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Abstract
Distributional Compositional Generalization
(DCG) refers to the ability to tackle tasks from
new distributions by leveraging the knowledge of
concepts learned from supporting distributions.
In this work, we aim to explore the statistical
mechanisms of DCG, which have been largely
overlooked in previous studies. By statistically
formulating the problem, this paper seeks to
address two key research questions: 1) Can a
method to one DCG problem be applicable to an-
other? 2) What statistical properties can indicate
a learning algorithm’s capacity for knowledge
composition in DCG tasks? To address the first
question, an invariant measure is proposed to
provide a dimension where all different methods
converge. This measure underscores the critical
role of data in enabling improvements without
trade-offs. As for the second question, we reveal
that by decoupling the impacts of insufficient data
and knowledge composition, the ability of the
learning algorithm to compose knowledge relies
on the compatibility and sensitivity between
the learning algorithm and the composition
rule. In summary, the statistical analysis of the
generalization mechanisms provided in this paper
deepens our understanding of compositional gen-
eralization, offering a complementary evidence
on the importance of data in DCG task.

1. Introduction
Compositional Generalization (CG) represents the capacity
to comprehend novel combinations of familiar concepts,
an intellectual feat widely regarded as a pivotal milestone
in human cognitive evolution (Pearl & Mackenzie, 2018;
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Harari, 2014). This remarkable ability empowers humans to
generate an infinite array of ideas and constructs from finite
building blocks of knowledge. For example, humans can un-
derstand the concept of the “red triangle” after grasping the
“red rectangle” and “blue triangle”. To mimic human abili-
ties, this paper explores the question whether machines can
generalize to new data distributions that require recombin-
ing knowledge from previously learned distributions. For
example, this involves generalizing to the distribution of
a “red triangle” after learning about “red rectangles” and
“blue triangles.” We refer to this type of generalization as
Distributional Compositional Generalization (DCG).

Nevertheless, machines have consistently struggled to em-
ulate this level of compositional generalization, as it fun-
damentally challenges the prevalent assumption of inde-
pendent and identically distributed (IID) between training
and test data, a cornerstone principle in the machine learn-
ing literature (Kawaguchi et al., 2017; Bartlett & Mendel-
son, 2002; Bousquet & Elisseeff, 2002; Mohri et al., 2018;
McAllester, 1998; Fu & Zheng, 2023; Fu et al., 2023). When
faced with the data significantly divergent from the train-
ing (support) distribution, achieving meaningful generaliza-
tion becomes virtually insurmountable (Koh et al., 2021;
Sagawa et al., 2021; Dong & Ma, 2022). This stark real-
ity underscores the critical need for a rigorous theoretical
examination of DCG, as it holds the key to bridging the
gap between human-like adaptability and the limitations of
current machine learning models in handling unforeseen,
complex combinations of concepts.

A dominant theoretical approach to understanding the gen-
eralization properties of learning systems is the statistical
method. Over the decades, numerous statistically-based
methods have been developed to enhance our understand-
ing of generalization behavior under the IID assumption
within the PAC learning framework (Vapnik et al., 1998;
Vapnik, 1999). A key aspect of these approaches is the use
of statistical methods to formulate tasks and generalization
mechanisms. This shift allows for a focus on the statistical
properties common across various problems, rather than on
specific problems themselves. However, similar results have
not been achieved in the area of Distributional Composi-
tional Generalization (DCG). Although various explorations
of DCG have been conducted, these methods often take dif-
ferent perspectives, such as identification (Wiedemer et al.,
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2024; 2023) and group invariance (Ito et al., 2022; Lee et al.,
2024). The statistical properties and constraints of DCG
remain unclear. In this work, we aim to explore the statisti-
cal properties of DCG. Our research focuses on two main
questions:

Q1: Can a method for one DCG problem be useful for
another DCG problem, and under what circumstances is a
general method applicable to all DCG problems?

Q2: What statistical properties can indicate a learning
algorithm’s capacity for knowledge composition in DCG
tasks?

For Q1, we propose an invariant measure that indicates
the existence of a dimension where all different methods
for DCG are equivalent. This measure helps us under-
stand the mechanisms behind both trade-off and non-trade-
off improvements. We demonstrate the critical role of
method adaptivity to data in achieving non-trade-off im-
provements, which supports the importance of a data-centric
approach (Zha et al., 2023) in the DCG problem. Regarding
Q2, we present a new generalization bound for the gener-
alization error in DCG tasks. By decoupling the effects of
insufficient data and knowledge composition, our bound
demonstrates that the ability of the learning algorithm to
compose knowledge depends on two key factors: 1) the
compatibility between the learning algorithm and the com-
position rule (Definition 5.1), and 2) the influence of the
composition rule on the algorithm’s output, as measured by
mutual information.

In summary, the key contribution of this paper is providing
a statistical analysis of the generalization mechanisms in
the DCG problem, offering a complementary perspective to
prior research. Specifically, it provides an invariant measure
and explores the relationship between the learning algorithm
and the composition rule.

2. Related Works
Statistic Generalization Theory Statistical generaliza-
tion theory (Vapnik et al., 1998; Vapnik, 1999) is a subfield
of statistical learning theory that seeks to understand the
mechanisms of generalization from a statistical perspec-
tive. In this context, data is typically modeled under the
IID assumption, meaning that both the training and test
data are assumed to come from the same independent and
identically distribution. The theory explores generaliza-
tion mechanisms through the central limit theorem, often
within the PAC-learning framework. In this framework, the
learning process involves finding a function from a function
space that fits the training data. Due to the central limit
theorem (Rouaud, 2013), a simpler function space tends to
result in a smaller gap between the training error and the test
error, known as the generalization error. Therefore, a key

challenge in this theory is to determine an effective measure
of the complexity of the function space. Several methods
have been proposed for this purpose, such as VC dimension
(Vapnik & Chervonenkis, 2015), Rademacher complexity
(Bartlett & Mendelson, 2002), and covering number (Shalev-
Shwartz & Ben-David, 2014). Besides the complexity of
function space, researchers also explore algorithm-based
methods, such as algorithm stability (Bousquet & Elisseeff,
2002; Hardt et al., 2016) and information-theoretic analysis
(Xu & Raginsky, 2017; Russo & Zou, 2016), to understand
generalization. These approaches, like the previous ones,
rely on the IID assumption to model data and use statistical
laws to understand the generalization mechanism. However,
these theories don’t fully address the DCG problem, which
violates the IID assumption. In this paper, we aim to fill
this research gap by proposing a theory applied to DCG,
using statistical methods to model data and generalization
mechanisms.

