

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ADAPTIVE RESIDUAL-UPDATE STEERING FOR LOW- OVERHEAD HALLUCINATION MITIGATION IN LARGE VISION LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Vision-Language Models (LVLMs) often suffer from object hallucination, generating text inconsistent with visual inputs, which can critically undermine their reliability. Existing inference-time interventions to mitigate this issue present a challenging trade-off: while methods that steer internal states or adjust output logits can be effective, they often incur substantial computational overhead, typically requiring extra forward passes. This efficiency bottleneck can limit their practicality for real-world, latency-sensitive deployments. In this work, we aim to address this trade-off with **Residual-Update Directed DEcoding Regulation (RUDDER)**, a low-overhead framework that steers LVLMs towards visually-grounded generation. RUDDER is built on two key innovations: (1) Contextual Activation Residual Direction (CARD) vector, a per-sample visual evidence vector extracted from the residual update of a self-attention layer during a *single, standard forward pass*. (2) A Bayesian-inspired adaptive gate that performs token-wise injection, applying a corrective signal whose strength is conditioned on the model’s deviation from the visual context. Extensive experiments on key hallucination benchmarks, including POPE and CHAIR, indicate that RUDDER achieves performance comparable to state-of-the-art methods while introducing negligible computational latency, validating RUDDER as a pragmatic and effective approach for improving LVLMs’ reliability without a significant compromise on efficiency. Code is available at <https://anonymous.4open.science/r/RrUuDdDdER-1C13/>.

1 INTRODUCTION

While Large Vision-Language Models (LVLMs) have shown remarkable capabilities in multimodal tasks and are increasingly deployed to assist with real-world problems (Alayrac et al., 2022; Liu et al., 2024a), their practical reliability is critically undermined by a persistent challenge: **object hallucination**. As shown in Figure 1, LVLMs frequently generate fluent, convincing text that is factually inconsistent with visual groundings, severely limiting their real-world utility and credibility (Ji et al., 2023). The cause of LVLMs’ hallucination lies in the misalignment of information across different modalities: a tendency for powerful pre-trained language models to over-rely on parametric knowledge and language priors at the expense of visual context (Li et al., 2025). To address this without costly retraining, many efforts have focused on inference-time interventions (ITI). However, existing ITI methods present a trade-off between effectiveness and efficiency. These solutions typically fall into two categories: **Non-steering methods** operate on the final output logits. They adjust token probabilities by contrasting different conditions, such as outputs from different model layers (Chuang et al., 2023; Leng et al., 2023). **Steering-based methods** directly modify the model’s internal hidden states, allowing them to better align with visual information during generation (Li et al., 2025). While often effective, both approaches share a significant drawback: high computational overhead. They frequently require multiple forward passes through the model, which can double inference latency and make them impractical for real-time applications. This leaves a critical need for a method that is both effective and efficient.

Building on this observation, we argue that a desirable intervention should not force a choice between high performance and practical efficiency. Instead, it should be both **effective and**

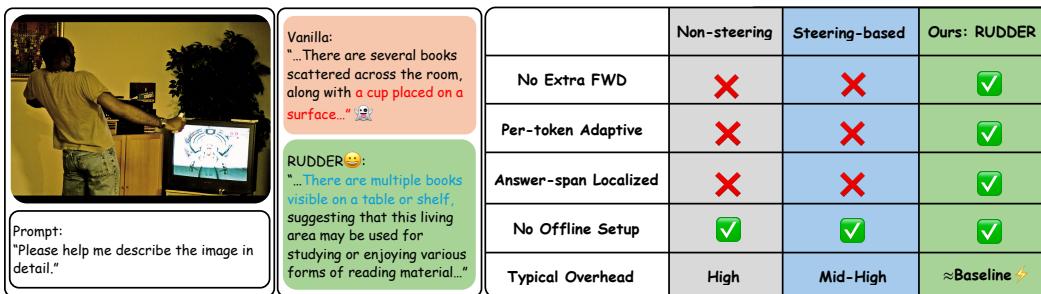


Figure 1: (Left) An example where the vanilla LLaVA-1.5-7B (Liu et al., 2024a) hallucinates objects. Erroneous text is marked in red, while RUDDER’s corrected, factual output is in blue. (Right) A comparison showing that unlike existing non-steering and steering-based methods, RUDDER provides adaptive, low-overhead control without requiring extra forward passes.

lightweight, operating within a single forward pass, and **context-specific**, capable of adjusting its intensity at each generation step. This requires identifying a reliable signal within the model’s internal computation that can correlate with its generation state. Thus, our research is guided by the question: *Can we identify a stable, informative and low-cost signal within the model’s standard computational flow to ground generation without introducing extra forward passes?*

We propose **Residual-Update Directed DEcoding Regulation (RUDDER)**, a framework designed to sidestep the efficacy-efficiency trade-off. By leveraging a single-pass intervention that steers generation only when it is consistent with the instance-specific evidence, RUDDER achieves performance comparable to costly, state-of-the-art steering methods while introducing negligible computational latency, effectively making it a low-overhead solution.

Our approach is built on two innovations: (1) the **Contextual Activation Residual Direction (CARD) vector**, a per-sample visual evidence vector extracted from a self-attention layer’s residual update during a standard forward pass, and (2) the **Beta Gate**: a Bayesian-inspired adaptive gate that performs token-wise injection of the CARD vector, applying a strong corrective signal only when needed. RUDDER thus offers a pragmatic approach towards visually-grounded generation without compromising on deployment feasibility.

Our main contributions are:

1. We propose the CARD vector, a novel and efficient method for extracting a dynamic, per-sample visual steering vector at a negligible additional cost.
2. We introduce the Beta Gate, an adaptive, token-wise gating mechanism that provides a principled and fine-grained intervention.
3. We demonstrate through extensive experiments across LVLMs with distinct architectures that RUDDER significantly reduces object hallucination to a level comparable with state-of-the-art methods, while introducing negligible computational overhead, thereby offering a superior balance between efficacy and efficiency.

2 RELATED WORK

Our research is situated at the intersection of inference-time intervention (ITI) and probabilistic gating.

Inference-time intervention. ITI aims to guide a model’s generative behavior without modifying its weights. We group existing methods based on where they act on the computation path. *Non-steering methods* operate at the output logits. Many of these methods recalibrate final logits to improve visual grounding, but often at the cost of significant latency due to extra forward passes. For instance, VCD (Leng et al., 2023) uses perturbed images to create a negative context, PAI (Liu et al., 2024b) subtracts unconditional (text-only) logits, and MARINE (Zhao et al., 2025) employs a classifier-free guidance style. Similarly, DoLa (Chuang et al., 2023) contrasts deep vs. shallow logits to suppress generic text. More efficient alternatives such as constrained decoding (Hokamp &

108 Liu, 2017) or post hoc editing (Manakul et al., 2023) are typically less adaptive. *Steering methods*
 109 directly modify the hidden representations to guide the generation trajectory. Most of these methods
 110 also incur high computational costs on-the-fly. For example, ASD (Su et al., 2025) steers away from
 111 a predefined hallucination direction, and VISTA (Li et al., 2025) injects a signal vector computed
 112 from activation differences. VTI (Liu et al., 2025) attempts to mitigate this cost by shifting the
 113 computational burden to an offline precomputation step.

114 **Bayesian and Probabilistic Gating.** Our work is also inspired by Bayesian and probabilistic gating
 115 for uncertainty modeling. This includes concepts from Evidential Deep Learning (Sensoy et al.,
 116 2018), which frames outputs as parameters of a Dirichlet distribution for uncertainty quantification.
 117 Other relevant work explores stochastic gates. For instance, Yamada et al. (2020) use stochastic
 118 gates based on a relaxation of the Bernoulli distribution for feature selection. More directly related
 119 to our method, Beta-LSTM (Song et al., 2019) replaces standard sigmoid gates with ones derived
 120 from a Beta distribution, validating the use of Bayesian principles in gating mechanisms.

121

122 3 OUR METHOD

123

124 To mitigate object hallucination without the high computational costs of existing steering meth-
 125 ods, we present Residual-Update Directed DEcoding Regulation (RUDDER). RUDDER is a low-
 126 overhead guided decoding framework that adaptively steers LVLMs toward visually-grounded
 127 generation by injecting a dynamically derived visual evidence vector into each step of the auto-
 128 regressive decoding process. Crucially, it delivers context-specific steering with *no* calibration data
 129 and *no* extra forward pass.

130

131 This section details the components of our method. We begin with a brief overview of the Transfor-
 132 mers residual stream. We then describe two core principles of RUDDER: (1) the zero-cost extraction
 133 of the **Contextual Activation Residual Direction (CARD)** vector, and (2) **Beta Gate**, an adaptive
 134 injection mechanism guided by a Bayesian-inspired gate.

135

136 3.1 PRELIMINARIES

137

138 The decoder in a Transformer-based LVLM operates on a **residual stream**, where each sublayer’s
 139 output (e.g., self-attention of the decoder layer) is added back to its input. This output, termed
 140 the **residual updates** Δ^l , represents the new information contributed at layer l . We leverage these
 141 updates during the two-stage auto-regressive generation process: **1. Prefill Stage:** The model
 142 processes the prefill span, comprising both image tokens and text prompt tokens, in a single parallel
 143 forward pass to populate a Key-Value cache. During this mandatory step, we extract the CARD
 144 vector by aggregating the self-attention residual updates across all tokens in the prefill span. **2. De-
 145 coding Stage:** The model generates the output sequentially, one token at a time. It’s during this
 146 phase that we employ Beta Gate for adaptive steering.

