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Abstract
The Wasserstein distance from optimal mass transport (OMT) is a powerful mathematical tool with
numerous applications that provides a natural measure of the distance between two probability
distributions. Several methods to incorporate OMT into widely used probabilistic models, such as
Gaussian or Gaussian mixture, have been developed to enhance the capability of modeling complex
multimodal densities of real datasets. However, very few studies have explored the OMT problems
in a reproducing kernel Hilbert space (RKHS), wherein the kernel trick is utilized to avoid the need
to explicitly map input data into a high-dimensional feature space. In the current study, we propose
a Wasserstein-type metric to compute the distance between two Gaussian mixtures in a RKHS via
the kernel trick, i.e., kernel Gaussian mixture models.

1. Introduction

The Gaussian mixture model (GMM) is a probabilistic model defined as a weighted sum of several
Gaussian distributions [6, 30]. Due to its mathematical simplicity and efficiency, GMMs are widely
used to model complex multimodal densities of real datasets [7].

Optimal mass transport (OMT) is an active and ever-growing field of research, originating in the
work of the French civil engineer Gaspard Monge in 1781, which was formulated as the optimal way
(via the minimization of some transportation cost) to move a pile of soil from one site to another [9,
18, 37, 46]. OMT has made significant progress due to the pioneering effort of Leonid Kantorovich
in 1942, who introduced a relaxed version of the original problem that is solved using simple linear
programming [18]. Recently, there has been an ever increasing growth in applications of OMT
in numerous fields, including medical imaging analysis, statistical physics, machine learning, and
genomics [2, 3, 24, 50].
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Here we briefly sketch the basic theory of OMT. Suppose that ν0 and ν1 are two absolutely
continuous probability measures with compact support on X = Rd. (The theory is valid on more
general metric measure spaces.) A Borel map T : X → X is called a transport plan from ν0 to ν1
if it “push-forward” ν0 to ν1 (T#ν0 = ν1) which is equivalent to say that

ν1(B) = ν0(T
−1(B)), (1)

for every Borel subset B ⊂ Rd [20, 23]. Let c(x, y) be the transportation cost to move one unit of
mass from x to y. The Monge version of OMT problem seeks an optimal transport map T : X → X
such that the total transportation cost

∫
X c(x, T (x))ν0(dx) is minimized over the set of all transport

maps T . We note that the original OMT problem is highly non-linear and may not admit a viable
solution. To ease this computational difficulty, Leonid Kantorovich proposed a relaxed formulation,
solved by employing a linear programming method [18, 41] which defines the Wp Wasserstein
distance between ν0 and ν1 on Rd as follows:

W p
p (ν0, ν1) = inf

π∈Π(ν0,ν1)

∫
Rd×Rd

∥x− y∥pdπ(x, y), (2)

where Π(ν0, ν1) is the set of all joint probability measures π on X × X with ν0 and ν1 as its two
marginals, and c(x, y) is taken as a specific form of c(x, y) = ||x−y||p, p ≥ 1. In the present study,
we focus on the W2 Wasserstein distance using the squared Euclidean distance (p = 2) as the cost
function [25].

While OMT ensures that the displacement interpolation (weighted barycenters) between two
Gaussian distributions remains Gaussian, this property does not hold for Gaussian mixtures. To
cope with this issue in GMMs, Chen et al . proposed a new Wasserstein-type distance [3]. This ap-
proach optimizes the transport map between the two probability vectors of the respective Gaussian
mixtures using the discrete linear program where the cost function is computed as the closed-form
formulation of the W2 Wasserstein distance between Gaussian distributions. This ensures that the
displacement interpolation between two Gaussian mixtures preserves the Gaussian mixture struc-
ture. Note that the sum of probabilities of all Gaussian components in a Gaussian mixture is 1, and
therefore the total mass for two Gaussian mixtures is equal.

In machine learning, kernel methods provide a powerful framework for non-linear extensions
of classical linear models by implicitly mapping the data into a high-dimensional feature space
corresponding to a reproducing kernel Hilbert space (RKHS) via a non-linear mapping function
[28, 31, 43]. Recently, a formulation for the W2 Wasserstein distance metric between two Gaussian
distributions in a RKHS was introduced [33, 34, 49]. Extending this concept, we propose an OMT
framework to compute a Wasserstein-type distance between two Gaussian mixtures in a RKHS.

2. Methods

In this section, we first describe the underlying technical methods of the present work, and then
introduce our proposed methodology.

