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Abstract—Clustered seizures are prevalent among people with
epilepsy and can increase mortality risk. While past research has
mainly focused on seizure cluster detection, a few recent studies
predict seizure clustering by determining whether there will be
more seizures in the next 24 hours after the termination of a
seizure. Moreover, personalized prediction of clustered seizures
in the presence of limited and imbalanced data remains an
outstanding problem. We address this problem using a novel
transfer learning model to predict seizure clustering within a 24-
hour window. To compensate for the limited and imbalanced
available data, for each target patient, the model combines
trained individual-level predictive models of the target patient
and two other patients whose seizure patterns are similar to those
of the target patient. Approximate Kullback-Leibler divergence
is used to measure the similarity between patients in high-
dimensional data. The proposed model is evaluated on a long-
term ambulatory intracranial EEG dataset. Compared with
individualized predictive models, the proposed model improves
F1 scores for patients with limited or highly imbalanced data
by up to 51.0%. In addition, the proposed model achieves an
average F1 score of 0.702 and an area under the precision-recall
curve of 0.809. Our model can be clinically helpful in guiding
the treatment of clustered seizures.

Index Terms—Individualized prediction, Intracranial EEG,
Clustered seizures, Deep learning, Transfer learning

I. INTRODUCTION

Clustered seizures, defined as repetitive occurrences of
seizures [1] within 24 to 48 hours, are prevalent among people
with epilepsy [2]. Untreated clustered seizures can progress
to status epilepticus and cause higher mortality risk [3].
Although treatments exist for terminating clustered seizures
[4], unnecessary overtreatment increases the risk of respiratory
complications [5]. Predicting whether more seizures will occur
in the next 24 hours after the termination of a seizure (i.e.,
seizure clustering prediction) can guide the treatment for
seizure clustering termination [4].

While patient-specific differences in characteristics of
seizures [6]–[8] motivate personalized prediction, challenges
exist for developing appropriate personalized prediction mod-
els. First, the performance of personalized models is negatively
impacted when a patient’s number of seizures (including
clustered and isolated ones) is small (e.g., some patients have
hundreds of seizures within a year, while others may have
fewer than ten seizures [9]). Second, imbalanced data can hurt
the performance of personalized clustered seizure prediction
models (e.g., there is an imbalance if a patient experiences
clustered seizures more frequently than isolated seizures [10]).

We have developed a personalized seizure clustering predic-
tion model to address these challenges with transfer learning.
To assist with the personalized prediction for a target patient,
the model combines trained individual-level models from the
target patient and two patients whose seizure data are most
similar to that of the target patient. We measure the similarity
between patients by computing approximate Kullback-Leibler
divergence (KL divergence) [11] of the pre-ictal and ictal in-
tracranial EEG (iEEG) features of seizures. Our deep-learning-
based model demonstrated an 11.1%−51.0% improvement in
F1 scores on patients with limited or highly imbalanced data
compared to individual-level models.

Previous research has focused on clustered seizure detec-
tion, with a few studies predicting seizure clustering using
long-term iEEG data. Several studies have used statistical
methods such as the Hurst exponent [12] to retrospectively
detect clustered seizures and study their characteristics [13],
[14]. However, these studies did not predict seizure clustering.
A recent study [15] developed a support vector machine model
to predict lead seizures of clusters using iEEG data from a
canine population. This population-level model might fail to
capture patient-specific seizure characteristics [6]–[8]. Another
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study [10] developed individualized models using the random
forest to predict clustered seizures. However, the performance
of individualized models can be adversely affected if patients
have very few seizures or imbalanced data [9], [10].

We evaluated the prediction performance of the proposed
model on a large ambulatory iEEG dataset [9], which contains
up to 2 years of iEEG recordings each for 15 people with
drug-resistant epilepsy. We make the following contributions:

• We develop a novel transfer learning model for personal-
ized predictions of clustered seizures. It combines trained
models from 3 patients with similar seizure data.