147

148 3.2 CARD VECTOR: A ZERO-COST PER-SAMPLE EVIDENCE DIRECTION

149

150 **Motivation.** LVLMs fuse visual and textual information through self-attention. The residual up-
 151 date from the self-attention sublayer, therefore, encodes the net effect of the visual context on the
 152 representation of each text token. We hypothesize that by aggregating these updates over the image
 153 tokens and text prompt tokens in the prefill span, we can obtain a robust, per-sample vector that
 154 captures the direction of visual evidence for the specific input (Liu et al., 2024a). Our empirical
 155 analysis supports this: the extracted CARD vector creates a systematic, image-conditioned rotation
 156 away from a text-only (language prior) direction, and this rotation aligns coherently with the down-
 157 stream steering mechanism. This confirms the aggregated updates provide a meaningful directional
 158 signal rather than random noise (a detailed visualization and quantification is in Appendix A.4).

159

160 To identify the optimal layer for extracting the CARD vector, we analyze **internal dynamics of**
 161 **LLaVA-1.5-7B** (Liu et al., 2024a). We find that intervening in the late decoder layers has the
 162 greatest potential to influence the model’s final output. Full analysis is provided in Appendix B.1,
 163 Figure 6a, 6c.

164

165 **Extraction.** In a single standard prefill pass with the image and text prompt, we place a lightweight,
 166 read-only hook at the *target* decoder layer l and cache the self-attention output for each token i in

162 the prefill span \mathcal{T}_{pre} , denoted \mathbf{A}_i^l . In a pre-norm decoder, the residual update is simply the attention
163 output,

$$\Delta_i^l = \mathbf{A}_i^l, \quad (1)$$

165 We then pool these updates and apply L_2 normalization to obtain a per-sample direction:

$$\mathbf{v}_{\text{CARD}} = \frac{\text{Pool}(\{\Delta_i^l\}_{i \in \mathcal{T}_{\text{pre}}})}{\|\text{Pool}(\{\Delta_i^l\}_{i \in \mathcal{T}_{\text{pre}}})\|_2}, \quad \text{Pool}(\cdot) \text{ can be mean or } \|\Delta_i^l\| \text{-weighted mean.} \quad (2)$$

169 This entire process occurs within the single prefill pass and introduces negligible overhead, as no
170 additional forward pass or calibration is required.

172 3.3 BETA GATE: ADAPTIVE INJECTION VIA BAYESIAN-INSPIRED GATING

174 While other steering methods apply a corrective signal with a fixed strength, this can be suboptimal.
175 As shown in the analysis in Appendix B.1 Figure 6b, the directional coherence of internal update
176 vectors tends to collapse in late decoder layers, which suggests that a fixed, global steering direction
177 could be misaligned at certain steps. A strong correction is only needed when the model’s generation
178 deviates from the visual evidence. When the generation is already grounded, a strong intervention
179 may harm output quality.

180 To address this, we introduce **Beta Gate**, a dynamic, adaptive gating mechanism inspired by
181 Bayesian principles. We frame this problem as determining the “probability of visual groundedness”
182 for each token. This probability is represented as a Bayesian update over a latent gate $g_t \in [0, 1]$,
183 which modulates the strength of the corrective signal on a per-token basis.

184 **Bayesian view and practical gate.** Let $\mathbf{h}_{l,t}$ be the hidden state for generating the answer token t
185 at our target intervention layer l , specifically the output of the LayerNorm operation that precedes
186 the self-attention block. We measure its alignment with the visual context via the cosine similarity
187 $s_t = \cos(\mathbf{h}_{l,t}, \mathbf{v}_{\text{CARD}})$. This score indicates how consistent the current generation trajectory is with
188 the visual evidence. Using a Beta–Binomial intuition, we use s_t to parameterize a Beta distribution,
189 and the gate value g_t is taken as its posterior mean. (The detailed motivation and derivation from a
190 Naïve Bayes perspective are provided in Appendix A.2.). The gate’s parameters are calculated as:

$$\alpha_t = \text{softplus}(k s_t + c), \quad \beta_t = \text{softplus}(-k s_t + c), \quad g_t = \frac{\alpha_t}{\alpha_t + \beta_t}, \quad (3)$$

192 Here, k is a sensitivity hyperparameter that controls the steepness of the gate’s response to changes
193 in alignment, and c is a concentration parameter that controls its bias.

194 To ensure stability, we clamp the gate’s output to a predefined range, $g_t \in [g_{\min}, g_{\max}]$. This prevents
195 the gate from completely shutting off ($g_t=0$) or saturating at the maximum correction ($g_t=1$) too
196 readily, making the intervention more robust.

198 For generating each token t in the answer, the final steering update $\mathbf{v}_t^{\text{steer}}$ combines the adaptive gate
199 with a global cap α_{\max} :

$$\mathbf{v}_t^{\text{steer}} = \underbrace{(\alpha_{\max} g_t)}_{\text{adaptive strength}} \mathbf{v}_{\text{CARD}}, \quad (4)$$

202 This vector is injected into the residual stream immediately after the Self-Attention (SA) operation.
203 The updated hidden state, $\mathbf{h}_{l,t}^{\text{new}}$, is thus computed as:

$$\mathbf{h}_{l,t}^{\text{new}} = (\mathbf{h}_{l,t} + \text{SA}(\mathbf{h}_{l,t})) + \mathbf{v}_t^{\text{steer}}. \quad (5)$$

206 The term $\alpha_{\max} g_t$ represents the **adaptive strength** of the intervention, ensuring a strong corrective
207 signal is applied only when needed; the injection is **restricted to the answer span**.

209 3.4 RUDDER

211 Our complete method, **Residual-Update Directed DEcoding Regulation (RUDDER)**, integrates
212 the CARD vector and the adaptive Beta Gate to mitigate hallucination by steering LVLMs toward
213 visually grounded outputs. As detailed in Algorithm 1, RUDDER can be seamlessly integrated into
214 the standard auto-regressive decoding loop. By operating within a single inference pass, RUDDER
215 mitigates hallucination with negligible computational overhead, resolving the common trade-off
between efficacy and efficiency. The overall workflow of this approach is illustrated in Figure 2.

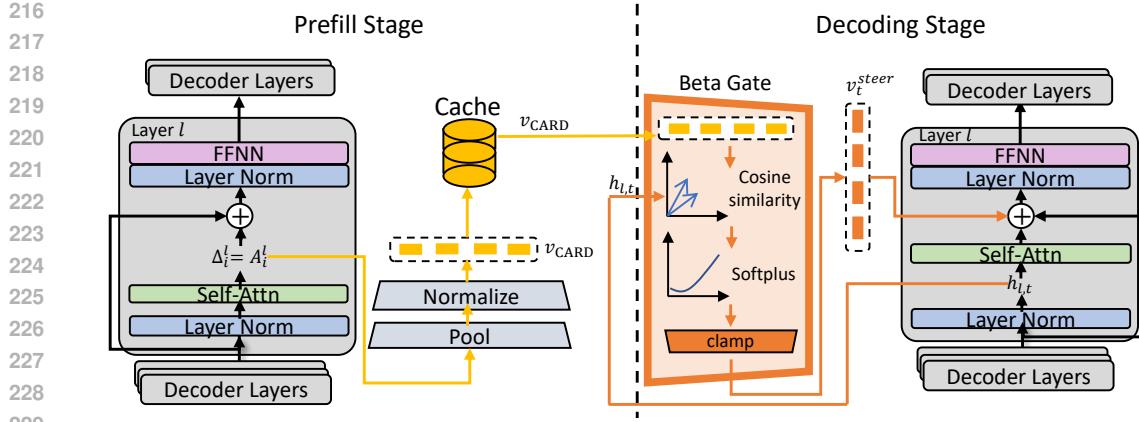


Figure 2: **The overall workflow of RUDDER.** Our method operates in two stages. (1) **Prefill Stage** (Yellow Arrows): We extract CARD vector v_{CARD} by first collecting attention-induced residual updates Δ_i^l from a target layer l for each token i in the prefill span. These updates are then aggregated using pooling and normalization. The final CARD vectors are cached for each (image, prompt) pair. (2) **Decoding Stage** (Orange Arrows): When generating each answer token t , the adaptive Beta Gate computes a steering vector v_t^{steer} , which is then injected into the residual stream to guide the LViM towards a more visually-grounded output.

4 EXPERIMENTS

In this section, we validate RUDDER, demonstrating its ability to mitigate hallucination effectively with negligible computational overhead. We conduct a series of experiments across diverse LViMs and benchmarks to assess the performance, general capabilities, efficiency, and hyper-parameter sensitivity.

4.1 EXPERIMENTAL SETUP

Model Architectures. We evaluate RUDDER on three representative LViMs with distinct visual-textual alignment mechanisms: **LLaVA-1.5-7B** (Liu et al., 2024a) and **Idefics2-8b-base** (Laurençon et al., 2024) (which both use a linear projection), and **InstructBLIP** (Dai et al., 2023) (which uses a Q-former (Li et al., 2023a)).

Decoding Strategies. We validate RUDDER’s versatility across three widely used decoding strategies: **greedy decoding**, **beam search** (beam size of 5), and **nucleus sampling** (top-p=0.9; temperature fixed at 1.0 for all scenarios).

Baselines. We compare RUDDER with a set of state-of-the-art inference-time intervention methods to demonstrate its superior trade-off between efficacy and efficiency. Baselines include logit-based strategies like **DoLa** (Chuang et al., 2023), **VCD** (Leng et al., 2023), and **PAI** (Liu et al., 2024b); and steering-based interventions like **VISTA** (Li et al., 2025), representing the dominant paradigms in the field. All baseline results were reproduced under identical evaluation settings for a fair comparison, using the authors’ publicly available code whenever possible.

Evaluation Benchmarks. To rigorously evaluate RUDDER, we use a combination of specialized hallucination benchmarks and a comprehensive benchmark for general multimodal capabilities.