Distributional Compositional Generalization (DCG)
DCG is a subfield within compositional generalization that
has garnered significant attention in recent years. Here,
we provide a brief overview of both the applications and
theoretical research related to DCG. From an application
perspective, DCG is crucial for addressing unseen scenar-
ios and mitigating the issue of data scarcity. For instance,
in text-to-image generation (Liu et al., 2022; Okawa et al.,
2024; Li et al., 2024; Du et al., 2023), solving the DCG
problem enables the creation of entirely novel images, such
as generating an image of a red panda. Even though red
pandas don’t exist, we can infer this image by combining
the distributions of different pandas and animals with red
coloration. Similar applications include content and style
generalization (Jing et al., 2019; Jin et al., 2022), among
others. In reinforcement learning (Silver & Ciosek, 2012;
Li et al., 2021; Sutton et al., 1999; Tasse et al., 2022; Bacon
et al., 2017), we can only collect the data of the preliminary
task and model can solve more complex task by compos-
ite. However, without the DCG ability, we have to collect
all possible combination of the tasks. From a theoretical
perspective, researchers focus on understanding the mech-
anisms for solving DCG problems. Various mechanisms
have been analyzed, including disentanglement (Lippl &
Stachenfeld, 2024; Wang et al., 2022; Bengio et al., 2013),
identifiability (Wiedemer et al., 2024; 2023), and others (Ito
et al., 2022; Lee et al., 2024). However, the statistical prop-
erties of DCG and its constraints remain largely unexplored.
This paper seeks to address this gap by analyzing the sta-
tistical properties of DCG, an area that has been mostly
overlooked in previous research.
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3. Problem Definition
3.1. Preliminary

Notations In this paper, we employ P to signify the dis-
tribution and P (·) to denote its corresponding density. Bold
symbols represent random variables, while unbold symbols
represent their corresponding values. For a random vari-
able x, Px represents its distribution. The calligraphic font
is used to denote the space or learning algorithm. I(·; ·)
denotes the mutual information. And E denotes the expecta-
tion.

Sample Space and Distribution In this analysis, we
consider a data space Z , which can be decomposed into
two parts in some case, i.e. Z = X × Y , where X and Y
are two spaces. We use the notation z to denote a random
variable that takes value in the space Z . The distribution of
this random variable is represented by the notation Pz .

Function space The function space is denoted by the
symbol F , where f : Z → R+ ∈ F . The function f
assigns loss to the corresponding data point. Given the
data distribution Pz , the error is denoted as err(Pz, f) =
Ez∼Pzf(z). Similarly, the corresponding error can be ex-
pressed as err(Dn, f) =

1
n

∑
z∈Dn

f(z) for the finite sam-
ples Dn ∼ P⊗n

z . For supervised learning, where z = (x, y),
we can decompose the function f as f = l(h(x), z), where
l is the loss function and h is the function that maps the
input to its corresponding prediction.

Learning algorithm Given the function space, the role
of the learning algorithm is to find suitable functions for the
given problem. Here, we denote the learning algorithm as
A : D → PF , where D denotes the space of all training
data and PF denotes the space of all distribution on the
function space. The output of the learning algorithm is
regarded as a distribution over the function space, rather than
a single function because the learning algorithms typically
encompass a degree of uncertainty, for instance, stochastic
noise in optimization. We denote the operation on dataset
Dn as A(Dn), and similarly, we denote the operation on
the infinite data sampled from Pz as A(Pz). In this paper,
the learning algorithm includes not only the optimizer (e.g.
SGD, Adam), but also any constraints or techniques that
influence the selection of functions from the function space.

Induced Distribution Given the learning algorithm A,
we use Q(A) to denotes the distribution induced by the
learning algorithm A. Given a data distribution Pz , we
denote Q

(A)
f |Pz

≜ A(Pz) and the corresponding density is

denoted as Q(A)
f |Pz

(f |Pz) and the random variable as f . We
will drop the subscript f |Pz if no ambiguity caused.

3.2. Compositional Distributions

Subdistribution We denote the two compositional com-
ponents as a ∈ A and b ∈ B. The other components,
including randomness, are denoted as ζ. The overall data
distribution Pz can be divided into several subdistributions
based on the different values of the compositional compo-
nents. These distributions are {Pa,b}a∈A,b∈B . The Pa,b(z)

satisfies that Pa,b(z) = Pz(z)
|A|×|B|1(az=a)∧(bz=b), where az ,

bz are the corresponding fact values of the sample z. To
ensure that each sample has only one determined factor
value for each factor, the distribution should satisfy that
for any a1, b1, a2, b2, where a1 ̸= a2 or b1 ̸= b2, we have
suppPa1,b1 ∩ suppPa2,b2 = ∅.

Distribution split We denote E = A × B as the all
possible combinations of the component a, b. We define
S,U as a partition of the set E, i.e., U ∩S = ∅ and U ∪S =
E. Based on the partition, the distribution can be divided
into the support distribution PS = {Pa,b}(a,b)∈S and target
distribution PU = {Pa,b}(a,b)∈U . We denote err(PS , f) =
E(a,b)∈S [err(Pa,b, f)] and similarly for err(PU , f). We
denote fS as the random variable sampled from A(PS) and
the same for fU and fE .

Remark 3.1. In this paper, we primarily focus on DCG
involving two components. The analysis of two-component
DCG serves as a fundamental basis for addressing more
complex DCG issues. (Dong & Ma, 2022; Wiedemer et al.,
2024; Ren et al., 2024; Petrache & Trivedi, 2024; Chomsky,
2002; Partee et al., 1995; Gordon et al., 2019; Silver &
Ciosek, 2012; Li et al., 2021; Sutton et al., 1999; Tasse et al.,
2022; Bacon et al., 2017; Wiedemer et al., 2023; Brady et al.,
2023).

In the following, we give several examples:

Example 3.2. (Image) In the context of single object images,
let A denote the shape of the object and B its size. We define
Pa,b as the distribution of images of shape a and size b.

Example 3.3. (Robot) We consider a task distribution for
robots consisting of a walking task and an operational task.
Let set A denote a sequence of walking subtasks, while set
B denotes a collection of operational subtasks. We define
distributions such as Pa1,b1 for slow walking and object
picking tasks, Pa2,b1 for regular walking and object pick-
ing tasks, and Pa1,b2 for slow walking and object stacking
tasks. The target distribution, labelled Pa2,b2 , is specifi-
cally tailored for tasks involving slow walking and object
stacking.

Remark 3.4. Certain DCG tasks require models to mas-
ter basic components before progressing to more complex
challenges. Take robot learning as an example: initial tasks
may focus only on activities such as walking and retrieving
objects independently. Subsequently, the network needs
to extend its understanding to situations where the robot
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performs both activities simultaneously. In such cases we
introduce the null component ∅. The distribution related to
a single component can be represented as Pa,∅ or P∅,b. We
can set A′ = A ∪ ∅ and B′ = B ∪ ∅.

3.3. Distributional Compositional Generalization

In this section, we set out to formulate the DCG. The re-
lationship of the DCG problem can be summarised in the
diagram:

T P
(T )
S fS T̃

P
(T )
U err(P

(T )
U ,fS)

A β

err

err

(1)

Composition Rules and Data Generation For any two
different distributions, Pe1 , Pe2 ∈ PE , there exists a com-
position rule T that connects them. This composition rule
acts as a bridge for these different distributions to become
part of a problem. We define a generation function g(·) such
that P (T )

E = g(T, ξ), where (T ) is used to emphasise that
the distribution is generated by the composition rule T , and
ξ refers to all the other information needed to generate the
distribution. For example, if we consider the shape and
color composition of an object, then T contains the shape
and color components and their composition method. The ξ
represents the information other than shape and color, such
as position. Usually the ξ follows a certain distribution Pξ.
We denote this as P (T )

E = g(T ), where the ξ is omitted to
indicate that it is randomly sampled from the distribution
Pξ.
Example 3.5. In image creation, the composition rule can
be represented as (set of shapes, set of colors, “Draw
the contour of a <shape> and fill it with <color>.”).
Similarly, for a robotic task, the composition rule
can be expressed as (set of subtask1, set of subtask2,

“First, complete <subtask1>, then <subtask2>.”). Keep in
mind that we use text to describe the compositional rule here,
but it can take any form as long as it defines how two com-
ponents are combined.

