
Under review as a conference paper at ICLR 2021

A CHAOS THEORY APPROACH TO UNDERSTAND
NEURAL NETWORK OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the complicated structure of modern deep neural network architectures,
they are still optimized with algorithms based on Stochastic Gradient Descent
(SGD). However, the reason behind the effectiveness of SGD is not well under-
stood, making its study an active research area. In this paper, we formulate deep
neural network optimization as a dynamical system and show that the rigorous the-
ory developed to study chaotic systems can be useful to understand SGD and its
variants. In particular, we first observe that the inverse of the instability timescale
of SGD optimization, represented by the largest Lyapunov exponent, corresponds
to the most negative eigenvalue of the Hessian of the loss. This observation en-
ables the introduction of an efficient method to estimate the largest eigenvalue
of the Hessian. Then, we empirically show that for a large range of learning
rates, SGD traverses the loss landscape across regions with largest eigenvalue of
the Hessian similar to the inverse of the learning rate. This explains why effec-
tive learning rates can be found to be within a large range of values and shows
that SGD implicitly uses the largest eigenvalue of the Hessian while traversing the
loss landscape. This sheds some light on the effectiveness of SGD over more so-
phisticated second-order methods. We also propose a quasi-Newton method that
dynamically estimates an optimal learning rate for the optimization of deep learn-
ing models. We demonstrate that our observations and methods are robust across
different architectures and loss functions on CIFAR-10 dataset.

1 INTRODUCTION

An interesting observation from current deep learning research is that classification and regression
accuracy gains seem to be achieved from the intricacy of the underlying models rather than the
optimization algorithm used for their training. Actually, the de facto choice for the optimization
algorithm is still the classic Stochastic Gradient Descent (SGD) algorithm (Robbins & Monro, 1951)
with minor modifications (Duchi et al., 2011; Sutskever et al., 2013; Kingma & Ba, 2014). Even
though several sophisticated second-order and quasi-Newton methods (Martens, 2010; Martens &
Grosse, 2015; Berahas et al., 2019) have been introduced, first-order methods remain popular and
none of them seem to outperform SGD with a carefully tuned learning rate schedule (Hardt et al.,
2016). This indicates that SGD (or in general first-order methods) probably has some intrinsic prop-
erties that make it effective to optimize over-parametrized deep neural networks. Despite various
attempts to explain such phenomenon (Chaudhari & Soatto, 2018; Keskar et al., 2016; Kleinberg
et al., 2018), little is understood about the effectiveness of SGD over sophisticated second-order
optimization methods.

In this paper, we argue that chaos theory (Sprott & Sprott, 2003) is a useful approach to understand
the neural network optimization based on SGD. The basic idea is to view neural network optimization
as a dynamical system where the SGD update equation maps from the space of learnable parameters
to itself and describes the evolution of the system over time. Once the evolution is defined, the rich
theory developed to study chaotic dynamical systems can be leveraged to analyze and understand
SGD and its variants. In essence, chaos theory enables us to study the evolution of the learnable
parameters (i.e., the optimization trajectory) in order to understand the training behavior over large
time scales (i.e., number of iterations).
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In particular, we focus on understanding the influence of the learning rate on the SGD optimization
trajectory. First, by observing that the Lyapunov exponent of SGD is the most negative eigenvalue of
the Hessian of the loss, we introduce an efficient and accurate method to estimate the loss curvature.
Then, we empirically show that for a range of learning rate schedules, SGD traverses the optimization
landscape across regions with largest eigenvalue of the Hessian similar to the inverse of the learning
rate. This demonstrates that at a specific time step, performing SGD update is similar to performing
a quasi-Newton step, considering only the largest eigenvalue of the Hessian of the loss. This, for
the first time, sheds some light on the effectiveness of SGD over more sophisticated second-order
methods and corroborates the observation that SGD robustly converges for a variety of learning rate
schedules (Sun, 2019).