2.1. Kernel function

Suppose that we are given a dataset of n samples, denoted by X = [x1, x2, · · · , xn ] ∈ Rd, each
of which consists of d features. The data in the original input space can be mapped into a high-
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dimensional feature space via a non-linear mapping function ϕ [1, 21, 32]:

Φ : X → F , (3)

where F is a Hilbert space called the feature space and a (Mercer) kernel function k(xi, xj) =
⟨ϕ(xi), ϕ(xj)⟩ = ϕ(xi)

Tϕ(xj) is defined as an inner dot product in F for a positive semi-definite
kernel k : X × X → R in which the kernel function is symmetric: k(xi, xj) = k(xj , xi) and
Φ(X) := [ϕ(x1), ϕ(x2), · · · , ϕ(xn)] [38, 39]. The resulting Gram matrix K = ΦTΦ is positive
semi-definite (K ⪰ 0) with Kij := k(xi, xj),∀i, j ∈ {1, · · · , n}. This process is called the
kernel trick. Common choices of kernel functions are the Gaussian radial basis function (RBF) and
polynomial kernels [19, 36, 42]. Kernels are widely used in machine learning algorithms such as
support vector machines [4], linear discriminant analysis [32], and principal component analysis
[40, 44]. In this study, the following RBF kernel is employed:

k(xi, xj) = exp
(
− γ||xi − xj ||2

)
, (4)

where γ > 0 controls the kernel width. The mean and the covariance matrix in the feature space are
given by

m =
1

n

n∑
i=1

ϕ(xi) = Φs, Σ =
1

n

n∑
i=1

(ϕ(xi)−m)(ϕ(xi)−m)T = ΦJJTΦT, (5)

where sn×1 =
1
n1

T, J = 1√
n
(In −s1), 1 = [1, 1, · · · , 1], and In is the n×n identity matrix. Then,

denoting ΦJ by S, we have

S = ΦJ =
1√
n
[(ϕ(x1)−m), · · · , (ϕ(xn)−m)]. (6)

A key idea to compute a Wasserstein-type distance between two Gaussian mixtures in a RKHS is
to efficiently convert the mapping functions represented by m and Σ to kernel functions by putting
two mapping functions next to each other in a certain way.

2.2. OMT between Gaussian distributions

Given two Gaussian distributions, ν0 and ν1 ∈ Rd , with mean θi and covariance matrix Ci for i = 0
and 1, the W2 Wasserstein distance between the two distributions has the following closed formula:

W2(ν0, ν1)
2 = ∥θ0 − θ1∥2 + tr

(
C0 + C1 − 2

(
C

1
2
0 C1C

1
2
0

) 1
2

)
, (7)

where tr is the trace and tr

(
C0 + C1 − 2(C

1
2
0 C1C

1
2
0 )

1
2

)
= tr

(
C0 + C1 − 2(C1C0)

1
2

)
. In par-

ticular, when C0 = C1, we have W2(ν0, ν1)
2 = ∥θ0 − θ1∥2. If C0 and C1 are non-degenerate,

the geodesic path (displacement interpolation) (νt)t∈[0,1] between ν0 and ν1 remains Gaussian and
satisfies

νt ∈ argminρ(1− t)W2(ν0, ρ)
2 + tW2(ν1, ρ)

2, (8)

with mean θt = (1− t)θ0 + tθ1 and covariance matrix given by:

Ct = ((1− t)Id + tQ)C0((1− t)Id + tQ), (9)

where Id is the d× d identity matrix and Q = C
1
2
1 (C

1
2
1 C0C

1
2
1 )

− 1
2C

1
2
1 [7].
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2.3. OMT between Gaussian distributions in a RKHS

The data distribution in a RKHS represented via proper kernel functions is assumed to approxi-
mately follow a Gaussian distribution under suitable conditions, as justified by Huang et al . [13].
Let ρ0 and ρ1 ∈ Rl be two Gaussian distributions in a RKHS with mean mi and covariance matrix
Σi for i = 0, 1. The W2 Wasserstein distance in a RKHS, denoted as KW2 (kernel Wasserstein
distance), is then defined as follows:

KW2(ρ0, ρ1)
2 = ∥m0 −m1∥2 + tr

(
Σ0 +Σ1 − 2

(
Σ

1
2
0Σ1Σ

1
2
0

) 1
2

)
, (10)

where Σ
1
2
i is the unique semi-definite positive square root of a symmetric semi-definite positive

matrix Σi [8, 48].
Suppose that there are two sets of data in the original input space, X = [x1, x2, · · · , xn ] and