Function Space and Learning Algorithm Typically, the
method for solving a machine learning problem involves
two options: 1) design a function space that is more suit-
able for the given problem, and 2) design a better learning
algorithm. In this paper we assume that we are given a large
and fixed function space that contains almost all possible
functions. We can consider the design of a suitable func-
tion space as a hard constraint on the learning algorithm.
More specifically, this hard constraint means that only part
of the function space can be a legal output of the learning
algorithm, although the learning algorithm operates on the
rather large function space.

4. Invariant Measure
When tackling a problem, it’s common to wonder what
the approach will entail. The central question is whether
a universal method can be applied to a range of tasks or if
specialized methods are required for each. To determine
this, we must explore how methods for different tasks relate
to one another. If a method that works well for one task
also proves effective for others, a general approach might
be feasible. However, if a method succeeds in one task but
fails in others, it becomes essential to develop task-specific
strategies rather than relying on a single general method.
This section will propose an invariant measure to answer
this question.

4.1. Analysis

In this section, we aim to analyze the learning algorithm’s
ability to predict the correct composition rule. However, a
gap exists because the outputs of the learning algorithm lie
in the function space, while the composition rules reside
in a different space. To bridge this gap, we introduce the
function β(·), which connects these two spaces and allows
us to make this comparison.

Definition 4.1. We consider a rule prediction function β :
F → T , such that for any function f ∈ F , we have T̃f =
β(f) ∈ T .

Remark 4.2. Normally we expect that β(·) can satisfy the

condition that for all f(·), err(f, P (T̃f )
E ) is a small value.

However, the choice of β(·) is not important in this paper,
since the following theorem holds for all β(·), as long as
their output is a valid composition rule in space T . When
β(·) operate on the random variable f , we can obtain an-
other variable T̃ = β(f). Its correspoding distribution is
denoted as Q(A,β)

T̃
. The subscript is omitted if no ambiguity

caused.

The learning algorithm identifies the composition rule based
on two mechanisms: the inherent bias of the learning algo-
rithm and the adaptivity of the learning algorithm. The first
refers to the learning algorithm’s preference for one compo-
sition rule over another, and the second refers to the learning
algorithm’s ability to adjust its predictions in response to
the data provided. This leads us to the following research
question:

How can these two mechanisms be modelled and combined
in the statistical framework?

To give an analysis, we first need a mathematical modelling
of these two mechanisms:

1) Inherent Bias First, we represent the bias of the learn-
ing algorithm as Q(A,β)(T̃ ), which is the marginal distri-
bution over all possible training data. The T̃ indicates the
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prediction of the composition rule using β(·). This formula-
tion is appropriate because the prediction is not conditioned
on any specific data. For two composition rules T1 and T2,
if Q(A,β)(T̃ = T1) > Q(A,β)(T̃ = T2), we say that A is
biased towards T1 over T2.

Remark 4.3. Inductive bias refers to a model’s inherent
preference for certain compositional rules before it is ex-
posed to any training data for a given task. This bias can be
introduced in two primary ways: 1) Model Architecture De-
sign: By carefully structuring the model, we can constrain
its outputs to adhere to specific compositional rules. 2) Pre-
training and Objective Function: The inductive bias can
also be shaped through pretraining strategies or the choice
of objective function, either suppressing or reinforcing the
model’s tendency toward certain compositional behaviors.

2) Adaptivity The second is the adaptivity of the learning
algorithm, which refers to its ability to adjust its predictions
in response to the data provided. Based on the definition, an
intuitive method is to represent it as IA,β(T̃ = T ;P

(T )
S ).

We denote this as IA,β(·; ·) because the calculation of mu-
tual information relies on Q(A,β), which is influenced by
the learning algorithm A and the rule prediction function β.

4.2. Theorem

Based on the previous statistical formulation, we go into the
definition of the invariant measure. Invariance means that
this measure is the same for different learning algorithms.
As a result, it can serve as a tool for analyzing both the
trade-offs and non-trade-off improvements between differ-
ent tasks.

Definition 4.4. Given the composition rule T , the distribu-
tion PS , the learning algorithm A and the rule prediction
function β, and a function αA,β : T × P → R+, we define
the µ measure as

µβ(T, P
(T )
S ,A) =

Q(A,β)(T̃ = T |P (T )
S )

αA,β(T, P
(T )
S )

, (2)

where T̃ = β(f̃S) (f̃S is the prediction made by the Lean-
ring algorithm) and P

(T )
S is the support distribution gener-

ated by the composition rule T .

With the µ measure defined above, we provide the invariant
property of this measure with respect to different methods:

Theorem 4.5. (Invariant Property) There exists at least one
function α such that for any β, the µ-measure satisfies the
following conditions:

• (1) For any T , P
(T )
S and A, we have

E
T ,P

(T )
S

logαA,β(T ,P
(T )
S ) = IA,β(T̃ = T ;P

(T )
S );

• (2) For any A1,A2, the following equation holds

µβ(A1) = µβ(A2), (3)

where µ(A) =
∑

T E
P

(T )
S ∼g(T )

µ(T, P
(T )
S ,A).

4.3. Discussion

In the following, we refer the α as the one that satisfies the
invariant property listed in Theorem 4.5. We rewrite the
definition of the µ-measure as follows,

µβ(A) =
∑
T

E
P

(T )
S ∼g(T )

µ(T, P
(T )
S ,A1)

=
∑
T

E
P

(T )
S ∼g(T )

Q(A,β)(T̃ = T |P (T )
S )

αA,β(T, P
(T )
S )

= constant.

(4)

Recall that if we obtain the composition rule, then we can
reconstruct the ground truth distribution P

(T )
E . Therefore,

the composition rule is the core of our concern in the DCG
problem. Q(A,β)(T̃ = T |P (T )

S ) is the probability that the
learning algorithm will predict the correct composition rule.
Based on this, we use the probability Q(A,β)(T̃ = T |P (T )

S )
as a measure of performance.

Trade-off Recalling the definition of the DCG task in
section 3.3, we can specify a DCG task with the T, P

(T )
S .

In this sense, the calculation of µβ(A) can be seen as an
aggregation of the value of the µ measure across different
tasks. If αA,β(T, P

(T )
S ) is fixed, we can get a clear trade-

off between performance on different tasks. This can be
achieved by choosing a different learning algorithm but
with the same value of αA,β(T, P

(T )
S ) for different tasks.

In this situation, increasing the performance of one task
with non-zero αA,β(T, P

(T )
S ) will result in decreasing the

performance of other tasks.

Beyond Trade-off Then we come to the other problem,
which is how to improve performance on one task without
sacrificing performance on other tasks. The inituition is
that if we can improve the performance by fixing its corre-
sponding µ-measure fixed. Recall the definition of the µ

measure that µβ(T, P
(T )
S ,A) =

Q(A,β)(T̃=T |P (T )
S )

αA,β(T,P
(T )
S )

. So we

need to increase αA,β(T, P
(T )
S ) and Q(A,β)(T̃ = T |P (T )

S )
at the same rate. In this way, we improve performance
without altering the µ measure, making it a non-trade-
off improvement. Moreover, Based on the equation that
E
T ,P

(T )
S

logαT (A,P
(T )
S ) = IA,β(T̃ = T ;P

(T )
S ), we

can conclude that the statistical dependence IA,β(T̃ =

T ;P
(T )
S ) plays an important rule in non-trade-off improve-

ment.
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Implication for practice The analysis suggests that de-
veloping methods adaptable to data, with careful data en-
gineering, is a promising approach for effectively solving
DCG. The relationship between non-trade-off improvements
and IA,β(T̃ = T ;P

(T )
S ) highlights the inevitable sensitiv-

ity of data to methods applicable across various tasks. As a
result, careful data engineering is essential, supporting the
data-centric AI approach (Zha et al., 2023).