Furthermore, as pointed out in (LeCun et al., 1993), the inverse of the estimated curvature can be
used as the learning rate when applying SGD to a new dataset or architecture. Hence, we can set up
a “feedback” system where the quasi-Newton optimal learning rate is calculated dynamically based
on the current largest eigenvalue of the Hessian (curvature), and the learning rate is consequently
adjusted during the training, allowing a “parameter free” stochastic gradient descent optimization.
The experiments are conducted on CIFAR-10 dataset to demonstrate that our observations are robust
across a variety of models, including a simple linear model regression and more modern deep neural
network architectures, trained with both cross entropy and mean square error loss functions.

2 CHAOS THEORY FOR NEURAL NETWORK OPTIMIZATION

In recent years, several papers have used dynamical systems to study theoretical aspects of deep
learning optimization (Liu & Theodorou, 2019). Essentially, this is achieved by defining the opti-
mization of deep neural networks as the evolution of parameters over time. In particular, a dynamical
system progresses according to a map function that describes how the system evolves in a specific
time step. In the case of deep neural network optimization, this map function is defined from the
space of parameters into itself. By describing the system evolution using such a map function, it
is possible to leverage the mathematical machinery of dynamical systems. For instance, viewing
SGD as a discrete approximation of a continuous stochastic differential equations, allowed Li et al.
(2017) and An et al. (2018) to propose adaptive SGD algorithms. Furthermore, dynamical systems
enabled LeCun et al. (1993) to relate learning rate with the inverse of the local Hessian in a quasi-
Newton optimization framework. Our paper also uses dynamical systems to study deep learning
optimization, but differently from all methods above, we rely on chaos theory.

Chaos theory (Sprott & Sprott, 2003) studies the evolution of dynamical systems over large time
scales and can categorize systems into chaotic or non chaotic. Under some simplifying but still
general assumptions, chaotic systems are bounded and have strong dependence on the initial con-
ditions. This means that chaotic systems evolving from different starting points that are within a
relatively small region around a particular reference point, will diverge exponentially during the
evolution process, where the amount of time taken for this divergence to happen is defined as the
chaotic timescale. This chaotic timescale imposes a limit on our ability to predict the future state
distribution of a dynamical system. In fact, the distribution of the future state, which have evolved
for more than a few times the chaotic timescale, cannot be distinguished from random distributions,
even when the system is fully deterministic. We apply concepts from chaos theory to improve our
current understanding of the optimization of deep neural networks.

More specifically, we describe how to use standard chaos theory techniques to efficiently calculate
the leading (positive and negative) eigenvalues of the Hessian of the loss function. With these
eigenvalues we measure, in turn, the loss function curvature, which can be used to study the behavior
of first-order optimization methods, such as SGD (Robbins & Monro, 1951). In particular, with this
technique we formulate an explanation for the empirical robustness of SGD to the choice of learning
rate and its scheduling function, and we investigate a method (based on quasi-Newton second order
method) for dynamically finding the optimal learning rate during the optimization of deep neural
networks. Such automated and dynamic estimation of optimal learning rate can lift a significant
burden from the manual definition of learning rate schedules in deep learning optimization.
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2.1 LYAPUNOV EXPONENTS

In chaos theory, the Lyapunov exponents define the divergence rate of infinitesimally close trajecto-
ries, and the inverse of the largest Lyapunov exponent is the timescale that corresponds to the onset
of chaos into the system. Two arbitrarily close initial conditions generate two solutions that diverge
with time. Under the assumption that the map function of the system is differentiable, if one ob-
serves this divergence for a short time window, it grows exponentially. If the initial divergence q(0)
is made smaller, the time window can be made larger (t→∞). The largest Lyapunov exponent λ is
a measure of the growth of the divergence q(t) in the direction q̂(0) = q(0)/‖q(0)‖ with the largest
growth (maxq̂(0)) along the trajectory, as in

λ = max
q̂(0)

lim
t→∞

lim
‖q(0)‖→0

1

t
log
‖q(t)‖
‖q(0)‖

. (1)

In this paper, we rely on the local finite size Lyapunov exponent. In this context, local in time means
that there is no limit to infinity for t in equation 1 – instead, it is an average over a constant time
window t. Finite size means keeping the difference in parameter space fixed as a small constant
with ‖q‖ = ∆q (i.e., no limit ‖q‖ → 0 in equation 1). Using a finite size allows the study of the
dynamic system at a specific spatial scale (for a comprehensive review, see (Cencini & Vulpiani,
2013)), corresponding to the eigenvalues of the Hessian of a spatially smoothed version of the loss
(or equivalently, to the numerical second derivative with a finite delta). When this analysis is used to
study the Hessian, this is equivalent to calculating the local numerical second derivative. We found
empirically that the results do not depend on the ∆q parameter within a large range of values.