- **Hallucination Benchmarks.** We directly measure object hallucination using two standard benchmarks: (1) **CHAIR** (Rohrbach et al., 2019): The Caption Hallucination Assessment with Image Relevance benchmark evaluates hallucination in open-ended image captioning tasks. We report two metrics: $\text{CHAIR}_S = \frac{|\{\text{captions with } \geq 1 \text{ hallucinated object}\}|}{|\{\text{captions}\}|}$, which measures the rate of hallucination at the sentence level, and $\text{CHAIR}_I = \frac{|\{\text{hallucinated objects}\}|}{|\{\text{mentioned objects}\}|}$ which measures the rate of hallucination at the object level. For both metrics, lower scores indicate better performance. Following the established protocol, we randomly select 500 samples from the MSCOCO 2014 (Lin et al., 2015) validation set, and evaluate them using

270 the prompt “Please help me describe the image in detail” with a maximum
 271 generation length of 512 tokens. **(2) POPE** (Li et al., 2023b): The Polling-based
 272 Object Probing Evaluation examines object hallucination through targeted yes/no questions,
 273 such as “Is there a <object> in the image?”. Performance is measured by
 274 accuracy and F1 score across its random, popular, and adversarial splits in MSCOCO 2014
 275 subset.

276 • **General Capabilities Benchmark.** To confirm that our hallucination mitigation does not
 277 harm the model’s overall abilities, we use **MME** (Fu et al., 2024), a challenging benchmark
 278 that assesses a model’s performance on a wide range of tasks, including color perception,
 279 counting, and positioning, to provide a holistic view of its multimodal capabilities.

280 **Implementation Details.** We optimize hyperparameters on a holdout validation set of 100
 281 MSCOCO 2014 images to balance generation quality and hallucination reduction. The model-
 282 specific configurations are as follows: For LLaVA-1.5, we set the injection layer $L = 30$, with
 283 Beta-gate parameters $\alpha_{\max} = 20$, $k = 5.0$. For Idefics2, we use $L = 28$, $\alpha_{\max} = 8.0$, and $k = 5.0$.
 284 Since InstructBLIP’s Q-former architecture is less effective with mid-to-late layer injections, we set
 285 its injection layer to $L = 1$, with $\alpha_{\max} = 6.5$, and $k = 8.0$. Across all models, the gate’s concentra-
 286 tion parameter c is fixed at 1, and the output was clamped to the range $[0, 1]$. These settings define
 287 our main adaptive method, **RUDDER-Beta**, while our fixed-strength ablation, **RUDDER-Add**, uses
 288 a constant injection strength equal to each model’s respective α_{\max} without the adaptive gate.

290 4.2 RESULTS ON HALLUCINATION BENCHMARKS

291 4.2.1 CHAIR: OPEN-ENDED CAPTIONING

294 On the CHAIR benchmark, which evaluates hallucination in open-ended captioning, RUDDER
 295 demonstrates a strong ability to reduce factual errors while preserving caption quality.

297 A key challenge in hallucination mitigation is the trade-off with recall: aggressive steering can
 298 artificially lower hallucination scores by producing overly simplistic captions. To ensure a fair and
 299 practical evaluation, we constrain our analysis to configurations that maintain at least 95% of the
 300 vanilla model’s recall (i.e., $\text{Recall}_{\{\text{evaluated methods}\}} \geq 0.95 \times \text{Recall}_{\{\text{vanilla model}\}}$).

301 Under this constraint, **RUDDER-Beta** consistently outperforms the vanilla baseline across all tested
 302 LVLMs and decoding strategies, as shown in Table 1. It achieves average relative reductions of
 303 **33.2%** in sentence-level (CHAIR_S) and **28.6%** in object-level (CHAIR_I) hallucination.

304 Compared to strong baselines like VCD and DoLa, our method is consistently superior on both
 305 metrics. Furthermore, RUDDER-Beta performs on par with the state-of-the-art VISTA and, on
 306 average, yields a greater reduction in object-level hallucinations (CHAIR_I).

307 RUDDER-Beta’s ability to reduce CHAIR_I more effectively than CHAIR_S highlights its precision.
 308 We attribute this to the token-wise gating mechanism, which selectively amplifies corrections on
 309 visually incongruent or content-noun tokens while leaving already grounded tokens largely unper-
 310 turbed. This allows RUDDER to preferentially suppress object-level hallucinations without degrad-
 311 ing overall caption quality and recall.

313 4.2.2 POPE: VISUAL QUESTION ANSWERING

315 Moving from open-ended captioning to a more constrained task, we next evaluate RUDDER on the
 316 POPE benchmark for object probing. This benchmark tests the model’s factuality through targeted
 317 yes/no questions, offering a different perspective on hallucination. In this setting, RUDDER again
 318 demonstrates competitive performance. As shown in Table 2, RUDDER consistently outperforms
 319 the vanilla baselines and most competing methods across all tested models. Concretely, RUDDER-
 320 Beta improves accuracy by 1.0/0.7/0.5 absolute points (pp) and F1 by 1.6/1.3/0.14 pp on LLaVA-
 321 1.5, Idefics2, and InstructBLIP, respectively.

322 Notably, RUDDER-Beta achieves the highest F1-score and accuracy on both LLaVA-1.5 and
 323 Idefics2, surpassing strong steering-based methods like VISTA. While its performance on Instruct-
 324 BLIP is slightly surpassed by VISTA when employing greedy decoding and nucleus sampling, RUD-

324 **Table 1: Hallucination evaluation on the CHAIR benchmark.** We compare RUDDER against
 325 state-of-the-art training-free methods, with a maximum generation length of 512 tokens. For each
 326 metric, the best-performing method is **bolded** and the second-best is underlined.

328 Decoding	Method	LLAVA-1.5 (Liu et al., 2024a)		Idefics2 (Laurençon et al., 2024)		InstructBLIP Dai et al. (2023)	
		329 CHAIR _S ↓	CHAIR _I ↓	330 CHAIR _S ↓	CHAIR _I ↓	331 CHAIR _S ↓	CHAIR _I ↓
330 Greedy	Vanilla	48.6	13.6	46.6	14.9	39.2	12.8
	DoLa (Chuang et al., 2023)	47.6	13.4	-	-	-	-
	VCD (Leng et al., 2023)	49.8	14.5	-	-	46.4	15.3
	VISTA (Li et al., 2025)	38.6	<u>11.4</u>	33.5	<u>11.6</u>	<u>27.7</u>	<u>9.7</u>
	RUDDER-Beta (Ours)	<u>39.5</u>	10.5	28.4	10.9	27.1	8.5
	RUDDER-Add (Ours)	42.1	11.8	<u>30.1</u>	11.8	28.3	10.4
333 Beam Search	Vanilla	52.8	15.6	48.6	14.5	38.2	12.7
	VCD (Leng et al., 2023)	52.4	15.5	-	-	47.4	16.3
	VISTA (Li et al., 2025)	<u>33.9</u>	10.5	32.2	11.8	<u>27.1</u>	<u>9.6</u>
	RUDDER-Beta (Ours)	33.1	9.3	29.2	10.1	26.2	9.5
	RUDDER-Add (Ours)	35.2	10.6	<u>31.4</u>	<u>10.9</u>	27.4	11.1
337 Nucleus Sampling	Vanilla	55.6	16.0	53.8	16.7	46.0	16.2
	DoLa (Chuang et al., 2023)	49.3	14.8	-	-	-	-
	VCD (Leng et al., 2023)	57.5	17.2	-	-	53.3	19.8
	VISTA (Li et al., 2025)	39.2	<u>11.9</u>	<u>35.5</u>	<u>11.8</u>	<u>29.0</u>	<u>11.3</u>
	RUDDER-Beta (Ours)	<u>39.9</u>	11.0	34.1	11.3	28.9	<u>13.7</u>
	RUDDER-Add (Ours)	41.6	12.1	36.5	12.9	30.1	14.4

341 DER remains highly competitive, highlighting its effectiveness as a versatile solution for reducing
 342 object hallucination.

345 4.2.3 ANALYSIS OF ADAPTIVE VS. FIXED-STRENGTH STEERING

346 A key design choice in RUDDER is whether to use the adaptive gate (**RUDDER-Beta**) or a fixed-
 347 strength injection (**RUDDER-Add**). Our experiments show a clear trade-off between these variants,
 348 guiding the choice based on the task and model architecture.

349 For **complex, open-ended generation (CHAIR)**, RUDDER-Beta is consistently superior. Its token-
 350 wise precision is crucial for suppressing specific hallucinations in long-form text without harming
 351 overall recall. In the **simpler, binary-choice POPE task**, the distinction is more nuanced. While
 352 RUDDER-Beta remains the top performer on **LLaVA-1.5** and **Idefics2**, RUDDER-Add is compet-
 353 itive and even surpasses RUDDER-Beta on **InstructBLIP**. We hypothesize this is partly because
 354 InstructBLIP’s Q-Former provides a highly-condensed visual representation that responds well to
 355 a uniform steering signal in a simple setting. For single-token “yes/no” answers, the aggressive
 356 push from fixed-strength steering can be sufficient and sometimes more beneficial for certain model
 357 architectures.

358 In summary, RUDDER-Beta is recommended for robust and precise control in complex tasks, while
 359 the simpler RUDDER-Add is a powerful option for constrained tasks and certain model architec-
 360 tures.

363 4.3 RESULTS ON COMPREHENSIVE BENCHMARKS

364 To ensure that hallucination mitigation does not compromise general multimodal capabilities, we
 365 evaluate RUDDER on **MME benchmark**. The results show that RUDDER successfully reduces
 366 hallucinations without sacrificing the overall abilities of the tested LVLMs. As demonstrated in Ta-
 367 ble 3, both RUDDER-Beta and RUDDER-Add achieve higher MME scores than the vanilla models
 368 for Idefics2 and InstructBlip. On LLava-1.5, RUDDER’s scores are slightly lower than the vanilla
 369 model, but the difference is still acceptable.