Compared with previous studies. 1) Research in DCG.
Previous work (Dong & Ma, 2022; Dziri et al., 2024) has
discussed how a method that is effective for one task may
struggle to solve another. While these studies are similar
to ours in exploring the relationship between a method’s
performance on different tasks, they primarily focus on
DCG problems with specific composition rules. In contrast,
our work proposes an invariant measure that reveals the
underlying mechanism and is applicable to a wider range
of situations, as it considers the relationships between all
different composition rules. 2) Compare with No free
lunch theorems. Another well-known theorem addressing
the trade-off between a method’s performance across dif-
ferent tasks is the “No Free Lunch” (NFL) theorem, which
primarily focuses on problems in optimization (Wolpert &
Macready, 1997), search (Wolpert et al., 1995), and super-
vised learning (Sterkenburg & Grünwald, 2021; Wolpert,
2021; 2002). Further details on the NFL theorem can be
found in references (Adam et al., 2019; Joyce & Herrmann,
2018; Ho & Pepyne, 2001; Ho et al., 2003; Yang, 2012;
Rowe et al., 2009). The NFL theorem states that, when
averaged across all possible problems, any two methods are
essentially equivalent. The main difference between our
study and the NFL framework lies in two key areas: 1) Our
work focuses on the composition rule T , and our theorem is
not limited to any specific learning problem, such as super-
vised learning (Wolpert & Macready, 1997; Wolpert et al.,
1995) or unsupervised learning (Sterkenburg & Grünwald,
2021; Wolpert, 2021; 2002). As long as the problem falls
within the DCG category (defined in Section 3.3), our the-
ory applies. 2) While the NFL theorem discusses trade-offs
between tasks, our theory highlights non-trade-off improve-
ments specifically within the DCG problems.

5. Statistic Mechanism of Knowledge
Composition

In the previous section, we are concerned with the situation
over all possible composition rules. However, composi-
tion rules have different probability of occurring in certain
scenarios. Therefore, in this section we consider the prob-
lem that the composition rule follows a certain distribution
T ∼ PT and P

(T )
S ∼ g(T ). Dn is the data set sampled

from the distribution P
(T )
S . By modifying the distribution

P T , we can emphasize the composition rules that are most

likely to occur in practice.

5.1. Decouping the influence of insufficient data

Unlike the generalization analysis in the IID assumption, the
generalization error of the DCG comes from two sources:
The first one is due to the insufficient data and the second
one is due to the fairness of combining the prior knowledge
to handle the new situation. We refer to the first as the IID
error and the second as the CG error. This leads us to the
research question:

How to seperate the influence of insufficient data and lack
of knowledge composition on generalization error?

To make such an analysis possible, we first need to identify
the influence of the insufficient data, and then we need to
model this influence in a mathematical way.

1) Evaluation. Given a function f , the generalization error
refers to the gap between the error on the target distribution,
err(PU , f), and that on the training data, i.e., err(Dn, f).
To understand this gap, we decompose the generalization
error into two terms:

err(PU , f)− err(Dn, f) =

err(PS , f)− err(Dn, f)︸ ︷︷ ︸
IID error

+ err(PU , f)− err(PS , f)︸ ︷︷ ︸
CG error

(5)
The “IID error” can be thought of as the generalization error
under the IID assumption. The “CG error” is the focus here.

2) Function selection. As for the CG error, even though
we eliminate the aforementioned influence by evaluating all
functions f on the target distribution PU , there is still an
uneliminated influence from the insufficient data. This influ-
ence comes from the fact that the function f is sampled from
A(Dn) instead of A(P

(T )
S ). In short, the learning algorithm

operates on the insufficient data. Based on this, we introduce

κn ≜ max(PU ,PE)
|EDn∼PS

[err(PU ,fDn
)−err(PS ,fDn

)]|
|err(PU ,fS)−err(PS ,fS)|

(note that fDn
∼ A(Dn)) to decouple these influences.

κn quantifies the variation in the performance gap between
the support distribution and the target distribution over dif-
ferent numbers of training samples. The κn satisfies that
limn→∞ κn = 1. This indicates that the influence of κn

disappears when given infinite data to learn.

Summary Based on the above analysis, we can decom-
pose the generalization error as:

|err(PU ,fDn
)− err(Dn,fDn

)|
≤ |err(PS ,fDn

)− err(Dn,fDn
)|

+ κn|err(PU ,fS)− err(PS ,fS)|.
(6)

As |err(PS ,fDn
)−err(Dn,fDn

)| can be an upper bound
using any generalization theory with IID assumption,
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|err(PU ,fS) − err(PS ,fS)| is focused in this paper, as
this term comes from the nature of compositional general-
ization.

5.2. Theorem

In this part, we aim to provide a generalization bounded by
the statistical properties of the DCG problem. We start with
the assumptions used:
Definition 5.1. The incompatibility between the composi-
tion rule and the learning algorithm is defined as

τ(T,A) =E
P

(T )
E ∼g(T )

sup
M1,M2⊂E

sup
M ′

1⊂M1,M ′
2⊂M2∣∣∣err(P (T )

M ′
1
,fM1

)− err(P
(T )
M ′

2
,fM2

)
∣∣∣ , (7)

where fM1
∼ A(PM1

) and fM2
∼ A(PM2

).
Remark 5.2. Given a random variable T , τ(T ,A) =
ET∼PT

τ(T,A).
Assumption 5.3. (L-bounded) The error function err(·, ·)
is L-bounded, i.e. for all valid inputs P, f , we have
|err(P, f)| ≤ L.
Remark 5.4. Assumption 5.3 requires that the error is
bounded. If the solution performs poorly on a small subset
of data points but performs well on the rest, the average error
could be disproportionately large due to extreme errors in
that small subset without this assumption. This assumption
can be easily satisfied by modifying the original error using
a min(err, bound) operation. Alternatively, a bounded error
measure, such as 1-accuracy, which ranges between 0 and 1,
can be used.
Assumption 5.5. Given the distribution P

(T )
E = g(T, ξ),

there exist functions mξ,mT such that T = mT (P
T
E ) and

ξ = mξ(P
(T )
S ) for any S ∈ E and S ̸= ∅.

Remark 5.6. Assumption 5.4 requires that the DCG prob-
lem is solvable. Our bound does not apply to DCG problems
that are entirely unsolvable. This assumption ensures that,
given all distributions, we can learn how the given compo-
nents are combined. For example, if provided with images
of various shapes and colors, we should be able to under-
stand how shape and color interact to form specific images,
such as a the image of red triangle. This assumption guaran-
tees that there exists a way to recover these compositional
rules from the data.
Theorem 5.7. Under Assumption 5.3 and 5.5, given training
data Dn ∈ Zn sampled from the support distribution PS ,
learning algorithm A, then we have∣∣E[err(PU ,fDn

)− err(Dn,fDn
)]
∣∣

≤ GenIID +Φn(IA(fS ;T |P (T )
S )) + τ(T ,A),

(8)

where GenIID denotes any generalization error bound
with IID assumption, the subscript of IA(·; ·) de-
notes influence of A through Q(A), and Φn(x) ≜

κnL
√

min{x/2, 1− exp(−x)} where limn→∞ κn = 1.
Note that Φn(x) is a monotonically increasing function
with respect to x.