• We propose a novel method for comparing pre-ictal and
ictal iEEG features of patients with approximate KL
divergence. The method effectively selects patients with
similar seizure data for transfer learning.

• The model demonstrates an 11.1% − 51.0% improve-
ment in F1 scores for patients with limited or highly
imbalanced data compared to individual-level models. On
average, the model has a 0.702 F1 score and 0.809 area
under the precision-recall curve (AUPRC).

Our model can easily be adapted to new patients and can be
clinically helpful in guiding the treatment of clustered seizures.

II. METHODS

Our analysis pipeline is described below (Figure 1).

A. iEEG Data

We evaluated our model on the NeuroVista dataset [9],
which contains up to 2 years of iEEG recordings for 15
patients with medically refractory epilepsy. For each patient,
16 electrodes were placed on the presurgically assessed seizure
onset zone. Because some patients had significant data drops
or very few seizures of one category, we included only eight
patients in our analysis, each with 458.1± 320.0 seizures.

B. Definition of Seizure Clusters

We labeled a seizure as cluster-non-last (C-NL) if it was the
first/intermediate seizure within a cluster, and cluster-last (C-
L) if it was the last. C-NL seizures are followed by subsequent
seizures within 24 hours after their termination, while isolated
(I) or C-L seizures are not. Therefore, we can predict clustered
seizure occurrence in the next 24 hours by classifying the just-
observed seizure as C-NL rather than I/C-L.

C. Data Preprocessing

We detected the ictal period of seizures from the iEEG data
with a published method [16] and defined 10 minutes before
seizure onset as the pre-ictal period. Next, we filtered the iEEG
data into five frequency bands — delta (0.5−4 Hz), theta (4−8
Hz), alpha (8−12 Hz), beta (12−25 Hz), and gamma (25−45
Hz) — according to a published method [10] and divided
the signals in each band into 2.5-second non-overlapping
segments. We computed relative entropy (REN), a bivariate
feature measuring the dissimilarity between signals from pairs
of electrodes, for all pairs of electrodes in each segment for
the five bands. Finally, we computed mean RENs by averaging

the REN across all pairs of electrodes and segments for each
band in the pre-ictal and ictal periods separately so that each
seizure was represented by ten features.

D. Source Patients Selection

Transfer learning trains a model on source data and applies
it to target data to transfer knowledge from the source data.
For each target patient, we identified the two most similar
patients as the corresponding source patients. The similar-
ity was measured with approximate KL divergence [11] on
the mean REN distributions of patients’ seizures. With ten-
dimensional mean REN data, we did not have enough samples
for some patients to compute the approximate KL divergence.
Therefore, we reduced the data dimensionality to 2D using
the Uniform Manifold Approximation and Projection (UMAP)
method to compute the approximate KL divergence.

E. Transfer Learning-based Model

The proposed model uses the mean REN features of a
seizure (X) to predict the probability that the seizure will
be C-NL (Y ). It consists of three parts: (1) a transfer block,
(2) a combination block, and an output block. We built a
personalized model for each target patient separately.

1) Transfer Block: The transfer block consists of trained
neural network layers from the two source patients and the
target patient. To obtain the trained layers (referred to as
“transfer layers” in the rest of the paper), we trained a multi-
layer perceptron (MLP) with three layers to predict seizure
labels using mean REN data for each patient separately, and
we picked the first two layers as the transfer layers. The
number of neurons in the first layer varied across patients,
while the second layer had ten neurons to ensure consistent
output size for combination block computation. Transfer layers
learn patient-specific representations that are useful for distin-
guishing seizure types. Let Zi,j represent the output of the
transfer layer obtained from patient j for target patient i’s
data, Wt,j,2,Wt,j,1 be the trained weights, Xi be the data on
a seizure from patient i, and ϕ be the rectified linear unit
(ReLU) activation function. Then we can write the output of
the transfer layer as Zi,j = W⊤

t,j,2[ϕ(W
⊤
t,j,1Xi)].