We will show in Sec. 3 that this timescale (i.e., the Lyapunov exponent) corresponds to the most
negative eigenvalue of the Hessian of the loss, when optimizing deep neural networks with SGD.
Intuitively, a small difference in the initial condition will amplify exponentially in the directions
with negative second derivatives and will dampen in directions with positive second derivatives.
Empirically, we find that the chaotic timescales in effective training of deep neural networks are short
(in the order of tens of iterations) when compared with the time of one epoch (i.e., the total number
of iterations in one epoch). We also find that there are multiple unstable directions throughout the
training, i.e., the system is hyper-chaotic.

2.2 LYAPUNOV EXPONENTS FOR GD AND SGD

In this section we derive the formula to compute the largest Lyapunov exponents for Gradient De-
scent (GD) following (Sprott & Sprott, 2003). We first show that the largest Lyapunov exponent
corresponds to the most negative eigenvalue of the Hessian of the loss and provide an algorithm to
efficiently compute it. This will be later extended to calculate the largest (or in general the top-k)
eigenvalue of the Hessian in section 3. For simplicity of the exposition, in this section we initially
consider the non-stochastic setting. Also, for the results of this section to hold, we assume that the
Hessian of the loss does not change quickly through time, and it does not change quickly along the
optimization trajectory compared to the chaotic time scale. These assumptions can easily be checked
a posteriori, and we will show how to overcome this (potential) limitation in section 3.

Let θ be the vector of learnable parameters of the deep neural network, L(·) be the loss function,
and α > 0 be the learning rate. The gradient descent step at iteration t is written as:

θt+1 = θt − α
dL(θt)

dθ
, (2)

where the update step ∆θ = −αdL/dθ. In the limit of small steps the formulation is equivalent to
a Partial Differential Equation (PDE)

dθ

dt
= −α∂L(θ)

∂θ
. (3)

Integrating equation 3 gives the evolution of the system, which is equivalent to training the neural
network.

To compute the chaotic time scale (i.e. the inverse of the Lyapunov exponent), one needs to analyze
the difference in evolution of GD at two arbitrarily close initial points. To this end, we consider a
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small perturbation q0 added to the initial weights θ0. For this perturbed starting point θ0 + q0, the
PDE becomes:

d(θ + q)

dt
= −α∂L(θ + q)

∂θ
. (4)

In the limit of small q, considering the first order Taylor approximation of the above equation and
subtracting equation 3, we obtain:

dq

dt
=
∂
(
−α∂L(θ)

∂θ

)
∂θ

q . (5)

Then, integrating equation 5, we obtain the evolution of the perturbation under GD:

q(t) = exp

(
−α∂

2L(θ)

∂θ2
t

)
q0 . (6)

This remains true as long as q(t) remains small, where the definition of small depends on the prop-
erties of L. We consider the decomposition of q0 as a sum of its projections on the eigenspace of the
Hessian of the loss (with the Hessian being represented at the exponent of the formula in equation 6).
In this space, the projection of q0 along the direction corresponding to the largest eigenvalue is the
one growing the fastest. Starting with a random q0, the direction of q that becomes dominant after
sufficient time is aligned with the eigenvector of the largest eigenvalue of the matrix at the exponent,
and the growth rate of q is equal to the corresponding eigenvalue.

Measuring this growth rate provides a simple and linear (in the number of parameters) method to
measure the leading eigenvalue. This procedure represents the calculation of the largest Lyapunov
exponent, i.e., the largest eigenvalue (λ0) of the matrix −α∂2L/∂θ2. Due to the minus sign, this
corresponds to the smallest eigenvalue (hN ) of the Hessian of the loss (H = ∂2L/∂θ2). More
precisely, the smallest eigenvalue of the Hessian and the largest Lyapunov exponent are related
as hN = −λ0/α. For non-convex losses, hN is the most negative eigenvalue and the matching
eigenvector corresponds to the most unstable direction of the optimization of the loss.