5.3. Analysis

1. Knowledge composition. As shown in the previous
analysis, the generalization error of the DCG comes from
two sources: insufficient data and knowledge composition.
In this paper, we examine our generalization bound when
infinite data is given so that we can focus on the knowledge
composition. In this situation, we come to the following
conclusion:

Corollary 5.8. Under Assumption 5.3 and 5.5, and
limn→∞ GenIID = 0, then we have

|E[err(PU ,fS)− err(PS ,fS)]|

≤ ϕ(IA(fS ;T |P (T )
S )) + τ(T ,A),

(9)

where ϕ(x) = L
√
min{x/2, 1− exp(−x)}.

Remark 5.9. In this corollary, we assume that
limn→∞ GenIID = 0. Recall that GenIID can be
equal to any generalization bound under IID condition.
There are many IID generalization bound that can ensure
limn→∞ GenIID → 0, including VC dimension (Vapnik
& Chervonenkis, 2015), Rademacher complexity (Bartlett
& Mendelson, 2002), covering number (Shalev-Shwartz &
Ben-David, 2014), algorithm stability (Bousquet & Elis-
seeff, 2002; Hardt et al., 2016) and information-theoretic
analysis (Xu & Raginsky, 2017; Russo & Zou, 2016).

Remark 5.10. This corollary reveals a small value of
ϕ(IA(fS ;T |P (T )

S )) + τ(T ,A) is essential for knowledge
composition.

2. Trade-off between the compatibility and MI.
The previous analysis reveal the relation between
ϕ(IA(fS ;T |P (T )

S )) + τ(T ,A) and knowledge
composition. However, the relationship between
ϕ(IA(fS ;T |P (T )

S )) and τ(T ,A) is still unclear. To under-
stand this relation, we must first examine the relationships
among the elements involved in the calculation of mutual
information, as illustrated in the following diagram:

P
(T )
S fS A

T τ(T,A)

(10)

From this diagram, we discover that a trade-off exists be-
tween Φn(IA(fS ;T |P (T )

S )) and τ(T ,A). More specifi-
cally, when no constraint is placed on τ(A, T ), fS and T

are independent such that IA(fS ;T |P (T )
S ) = 0. In this

scenario, the generalization bound can become very large

7
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because τ(A, T ) can be very large. One possible solution is
to impose a constraint such that τ(A, T ) ≤ ϵ when design
the learning algorithm. By applying this constraint, we cre-
ate a dependency between T and A through conditioning on
τ(A, T ), which leads a non-zero value of IA(fS ;T |P (T )

S ).

3. Compared with previous studies 1) From a tech-
nique perspective, this is the first paper that decouples the
influence of finite samples and knowledge composition in
generalization analysis in out of distribution. (Netanyahu
et al., 2023; Qiu et al., 2021; Oren et al., 2020; Hosseini
et al., 2022). This decoupling allows us to focus on the
influence of knowledge composition on generalization error,
which is at the core of DCG problems. What’s more, it
allows us to reuse the knowledge from the generalization
analysis in the IID situation and reduce the duplication of
work. 2) Compared with generalization bounds in DCG,
Previous works (Netanyahu et al., 2023; Dong & Ma, 2022)
provide generalization bound methods for DCG problems
that are tailored to specific tasks. This means that their
works mainly consider the problem using a specific compo-
sition rule. The unique features of our theory are that: 1)
Our bound is tractable for different composition rules; 2)
Our bound connects the generalization behaviour with the
mutual information “IA(fS ;T |P (T )

S )”; this further reveals
the statistical mechanism of the compositional generaliza-
tion. 3) To illustrate the tightness of our bounds, we
compare our bound with that of Ben-David et al. (2010),
which is a general bound for out-of-distribution generaliza-
tion and is therefore comparable to ours. The details are
given in the Appendix B.4. Here we list the results of the
comparison. We find that we cannot simply say that one
method is tighter than the other. We divided the DCG tasks
into two types: one dominated by the learning algorithm and
one dominated by the function space. In the first situation,
the performance of the DCG is highly dependent on the
learning algorithm and our bound is much better than Ben-
David et al. (2010). This is reasonable because Ben-David
et al. (2010) doesn’t take into account the influence of the
learning algorithm. When it comes to the second situation,
we find that our bound is better when there are relatively
good support distributions, i.e. when |S| is large. On the
other hand, the (Ben-David et al., 2010) is better when |S|
is small.

6. Experiment
6.1. Experiment Design

1. Components and Compositional rule: We construct
two words set A,B satisfying |A| = |B| = 1000 and their
corresponding element a1, a2 ⊂ A and b1, b2 ⊂ B. a1, a2 is
a partition of A and the same as b1, b2. |a1| = |a2| = |b1| =
|b2| = 500. The composition rule can be any function
that satisfy the following form: (e1, e2) → e1e2e1e2e1e1.

And we construct 64 composition functions, referred as
T1, T2, · · · , T64

2. Distribution Split: The support distribution takes the
elements in the set {(e1, e2)|(e1, e2) ∈ a1 × b1 ∪ a2 × b1 ∪
a1 × b2}. The target distribution take elements in the set
{(e1, e2)|(e1, e2) ⊂ a2 × b2}. It is easy to verify that these
designs satisfy the requirement listed in Section 3.

3. Sequence design: The input sequence is
“e1, e2, r1, r2, r3,#”, where r1, r2, r3 are random words that
simulate the randomness. The expected completed sequence
is “e1, e2, r1, r2, r3,#, e1, e2, e1, e2, e1, e1” if the composi-
tion rule is (e1, e2) → e1, e2, e1, e2, e1, e1.

4. Learning algorithm design: In our paper, we define
the learning algorithm as the mapping between data and the
learned function, encompassing a broader concept than just
the optimizer. To simulate learning algorithms with vary-
ing inductive biases and adaptivity, we adopt the following
approach:

1) We employ the GPT-2 model with two configurations:

• Setting 1: 4 layers, 4 attention heads, and an embed-
ding size of 128.

• Setting 2: 6 layers, 8 attention heads, and an embed-
ding size of 256.

2) We pretrain the GPT-2 model using different pretraining
data schedules. The pretraining data is generated from a
subset of composition rules same to those in the downstream
task, but with entirely different words. This setup allows us
to create learning algorithms with different inductive biases
and adaptivity while preventing data leakage.

6.2. Experiemnts on trade-off and non-trade-off
improvement

On of the key point in this paper is that the non-trade-off
improvement has to rely on the adaptivity of learning algo-
rithm (detail see beyond trade-off page 5). To verify this
conclusion, calculate IA,β(T̃ = T, PS), which is a measure
of adaptivity used in out paper, and GACC, which is the
average performance across all the tasks with compositional
rule in T1, T2, · · · , T64. The results are given in Table 1.

