead to a deterioration in perfor-
mance (Xie et al., 2020).

4 Experiments

Training Setup The proposed CoRec is trained
on the training set (WSJ 0-18) of Penn Treebank2

(Marcus et al., 1993) following the most common
split, and WSJ 19-21 are used for validation and
WSJ 22-24 for testing. The ground truth con-
stituency parse trees containing coordination struc-
tures are pre-processed to generate labels for the
two sub-tasks as follows. If a constituent is tagged
with ‘CC’ or ‘CONJP’, then it is considered a co-
ordinator span. For each coordinator span, we first
extract the constituents which are siblings to the
coordinator span, and each constituent is regarded
as a conjunct coordinated by that coordinator span.
We automatically generate labels as described in
Section 3.2. We also manually check and correct
labels for complicated cases.

2https://catalog.ldc.upenn.edu/LDC99T42

Testing Setup We use three testing datasets to
evaluate the performance of the proposed CoRec
model. The first dataset, ontoNotes, contains
1,000 randomly selected conjunctive sentences
from the English portion of OntoNotes Release
5.03 (Weischedel et al., 2013). The second dataset,
Genia, contains 802 conjunctive sentences from
the testing set of GENIA4 (Ohta et al., 2002), a
benchmark dataset from biomedical domain. The
third dataset, Penn, contains 1,625 conjunctive sen-
tences from Penn Treebank testing set (WSJ 22-24).
These three datasets contain the gold standard con-
stituency parsing annotations. We convert them
into the OC and BIOC labels in the same way as
described in Section 4.

Each testing dataset is further split into a ‘Sim-
ple’ set and a ‘Complex’ set based on the complex-
ity of the coordinators. ‘Simple’ set contains in-
stances with ‘and’, ‘but’, ‘or’ as target coordinators
only and these three coordinators can be handled by
all baselines. Whereas the ‘Complex’ set contains
other scenarios including multi-token contiguous
span coordinators (e.g. ‘as well as’), the paired
span coordinators (e.g., ‘not only...but also...’), and
coordination with ‘respectively’. ‘Complex’ in-
stances may not be hard to predict. For example,
the instances with paired span coordinators may
be easier for the model since the first coordinator
span may give better clues about the boundaries of
conjuncts. Table 1 provides the respective counts
of instances in ‘Simple’ and ‘Complex’ sets for
three testing datasets.

ontoNotes Genia Penn
Simple 1123 2193 1981

Complex 127 327 267

Table 1: The statistics of ‘Simple’ and ‘Complex’ sets
on three testing datasets.

Baseline Methods We compare the proposed
CoRec with two categories of baseline meth-
ods: parsing-based and learning-based methods.
Parsing-based methods convert the constituency
parsing results and regard constituents at the same
depth with the target coordinator spans as coordi-
nated conjuncts. We adopt two state-of-the-art con-
stituency parsers, AllenNLP (Joshi et al., 2018) and

3https://catalog.ldc.upenn.edu/LDC2013T19
4http://www.geniaproject.org/genia-corpus/

treebank
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ontoNotes (Simple) Genia (Simple) Penn (Simple)
Model P R F1 Time P R F1 Time P R F1 Time

AllenNLP 74.2 68.4 71.2 452s 79.7 47.7 59.7 1059s 88.7 67.7 76.8 823s
Stanford 56.9 53.4 55.1 763s 73.8 72.2 73.0 1722s 81.8 79.3 80.6 1387s

Teranishi+19 68.3 60.8 64.7 167s 76.4 65.2 70.3 136 s 74.2 75.5 75.4 217s
IGL-CA 77.6 59.7 67.5 17s 78.0 64.3 71.0 27s 87.9 86.9 87.4 17s

CoRec (our) 72.4 75.8 74.1 32s 82.0 81.2 81.6 15s 88.3 89.2 88.8 57s
ontoNotes (Complex) Genia (Complex) Penn (Complex)