Once q(t) is aligned with the largest eigenvector, equation 6 becomes

q(t+ ∆t) = exp(λ0∆t)q(t) . (7)

The algorithm to calculate λ0 requires normalizing the length of q at each step to keep the increment
“small”. This reference distance is equivalent to the choice of the step size for the calculation of finite
difference based second derivative. In dynamical systems terminology this is called calculating the
finite-size Lyapunov exponent. Now, the largest Lyapunov exponent is obtained by iterating the
following two steps:

λ0 ← log

(
‖q(t+ ∆t)‖
‖q(t)‖

)
/∆t , (8)

q(t+ ∆t)← q(t+ ∆t)
‖q(t)‖

‖q(t+ ∆t)‖
,

where ‖·‖ denotes the L2 norm and ∆t denotes the time step. One could see that the computation of
the largest Lyapunov exponent is analogous to the power method to compute the largest eigenvalue
of a given matrix. This idea can be easily extended to compute the top-k Lyapunov exponents
following the idea of Benettin et al. (1980). Please refer to the appendix C.

SGD can be described with the same approach, with the loss function replaced by L(θ,ω) where ω
are random variables that describe which images are picked in each minibatch, the data augmentation
used, and in principle any other random process engineered in the network. We note that chaos
theory is fully applicable with equivalent results in such general stochastic setting (Arnold, 1988).
In the subsequent analysis we will leverage this and work with SGD. Finally, we demonstrate how
to extend the method explained in the current section to compute the Lyapunov exponent for SGD
with momentum in Appendix B.

3 CALCULATING THE LARGEST EIGENVALUE OF THE LOCAL HESSIAN

In section 2.2 we discussed how one can estimate the local largest Lyapunov exponent of the SGD
map, which, under some common conditions, corresponds to the most negative eigenvalue of the
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Algorithm 1 Computation of the largest eigenvalue of the Hessian
Input : L: loss function, D: training set, θ ∈ RN : point to compute the eigenvalue, b: batch size,

∆q: size for Lyapunov exponent
Output: h0: the largest eigenvalue of the Hessian of L at θ
q0 ∈ RN , q0 ← q0

∆q
‖q0‖ . Small perturbation of size ∆q

θ0 ← θ, θ1 ← θ + q0, β ← 1 . Initialization
while not converged do
Db = {(xi,yi)}bi=1 ∼ D . Sample a mini-batch

θ0 ← θ0 + β ∂L(θ0;Db)
∂θ . Gradient ascent on θ0

θ1 ← θ1 + β ∂L(θ1;Db)
∂θ . Gradient ascent on θ1

λ← log
(
‖(θ1−θ0)‖

∆q

)
. Lyapunov exponent iteration

β ← β
λ . Re-scale the learning rate

θ1 ← θ + (θ1 − θ0) ∆q
‖(θ1−θ0)‖ , θ0 ← θ . Re-centering

end
h0 ← 1

β . Eigenvalue from Lyapunov exponent

Hessian of the loss at the same point. While most negative eigenvalues can be used to analyze
the existence of saddle points and training instability, in this paper we are interested in computing
the largest eigenvalue of the Hessian. Note that the largest eigenvalue corresponds to a theoretical
upper bound on the usable learning rate, under quasi-Newton approximation (LeCun et al., 1993).
Therefore, by efficiently computing it, we intend to understand the relationship between the SGD
optimization trajectory and the learning rate.

To compute the largest (or more generally, the top-k) eigenvalues, we need to redefine our map
function. The idea is to eliminate the negative sign and use the gradient ascent equation. For this
map, the largest Lyapunov exponent corresponds to the largest eigenvalue of the Hessian and the
matching eigenvector corresponds to the direction of most instability. We would like to clarify that
gradient ascent is used as a map function to estimate the largest eigenvalue of the local Hessian
at a particular point in the parameter space. This approach can be employed at any given point,
especially at the points in the optimization trajectory, where any algorithm can be chosen for the
optimization.