6.3. Experiments on Generalization Bounds

We conduct the experiments with different rule complexity
using the best pretrain setting in previous section. Rule
complexity refers to the length of the rule on the output
side. For example, the rule complexity of (e1, e2) →
e1, e2, e1, e2, e1, e1 is 6, while the rule complexity of
(e1, e2) → e1, e2, e1, e2, e1, e1, e1, e2 is 8. The results
(given in table 2) indicate that our generalization bound
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IA,β(T̃ = T, PS) 0.073 0.115 0.125 0.281 0.362 0.462 0.481 0.505 0.527 0.564
GACC 0.605 0.591 0.565 0.633 0.696 0.750 0.772 0.789 0.752 0.776

Table 1. Values of IA,β(T̃ = T, PS) and GACC over 10 instances

is more tighter than the bound of Ben-David et al.

Rule Complexity 6 8 10 12

CG Error 0.223 0.262 0.301 0.342
Ben-David et al. 0.622 0.680 0.701 0.690
Ours 0.271 0.295 0.351 0.372

Table 2. Performance comparison across rule complexities

7. Discussion
Q: What are the key properties of data-centric approaches
to solving the DCG problem?

Our theory suggests that a data-centric approach is funda-
mental for achieving non-trade-off improvements. It high-
lights the following key properties of data-centric methods:

1. Data-centric methods should effectively leverage infor-
mation from the data itself. Injecting human task-specific
knowledge into method design—such as using special-
ized model architectures or loss functions—may hinder the
method’s ability to learn directly from the data.

2. Theory 5.7 further asserts that compatibility between the
learning algorithm and the data is crucial. This implies that
the learning algorithm should achieve uniform performance
across different compositions within the support distribu-
tion. For example, if the support distribution includes red
triangles and blue rectangles, the model’s performance on
red triangles and blue rectangles should be similar.

3. Regarding the requirements for the data engineering
phase, our theory supports the co-design of both the solution
(including network structure and objective function) and
data collection. Since the value of IA,β(T̃ = T, PS) in
our theory depends on both the learning algorithm and the
data, our theory cannot prescribe a universally optimal data
development method independent of the specific approach.
However, certain data quality requirements, such as the
absence of label noise, are absolutely essential.

8. Limitation
This paper aims to provide a theoretical understanding of
compositional generalization. Consequently, the analysis
presented here does not directly address specific DCG prob-
lems. However, we argue that the theoretical insights are
valuable and can inspire the development of better methods.
These findings include:

1) (Section 4) Improving the adaptivity of the proposed
method is crucial. Without adaptivity, we run the risk of
facing a zero-sum situation, where improving performance
on one task may lead to reduced performance on others.

2) (Section 5) We have found that the knowledge compo-
sition ability of a method for a given task can be assessed
using Φ(IA(fS ;T |P (T )

S )) + τ(T ,A). This reveal the im-
portance of the learning algorithm that not only be compati-
ble with the compositional rule but also be sure its output
less influenced by the compositional rule.

In summary, this work offers insights into the generalization
mechanisms underlying DCG problems. These insights,
along with the introduction of new concepts—particularly
the connection between statistical relations and generaliza-
tion error—can be leveraged to guide the development of
new methods.

9. Conclusion
This paper aims to understand the generalization mecha-
nisms of the DCG from a statistical perspective. This serves
as a complementary view to previous studies. More specif-
ically, our findings include: 1) We propose a new way to
model the internal bias and the adaptivity of the learning
algorithm separately. Based on this, we propose the µ mea-
sure to analyse the trade-off and non-trade-off improvement.
2) To bridge the statistic properties of the learning algorithm
with its knowledge composition capacity, we first provide
a way to separates the influence of the insufficiency data
and that of the knowledge composition. Then, we identify
that small Φ(IA(fS ;T |P (T )

S )) + τ(T ,A) is important for
better knowledge composition ability.
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A. Proof of Invariant Measure
Theorem A.1. (Invariant Property) There exists at least one function α such that for any β, the µ-measure satisfies the
following conditions:

• (1) For any T , P (T )
S and A, we have E

T ,P
(T )
S

logαA,β(T ,P
(T )
S ) = IA,β(T̃ = T ;P

(T )
S );

• (2) For any A1,A2, the following equation holds

µβ(A1) = µβ(A2), (11)

where µ(A) =
∑

T E
P

(T )
S ∼g(T )

µ(T, P
(T )
S ,A).

Proof. The key to prove this theory is to find a α that satisfies the condition (1) and (2).

• We construct αA,β(T, P
(T )
S ) =

Q(A,β)(P
(T )
S |T̃=T )

Q(A,β)(P
(T )
S )

.

• In Proposition A.2, we prove that the α satisfies the condition (1)

• In Proposition A.3, we prove that the α satisfies the condition (2).

Combine the results above, the theorem is proved.

Proposition A.2. For any learning algorithm A, given two random variable T ,P
(T )
S , we have

E
T ,P

(T )
S

logαA,β(T ,P
(T )
S ) = IA,β(T̃ = T ;P

(T )
S ). (12)

Proof. According to the equation αA,β(T, P
(T )
S ) =

Q(A,β)(P
(T )
S |T̃=T )

Q(A,β)(P
(T )
S )

, we have

E
T ,P

(T )
S

logαT (A,P
(T )
S )

=
∑

T,P
(T )
S

Q(A,β)(T̃ = T, P
(T )
S ) log

Q(A,β)(P
(T )
S |T̃ = T )

Q(A,β)(P
(T )
S )

=
∑

T,P
(T )
S

Q(A,β)(T̃ = T, P
(T )
S ) log

Q(A,β)(P
(T )
S , T̃ = T )

Q(A,β)(P
(T )
S ), Q(A,β)(T )

(⋆)
= IA,β(T̃ = T ,P

(T̃=T )
S ),

(13)

where (⋆) is due to the definition of the mutual information. Therefore, the Proposition is established.

Proposition A.3. For any A1,A2 and β, we have

µβ(A1) = µβ(A2), (14)

where µ(A) =
∑

T E
P

(T )
S ∼g(T )

µ(T, P
(T )
S ,A).

Proof. According to the bayes rule, we have

Q(T̃ = T |P (T )
S ) =

Q(P
(T )
S |T̃ = T )Q(T̃ = T )

Q(P
(T )
S )

. (15)

13
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Since T̃ is the prediction, therefore T is available when T̃ = T . Based on this, we have

Q(A,β)(P
(T )
S |T̃ = T ) = Q(A,β)(P

(T̃ )
S |T̃ = T ). (16)

According to the definition of αA,β(T, P
(T )
S ), we have

αA,β(T, P
(T )
S ) =

Q(T̃ = T |PS)

Q(T̃ = T )
. (17)

First, we consider the learning algorithms that αA,β(T, P
(T )
S ) ̸= 0 for all T, PS According to the definition of µ(·), we have

E
P

(T )
S ∼g(T )

µβ(T, PS ,A)

= E
P

(T )
S ∼g(T )

Q(A,β)(T̃ = T |PS)

αA,β(T, P
(T )
S )

= E
P

(T )
S ∼g(T )

Q(A,β)(T̃ = T )

=
∑
P

(T )
S

Q(A,β)(P
(T )
S )Q(A,β)(T̃ = T )

= Q(A,β)(T̃ = T ).

(18)

For all A, we have ∑
T

Q(A,β)(T̃ = T ) =
∑
T̃

Q(A,β)(T̃ ) = 1. (19)

Combined all the equation above, we have ∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A1)

=
∑
T

E
P

(T )
S ∼g(T )

Q(A1,β)(T̃ = T )

=
∑
T

E
P

(T )
S ∼g(T )

Q(A2,β)(T̃ = T )

=
∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A2).