371 4.4 EFFICIENCY TESTS

372 A critical advantage of RUDDER is its low computational overhead, making it practical for real-
 373 world deployment. Unlike many state-of-the-art intervention methods that require extra forward
 374 passes and significantly increase latency, RUDDER is designed to operate within a single gener-
 375 ative pass. We measure the practical latency and throughput of RUDDER against vanilla models
 376 and other methods, with results presented in Table 4. All experiments are conducted on a single
 377 Nvidia A100 GPU with 80 GB VRAM and a batch size fixed at 1. RUDDER-Beta maintains an

378
 379 **Table 2: Performance on the POPPE benchmark across three LVLMs.** The reported values are
 380 the mean accuracy and F1 score, aggregated over the random, popular, and adversarial object splits.
 381 The best scores are **bolded**, and the second best scores are underlined.
 382

Decoding	Method	LLAVA-1.5 (Liu et al., 2024a)		Idefics2 (Laurençon et al., 2024)		InstructBLIP Dai et al. (2023)	
		Avg. Accuracy ↑	Avg. F1 ↑	Avg. Accuracy ↑	Avg. F1 ↑	Avg. Accuracy ↑	Avg. F1 ↑
Greedy	Vanilla	85.34	84.91	78.40	74.86	85.74	84.75
	DoLa (Chuang et al., 2023)	85.51	84.96	-	-	-	-
	VCD (Leng et al., 2023)	85.46	84.87	-	-	85.79	84.89
	PAI (Liu et al., 2024b)	85.98	85.31	-	-	-	-
	VISTA (Li et al., 2025)	86.21	<u>85.42</u>	78.28	74.66	86.25	85.06
	RUDDER-Beta (Ours)	86.53	86.03	78.74	76.52	86.02	84.93
Beam Search	Vanilla	85.46	84.98	78.67	77.55	84.73	84.37
	VCD (Leng et al., 2023)	85.60	85.06	-	-	84.95	84.59
	PAI (Liu et al., 2024b)	85.58	85.01	-	-	-	-
	VISTA (Li et al., 2025)	86.10	<u>85.35</u>	78.40	77.31	<u>85.64</u>	<u>84.61</u>
	RUDDER-Beta (Ours)	86.51	86.19	79.33	77.96	85.54	84.40
	RUDDER-Add (Ours)	85.98	85.02	78.91	77.60	85.71	84.75
Nucleus Sampling	Vanilla	83.00	81.08	74.84	67.78	85.50	84.52
	DoLa (Chuang et al., 2023)	82.94	81.12	-	-	-	-
	VCD (Leng et al., 2023)	82.82	81.90	-	-	85.61	84.65
	PAI (Liu et al., 2024b)	83.17	82.14	-	-	-	-
	VISTA (Li et al., 2025)	83.58	82.21	74.66	67.70	86.12	85.26
	RUDDER-Beta (Ours)	84.02	83.57	75.89	69.69	85.79	84.74
	RUDDER-Add (Ours)	83.20	<u>82.38</u>	74.95	67.84	85.95	84.95

397 **Table 3: Overall performance scores on the MME full evaluation set.** Higher scores indicate
 398 better general capability across perception, reasoning, and knowledge-based tasks.
 399

Decoding	Method	LLAVA-1.5 (Liu et al., 2024a)	Idefics2 (Laurençon et al., 2024)	InstructBLIP (Dai et al., 2023)
Greedy	Vanilla	1745.87	1518.84	1566.77
	RUDDER-Beta	1724.17	1540.56	1592.07
	RUDDER-Add	1715.45	1526.03	1585.28
Beam Search	Vanilla	1760.20	1450.59	1539.16
	RUDDER-Beta	1746.66	1484.21	1565.77
	RUDDER-Add	1738.13	1475.80	1560.64
Nucleus Sampling	Vanilla	1752.65	1362.45	1538.18
	RUDDER-Beta	1721.94	1374.77	1556.43
	RUDDER-Add	1713.74	1364.16	1546.01

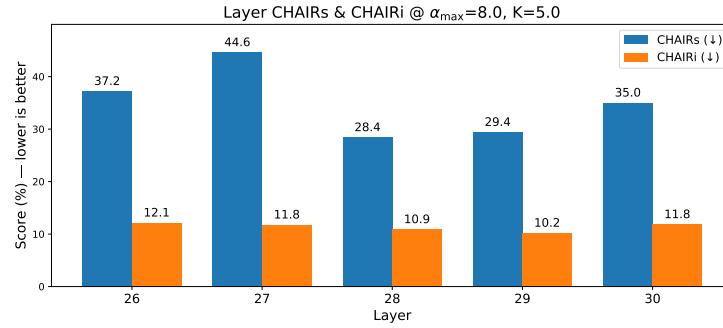
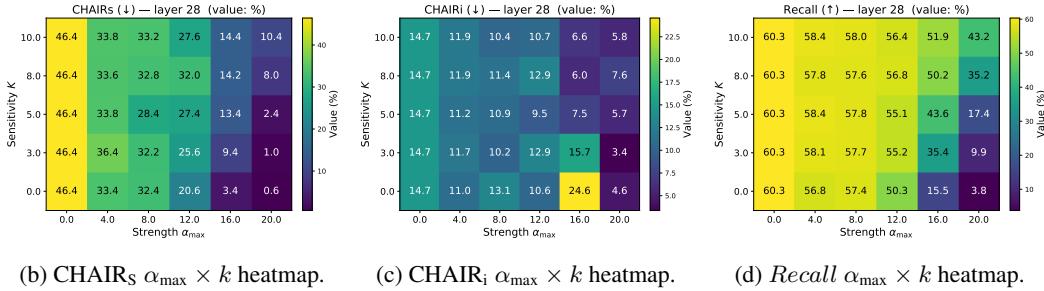
409 average throughput of **96.0%** compared to vanilla LVLMs. RUDDER-Add is even more efficient
 410 as it bypasses the Beta Gate calculation. In contrast, competing methods that require extra forward
 411 passes see a significant drop in efficiency. On average, the throughput of a method like VISTA is
 412 only **58.1%** of the vanilla models.

413 **Table 4: Throughput and Latency Comparison on Three LVLMs.** Measurements are conducted
 414 using greedy decoding to evaluate the computational overhead of different methods on the CHAIR
 415 benchmark. Throughput is measured in tokens per second (higher is better), and latency is the time
 416 in milliseconds per token (lower is better).
 417

Method	LLaVA-1.5 (Liu et al., 2024a)		Idefics2 (Laurençon et al., 2024)		InstructBLIP (Dai et al., 2023)	
	ms/token ↓	token/s ↑	ms/token ↓	token/s ↑	ms/token ↓	token/s ↑
Vanilla	17.6	56.7	20.9	-	47.8	16.1
VCD (Leng et al., 2023)	33.2	30.1	-	-	-	-
PAI (Liu et al., 2024b)	33.9	29.5	-	-	-	-
VISTA (Li et al., 2025)	27.7	36.1	31.4	-	31.9	34.6
RUDDER-Beta (Ours)	18.2	54.9	21.8	-	45.8	16.8
RUDDER-Add (Ours)	17.9	55.8	21.5	-	46.5	16.4

4.5 ABLATION STUDIES

428 We conduct an ablation study on Idefics2 using the CHAIR benchmark to analyze the key hyper-
 429 parameters: injection layer L , maximum steering strength α_{\max} and the gate sensitivity k . We first
 430 identify the optimal intervention layer, finding Layer 28 is the most effective for the Idefics2 model,
 431 as shown in Figure 3a. Focusing on this layer, we then tune the hyperparameters α_{\max} and k . The
 432 heatmaps in Figures 3b through 3d reveal a core trade-off: increasing the steering strength (α_{\max})

432
433
434
435
436
437
438
439
440
441
442443 (a) Layer ablation at ($\alpha_{\max} = 8.0$, $k = 5.0$). Mid-late layers ($L \approx 28\text{--}30$) are most effective; $L=28$ yields a
444 strong reduction.445
446
447
448
449
450
451
452453 (b) CHAIR_S $\alpha_{\max} \times k$ heatmap. (c) CHAIR_i $\alpha_{\max} \times k$ heatmap. (d) Recall $\alpha_{\max} \times k$ heatmap.454
455
456
457
458Figure 3: **Ablation study of RUDDER’s hyperparameters on the Idefics2** (Laurençon et al., 2024) model. (a) The bar plot shows the impact of the intervention layer L . (b-d) The heatmaps analyze the trade-off between steering strength α_{\max} and gate sensitivity k , showing their effect on CHAIR scores and recall.459
460461 effectively reduces CHAIR scores but at the cost of lower recall. The gate sensitivity k , does not
462 exhibit a simple linear trend; instead, it plays a crucial modulating role in this trade-off. Ultimately,
463 we find that the best balance for Idefics2 is achieved with $\alpha_{\max} = 8.0$ and $k = 5.0$. Ablation results
464 for other models are presented in Appendix B.2.465
466467

4.6 CASE STUDY

468
469
470
471
472Qualitative analysis in Appendix B.3 demonstrates RUDDER’s effectiveness. The case studies show
that RUDDER not only eliminates object hallucinations present in the vanilla model’s outputs but
also produces more conservative content. By avoiding the vanilla model’s confident yet incorrect
assertions, RUDDER enhances the model’s overall reliability.473
474475

5 CONCLUSION AND LIMITATIONS

476
477
478
479
480
481
482
483
484
485In this work, we introduce RUDDER, a low-overhead inference-time intervention framework that
mitigates LVLMs hallucination using two key innovations: the zero-cost **CARD vector**, which ex-
tracts a per-sample visual evidence from the model’s own residual updates, and the adaptive **Beta**
Gate, which applies a corrective signal with principled, token-wise strength. Experiments confirm
RUDDER achieves state-of-the-art comparable performance on benchmarks like CHAIR and POPE
with negligible computational overhead, resolving the common efficacy-efficiency trade-off. RUD-
DER presents a practical and effective solution for enhancing the reliability of LVLMs in real-world
settings. RUDDER’s primary limitation is its sensitivity to hyperparameters, which must be tuned
for each model architecture. Future work could focus on automated hyperparameter optimization to
improve its robustness and ease of deployment.