With gradient ascent map, the PDE corresponding to equation 5 can be written as (note the missing
minus sign):

∂q

∂t
= β

∂2L(θ)

∂θ2
q , (9)

where β > 0 is the learning rate for gradient ascent (we use a different notation to distinguish it from
the SGD learning rate α). Similarly, we can integrate equation 9, obtain an exponential form, where
the dominating exponential corresponds to the largest eigenvalue. However, this time it corresponds
to the largest eigenvalue of the Hessian of the loss denoted by h0.

Since we intend to estimate the Lyapunov exponent at every point in the optimization trajectory, we
now discuss how to accelerate the convergence of the Lyapunov exponent computation. To this end,
we set up our chaotic map as a control problem, where we optimize the learning rate β used for our
gradient ascent step such that the convergence of the eigenvector is the fastest but still stable. This
is obtained by setting β such that the corresponding Lyapunov exponent is controlled to stay close
to one. It does not need to be necessarily one, but it needs to be a value of the order of unity. In
practice, the learning rate for the next step is re-scaled by the Lyapunov exponent computed in the
current step and this numerical procedure ensures that the Lyapunov exponent quickly converges to
one.

Our final algorithm to compute the largest eigenvalue of the Hessian at a given point is summarized
in Algorithm 1. In practice, this algorithm converges within a couple of iterations and the conver-
gence criterion checks the fluctuation in λ around 1. As will be discussed in section 5, in comparison
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to (LeCun et al., 1993), our algorithm automatically tunes the learning rate β to compute the largest
eigenvalue quickly and effectively eliminates one hyper-parameter used in (LeCun et al., 1993).
This enables us to run Algorithm 1 at every step to understand the optimization trajectory of SGD
and similarly to (LeCun et al., 1993), the largest eigenvalue can be used to automatically set the
learning rate of SGD in the quasi-Newton framework.

3.1 QUASI-NEWTON METHOD

Quasi-Newton method is an effective approach that utilizes approximate second-order information
to improve gradient descent methods. The basic idea is to keep track of an estimate of the Hessian
matrix and modify the gradient descent step (Nocedal & Wright, 2006). Formally, at iteration t, the
quasi-Newton method can be written as:

θt+1 = θt −B−1
t

dL(θt)

dθ
, (10)

whereBt denotes the estimate of the Hessian matrix at iteration t.

In this paper, we estimate the largest eigenvalue, so the matrix Bt takes the form of ht0I where
ht0 is the largest eigenvalue of the Hessian at θt and I is the identity matrix. This is the simplest
form of quasi-Newton method which effectively uses 1/ht0 as the learning rate at iteration t. This
replaces hand-engineered learning rate schedules and could be beneficial when applying SGD to
new problems. If top-k largest eigenvalues are estimated as discussed in the appendix, a more
sophisticated quasi-Newton approach could be employed.

4 EXPERIMENTS

All experiments are based on the CIFAR-10 dataset that has 10 classes with 5000 32×32 pixel
training images per class, and 1000 32×32 pixel testing images per class. For all experiments, we
use a batch size of 512 and a weight decay of 5× 10−4 and standard data augmentation techniques.
We use a difference of 5×10−2 (∆q in Algorithm 1) in parameter space for calculating the Lyapunov
exponent (results do not depend on changing this in a wide range of values). To show that the
behavior of the method does not depend on particular loss functions, we run the experiments using
the softmax crossentropy and mean square error loss functions. The following models are trained
with the first two CIFAR-10 classes (planes and cars): 1) a linear model with mean square error
– that is, a least square regression; 2) a Multi-Layer Perceptron (MLP) with three hidden layers;
3) a LeNet1 (LeCun et al., 1998) with relu activations; and 4) a small ResNet with two residual
blocks. We also test the larger ResNet18 (He et al., 2016) using all ten CIFAR-10 classes. In all
experiments, we use SGD without momentum. One iteration is typically sufficient in the control
algorithm to compute h0 at each optimization step, however, noise in λ can be alleviated by running
more than one iteration for each step.