Y = [y1, y2, · · · , ym ] ∈ Rd (d < l), associated with ρ0 and ρ1, respectively. The first term in
Eq. (10) is the squared maximum mean discrepancy (MMD) [14, 35] and may be expressed with
kernel functions as follows:

∥m0 −m1∥2 =
1

n2

n∑
i=1

n∑
j=1

k (xi, xj)−
2

nm

n∑
i=1

m∑
j=1

k (xi, yj) +
1

m2

m∑
i=1

m∑
j=1

k (yi, yj) . (11)

By using Eq. (5), the second term in Eq. (10) is expressed as follows:

tr

(
Σ0 +Σ1 − 2

(
Σ

1
2
0Σ1Σ

1
2
0

) 1
2

)
= tr

(
Σ0 +Σ1 − 2 (Σ1Σ0)

1
2

)
(12)

= tr
(
J0J

T
0 Φ

T
0 Φ0

)
+ tr

(
J1J

T
1 Φ

T
1 Φ1

)
− 2tr

(
Φ1J1J

T
1 K10J0J

T
0 Φ

T
0

) 1
2

= tr
(
J0J

T
0 K00

)
+ tr

(
J1J

T
1 K11

)
− 2tr

(
Φ1QΦT

0

) 1
2 ,

where tr
(
Φ1QΦT

0

) 1
2 = tr

(
K01J1J

T
1 K10J0J

T
0

) 1
2 , Q = J1J

T
1 K10J0J

T
0 , and Kij = ΦT

i Φj . Note
that Σ0 and Σ1 are symmetric positive semi-definite. Plugging the two terms together into Eq. (10),
the KW2 distance between ρ0 and ρ1 may be expressed as:

KW2(ρ0, ρ1)
2 =

1

n2

n∑
i=1

n∑
j=1

k (xi, xj)−
2

nm

n∑
i=1

m∑
j=1

k (xi, yj) +
1

m2

m∑
i=1

m∑
j=1

k (yi, yj) + (13)

tr
(
J0J

T
0 K00

)
+ tr

(
J1J

T
1 K11

)
− 2tr

(
K01J1J

T
1 K10J0J

T
0

) 1
2 .

Eq. (13) will be used as a key component for the computation of a Wasserstein-type distance
between two Gaussian mixtures in a RKHS in the following section. In the special case, when
Σ0 = Σ1, we have KW2(ρ0, ρ1)

2 = 1
n2

∑n
i=1

∑n
j=1 k (xi, xj)−

2
nm

∑n
i=1

∑m
j=1 k (xi, yj) +

1
m2

∑m
i=1

∑m
j=1 k (yi, yj).

2.4. OMT between GMMs in a RKHS

Based on the OMT method between GMMs introduced in [3], we propose a Wasserstein-type metric
to compute the distance between two Gaussian mixtures in a RKHS via the kernel trick, which
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preserves the Gaussian mixture structure in the displacement interpolation. Let µ be a Gaussian
mixture in a RKHS:

µ =
N∑
k=1

pkvk, (14)

where each vk is a Gaussian distribution in a RKHS with vk = N (mk,Σk) and pk is a probability
of vk with

∑N
k=1 p

k = 1. Let µ0 and µ1 denote two Gaussian mixtures in a RKHS in the following
form:

µi = p1i v
1
i + p2i v

2
i + ...+ pNi

i vNi
i , i = 0, 1, (15)

where Ni is the number of Gaussian components of µi. The distance between µ0 and µ1 is then
defined according to the discrete OMT formulation for discrete measures [3, 27]:

d(µ0, µ1)
2 = min

π∈Π(p0,p1)

∑
i,j

cijπij , (16)

where Π(p0, p1) is the set of all joint probability measures between p0 and p1, defined as:

Π(p0, p1) = {π ∈ RN0×N1
+ |

∑
j

πkj = pk0,
∑
k

πkj = pj1}.