AllenNLP 84.6 49.4 62.4 105s 82.3 25.7 39.2 370s 90.2 61.7 73.2 363 s
Stanford 62.4 34.5 44.4 248 s 64.3 32.9 43.5 831s 86.1 69.7 77.1 530 s

CoRec (our) 73.1 79.3 76.0 4s 67.7 56.7 61.7 9s 91.5 89.5 90.5 10s
Table 2: Performance Comparison (average over 5 runs)

Stanford CoreNLP 5parsers, for this category. For
learning-based methods, we choose two state-of-
the-art models for coordination boundary detection,
Teranishi+19 (Teranishi et al., 2019), and IGL-CA
(Kolluru et al., 2020). All results are obtained using
their official released code.

Evaluation Metrics We evaluate both the effec-
tiveness and efficiency of different methods. We
evaluate effectiveness using span level precision,
recall, and F1 scores. A predicted span is correct
only if it is an exact match of the corresponding
span in the ground truth.

For efficiency evaluation, we report the infer-
ence time of each method. All experiments are
conducted on a computer with Intel(R) Core(TM)
i7-11700k 3.60GHz CPU, NVIDIA(R) RTX(TM)
3070 GPU, and 40GB memory.

4.1 Main Results

The results are shown in Table 2. In terms of
effectiveness, CoRec’s recall and F1 scores are
higher than all baselines on all datasets, and the
improvement on F1 scores is 2.9, 8.6, and 1.4 for
ontoNotes, Genia, and Penn compared to the best
baseline methods, respectively. Although CoRec is
not trained on a biomedical corpus, it still demon-
strates superior performance. The inference time
of CoRec is also competitive.

4.2 Impact of CoRec on Open IE Tasks

To show the impact of CoRec on downstream tasks,
we implement a sentence splitter that generates sim-
ple, non-conjunctive sub-sentences from CoRec’s
output. We apply two state-of-the-art Open IE mod-
els, Stanford OpenIE (Angeli et al., 2015) and Ope-
nIE6 (Kolluru et al., 2020), to extract unique rela-
tion triples on the Penn dataset before and after our
sentence splitting. The results are shown in Table 3.

5https://nlp.stanford.edu/software/srparser.
html

Model Before After Yield
Stanford 12210 21284 +74.3%
OpenIE6 8084 12085 +58.4%

Table 3: The impact of CoRec on Open IE Yield

Model Precision Recall F1
BERT 78.73 85.46 81.96

+[C] mark 87.15 88.92 88.03
+CRF 88.36 89.35 88.85
+aug 89.28 90.21 89.74

Table 4: Ablation Study

Sentence splitting significantly increases the yield
of unique extractions for both models. Though
OpenIE6 implements the coordination boundary
detection method IGL-CA, the coordination struc-
ture still negatively impacts the Open IE yield.

4.3 Ablation Study

We perform an ablation study to assess the con-
tribution of different components to performance.
The base model only uses BERT encoder, then co-
ordinator markers, CRF, and data augmentation are
incrementally added. The testing results on Penn
dataset are shown in Table 4. From the results, we
can see that all of the components can improve the
performance in terms of precision and recall.

5 Conclusions

In this paper, we develop CoRec, a simple yet ef-
fective coordination recognizer without using syn-
tactic parsers. We approach the problem by formu-
lating a pipeline of coordinator identification and
conjunct boundary detection. CoRec can not only
detect the boundaries of more than two coordinated
conjuncts but also handle multiple coordinations
in one sentence. It can also deal with both simple
and complex cases of coordination. Experiments
show that CoRec outperforms state-of-the-art mod-
els on datasets from various domains. Further ex-
periments imply that CoRec can improve the yield
of state-of-the-art Open IE models.

https://nlp.stanford.edu/software/srparser.html
https://nlp.stanford.edu/software/srparser.html


Limitations

Language Limitation The proposed CoRec
model works mostly for languages with limited
morphology, like English. Our conclusions may
not be generalized to all languages.