(20)

Given a learning algorithm A1 there exists a set V ,such that for all (PS , T ∈ V), we have αT (A1, P
(T )
S ) = 0. The learning

algorithm A2 satisties that αT (A1, P
(T )
S ) > 0 for all T, PS . If this theorem holds, we expect that∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A2)

=
∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A1)

=
∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A1)1[(T, PS) /∈ V]

+
∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A1)1[(T, PS) ∈ V].

(21)

Because µβ(T, PS ,A1) > 0 holds for all inputs, we have∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A1)1[(T, PS) /∈ V] ≥ 0, (22)∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A1)1[(T, PS) ∈ V] ≥ 0. (23)
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Obviously, we have

∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A1)1[(T, PS) /∈ V]

≤
∑
T

E
P

(T )
S ∼g(T )

µβ(T, PS ,A1) = 1.
(24)

Therefore, we can find a value assignment that assign the value between 0 and 1 to µβ(T, PS ,A1) for all (PS , T ) ∈ V such
that the Theorem holds.

B. Proof of Generalization Bound
B.1. Preliminary: Definition and useful lemma

In the following, we give the measure for the distribution, i.e. Wasserstein Distance and the some common used function
assumption, i.e. Lipschitz assumption and homeomorphis assumption.

Definition B.1. (Wasserstein Distance). For any p ≥ 1, the p-Wasserstein distance between two pobability measures P,Q
on the space W with metric dW is defined as:

Wp(P,Q) = inf
M∈Γ(P,Q)

(E(W,W ′)∼M [dpW(W,W ′)])1/p, (25)

where Γ(P,Q) denotes the collection of all measures on W × W with the marginals P and Q on the first and second
components respectively.

Definition B.2. (Lipschitz) Given two metric spaces (M, dM) and (N , dN ), where dM and dN denote the metrics on M
and N . A function h : M → N is L-Lipschitz if for all m1,m2 ∈ M, we have dN (h(m1), h(m2)) ≤ LdM(m1,m2).

Lipschitz assumption is commonly used assumption The majority of research relies on the Lipschitz assumption when
analyzing generalization behavior. Some studies attempt to alleviate this assumption by substituting it with its weaker
counterpart. However, as the primary focus of this paper does not lie in removing the Lipschitz assumption, we defer this
task to future work.

Definition B.3. (homeomorphism) A continuous function f is called a homeomorphism if it is a bijection function and its
inverse function f−1 is continuous as well.

Definition B.4. (Total Variation) The total variation between two probability distributions P and Q on W is

TV(P,Q) ≜ sup
A∈W

{P (A)−Q(A)} (26)

Definition B.5. (Discrete Metric) The discrete metric is d(x, y) ≜ 1[x ̸= y], where 1 is the indicator function.

Lemma B.6. (Rademacher Complexity (from Mohri et al. (2018))) Let F be a family of functions. Given a distribution P
and a samples Dn = {z1, · · · , zn} ∼ P⊗n, the following holds for all g ∈ F:

EDn∼P⊗n [err(P, f)− err(Dn, f)] ≤ 2Rn(F), (27)

where Rn = Eσ,Dn
[supf∈F

1
n

∑n
i=1 σif(xi)] with σi being independent uniform random variables taking values in

{−1,+1}.

Lemma B.7. For two pobability measures P,Q on the space W with metric dW , the 1-Wasserstein distance between P and
Q can be represented as:

W1(P,Q) =
1

L
sup
h∈H

Ew∼Ph(w)− Ew∼Qh(w), (28)

where H denotes the function spaces containing function with Lipschitz constant less or equal to L.

15



On the Statistical Mechanisms of Distributional Compositional Generalization

B.2. Proof of Theorem

To prove this theorem, we first start with a important lemma:
Lemma B.8. Under Assumption 5.3, given training data Dn ∈ Zn sampled from the support distribution PS , learning
algorithm A, then we have

|E[err(PU , f)− err(Dn, f)]| ≤ GenIID + κnLW1(Q
(A)
fS

, Q
(A)
fE

) + τ(T ,A), (29)

where GenIID denotes any generalization error bound with IID assumption, Φ(x) ≜
√
min{x/2, 1− exp(−x)}, and

κn ≜ max
|EDn∼PS

[err(PU ,fDn
)−err(PS ,fDn

)]|
|err(PU ,fS)−err(PS ,fS)| (note that fDn

∼ A(Dn)).

Proof. We can decomposite err(PU , f)− err(Dn, f) as

E[err(PU , f)− err(Dn, f)] = E[err(PS ,fDn
)− err(Dn,fDn

)]︸ ︷︷ ︸
(1)

+E[err(PU ,fDn
)− err(PS ,fDn

)]︸ ︷︷ ︸
(2)

. (30)

Because (1) is the generalization bound in IID situation, we can upperbound it with any IID bound. Therfore, we can bound
”(1)” term with GenIID to denotes any upper bound of IID. Then, we only need to focus on the (2) term, which is the
essential part of DCG.

Then, we have ∣∣∣err(P (T )
U ,fS)− err(P

(T )
S ,fS)

∣∣∣
=
∣∣∣err(P (T )

U ,fS)− err(P
(T )
U ,fE) + err(P

(T )
U ,fE)− err(P

(T )
S ,fS)

∣∣∣
≤
∣∣∣err(P (T )

U ,fS)− err(P
(T )
U ,fE)

∣∣∣+ ∣∣∣err(P (T )
U ,fE)− err(P

(T )
S ,fS)

∣∣∣
≤
∣∣∣err(P (T )

U ,fS)− err(P
(T )
U ,fE)

∣∣∣+ τ(T,A)

(31)

According to Lemma B.7, we have

W1(P,Q) =
1

L
sup
h∈H

Ew∼Ph(w)− Ew∼Qh(w). (32)

By replacing h in Equation 32 with err(PU , ·), P in Equation 32 with Q
(A)
fS

and Q in Equation 32 with PFc we obtain that

W1(Q
(A)
fS

, Q
(A)
fE

)

≥ 1

L

(
E
f∼Q

(A)
fS

err(PU , f)− E
f∼Q

(A)
fE

err(PU , f)

)
=

1

L
(err(PU ,fS)− err(PU ,fE)) .

(33)

By rearranging the equation, we obtain that

err(PU ,fS)− err(PU ,fE) ≤ LW1(Q
(A)
fS

, Q
(A)
fE

). (34)

According to the Definition of κn, we have

err(PU ,fDn
)− err(PS ,fDn

) ≤ κn(err(PU ,fS)− err(PS ,fS)) (35)

Combining the equations above, the result is established.

Theorem B.9. Under Assumption 5.3 and 5.5, given training data Dn ∈ Zn sampled from the support distribution PS ,
learning algorithm A, then we have∣∣E[err(PU ,fDn

)− err(Dn,fDn
)]
∣∣ ≤ GenIID +Φn(IA(fS ;T |P (T )

S )) + τ(T ,A), (36)

where GenIID denotes any generalization error bound under IID assumption, Φn(x) ≜ κnL
√

min{x/2, 1− exp(−x)},

and κn ≜ max
|EDn∼PS

[err(PU ,fDn
)−err(PS ,fDn

)]|
|err(PU ,fS)−err(PS ,fS)| (note that fDn

∼ A(Dn)).
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Proof. Start from Lemma B.8, we set the metric between the function space, i.e. dF , as the discrete metric as defined
in Definition B.5. Based on this metric, because the err(·) is L-bounded, we have for any distribution Q and f1, f2 ∈ F ,
|err(Q,f1)−err(Q,f2)|

dF (f1,f2)
≤ |L−0|

1 = L, i.e. the err(·) is L-Lipschitz.