486 ETHIC AND REPRODUCIBILITY STATEMENT
487488 Our research aims to improve the reliability of LVLMs by mitigating object hallucination. By avoiding
489 the extra forward passes required by many alternative methods, our approach offers a more
490 sustainable path to enhancing model safety.
491492 All experiments are conducted on publicly available benchmarks. Our code is available as open
493 source at the link provided in the Abstract. For our comparative analysis, we reproduced all base-
494 line results using the authors' publicly available code whenever possible. The only exception was
495 VISTA (Li et al., 2025) on the Idefics2 (Laurençon et al., 2024), which we implemented ourselves
496 based on its original code.
497498 REFERENCES
499500 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
501 Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
502 Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
503 Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
504 Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a Visual Language
505 Model for Few-Shot Learning, November 2022. URL <http://arxiv.org/abs/2204.14198> [cs].
506507 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
508 Decoding by contrasting layers improves factuality in large language models. *arXiv preprint*
509 *arXiv:2309.03883*, 2023.510 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
511 Boyang Li, Pascale Fung, and Steven Hoi. InstructBLIP: Towards General-purpose Vision-
512 Language Models with Instruction Tuning, June 2023. URL <http://arxiv.org/abs/2305.06500> [cs].
513514 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
515 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. MME: A Comprehensive Evaluation
516 Benchmark for Multimodal Large Language Models, March 2024. URL <http://arxiv.org/abs/2306.13394> [cs].
517519 Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation using grid
520 beam search, 2017. URL <https://arxiv.org/abs/1704.07138>.
521522 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Delong
523 Chen, Wenliang Dai, Ho Shu Chan, Andrea Madotto, and Pascale Fung. Survey of Hallucination
524 in Natural Language Generation. *ACM Comput. Surv.*, 55(12):1–38, December 2023. ISSN 0360-
0300, 1557-7341. doi: 10.1145/3571730. URL <http://arxiv.org/abs/2202.03629>.
525 arXiv:2202.03629 [cs].
526527 Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
528 vision-language models? *Advances in Neural Information Processing Systems*, 37:87874–87907,
529 2024.530 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong
531 Bing. Mitigating Object Hallucinations in Large Vision-Language Models through Visual
532 Contrastive Decoding, November 2023. URL <http://arxiv.org/abs/2311.16922>.
533 arXiv:2311.16922 [cs].
534535 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
536 pre-training with frozen image encoders and large language models, 2023a. URL <https://arxiv.org/abs/2301.12597>.
537538 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
539 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

540 Zhuowei Li, Haizhou Shi, Yunhe Gao, Di Liu, Zhenting Wang, Yuxiao Chen, Ting Liu, Long Zhao,
 541 Hao Wang, and Dimitris N. Metaxas. The Hidden Life of Tokens: Reducing Hallucination of
 542 Large Vision-Language Models via Visual Information Steering, July 2025. URL <http://arxiv.org/abs/2502.03628>. arXiv:2502.03628 [cs].

544 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 545 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
 546 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.

548 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved Baselines with Visual Instruc-
 549 tion Tuning, May 2024a. URL <http://arxiv.org/abs/2310.03744>. arXiv:2310.03744
 550 [cs].

551 Sheng Liu, Haotian Ye, and James Zou. Reducing hallucinations in large vision-language models via
 552 latent space steering. In *The Thirteenth International Conference on Learning Representations*,
 553 2025. URL <https://openreview.net/forum?id=LB17Hez0ff>.

554 Shi Liu, Kecheng Zheng, and Wei Chen. Paying More Attention to Image: A Training-Free
 555 Method for Alleviating Hallucination in LVLMs, July 2024b. URL <http://arxiv.org/abs/2407.21771>. arXiv:2407.21771 [cs].

558 Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. Selfcheckgpt: Zero-resource black-box
 559 hallucination detection for generative large language models, 2023. URL <https://arxiv.org/abs/2303.08896>.

561 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
 562 hallucination in image captioning, 2019. URL <https://arxiv.org/abs/1809.02156>.

564 Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential Deep Learning to Quantify
 565 Classification Uncertainty, October 2018. URL <http://arxiv.org/abs/1806.01768>.
 566 arXiv:1806.01768 [cs].

567 Kyungwoo Song, JoonHo Jang, Seung jae Shin, and Il-Chul Moon. Bivariate Beta-LSTM, Novem-
 568 ber 2019. URL <http://arxiv.org/abs/1905.10521>. arXiv:1905.10521 [cs].

569 Jingran Su, Jingfan Chen, Hongxin Li, Yuntao Chen, Li Qing, and Zhaoxiang Zhang. Activation
 570 Steering Decoding: Mitigating Hallucination in Large Vision-Language Models through Bi-
 571 directional Hidden State Intervention. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 572 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 573 for Computational Linguistics (Volume 1: Long Papers)*, pp. 12964–12974, Vienna, Austria, July
 574 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 575 2025.acl-long.634. URL <https://aclanthology.org/2025.acl-long.634/>.

576 Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using
 577 stochastic gates. In *International conference on machine learning*, pp. 10648–10659. PMLR,
 578 2020.

580 Linxi Zhao, Yihe Deng, Weitong Zhang, and Quanquan Gu. Mitigating object hallucination in large
 581 vision-language models via image-grounded guidance, 2025. URL <https://openreview.net/forum?id=eFoj2egr7G>.

583

584 **A ADDITIONAL ILLUSTRATION ON THE METHODOLOGY**

586 **A.1 RUDDER ALGORITHM**

588 Here we present the pseudo-code for RUDDER illustrated in Sec. 3.

590 **A.2 FROM NAÏVE BAYES TO THE BAYESIAN GATE**

592 **Problem setup.** At each decoding step t , we want a scalar gate $g_t \in (0, 1)$ that reflects how much
 593 the current token should be nudged toward the visual evidence direction \mathbf{v}_{CARD} . Let the alignment
 statistic be $s_t = \cos(\mathbf{h}_t, \mathbf{v}_{\text{CARD}}) \in [-1, 1]$.

594 **Algorithm 1** RUDDER (single-pass, test-time steering; fixed target layer ℓ)

595 **Require:** Model M ; image x_{img} , text x_{text} ; fixed layer ℓ ; hyperparams $(\alpha_{\max}, k, c, g_{\min}, g_{\max})$

596 1: $\mathcal{T}_{\text{pre}} \leftarrow \text{TokenizePrefill}(x_{\text{img}}, x_{\text{text}})$ \triangleright image + prompt tokens

597 2: **Prefill:** run M once (read-only hook at layer ℓ) to build KV cache and cache $\{\mathbf{A}_i^\ell\}_{i \in \mathcal{T}_{\text{pre}}}$

598 3: $\Delta_i^\ell \leftarrow \mathbf{A}_i^\ell$ **by** Eq. 1 \triangleright pre-norm: residual update equals SA output

599 4: $\mathbf{v}_{\text{CARD}} \leftarrow$ **by** Eq. 2 (Pool $\rightarrow L_2$ -Normalize over $\{\Delta_i^\ell\}_{i \in \mathcal{T}_{\text{pre}}}$)

600 5: **Decode:** for $t = 1, 2, \dots$ \triangleright auto-regressive generation

601 6: $s_t \leftarrow \cos(\mathbf{h}_{\ell, t}, \mathbf{v}_{\text{CARD}}^\ell)$

602 7: $(\alpha_t, \beta_t, g_{\ell, t}) \leftarrow$ **by** Eq. 3; $g_{\ell, t} \leftarrow \text{clip}(g_{\ell, t}, g_{\min}, g_{\max})$

603 8: $\mathbf{v}_t^{\text{steer}} \leftarrow \alpha_{\max} g_t \mathbf{v}_{\text{CARD}}$ **by** Eq. 4

604 9: $\mathbf{h}_{\ell, t}^{\text{new}} \leftarrow (\mathbf{h}_{\ell, t} + \text{SA}^{(\ell)}(\mathbf{h}_{\ell, t})) + \mathbf{1}[t \in \mathcal{T}_{\text{ans}}] \cdot \mathbf{v}_t^{\text{steer}}$ \triangleright post-SA residual add; **answer span only**

605 10: emit next token

606

607 **Naïve Bayes view (posterior as a gate).** Introduce a latent Bernoulli variable $Z_t \in \{0, 1\}$ indicating whether the token is visually grounded ($Z_t = 1$) or at risk of drifting ($Z_t = 0$). We use the posterior mean $g_t = \mathbb{E}[Z_t \mid s_t]$ as a *continuous* gate (rather than a hard on/off decision).

612

613 **Beta–Bernoulli conjugacy with “soft counts”.** With a Beta prior $\text{Beta}(\alpha_t, \beta_t)$ on Z_t , the posterior mean is

$$g_t = \frac{\alpha_t}{\alpha_t + \beta_t}.$$

614 We map the alignment s_t to *positive pseudo-counts* via a smooth, monotone transform:

$$\alpha_t = \text{softplus}(k s_t + c), \quad \beta_t = \text{softplus}(-k s_t + c),$$

615 where k controls sensitivity and c controls concentration/bias. The softplus ensures strictly positive, 616 numerically stable “counts”.

617

618 **Properties (useful for calibration).** The resulting g_t is monotone in s_t , symmetric $g(-s) = 1 - g(s)$, and bounded in $(0, 1)$. Around $s = 0$, the slope

$$\frac{\partial g}{\partial s} \Big|_{s=0} = \frac{k \sigma(c)}{2 \text{softplus}(c)}, \quad \sigma(x) = \frac{1}{1 + e^{-x}},$$

619 gives a handy knob to set how fast the gate reacts to alignment changes.