Label Quality Limitation We use ground truth
constituency parse trees from Penn Treebank, GE-
NIA, and OntoNotes Release 5.0 (Marcus et al.,
1993; Weischedel et al., 2013; Ohta et al., 2002) to
generate the labels. Since the parsing does not tar-
get for the coordination recognition task, we apply
rules for the conversion. A single author inspected
the labels for complicated cases but did not inspect
all the labels. There could be erroneous labels in
the training and testing data.

Comparison Limitation Comparison to the
parsing-based methods may not be precise. Parsers
are not specialized in the coordination recognition
task. Our task and datasets may not be the best fit
for their models.
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A Error Analysis

To better understand the bottleneck of CoRec, we
conduct a case study to investigate the errors that
CoRec makes. We randomly selected 50 wrong
predictions and analyzed their reasons. We identify
four major types of errors as follows (for detailed
examples check Table 5):

Ambiguous Boundaries (38%) The majority of
the errors occurred when the detected boundaries
are ambiguous. In this case, although our predic-
tion is different from the gold standard result, they
can both be treated as true. We identify two com-
mon types of ambiguous boundaries: ambiguous
shared heads (28%) and ambiguous shared tails
(10%). The former is usually signaled by ‘a/an/the’
and shared modifiers. The latter is usually signaled
by prepositional phrases.

Errors without Obvious Reasons (32%) Many
errors occurred without obvious reasons. However,
we observe that CoRec makes more mistakes when
the original sentences contain a large amount of
certain symbols (e.g., ‘-’, ‘.’).

Wrong Number of Conjuncts (22%) Some-
times CoRec detects most conjuncts in the gold
standard set but misses a few conjuncts. In some
other cases, CoRec would detect additional con-
juncts to the correct conjuncts.

Low-Quality Gold Labels (8%) We find there
may also be some low-quality ground truth parse
trees, thus generating incorrect gold labels. In this
case CoRec may make a correct prediction that is
different from the ground truth.



Category Ground Truth CoRec
Ambiguous Boundaries I’m not going to worry about

one day’s decline, said Kenneth
Olsen, digital equipment corp.
president, who was leisurely
strolling through the bright [or-
ange] and [yellow] leaves of the
mountains here after his com-
pany’s shares plunged $5.75 to
close at $86.5.

I’m not going to worry about
one day’s decline, said Kenneth
Olsen, digital equipment corp.
president, who was leisurely
strolling through [the bright or-
ange] and [yellow] leaves of the
mountains here after his com-
pany’s shares plunged $5.75 to
close at $86.5.

Errors without Obvious Reasons For example, the delay in sell-
ing people’s heritage savings,
Salina Kan, with $1.7 billion
in assets, has forced the RTC
to consider selling off the thrift
[branch-by-branch,] instead of
[as a whole institution].

For example, the delay in sell-
ing people’s heritage savings,
Salina Kan, with $1.7 billion in
assets, has forced the RTC to
consider [selling off the thrift
branch-by-branch,] instead of
[as a whole institution].

Wrong Number of Conjuncts Sales of Pfizer’s important
drugs, [Feldene for treating
arthritis,] and [Procardia, a heart
medicine], have shrunk because
of increased competition.

Sales of [Pfizer’s important
drugs,] [Feldene for treating
arthritis,] and [Procardia, a heart
medicine], have shrunk because
of increased competition.

Low-Quality Gold Labels The executives were remarkably
unperturbed by the plunge even
though it [lopped billions of dol-
lars off the value of their com-
panies] and [millions off their
personal fortunes].

The executives were remarkably
unperturbed by the plunge even
though it lopped [billions of dol-
lars off the value of their com-
panies] and [millions off their
personal fortunes].

Table 5: Case study of conjunct boundary detection results on the Penn dataset. For each case, the ground truth
conjuncts are colored red and the CoRec detected conjuncts are colored blue.