Figure 1 shows the losses for the MLP training with fixed and cyclic (Smith & Topin, 2019) learning
rates. Notice how the inverse of the curvature (orange curve), measured with the controlled Lya-
punov exponent, naturally adapts to both the fixed and cyclic learning rates. Since quasi-Newton
methods would require the learning rate to be equal or similar to the inverse of the second derivative,
we speculate that this discovered behavior is useful to explain the successful training of deep neural
networks using first-order methods, such as SGD.

Furthermore, we investigate a hyper-parameter free training based on the measured curvature in
Figure 2. We first run our algorithm to measure the curvature on the initialization point, without
training. This is to ensure convergence of the eigenvector and avoid a “cold” start. Then, when the
starting curvature is known, we set the learning rate to this value and start the training. We keep a
simple exponential running average of the curvature to remove noise (this is equivalent to choose a
∆t in the calculation of the Lyapunov exponent), and set the learning rate (red curve in Fig. 2) to
this value dynamically. Empirically, we find that this “optimal” learning rate gradually decreases,
guaranteeing a decrease in the loss. We show extensive experiments with analogous results on other
architectures in the Appendix D.
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Figure 1: Lyapunov exponent λ (blue), inverse curvature from leading eigenvalue 1/h0 (orange),
learning rate α (red), and loss (green) curves with cross entropy loss for MLP (top), tinyResNet
(middle) and MLP with mean squared error (bottom) on a two-class CIFAR10 problem, with con-
stant (0.1, 0.3 – first two columns, respectively) and cyclic (third column) learning rate schedules.
The corresponding experiments on the other setups are in the appendix. Note that 1/h0 closely
follows α in all cases.

5 RELATED WORK

It is interesting how on one hand the design of neural network architectures became progressively
more complicated over the years (LeCun et al., 1990; Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2014; He et al., 2016). But on the other hand, the most popular optimization strategies are still
relatively simple and have not substantially changed (Bottou et al., 2018). In fact, the most effec-
tive approaches are still based on SGD with minor variations (Ruder, 2016), usually developed to
increase their robustness or efficiency. Still, simple SGD often produces state-of-the-art results that
are competitive and often even better (Hardt et al., 2016) than more advanced optimization tech-
niques based on second-order methods or pseudo/quasi Newton approaches (Bordes et al., 2009;
Sohl-Dickstein et al., 2014) or on adaptive methods (Wilson et al., 2017). Another interesting point
about first order methods is their robustness to learning rate choice and schedules (Sun, 2019), evi-
denced by several methods that study efficient automatic learning rates for SGD (Schaul & LeCun,
2013; Schaul et al., 2013; Li et al., 2017). Hence, there should be some explanation for why simple
first-order optimization methods (Ruder, 2016) work so well on large-scale problems with systems
containing a large number of parameters, such as deep neural networks.

A similar question has been asked by LeCun et al. (1993), who proposed a method to calculate the
largest eigenvalue of the Hessian of the loss using the power method. To make it work along the SGD
training, LeCun et al. (1993) designs a running average of the estimate of the eigenvector. Their idea
is similar to ours, but our approach has the advantage of being free of the scheduling of the parameter
that characterizes the running average. This advantage stems from the Lyapunov exponents analysis
presented in our paper, which is one of the first steps in the exploration of the intersection between
chaos theory and deep learning. Furthermore, since the largest eigenvalue of the Hessian can be used
as an estimate for the smoothness coefficient of the loss function, our approach could improve the
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Figure 2: Lyapunov exponent λ (blue), inverse curvature from leading eigenvalue 1/h0 (orange),
learning rate α (red), and loss (green) curves for MLP (column 1), LeNet1 (column 2), and ResNet18
(column 3) with softmax cross entropy loss (top) and mean squared loss (bottom) on CIFAR10
trained using our quasi-Newton method, i.e., using the estimated 1/h0 as the learning rate. While
ResNet18 is trained on the full CIFAR10 other networks are trained on a two class CIFAR10 prob-
lem. The training begins once the estimation of h0 at the initialization is stable. In all our experi-
ments, the training is stable and loss decreases monotonically.

smoothness coefficient estimation (Santurkar et al., 2018) and help methods that rely on it (Zhang
et al., 2019; Lee et al., 2020).