620

621 **Stability: clamping and optional per-token cap.** For robustness we clamp $g_t \leftarrow \text{clip}(g_t; g_{\min}, g_{\max})$ to avoid both shutting off ($g_t \rightarrow 0$) and saturating ($g_t \rightarrow 1$). Optionally, we 622 enforce a per-token norm cap τ :

$$\|\alpha_{\max} g_t \hat{\mathbf{v}}_{\text{CARD}}\|_2 \leq \tau, \quad \hat{\mathbf{v}} = \mathbf{v} / \|\mathbf{v}\|_2,$$

623 which further prevents rare spikes when hidden-state norms vary.

624

625 **Final update (matches Algorithm 1).**

$$\mathbf{v}_t^{\text{steer}} = \underbrace{(\alpha_{\max} g_t)}_{\text{adaptive strength}} \mathbf{v}_{\text{CARD}} \tag{6}$$

$$\mathbf{h}_{\ell, t}^{\text{new}} = (\mathbf{h}_{\ell, t} + \text{SA}(\mathbf{h}_{\ell, t})) + \mathbf{v}_t^{\text{steer}} \tag{7}$$

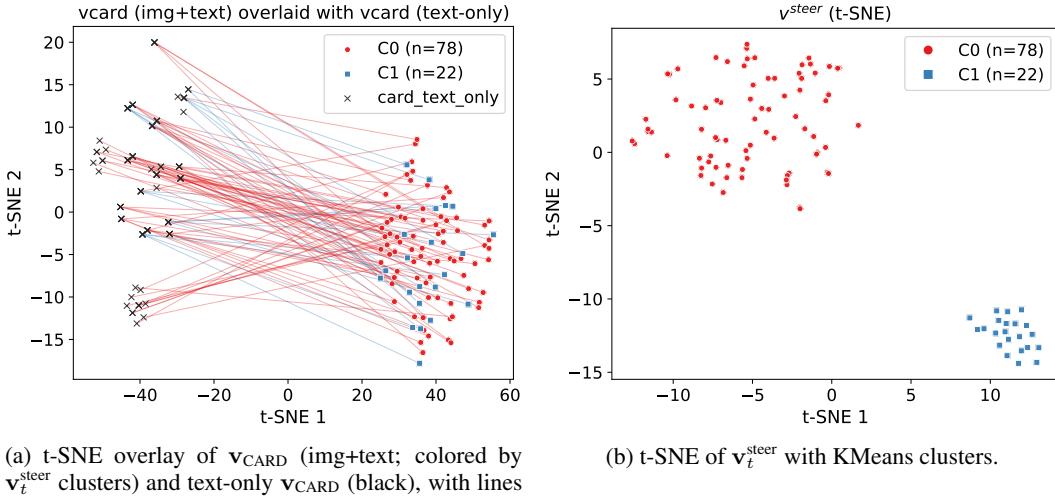
626 We apply this only on the answer span using the mask m_t as in Algorithm 1.

627

628 **Implementation notes.**

629

- 630 • We compute s_t with L2-normalized \mathbf{h}_t and \mathbf{v}_{CARD} (cosine similarity).
- 631 • g_t is clamped to $[g_{\min}, g_{\max}]$; the global scale α_{\max} controls the maximal push.
- 632 • \mathbf{v}_{CARD} is extracted once during the mandatory prefill pass (zero extra forwards).



(a) t-SNE overlay of \mathbf{v}_{CARD} (img+text; colored by $\mathbf{v}_t^{\text{steer}}$ clusters) and text-only \mathbf{v}_{CARD} (black), with lines linking paired samples.

(b) t-SNE of $\mathbf{v}_t^{\text{steer}}$ with KMeans clusters.

Figure 4: Structure in steering space (b) and its sample-wise projection to \mathbf{v}_{CARD} (a).

Practical calibration recipe. Choose c to set the overall smoothness (typical $c \in [0.5, 1.5]$), then increase k until g_t becomes sufficiently responsive on a small dev set. Finally tune α_{\max} and $[g_{\min}, g_{\max}]$ for stability/strength trade-offs.

Complexity. The gate requires only light-weight vector ops during decoding and reuses the prefill to compute \mathbf{v}_{CARD} . Hence no extra forward pass compared to vanilla generation.

A.3 CLARIFICATION

RUDDER maintains the same inference efficiency as the original model, requiring no extra forward passes. The CARD vector is extracted opportunistically during the mandatory prefill pass, and the steering is applied within each step of the subsequent decoding pass.

By no extra forward pass we mean no additional `model.forward` invocations beyond the vanilla prefill and decode; our overhead comes only from cheap per-token vector operations implemented via hooks.

A.4 VISUALIZATION AND QUANTIFICATION OF THE GEOMETRY OF \mathbf{v}_{CARD} AND $\mathbf{v}_t^{\text{STEER}}$

Setup and link to motivation. Large VLMs fuse vision and text via self-attention; the residual update of this sublayer thus captures the *net* impact of visual context on token representations. Motivated by this, we aggregate the prefill-phase residual updates to obtain a per-sample direction $\mathbf{v}_{\text{CARD}} \in \mathbb{R}^d$ and define its steering counterpart $\mathbf{v}_t^{\text{steer}} = (\alpha_{\max} \text{ gate}) \mathbf{v}_{\text{CARD}}$ (Sec. 3). For each image we export (i) \mathbf{v}_{CARD} (image+prompt) and its text-only variant, and (ii) $\mathbf{v}_t^{\text{steer}}$. We reduce vectors by PCA ($k=50$) then t-SNE (default perplexity unless noted), and cluster the steering space with KMeans (best silhouette over $K \in \{2, \dots, 10\}$). Figure 4 shows two key views: a *paired* overlay of image+text vs. text-only \mathbf{v}_{CARD} with one-to-one lines, and the clustered t-SNE of $\mathbf{v}_t^{\text{steer}}$. The overlay reveals systematic sample-wise *rotations* from the language prior (text-only) to the image-conditioned direction, and these rotations point toward coherent steering clusters—visual evidence is therefore *directional* rather than noise, directly supporting our motivation.

Quantifying directional structure. We quantify two effects central to our hypothesis: (i) **Rotation from text-only to image-conditioned CARD:** $\Delta\theta = \arccos(\mathbf{v}_{\text{text}}, \mathbf{v}_{\text{img+txt}})$ shows a tight distribution around $\sim 40^\circ$ (mean $\approx 40.5^\circ$, median $\approx 40.4^\circ$), indicating a consistent, non-trivial visual-induced rotation rather than random drift (Fig. 5a); this effect persists across steering clusters (Fig. 5c). (ii) **Alignment gain w.r.t. steering:** $\langle \mathbf{v}_{\text{img+txt}}, \mathbf{v}_t^{\text{steer}} \rangle - \langle \mathbf{v}_{\text{text}}, \mathbf{v}_t^{\text{steer}} \rangle$ is positive on average (mean ≈ 0.239 , median ≈ 0.238) and remains positive across clusters (Figs. 5b,d), showing that

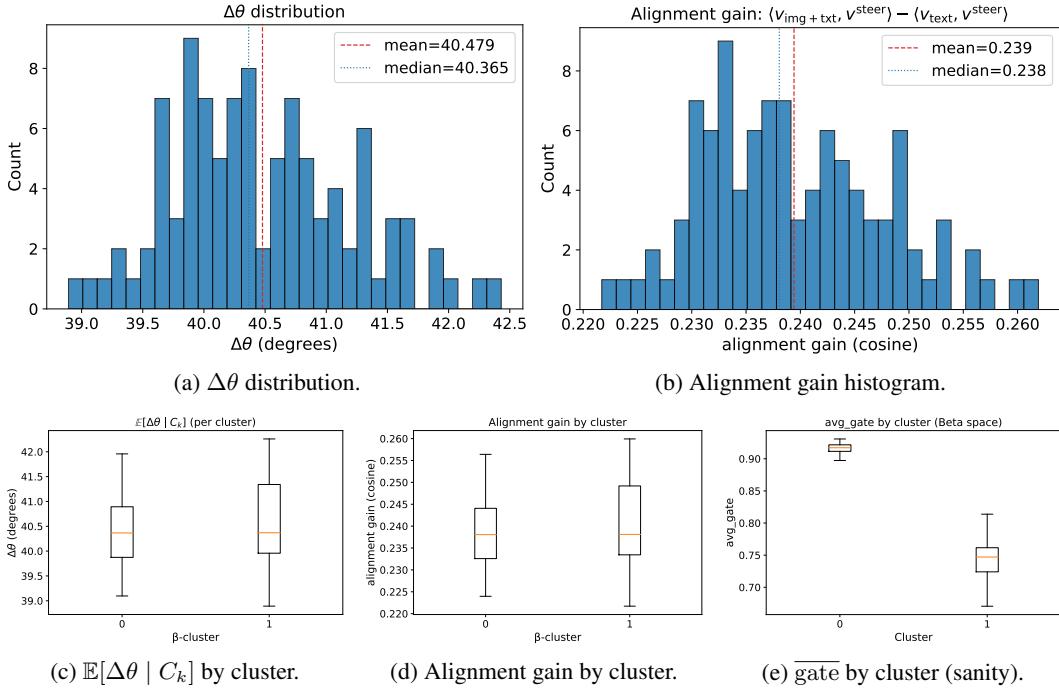


Figure 5: Directional evidence with reflowed layout. (a) Consistent $\mathbf{v}_{\text{text}} \rightarrow \mathbf{v}_{\text{img+txt}}$ rotation; (b) positive alignment gain to $\mathbf{v}^{\text{steer}}$; (c,d) cluster-wise stability; (e) systematic gate differences.

image-conditioned \mathbf{v}_{CARD} is *closer* to the actual steering geometry used by the β -gate. Together, these results substantiate our motivation: aggregating self-attention residual updates yields a robust sample-specific visual-evidence direction that aligns with the downstream steering mechanism.