2) Combination Block: This block obtains the combined
representation, Zc,i, by combining transfer block outputs Zi,
where Zi =

[
Zi,i Zi,j Zi,k

]⊤
, and Zi,i, Zi,j , Zi,k are

representations of target patient i generated by transfer layers
from target patient i and source patients j, k. The output of
the combination block can be expressed as Zc,i = ϕ(W⊤

c,iZi),

with Wc,i =
[
wi,i wi,j wi,k

]⊤
. The combination block

learns to weigh contributions from individual patients’ transfer
layers, with source patients more similar to the target patient
potentially being weighted more.

3) Output Block: The output block is a fully connected
layer with a sigmoid activation function (σ). The probability,
Yi, that a seizure Xi will be cluster-non-last (C-NL) can be
written as Yi = σ(W⊤

o,iZc,i), where Wo,i are the weights.

Authorized licensed use limited to: University of Illinois. Downloaded on September 12,2024 at 20:08:50 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Analysis pipeline. Assuming the target patient is Pt. i, and Pts. j & k are the two patients whose data are the most similar to those of Pt. i, then
the trained layers of Pts. i, j, & k will be used to construct the transfer block for the model of Pt. i. Abbreviations: iEEG, intracranial EEG; REN, relative
entropy of network; UMAP, Uniform Manifold Approximation and Projection; KL divergence, Kullback–Leibler divergence; Pt., patient.

F. Experimental Setup
We randomly split the data of each patient into training and

testing sets with an 80:20 ratio and developed the proposed
model using the training set. The development of the proposed
model has two steps: (1) training individual-level models for
each patient and (2) training transfer learning models using
transfer layers from the corresponding individual-level models.
For each step, we selected the optimal sets of hyperparameters
(number of neurons, learning rates, batch size, and epochs)
using Optuna [17] with 5-fold inner cross-validation, and we
fine-tuned the model using the Adam optimizer.

We evaluated the performance of our proposed model
using 5-fold cross-validation and compared it against two
baselines: (1) individual-level models and (2) a cohort-level
model. The cohort-level and individual-level models were both
three-layer MLPs to share similar model complexity as the
proposed model. The cohort-level model was trained with the
training sets on all patients. The individual-level models and
our proposed model were trained using training sets on the
respective patients. We also compared our model performance
with another transfer learning method, the Leave One Patient
Out (LOPO) method. The LOPO method trains a cohort-level
model on all patients except the target patient and then fine-
tunes the trained model with data from the target patient. In
a recent study [18], Dissanayake et al. applied this method to
seizure prediction using scalp EEG signals. The LOPO method
improved the prediction performance significantly compared
to the cohort-level model. We used precision, recall, F1 score,
and AUPRC as the evaluation metrics.

III. RESULTS

A. Seizure Data Similarity
Seizures of some patients were very different from those of

others, while some patients had similar seizure data (Figure
2). That motivated the selection of source patients for transfer
learning. Approximate KL divergence was computed for each
pair of patients using the distribution of seizures in the UMAP
space (Figure 3). As in Figure 2, some patients were more
similar to each other than other patients.

B. Prediction Performance
The proposed model was better than or comparable to the

baseline models for patient-specific predictions (Table I).

Fig. 2. Seizure data reduced to 2D by UMAP. Each point represents a seizure
sample. Samples from the same patient are labeled in the same color.

Compared to individual-level models, the proposed model
had better performance on patients with limited data (patients
1, 6 & 8) and patients with highly imbalanced data (patients 2
& 3), with 11.1%−51.0% higher F1 scores. For patients with
larger amounts of data (patients 5 & 7), the proposed model
achieved similar performance as individual-level models.

Compared to the cohort-level model, the proposed model
achieved 12.8% − 97.3% higher F1 scores on patients 6,
7 & 8 by appropriately capturing patient-specific features.
In contrast, the cohort-level model was negatively impacted
by training with data from dissimilar patients. The proposed
model had a lower F1 score than the cohort-level model for
patient 4, because patient 4 was similar to multiple patients
(see Figure 3), and our selection method used only patients 6 &
8 as source patients. The cohort-level model also learned from
the other patients, which provided more helpful information
for the prediction for patient 4.