We believe that there are many other topics in this intersection that are worth exploring, such as
the use of deep neural networks to predict the behavior of chaotic dynamical systems (Pathak et al.,
2018) or the exploration of neural networks as a dynamical system (Liu & Theodorou, 2019; Schoen-
holz et al., 2016). We align with works that view SGD as an approximation of stochastic differential
equations (Chaudhari & Soatto, 2018) or that improve the understanding of empirical and theoretical
properties of SGD (Ma et al., 2018; Keskar et al., 2016; Bassily et al., 2020; Kleinberg et al., 2018;
Chaudhari & Soatto, 2018), particularly regarding the influence of batch size and learning rate to
generalization (He et al., 2019; Jastrzebski et al., 2017; Smith et al., 2017).

6 DISCUSSION AND CONCLUSION

In this work, we use a chaos theory approach to design a new method for the efficient estimation
of the largest eigenvalue h0 of the Hessian of the loss function. Our proposed method is efficient
because it is linear in the number of parameters and can be run in parallel to the optimization. This
efficiency allows us to study the dynamical evolution of h0 during training and discover that 1/h0

converges to the chosen learning rate α. Moreover, we noticed that we could assign α to a large
range of values and still have an effective training. Hence, setting the learning rate α with a quasi-
Newton optimization is largely superfluous for deep neural networks because of the convergence of
1/h0 to α. This means that SGD traverses the loss function along a path that has the correct curvature
according to second-order optimization. Finally, we have some indications that the convergence of
1/h0 towards α is necessary for a successful training. Therefore, our approach could be used to
narrow down the initial range of usable learning rates or to design learning rates schedules on new
problems.

Although we did not discuss generalization in this paper, we observe that for a fixed batch size, 1/h0

follows the learning rate α. This means that if larger learning rate is used towards the convergence,
a wider optimum will be attained, and wider minima are usually attributed to better generaliza-
tion (Keskar et al., 2016). This corroborates with previous results that show that the ratio between
batch size and learning rate has a negative correlation to generalization (He et al., 2019; Jastrzebski
et al., 2017; Smith et al., 2017).
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A APPENDIX

B SGD+MOMENTUM

With SGD+momentum the analysis is conceptually similar, but mathematically more complicated.

SGD+momentum:
θt+1 = αpt+1 + θt,

pt+1 = mpt −
∂L

∂θ
.

We can rewrite:
θt+1 − θt = αpt+1,

pt+1 − pt = −(1−m)pt −
∂L

∂θ
.

In the limit of small steps:
∂θ

∂t
= αp,

∂p

∂t
= −(1−m)p− ∂L

∂θ
.

Incidentally, in this formulation it becomes clear that (1 − m) is equivalent to a drag term of a
particle of mass α under the motion of a potential L.

If we define a vector of length 2N describing the phase space, where N is the dimension of the
parameter space θ (or p):

θ̃ = (θ,p).

The phase space describes both the status of the network and the optimizer’s accumulated gradients.

We can rewrite the system of equations above in a compact form:

∂θ̃

∂t
=

[
0 αI
−∂L∂θ −(1−m)I

]
θ̃,

where I is the identity matrix of size N .
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Just like in the case of SGD, we obtain the equation for the evolution of a perturbation in the phase
space (we call it q̃(t)), and integrate it over t which gives:

q̃(t) = e

∂
∂θ̃

[
0 αI
−∂L∂θ −(1−m)I

]
t

q̃0.

We need to find the eigenvalues of the matrix at the exponent of the formula, hence we need to solve
an equation of the form |A− λI| = 0, where |.| represents the determinant:∣∣∣∣[ 0 αI

−∂
2L
∂θ2 −(1−m)I

]
− λI

∣∣∣∣ = 0.

Rewriting: ∣∣∣∣[ −λI αI

−∂
2L
∂θ2 (−(1−m)− λ)I

]∣∣∣∣ = 0.

The Shur’s determinant identity (
∣∣∣∣A B
C D

∣∣∣∣ = |D||A−BD−1C| ) gives:∣∣∣∣−λ(−(1−m)− λ)I − α
(
−∂

2L

∂θ2

)∣∣∣∣ = 0,

which is a formula of the form |H − hI| = 0. This means that the eigenvalues of the hessian of the
loss (h) are related to the Lyapunov exponents by the formula:

h = −λ
2 + λ(1−m)

α
.