Notes. Silhouette scores are typically higher for $\mathbf{v}_t^{\text{steer}}$ than for \mathbf{v}_{CARD} , consistent with the gate organizing/scaling directions across samples. We emphasize that t-SNE primarily supports *local* neighborhood interpretation; all scalar statistics are computed in the original vector spaces.

B ADDITIONAL EXPERIMENT

B.1 LLAVA INTERNAL DYNAMIC ANALYSIS

As mentioned in Section 3.2, our method is guided by an analysis of the internal dynamics of LLava-1.5 (Liu et al., 2024a), with key findings illustrated in Figure 6. By examining the residual update vector from the self-attention module at each layer, we identified two properties that informed our intervention strategy:

Intervention Leverage Peaks in Late Layers. We can find that the magnitude of the residual update, which represents the “leverage” an intervention can have, is not uniform. We found that its strength grows with model depth, peaking in the late decoder blocks (approx. layers 26-32). This indicates that interventions in these layers have the greatest potential to influence the model’s final output (Figure 6a, 6c).

Directional Coherence Collapses in Late Layers. While late layers offer the most leverage, the directional coherence of their update vectors collapses after approximately layer 21 (Figure 6b). Coherence is moderate only in the early-to-mid layers. This suggests that applying a fixed, global steering vector in the high-leverage late layers is suboptimal, as the intervention may be misaligned with the model’s unstable internal state.

756
757

B.2 ADDITIONAL ABLATION RESULTS

758
759
760

We provide supplementary ablation results on LLaVA-1.5 and InstructBlip, as shown in Figure 11 and Figure 12. These analyses complement the main ablation study conducted on Idefics2 in Section 4.4.

761
762
763
764
765
766

The results for both models confirm the same core trends observed with Idefics2. Specifically, the heatmaps reveal a consistent trade-off between hallucination mitigation and recall. As the steering strength α_{max} increases, both CHAIRS and CHAIRI scores improve (decrease), but this is often accompanied by a drop in recall. The gate sensitivity parameter, k , plays a similar, non-linear modulating role in this balance. While the general trade-off is consistent, the optimal hyperparameter values vary by model architecture, highlighting the need for model-specific tuning.

767
768

B.3 CASE STUDY

769
770
771
772
773
774
775
776
777
778

To provide a qualitative illustration of our method’s real-world performance, we present a series of case studies in Figures 7, 8, 9 and 10. From these examples, we can find that RUDDER is highly effective at eliminating object-level hallucinations. It successfully removes entirely non-existent objects from the captions (e.g., a hallucinated “second person” or “cup”), and corrects misidentified objects (e.g., correctly identifying “skis” instead of “snowboard”). Moreover, RUDDER’s outputs are not only more factually accurate but also more semantically cautious. The corrected descriptions often adopt more conservative language, such as using phrases like “appears to be”, “may be”, or “suggesting that”. By replacing the baseline models’ confident yet incorrect assertions with more grounded and appropriately qualified statements, RUDDER significantly enhances the overall reliability and trustworthiness of the generated text.

779
780

C LLMs USAGE STATEMENT

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

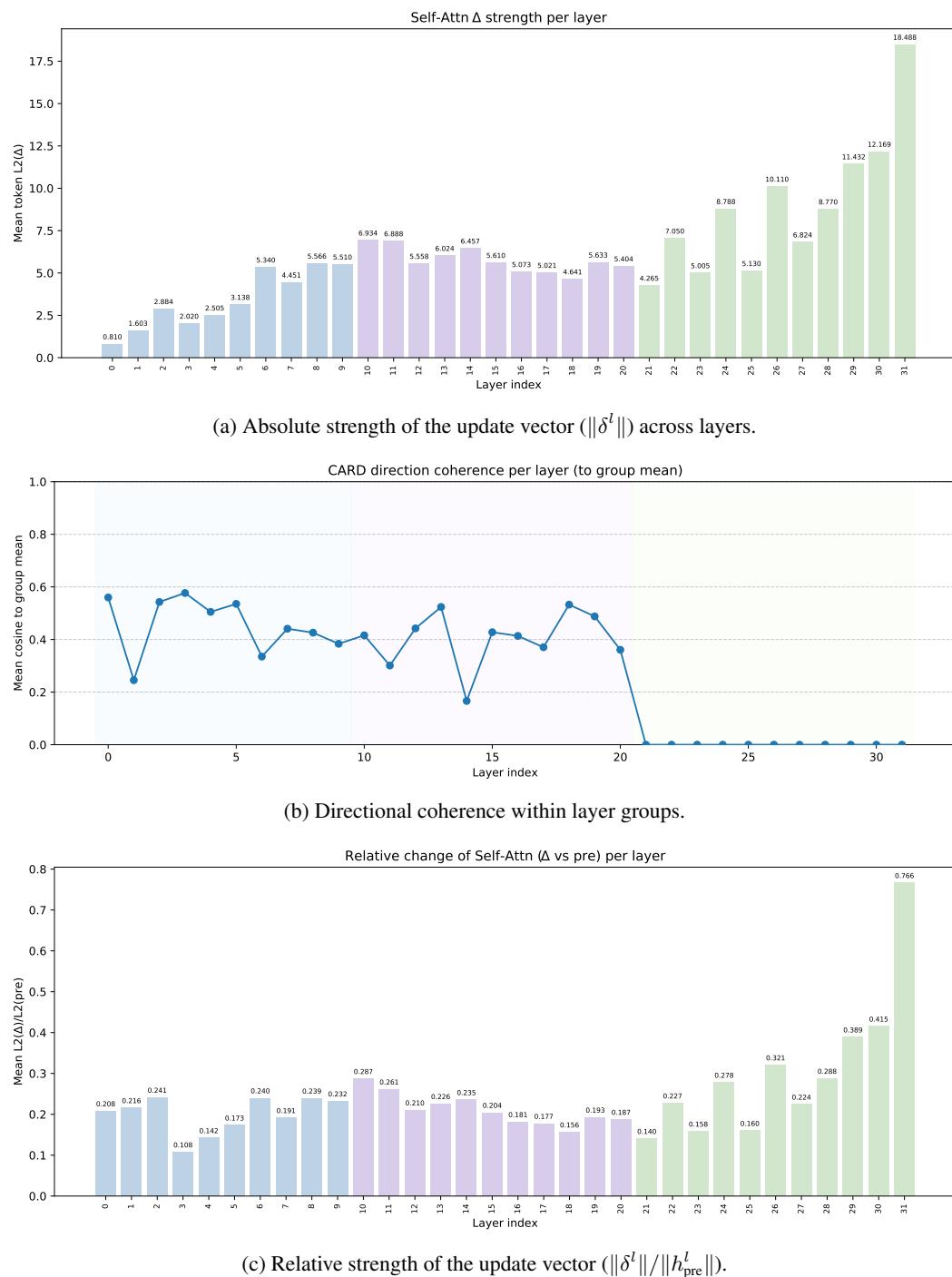


Figure 6: Analysis of the internal dynamics of LLaVA-1.5 (Liu et al., 2024a). (a, c) Both the absolute and relative strength of self-attention updates peak in the middle-to-late layers, which identify a "computational core". (b) Mid-late layers show significantly lower directional coherence than other regions.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

Baseline:

"In the image, a man is standing in front of a motorcycle with his legs crossed. **He is wearing a helmet** and safety gear, possibly indicating that he is the motorcycle owner or rider. The motorcycle is prominently placed in the scene, occupying a significant portion of the image. The man seems to be posing for the photo and showcasing his motorcycle."

881
882
883
884
885
886
887
888
889
890
891
892

Rudder:

"In the image, a man stands close to a parked black dirt bike and sidewalk benches. He is **wearing a blue outfit** and appears to be enjoying the environment around him. The dirt bike is parked prominently in front of him, taking up most of the frame. There are benches placed further back from the man, creating a natural seating area in the scene."

893
894
895
896
897
898
899

900 Figure 7: Case study. Hallucinated contents generated by the vanilla LLaVA-1.5 are marked in **red**,
901 while the factual contents from our method are colored with **blue**.

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Baseline:

"The image captures a man standing in a room, fully engaged in playing a video game on a TV. He is using a Nintendo Wii controller to control his gameplay. In addition to the man, **there is another person located to the far left of the image**. There are also several books scattered across the room, along with **a cup placed on a surface**. A potted plant can be found towards the right side of the room, adding a touch of greenery to the space."

Rudder:

"In the image, a man is actively playing a video game on his living room. TV setup stands outstanding. **He is wearing jeans** and appears to be dancing while **swinging a controller** or using a motion device that allows him to physically participate in the gameplay. There are multiple books visible on a table or shelf, suggesting that this living area may be used for studying or enjoying various forms of reading material. Additionally, a potted plant is present in the space adding a touch of greenery to the setting."

918
919
920
921
922
923

924 **Baseline:**

925 "The image features a small, clean kitchen with a white countertop and a
926 stove top oven. The kitchen is equipped with a sink and a microwave, and
927 **there is a toilet visible in the background. The room also has a dining table**
928 **and a few chairs placed around it.** In addition to the main kitchen appliances,
929 there are a few other items in the room."