The cost cij is taken to be the square of the KW2 distance between vi0 and vj1 in a RKHS:

cij = KW2(v
i
0, v

j
1)

2. (17)

Since vi0 and vj1 are Gaussian distributions in a RKHS, the KW2 distance can be computed using
Eq. (13). Let π∗ be the optimal solution of Eq. (16). Then, the distance d(µ0, µ1) between two
Gaussian mixtures in a RKHS is defined as follows:

d(µ0, µ1) =

√∑
i,j

cijπ∗
ij , (18)

where d(µ0, µ1) ≥ KW2(µ0, µ1) and the following property holds [3]:

d(µs, µt) = (t− s)d(µ0, µ1), 0 ≤ s < t ≤ 1. (19)

The geodesic path µt between µ0 and µ1 is defined as

µt =
∑
i,j

π∗
ijv

ij
t , (20)

where vijt is the displacement interpolation between two Gaussian distributions, vi0 and vj1.
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3. Experiments

Suppose that we are given two Gaussian mixtures, µ0 = 0.3N (0.2, 0.002) + 0.7N (0.4, 0.004) and
µ1 = 0.6N (0.6, 0.005)+0.4N (0.8, 0.004) as a 1-dimensional example, as shown in Figure 1. Fig-
ure 2 shows the displacement interpolation µt for both the metric d(µ0, µ1) and general Wasserstein
distance between the µ0 and µ1 at t = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. It is observed that the displace-
ment interpolation for the metric d(µ0, µ1) preserves the Gaussian mixture structure, whereas the
displacement interpolation for the general Wasserstein distance does not.

As another example, three datasets were generated in the original input space, each of which
has two distributions (Figure 3). Each dataset consists of 1,000 data points with 500 data points for
each distribution. The d(·, ·) was then computed between each pair of datasets in a RKHS, assuming
that each dataset (µ0, µ1, and µ2) has two Gaussian components with v10 (purple)/v20 (orange), v11
(red)/v21 (blue), and v12 (pink)/v22 (brown), respectively in a RKHS (Tables 1 and 2). In the current
study, γ = 1 (Table 1) and γ = 10 (Table 2) were used in the RBF kernel shown in Eq. (4).

The d(·, ·) values with γ = 10 were larger than those corresponding to γ = 1. Overall, the
d(·, ·) values between dataset 2 and dataset 3 were smaller than dataset 1 vs. dataset 2 and dataset 1
vs. dataset 3. When γ = 1 and (p10, p

2
0) is (0.1, 0.9) and (0.3, 0.7), the d(·, ·) values between dataset

1 and dataset 2 were larger than those between dataset 1 and dataset 3. By contrast, when (p10, p
2
0)

is one of (0.5, 0.5), (0.7, 0.3), and (0.9, 0.1), the d(·, ·) values between dataset 1 and dataset 2 were
smaller than those between dataset 1 and dataset 3. When γ = 10, the d(·, ·) values between dataset
1 and dataset 3 were larger than those between dataset 1 and dataset 2 in more cases compared to
when γ = 1.

Using dataset 1 and dataset 2, simulation tests were conducted with (0.1, 0.9), (0.5, 0.5), and
(0.9, 0.1) for both (p10, p

2
0) and (p11, p

2
1) by randomly sampling 200, 400, 600, and 800 data points

from 1,000 data points of each dataset. For each sampling experiment of the combination of (p10, p
2
0)

and (p11, p
2
1), 100 tests were conducted and the average distance and standard deviation were com-

puted. In Figure 4, the horizontal dot line indicates d(·, ·) when the original data with 1,000 data
points for each dataset were analyzed. As can be seen, as the number of randomly selected data
points increases, the standard deviation becomes narrower, converging to the horizontal dot line.
Not surprisingly, the average distance after 100 repetitions of each sampling experiment was very
similar to d(·, ·) computed on the original data with 1,000 data points for each dataset.

Figure 5 illustrates the elapsed time to compute d(·, ·) between dataset 1 and dataset 2 when
each test was conducted only once with randomly sampled data points (200, 400, 600, 800) from
each dataset, compared to the elapsed time in the original datasets (each 1,000 data points). As
the number of data points increased, the computational time to compute d(·, ·) sharply increased.
Therefore, there is a tradeoff between the computational time and the precision of computed distance
in the sampling approach. Use of advanced sampling techniques will help compute the distance
within reasonable computational time and with minimal error. All experiments in the current study
were carried out using Python language in Google Colab-Pro environment.
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Appendix A. Related work

The Gaussian model has numerous applications in data analysis due to its mathematical tractability
and simplicity. In particular, a closed-form formulation of W2 Wasserstein distance for Gaussian
densities allows for the extension of applications of OMT in connection with Gaussian processes. As
a further extension, Janati et al . proposed an entropy-regularized OMT method between two Gaus-
sian measures, by solving the fixed-point equation underpinning the Sinkhorn algorithm for both
the balanced and unbalanced cases [5, 15, 45]. Mallasto et al . introduced an alternative approach
for the entropy-regularized optimal transport, providing closed-form expressions and interpolations
between Gaussian measures [26]. Le et al . investigated the entropic Gromov-Wasserstein distance
between (unbalanced) Gaussian distributions and the entropic Gromov-Wasserstein barycenter of
multiple Gaussian distributions [16, 17, 22].