We compared the averaged performance across patients of
the proposed model, the LOPO method [18], and the baselines
(Table II). The LOPO method outperformed the baselines by
capturing patient-specific seizure patterns and overcoming data
limitations for some patients. The proposed model achieved
the highest scores on all metrics (with 5%−8% improvement
across the metrics compared to the LOPO method). This
performance improvement resulted from our selection method
that properly transfers learning from patients with similar data.
On the contrary, the LOPO method also transferred learning
from patients whose data distributions differed far from that
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TABLE I
PREDICTION PERFORMANCE OF THE PROPOSED MODEL FOR EACH PATIENT AGAINST THE INDIVIDUAL- AND COHORT-LEVEL MODELS. THE MEAN OF

THE METRICS OVER 5-FOLD CROSS-VALIDATION IS PROVIDED. THE HIGHEST METRICS ACROSS MODELS ARE IN BOLD.

Pt. # Sample Size Proposed Model Individual-level Models Cohort-level Model
I/C-L C-NL Precision Recall F1 AUPRC Precision Recall F1 AUPRC Precision Recall F1 AUPRC

1 73 107 0.820 0.419 0.462 0.719 0.585 0.314 0.389 0.714 0.527 0.419 0.460 0.626
2 28 648 0.969 0.893 0.921 0.972 0.948 0.324 0.610 0.968 0.961 0.919 0.937 0.976
3 83 646 0.899 0.729 0.794 0.892 0.909 0.564 0.694 0.910 0.907 0.633 0.744 0.906
4 132 148 0.601 0.352 0.440 0.624 0.537 0.200 0.699 0.601 0.528 0.572 0.606 0.592
5 100 793 0.888 0.933 0.905 0.894 0.898 0.861 0.877 0.919 0.899 0.923 0.910 0.923
6 28 10 0.700 0.800 0.733 0.907 0.558 0.500 0.535 0.797 0.583 0.300 0.650 0.830
7 228 540 0.817 0.650 0.722 0.830 0.804 0.685 0.738 0.825 0.692 0.278 0.366 0.685
8 83 18 0.625 0.533 0.643 0.639 0.542 0.333 0.579 0.625 0.412 0.400 0.439 0.537

TABLE II
AVERAGED PREDICTION PERFORMANCE ACROSS PATIENTS FOR EACH

MODEL. THE HIGHEST METRICS ACROSS MODELS ARE IN BOLD.

Model Precision Recall F1 AUPRC
Proposed Model 0.789 0.664 0.702 0.809
LOPO Method [18] 0.738 0.612 0.667 0.770
Individual-level Models 0.723 0.473 0.640 0.795
Cohort-level Model 0.689 0.511 0.639 0.759

Fig. 3. Approximate KL divergence between patients’ seizure data. The lower
the KL divergence, the more similar the data. Two source patients with the
smallest KL divergence from the target patient are boxed in orange.

of the target patient, leading to a performance drop.

IV. CONCLUSION

We propose a novel transfer-learning-based model that
supports personalized predictions of clustered seizures using
pre-ictal and ictal iEEG data. On average, the proposed model
outperforms the individual-level and cohort-level models. Fur-
thermore, the generality of our source selection method and the
modular structure of the model allows it to be easily applied to
new patients. Thus, our approach can guide treatment selection
for terminating clustered seizures.

Limitations. Our work has several limitations. First, we
did not consider the temporal dynamics of iEEG, which can
help with prediction. Second, we used two patients as sources
even if more subjects had similar seizure data. Using data
from more source patients could further improve performance.
Lastly, we evaluated our model on data from only eight
patients because of the challenges of collecting ambulatory
iEEG data. Evaluation on larger amounts of more easily

obtained data, such as scalp EEG data, will be important to
assess the generalizability of the results. We will address these
limitations in future work.
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