930 **Rudder:**

931 "The image features a clean and tidy kitchen with a variety of appliances
932 and utensils. **There is a sink positioned towards the center of the room, with**
933 **a microwave oven placed above it. A refrigerator can be seen on the left**
934 **side of the room, while an oven is located towards the bottom left corner.**
935

936 **Baseline:**

937 "The image features a wooden table with a variety of kitchen utensils and
938 items. **There are several knives, including a large knife and a smaller one,**
939 **placed on the table.** A spoon is also visible, along with a couple of spoons and
940 a fork. In addition to the utensils, there are multiple bottles on the table,
941 with one being larger and positioned towards the left side, and the others
942 being smaller and scattered around the table. A cup can be seen on the right
943 side of the table, **and a bowl is placed in the middle. table.**"

944 **Rudder:**

945 "The image features a tabletop with a variety of items laid out on it. **There**
946 **are several spices neatly arranged in a line.** Additionally, a number of spoons
947 **are positioned around the tabletop, some pointing upwards and others**
948 **pointing downwards.** There are also **several bottles dispersed across the**
949 **tabletop, adding to the assortment of items present.** The scene gives off an
950 **impression of a well-organized and functional space for preparing meals or**
951 **engaging in culinary activities."**

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

924 **Baseline:**

925 "The image features a cozy living room with a couch and a chair. On the
926 couch, there are two cats lying down, one on the left side and the other on
927 the right side. They appear to be relaxed and enjoying their time together. **In**
928 **addition to the cats, there are two books placed on the couch,** one near the
929 left cat and the other near the right cat. The scene gives off a warm and
930 comfortable atmosphere, with the cats and books adding to the overall
931 ambiance of the living room."

932 **Rudder:**

933 "The image features two cats lying down on a couch, enjoying each other's
934 company. One cat is positioned towards the left side of the couch,
935 while the other cat is laying down further to the right side. **They both seem**
936 **to be resting comfortably on newspapers that are spread out on the couch.**
937 The scene creates a cozy atmosphere with the cats sharing their space on
938 the couch."

939 **Baseline:**

940 "The image features a red fire hydrant situated on a sidewalk next to a
941 building. The fire hydrant is prominently placed in the scene, and it appears to
942 be the main focus of the image. The sidewalk is located near a street, and
943 **there is a truck parked on the street, slightly to the left of the fire hydrant.**"

944 **Rudder:**

945 "The image features a red fire hydrant prominently positioned on the
946 sidewalk near a building wall. The fire hydrant is sitting on top of a sidewalk
947 curbing, making it easily accessible for emergency services. **In addition to the**
948 **fire hydrant, there are several graffiti tags on the building wall behind it.**
949 These tags add an urban touch to the scene and provide contrasting visual
950 interest against the red fire hydrant."

Figure 8: Case study. Hallucinated contents generated by the vanilla LLaVA-1.5 are marked in red, while the factual contents from our method are colored with blue.

972
973
974
975
976
977978 **Baseline:**

979 "The image features a man wearing a jacket and a cap, standing on a snowy
 980 hill. He appears to be posing for a photo while holding his snowboard. The
 981 man has his hands close to his chest. The snowy terrain surrounds the man,
 982 and in the background, there are additional trees scattered across the area. A
 983 second person is visible in the background, standing further to the right."

991 **Rudder:**

992 "The image features a man posing on top of a snow-covered ski slope during
 993 winter. He is wearing snow gear and is standing confidently on skis. The
 994 scene appears to be captured during the winter season, with the
 995 mountainous setting serving as a striking background."

998 **Baseline:**

999 "The image captures a lively concert scene with a crowd of people gathered
 1000 around a stage. A man is standing on the stage, singing into a microphone,
 1001 while a woman is also present on the stage, possibly accompanying the singer.
 1002 There are several people in the audience, some of them holding cell phones,
 1003 likely capturing the moment or sharing the experience with others. The
 1004 atmosphere appears to be energetic and engaging, with the performers and
 1005 the audience enjoying the concert together."

1011 **Rudder:**

1012 "The image features a live concert event taking place indoors. At the center
 1013 of attention is a person singing into a microphone while a band plays
 1014 instruments behind them. There are several other people watching the
 1015 performance from various positions around the room. Some of these
 1016 individuals are standing close to each other, while others are spread out
 1017 across the venue. In addition to the live performance setup, there are
 1018 multiple cell phones being used by concertgoers to capture memories of the
 1019 event."

978 **Baseline:**

979 "The image features a busy city street with several police officers patrolling
 980 the area on their motorcycles. There are three police officers prominently
 981 visible in the scene, with one officer positioned slightly to the left of the
 982 center, another officer slightly to the right of the center, and the third officer
 983 slightly to the right of the rightmost officer. Multiple cars are parked or
 984 driving down the street, including one car parked on the left side of the
 985 image, another car parked further down the street on the right side, and
 986 several cars driving down the roadway. Additionally, there are two handbags
 987 visible in the scene one near the leftmost officer and the other slightly to
 988 the right of the center officer."

991 **Rudder:**

992 "The image depicts a busy city street filled with various vehicles and
 993 pedestrians. There are two police officers on motorcycles, one on the left
 994 side and the other on the right side of the street. They appear to be
 995 directing traffic or monitoring the area. In addition to the motorcycles,
 996 there are several cars and a truck on the street. Some cars are parked, while
 997 others seem to be in motion. A few pedestrians can be seen walking along
 998 the sidewalk, with one person carrying a handbag. Overall, the scene
 999 captures the hustle and bustle of city life, with the police officers playing a
 1000 crucial role in maintaining order and safety."

998 **Baseline:**

999 "The image features a black cat sitting in a bathroom sink, surrounded by
 1000 various toiletries. The sink is filled with toothbrushes, some of which are
 1001 placed near the cat, while others are scattered around the sink. There are also
 1002 multiple bottles in the scene, with some located near the cat and others
 1003 placed further away. The cat appears to be relaxed and comfortable in the
 1004 sink, surrounded by the bathroom items."

1011 **Rudder:**

1012 "The image features a black cat comfortably lying down inside a bathroom
 1013 sink. The sink occupies most of the scene, with the cat occupying its central
 1014 space. The cat appears to be enjoying its time in the sink, possibly finding it
 1015 cozy or cooler than its surroundings."

1018 Figure 9: Case study. Hallucinated contents generated by the vanilla Idefics2 are marked in red,
 1019 while the factual contents from our method are colored with blue.

1020
1021
1022
1023
1024
1025

1026	Baseline:	
1027	" There are four plates with different types of cakes and pastries, each with a unique flavor and design. The desserts are arranged in a way that they are easily accessible for the diners. The table is set with utensils, including a fork and a knife , and a cup is also present. The dining area is well-lit, providing a pleasant atmosphere for enjoying the delicious treats."	
1028		
1029		
1030		
1031		
1032		
1033		
1034		
1035		
1036		
1037		
1038		
1039		
1040	Rudder:	
1041	" There are four plates on the table, each containing a different dessert. The dessert selection includes a slice of cake, a slice of cheesecake, a slice of lemon cake, and a slice of chocolate cake. The dessert plates are arranged in a way that allows for a variety of flavors to be enjoyed."	
1042		
1043		
1044		
1045		
1046	Baseline:	
1047	" Two men and a woman present , all wearing different clothing. One man is holding a kite, while the other man is holding a bottle . The woman is standing nearby, possibly assisting with the kite or enjoying the activity."	
1048		
1049		
1050		
1051		
1052		
1053		
1054		
1055		
1056		
1057		
1058		
1059		
1060	Rudder:	
1061	" There are two kites in the air, one of a kite shaped like a killer whale . The people are having fun and flying the kites, possibly enjoying the day together."	
1062		
1063		
1064		
1065		
1066		
1067	Figure 10: Case study. Hallucinated contents generated by the vanilla InstructBlip are marked in red, while the factual contents from our method are colored with blue.	
1068		

Figure 10: Case study. Hallucinated contents generated by the vanilla InstructBlip are marked in red, while the factual contents from our method are colored with blue.

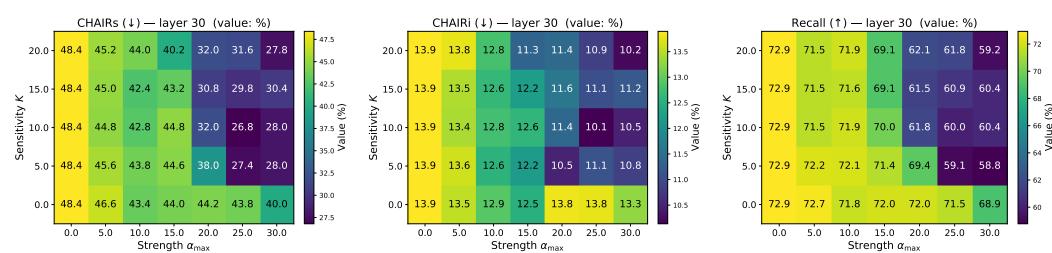


Figure 11: Ablation matrices for RUDDER on LLaVA-1.5 (Liu et al., 2024a)

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

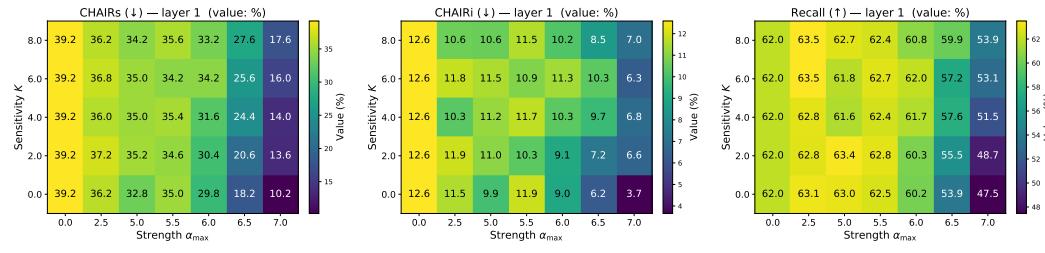
(a) $\text{CHAIR}_S \alpha_{\max} \times k$ heatmap.(b) $\text{CHAIR}_i \alpha_{\max} \times k$ heatmap.(c) $\text{Recall} \alpha_{\max} \times k$ heatmap.

Figure 12: Ablation matrices for RUDDER on InstructBlip (Dai et al., 2023)

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133