Kernel methods are extensively employed in machine learning, providing a powerful capability
to efficiently handle data in a non-linear space by implicitly mapping data into a high-dimensional
space, a method known as the kernel trick. Ghojogh et al . comprehensively reviewed the back-
ground theory of kernels and their applications in machine learning [10]. As an effort to incorporate
kernels into OMT, Zhang et al . proposed a solution to compute the W2 Wasserstein distance be-
tween Gaussian measures in a RKHS [49] and Oh et al . proposed an alternative algorithm called
the kernel Wasserstein distance, giving an explicit detailed proof [34]. Minh introduced a novel
algorithm to compute the entropy-regularized W2 Wasserstein distance between Gaussian measures
in a RKHS via the finite kernel Gram matrices, providing explicit closed-form formulas along with
the Sinkhorn barycenter equation with a unique non-trivial solution [29].

Numerous studies have been conducted on GMMs in connection with other techniques. Wang
et al . proposed a kernel trick embedded GMM method by employing the Expectation Maximiza-
tion (EM) algorithm to deduce a parameter estimation method for GMMs in the feature space, and
introduced a Monte Carlo sampling technique to speed up the computation in large-scale data prob-
lems [11, 12, 47]. Chen et al . proposed a new algorithm to compute a Wasserstein-type distance
between two Gaussian mixtures, employing the closed-form solution between Gaussian measures as
the cost function, represented as the discrete optimization problem [3]. Following this latter work,
Delon and Desolneux investigated the theory of the Wasserstein-type distance on GMMs, show-
ing several applications including color transfer between images [7]. Mathews et al . applied the
GMM Wasserstein-type distance to functional network analysis utilizing RNA-Seq gene expression
profiles from The Cancer Genome Atlas (TCGA) [27]. This approach enabled the identification of
gene modules (communities) based on the local connection structure of the gene network and the
collection of joint distributions of nodal neighborhoods. However, to date, no study has explored
the incorporation of the kernel trick embedded GMM into OMT. To address this, we propose an
OMT solution to compute the distance between Gaussian mixtures in a RKHS.

Appendix B. Entropy-regularized optimal transport between Gaussians

Given µ, ν ∈ P and the cost function c, the entropic optimal transport (OT) problem proposed by
Mallasto et al. is expressed as follows [26]:

OTϵ(µ, ν) = minγ∈π(µ,ν)
{
Eγ [c] + ϵDKL(γ||µ⊗ ν)

}
, (21)

which relaxes the OT problem employing a Kullback-Leibler (KL)-divergence term, yielding a
strictly convex problem for ϵ > 0. Let ν0 and ν1 ∈ Rd be two Gaussian distributions with mean θi
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and covariance matrix Ci for i = 0 and 1. Then, the entropy-regularized W2 Wasserstein distance
can be computed using a closed-form defined as:

W ϵ
2(ν0, ν1)

2 = ∥θ0 − θ1∥2 + tr(C0) + tr(C1)− B, (22)

B =
ϵ

2
(tr(M ϵ)− log det(M ϵ) + d log2− 2d) ,

where M ϵ
ij = I + (I + 16

ϵ2
CiCj)

1/2, assuming

γ = N (0,Γ), Γ =

[
C0 GT

G C1

]
. (23)

The entropic displacement interpolation between ν0 and ν1 also follows Gaussian as νt = N (θt, Ct)
for t ∈ [0, 1] with θt = tν0 + (1− t)ν1 and

Ct = (1− t)2C0 + t2C1 + t(1− t)

((
ϵ2

16
I + C0C1

)1/2

+

(
ϵ2

16
I + C1C0

)1/2
)
. (24)

The entropic barycenter for N distributions with ν0, ν1, · · · , νN−1 is expressed as follows:

θ∗ =

N∑
i=1

λiθi, C∗ =
ϵ

4

N∑
i=1

λi

(
−I +

(
I +

16

ϵ2
C∗1/2CiC

∗1/2
)1/2

)
. (25)

Similarly, Janati et al. defined a closed-form for the entropy-regularized W2 Wasserstein dis-
tance between Gaussians as follows [15]:

W σ
2 (ν0, ν1)

2 = ∥θ0 − θ1∥2 + tr(C0) + tr(C1)−F , (26)

F = tr(Dσ)− dσ2(1− log(2σ2))− σ2log det(Dσ + σ2I),

where Dσ = (4C0C1 + σ4I)1/2 and σ > 0.

Appendix C. Entropy-regularized optimal transport between Gaussians in RKHS

Here we propose two new formulas to solve the entropy-regularized W2 Wasserstein distance be-
tween Gaussians in RKHS using kernel trick.

Proposition 1. Let ρi = N (mi,Σi) for i = 0, 1 be two Gaussian distributions on Rl in RKHS,
and let two sets of data in the input space be X = [x1, x2, · · · , xn ] and Y = [y1, y2, · · · , ym ] ∈
Rd (l > d) associated with ρ0 and ρ1, respectively. Then, a closed-form solution for Eq. (22) in
RKHS exists, denoted as KW ϵ

2(ρ0, ρ1)
2:

KW ϵ
2(ρ0, ρ1)

2 = ∥m0 −m1∥2 + tr(Σ0) + tr(Σ1)− B, (27)

B =
ϵ

2
(tr(M ϵ)− log det(M ϵ) + l log2− 2l) .

Proof. Let A = Σ0Σ1. The trace of a square matrix A is defined as the trace of the eigenvalue
matrix of A, i.e., tr(A) = tr(Λ) in AP = PΛ where P and Λ are the estimated eigenvector and
eigenvalue matrices, respectively. Let λ1, λ2, · · · , λk > 0 be the distinct eigenvalues of A. Then,

the eigenvalues of (I + 16
ϵ2
A)1/2 are

√
1 + 16

ϵ2
λ1,
√

1 + 16
ϵ2
λ2, · · · ,

√
1 + 16

ϵ2
λk and

12
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tr(M ϵ) = tr

(
I +

(
I +

16

ϵ2
Σ0Σ1

)1/2
)

= l +
k∑

i=1

√
1 +

16

ϵ2
λi. (28)

By det(I + tA) = (1 + tλ1)(1 + tλ2) · · · (1 + tλk), we compute log det(M ϵ) as follows:

log det(M ϵ) = log det

(
I +

(
I +

16

ϵ2
Σ0Σ1

)1/2
)

(29)

= log

(
1 +

√
1 +

16

ϵ2
λ1

)(
1 +

√
1 +

16

ϵ2
λ2

)
· · ·

(
1 +

√
1 +

16

ϵ2
λk

)

=
k∑

i=1

log

(
1 +

√
1 +

16

ϵ2
λi

)
.

Therefore, B is expressed as:

B =
ϵ

2
(tr(M ϵ)− log det(M ϵ) + l log2− 2l) (30)

=
ϵ

2

(
k∑

i=1

√
1 +

16

ϵ2
λi −

k∑
i=1

log

(
1 +

√
1 +

16

ϵ2
λi

)
− l log5

)
.

Finally, we have a closed-form solution for the entropy-regularized W2 Wasserstein distance be-
tween Gaussians in RKHS:

KW ϵ
2(ρ0, ρ1)

2 =
1

n2

n∑
i=1

n∑
j=1

k (xi, xj)−
2

nm

n∑
i=1

m∑
j=1

k (xi, yj) +
1

m2

m∑
i=1

m∑
j=1

k (yi, yj) + (31)

tr
(
J0J

T
0 K00

)
+ tr

(
J1J

T
1 K11

)
− ϵ

2

(
k∑

i=1

√
1 +

16

ϵ2
λi −

k∑
i=1

log

(
1 +

√
1 +

16

ϵ2
λi

)
− l log5

)
.