Similarly to the SGD case, the largest λ gives the smallest h. The final formula in this case becomes:

hN = −λ
2
0 + λ0(1−m)

α
.

C LYAPUNOV EXPONENT SPECTRUM

Our curvature estimation idea can be easily extended to estimate the top-k (negative or positive)
eigenvalues of the Hessian. We calculate the first Lyapunov exponents using the orthogonalization
procedure described by Benettin et al. (1980). To calculate the second Lyapunov exponent, it is
enough to keep track of a second ”small“ increment vector q(1)(t) evolved in exactly the same way
as q(t), with an additional orthogonalization step (Benettin et al., 1980):

q(1)(t+ ∆t)← q(1)(t+ ∆t)− q
(1)(t+ ∆t) · q(t+ ∆t)

||q(t+ ∆t)||
to be done before the corresponding normalization step. The procedure is easy to generalize to
further eigenvalues.

The results typically show a shallow dependence of the value with eigenvalue number (Figure 3).
If this holds true in general, calculating additional eigenvalues will be of limited usefulness for
improving optimization.

D ADDITIONAL EXPERIMENTS

In this section we present additional experiments of the same type shown in section 4 done with
different architectures and loss functions. Figures 4,5 and 6 show experiments with constant learning
rate. Figure 7 shows experiments with cyclic learning rate. And Figures 8 and 9 show the full
set of experiments on two classes CIFAR10 with our quasi-newton method for SGD. It is worth
mentioning how it trains also with the linear model regression (Figure 9, upper-left). Figure 10
shows experiments with the larger ResNet18 architecture and the 10 classes of CIFAR10. The same
behavior as in the main paper is consistently observed across different architectures/losses. It is
possible to mitigate the noise in λ, and consequently in 1/h0, by increasing the number of iterations
of Algorithm 1. As explained in the main text, 1/h0 cannot follow αwhen it is too small (e.g. Fig 7),
that is, the curvature cannot go to infinity.
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Figure 3: The first 14 eigenvalues of the Hessian of the loss averaged over the first epoch.
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Figure 4: MLP, LeNet1, tinyResNet with a mean square error and soft-max cross entropy loss trained
on a two classes cifar10 with a constant learning rate (0.05). The linear model regression does not
train in this setup.
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Figure 5: MLP, LeNet1, tinyResNet with a mean square error and soft-max cross entropy loss trained
on a two classes cifar10 with a constant learning rate (0.1). The linear regression does not train in
this setup.
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Figure 6: MLP, LeNet1, tinyResNet with a mean square error and soft-max cross entropy loss trained
on a two classes cifar10 with a constant learning rate (0.3). The linear regression and the ResNet
with MSE do not train with this setup.
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Figure 7: MLP, LeNet1, tinyResNet with a mean square error and soft-max cross entropy loss trained
on a two classes cifar10 with a cyclic learning rate. The linear model regression does not train in
this setup.
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Figure 8: Lyapunov exponent λ (blue), inverse curvature from leading eigenvalue 1/h0 (orange),
learning rate α (red), and loss (green) curves for MLP, LeNet1, tinyResNet trained with a softmax-
crossentropy loss on a two-class CIFAR10 problem; and ResNet18 trained on all ten CIFAR10
classes. All the trainings are with the quasi-Newton method based on method to calculate the largest
eigenvalue of the Hessian of the loss.
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Figure 9: Lyapunov exponent λ (blue), inverse curvature from leading eigenvalue 1/h0 (orange),
learning rate α (red), and loss (green) curves for a linear model, MLP, LeNet1, tinyResNet with a
mean square error loss trained on the two-class CIFAR-10 problem with a quasi-Newton method
based on method to calculate the largest eigenvalue of the Hessian of the loss. Notice how the linear
least square regression can be successfully trained.
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Figure 10: ResNet18 with soft-max cross entropy loss trained on a cifar10 with our quasi-newton
method, a cyclic lr and constant lr of 0.05.
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