Then, we can bound W1(Q
(A)
fS

, Q
(A)
fE

) in Lemma B.8 with Φ(IA(fS ;T |P (T )
S )):

W1(Q
(A)
fS

, Q
(A)
fE

) = W1(Q
(A)
fE

, Q
(A)
fS

)
(♣)
= TV(Q

(A)
fE

, Q
(A)
fS

)
(♡)

≤ Φ(KL(Q
(A)
fE

, Q
(A)
fS

)), (37)

where (♣) is due the Theorem 6.15 of Villani et al. (2009),(♡) is due to the statement in Theorem 6.5 of Polyanskiy & Wu
(2014) and Lemma 2 of Rodrı́guez Gálvez et al. (2021). With some misuses, we denote Q

(A)
fS

as Q(A)
f |PS , where | denotes

the condition and the same for Q(A)
fE

and PfU
. Then, we have

KL(Q
(A)
fE

, Q
(A)
fS

) = KL([Q
(A)
f |PE ], [Q

(A)
f |PS ])

= KL([Q
(A)
f |(PS , PU )], [Q

(A)
f |PS ])

= KL([Q
(A)
f |PU ], Q

(A)
f |PS)

= IA(f ;PU |P S)

(38)

The notation [Q
(A)
f |PU ] indicates that the condition PU only take effect on the distribution Q

(A)
f . While the KL(·, ·|PS)

indicates that the condition PS take effect on all the distributions.

According to the Assumption 5.5, there exists a bijection function between T and PU when PS is given. Based on this, we
have

IA(f ;PU |P S) = IA(f ;T |P S) (39)

Combine the equations above, the Theorem is estabilished.

B.3. Proof of Corollary

Corollary B.10. Under Assumption 5.3 and 5.5, and limn→∞ GenIID = 0, then we have

|E[err(PU ,fS)− err(PS ,fS)]| ≤ Φ(IA(fS ;T |P (T )
S )) + τ(T ,A). (40)

Proof. Recall that the generalization bound in Theorem 5.7, that∣∣E[err(PU ,fDn
)− err(Dn,fDn

)]
∣∣ ≤ GenIID +Φn(IA(fS ;T |P (T )

S )) + τ(T ,A), (41)

Taking n → ∞, we have

lim
n→∞

|E[err(PU , f)− err(Dn, f)]|

= |E[err(PU ,fS)− err(PS ,fS)]|

= lim
n→∞

(GenIID +Φn(IA(fS ;T |P (T )
S )) + τ(T ,A))

(⋆)
= lim

n→∞
Φn(IA(fS ;T |P (T )

S )) + τ(T ,A)

= Φ(IA(fS ;T |P (T )
S ) + τ(T ,A),

(42)

where (⋆) is due to the condition limn→∞ GenIID = 0 and limn→∞ κn = 1.

B.4. Tightness

Our ability to assert whether our bound is tighter or looser than previous bounds is contingent upon considering the nuanced
intricacies of the problems at hand. According to whether the problem is more influenced by the design of learning algorithm
or the function space. We have delineated the issue into two distinct categories
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Figure 1. Generalization bounds on the toy problem. The example 1 considers the case where the function space has some bias while
the learning algorithm has no bias. The example 2 consider the learning algorithm has certain bias while the function space is powerful
to fit data. We find that 1) our bounds can capture the decrease of generalization error in example 1 and 2) our can align with the
generalization error in example 2.

• Function space dominated problem. In this problem, we posit that the learning algorithm randomly selects functions
that minimize loss on the training data, within a function space tailored specifically for the problem at hand.

• learning algorithm dominated problem. Here, we assume that the function space is pwerful enough to accommodate
any distribution, while the learning algorithm is inclined to favor certain functions over others, provided they minimize
loss on the training data.

To illustrate these components, we provide two examples: Example 1 exemplifies a scenario where the function space
dominates, whereas Example 2 exemplifies a scenario where the learning algorithm holds sway. In summation, our analysis
yields the following conclusion: We ascertain that our bound achieves greater tightness in the context of the learning
algorithm dominated problem. Conversely, in the scenario where the function space dominates, our bound achieves greater
tightness solely when provided with an extensive array of supporting distributions.

Example setting We consider thet |A| = |B| = 10. The two examples are explored. Example 1 The function space
F has the properties that 1) For each function f ∈ F , we have

∑
a,b Ierr(Pa,b,f) = 10 or

∑
a,b Ierr(Pa,b,f) = 0. 2)

∀a ∈ A, b ∈ B, err(Pa,b, f) = 1 or err(Pa,b, f) = 0. The learning algorithm satisfies that ∀(a, b) ∈ S and for all
f ∈ suppQ

(A)
fS

and for all (a, b) ∈ S, we have err(Pa,b, f) = 0. Example 2 For all f ∈ suppQ
(A)
fS

, for all (a, b) ∈ S,

we have err(Pa,b, f) = 0 and for all (a, b) /∈ S, we have err(Pa,b, f) = 0 with probability ca,b
|S|
|E| else err(Pa,b, f) = 1,

where ca,b is a ramdonly assigned value for each (a, b) and it takes value between 0.8 and 1. We choose the distance measure
dF (f1, f2) = sup(a,b)∈E E(|err(Pa,b, f1)− err(Pa,b, f2)|).
Remark B.11. In Example 1, we delve into the bias stemming from the function space. Here, the function space is
relatively constrained, containing only a limited set of functions, including the correct one that attains zero loss. The
learning algorithm uniformly selects a function only if it achieves minimal loss on the support distribution. Consequently,
the learning algorithm exhibits no inherent bias towards specific functions as long as they achieve minimal loss on the
support distributions. In Example 2, we explore the bias inherent in the learning algorithm. In this instance, the function
space is expansive, encompassing all possible outputs. However, the learning algorithm may assign varying probabilities to
functions that achieve zero loss on the support distribution.

We revisit the bounds here:

1) The results of Ben-David et al. (2010). Ben-David et al. (2010) has the following conclusion that:

err(PU ,fS)− err(PS ,fS) ≤ dF∆F (PU , PS) + τ(T ,A), (43)

where the dF∆F is defined as dF∆F ≜ 2 supf,f ′∈F |Ez∼PU
[f(x) ̸= f ′(x)]− Ez∼PS

[f(x) ̸= f ′(x)]|.

2) Ours. The Corollary 5.8 in our work indicates that

err(PU ,fS)− err(PS ,fS) ≤ Φ(IA(fS ;T |P (T )
S )) + τ(T ,A). (44)

Results We compute the generalization bounds and error depicted in Fig. 1, revealing two key observations: Our bound
effectively incorporates the impact of the support distribution. In Example 1, our generalization bound accurately reflects
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the decreasing trend of the generalization error. Similarly, in Example 2, our bound aligns with the generalization trends
across various support distributions. Our bound accounts for the influence of the learning algorithm. Notably, in Example 2,
the approach proposed by Ben-David et al. (2010) fails to capture the dynamics accurately. This failure can be attributed
to its predominant focus on the function space influence, whereas our analysis recognizes the dominance of the learning
algorithm’s influence in this example.
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