Proposition 2. Similarly, we have a closed-form solution for Eq. (26) in RKHS.
Proof. Since the first two terms in Eq. (26) are the same as those in Eq. (22), we only solve
F = tr(Dσ) − lσ2(1 − log(2σ2)) − σ2log det(Dσ + σ2I) in RKHS. As in Proposition 1, let
λ1, λ2, · · · , λk > 0 be the distinct eigenvalues of Σ0Σ1 that can be computed using tr(Σ0Σ1) =
tr
(
K10J0J

T
0 K01J1J

T
1

)
. Then, the eigenvalues of Dσ = (4Σ0Σ1+σ4I)1/2 = σ2( 4

σ4Σ0Σ1+ I)1/2

are σ2
√

4
σ4λ1 + 1, σ2

√
4
σ4λ2 + 1, · · · , σ2

√
4
σ4λk + 1. Therefore, tr(Dσ) is expressed as follows:

tr(Dσ) = σ2
k∑

i=1

√
4

σ4
λi + 1. (32)

Here det(Dσ + σ2I) can be solved as follows:

det(Dσ + σ2I) = σ2ldet

(
Dσ

σ2
+ I

)
(33)

= σ2l

(√
4

σ4
λ1 + 1 + 1

)(√
4

σ4
λ2 + 1 + 1

)
· · ·

(√
4

σ4
λk + 1 + 1

)
.
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Therefore, log det(Dσ + σ2I) is

log det(Dσ + σ2I) = 2llogσ +

k∑
i=1

log

(√
4

σ4
λi + 1 + 1

)
. (34)

Taken together,

F = tr(Dσ)− lσ2
(
1− log(2σ2)

)
− σ2log det

(
Dσ + σ2I

)
(35)

= σ2
k∑

i=1

√
4

σ4
λi + 1− lσ2

(
1− log(2σ2)

)
− σ2

(
2llogσ +

k∑
i=1

log

(√
4

σ4
λi + 1 + 1

))

= σ2
k∑

i=1

√
4

σ4
λi + 1− σ2

k∑
i=1

log

(√
4

σ4
λi + 1 + 1

)
− lσ2(1− log2)

= σ2

(
k∑

i=1

√
4

σ4
λi + 1−

k∑
i=1

log

(√
4

σ4
λi + 1 + 1

)
− llog5

)
.

Interestingly, we found that the two solutions are the same with 2σ2 = ϵ.

Figure 1: As an example, two Gaussian mixtures were created with µ0 = 0.3N (0.2, 0.002) +
0.7N (0.4, 0.004) in blue and µ1 = 0.6N (0.6, 0.005) + 0.4N (0.8, 0.004) in red, in a
1-dimensional space.

Figure 2: Displacement interpolation (gray) µt between two Gaussian mixtures, µ0 (blue curve) and
µ1 (red curve). (A) Displacement interpolation for the metric d(µ0, µ1) and (B) general
Wasserstein distance.
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Figure 3: Three datasets, each of which has two distributions, which were used for Gaussian mix-
ture analysis in a RKHS. We assume that each dataset follows a Gaussian mixture, i.e.,
µ0 = p10v

1
0 + p20v

2
0 , µ1 = p11v

1
1 + p21v

2
1 , and µ2 = p12v

1
2 + p22v

2
2 , respectively, in a RKHS.

Figure 4: Using dataset 1 and dataset 2, simulation tests were conducted with (0.1, 0.9), (0.5, 0.5),
and (0.9, 0.1) for both (p10, p

2
0) and (p11, p

2
1) by randomly sampling 200, 400, 600, and 800

data points from each dataset. The blue dot and error bar indicate the average distance
and standard deviation after 100 repetitions of each sampling experiment with the combi-
nation of (p10, p

2
0) and (p11, p

2
1). The horizontal dot line indicates d(·, ·) when the original

data with 1,000 data points for each dataset were tested.
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Figure 5: Elapsed time to compute d(·, ·) between dataset 1 and dataset 2 with randomly sampled
data points (200, 400, 600, 800) from each dataset, compared to the elapsed time in the
original datasets (each 1,000 data points).

Table 1: d(·, ·) with γ = 1 in a RKHS (A1) between dataset 1 and dataset 2, (A2) between dataset
1 and dataset 3, and (A3) between dataset 2 and dataset 3 using five different probability
combinations {(0.1,0.9), (0.3,0.7), (0.5,0.5), (0.7,0.3), (0.9,0.1)} for two Gaussian compo-
nents of each Gaussian mixture.

γ = 1

(A1) Dataset 1 [row: (p10, p
2
0)] vs Dataset 2 [column: (p11, p

2
1)]

(p10, p
2
0)/(p

1
1, p

2
1) (0.1, 0.9) (0.3, 0.7) (0.5, 0.5) (0.7, 0.3) (0.9, 0.1)

(0.1, 0.9) 1.292 1.249 1.206 1.164 1.121
(0.3, 0.7) 1.293 1.246 1.203 1.160 1.118
(0.5, 0.5) 1.294 1.247 1.200 1.157 1.114
(0.7, 0.3) 1.295 1.248 1.201 1.154 1.111
(0.9, 0.1) 1.295 1.248 1.201 1.155 1.108

(A2) Dataset 1 [row: (p10, p
2
0)] vs Dataset 3 [column: (p12, p

2
2)]

(p10, p
2
0)/(p

1
2, p

2
2) (0.1, 0.9) (0.3, 0.7) (0.5, 0.5) (0.7, 0.3) (0.9, 0.1)

(0.1, 0.9) 1.185 1.123 1.060 0.998 0.935
(0.3, 0.7) 1.289 1.227 1.164 1.102 1.091
(0.5, 0.5) 1.394 1.331 1.268 1.258 1.247
(0.7, 0.3) 1.498 1.435 1.425 1.414 1.404
(0.9, 0.1) 1.602 1.591 1.581 1.570 1.560

(A3) Dataset 2 [row: (p11, p
2
1)] vs Dataset 3 [column: (p12, p

2
2)]

(p11, p
2
1)/(p

1
2, p

2
2) (0.1, 0.9) (0.3, 0.7) (0.5, 0.5) (0.7, 0.3) (0.9, 0.1)

(0.1, 0.9) 0.890 0.844 0.798 0.753 0.707
(0.3, 0.7) 0.905 0.796 0.751 0.705 0.659
(0.5, 0.5) 0.921 0.812 0.703 0.657 0.612
(0.7, 0.3) 0.936 0.827 0.718 0.609 0.564
(0.9, 0.1) 0.952 0.843 0.734 0.625 0.516
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Table 2: d(·, ·) with γ = 10 in a RKHS (B1) between dataset 1 and dataset 2, (B2) between dataset
1 and dataset 3, and (B3) between dataset 2 and dataset 3 using five different probability
combinations {(0.1,0.9), (0.3,0.7), (0.5,0.5), (0.7,0.3), (0.9,0.1)} for two Gaussian compo-
nents of each Gaussian mixture.

γ = 10

(B1) Dataset 1 [row: (p10, p
2
0)] vs Dataset 2 [column: (p11, p

2
1)]

(p10, p
2
0)/(p

1
1, p

2
1) (0.1, 0.9) (0.3, 0.7) (0.5, 0.5) (0.7, 0.3) (0.9, 0.1)

(0.1, 0.9) 1.661 1.618 1.575 1.532 1.489
(0.3, 0.7) 1.666 1.607 1.564 1.521 1.478
(0.5, 0.5) 1.670 1.611 1.552 1.509 1.466
(0.7, 0.3) 1.675 1.616 1.557 1.498 1.455
(0.9, 0.1) 1.680 1.621 1.562 1.503 1.443

(B2) Dataset 1 [row: (p10, p
2
0)] vs Dataset 3 [column: (p12, p

2
2)]

(p10, p
2
0)/(p

1
2, p

2
2) (0.1, 0.9) (0.3, 0.7) (0.5, 0.5) (0.7, 0.3) (0.9, 0.1)

(0.1, 0.9) 1.692 1.610 1.528 1.446 1.364
(0.3, 0.7) 1.742 1.660 1.578 1.496 1.480
(0.5, 0.5) 1.792 1.710 1.627 1.612 1.596
(0.7, 0.3) 1.841 1.759 1.743 1.728 1.712
(0.9, 0.1) 1.891 1.875 1.859 1.843 1.828

(B3) Dataset 2 [row: (p11, p
2
1)] vs Dataset 3 [column: (p12, p

2
2)]

(p11, p
2
1)/(p

1
2, p

2
2) (0.1, 0.9) (0.3, 0.7) (0.5, 0.5) (0.7, 0.3) (0.9, 0.1)

(0.1, 0.9) 1.282 1.371 1.461 1.550 1.639
(0.3, 0.7) 1.355 1.124 1.214 1.303 1.392
(0.5, 0.5) 1.427 1.197 0.967 1.056 1.145
(0.7, 0.3) 1.500 1.270 1.039 0.809 0.898
(0.9, 0.1) 1.573 1.342 1.112 0.882 0.651
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