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ABSTRACT

Large Vision-Language Models (LVLMs) often suffer from object hallucination,
generating text inconsistent with visual inputs, which can critically undermine
their reliability. Existing inference-time interventions to mitigate this issue present
a challenging trade-off: while methods that steer internal states or adjust out-
put logits can be effective, they often incur substantial computational overhead,
typically requiring extra forward passes. This efficiency bottleneck can limit
their practicality for real-world, latency-sensitive deployments. In this work, we
aim to address this trade-off with Residual-Update Directed DEcoding Regula-
tion (RUDDER), a low-overhead framework that steers LVLMs towards visually-
grounded generation. RUDDER is built on two key innovations: (1) Contextual
Activation Residual Direction (CARD) vector, a per-sample visual evidence vec-
tor extracted from the residual update of a self-attention layer during a single,
standard forward pass. (2) A Bayesian-inspired adaptive gate that performs token-
wise injection, applying a corrective signal whose strength is conditioned on the
model’s deviation from the visual context. Extensive experiments on key halluci-
nation benchmarks, including POPE and CHAIR, indicate that RUDDER achieves
performance comparable to state-of-the-art methods while introducing negligi-
ble computational latency, validating RUDDER as a pragmatic and effective ap-
proach for improving LVLMs’ reliability without a significant compromise on ef-
ficiency. Code is available at https://anonymous.4open.science/r/
RrUuDdDdER-1C13/.

1 INTRODUCTION

While Large Vision-Language Models (LVLMs) have shown remarkable capabilities in multimodal
tasks and are increasingly deployed to assist with real-world problems (Alayrac et al., 2022; Liu
et al., 2024a), their practical reliability is critically undermined by a persistent challenge: object
hallucination. As shown in Figure 1, LVLMs frequently generate fluent, convincing text that is fac-
tually inconsistent with visual groundings, severely limiting their real-world utility and credibility
(Ji et al., 2023). The cause of LVLMs’ hallucination lies in the misalignment of information across
different modalities: a tendency for powerful pre-trained language models to over-rely on paramet-
ric knowledge and language priors at the expense of visual context (Li et al., 2025). To address this
without costly retraining, many efforts have focused on inference-time interventions (ITI). However,
existing ITI methods present a trade-off between effectiveness and efficiency. These solutions typi-
cally fall into two categories: Non-steering methods operate on the final output logits. They adjust
token probabilities by contrasting different conditions, such as outputs from different model layers
(Chuang et al., 2023; Leng et al., 2023). Steering-based methods directly modify the model’s inter-
nal hidden states, allowing them to better align with visual information during generation (Li et al.,
2025). While often effective, both approaches share a significant drawback: high computational
overhead. They frequently require multiple forward passes through the model, which can double
inference latency and make them impractical for real-time applications. This leaves a critical need
for a method that is both effective and efficient.

Building on this observation, we argue that a desirable intervention should not force a choice
between high performance and practical efficiency. Instead, it should be both effective and
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Vanilla:  
“…There are several books 
scattered across the room, 
along with a cup placed on a 
surface…” 👻

Non-steering Steering-based Ours: RUDDER

No Extra FWD

Per-token Adaptive

Answer-span Localized

No Offline Setup

Typical Overhead

❌

❌

❌

✅

❌

❌

❌

✅

✅

✅

✅

✅

High Mid-High Baseline⚡≈

Prompt:  
“Please help me describe the image in 
detail.” 

RUDDER😀 : 
“…There are multiple books 
visible on a table or shelf, 
suggesting that this living 
area may be used for 
studying or enjoying various 
forms of reading material…” 

Figure 1: (Left) An example where the vanilla LLaVA-1.5–7B (Liu et al., 2024a) hallucinates ob-
jects. Erroneous text is marked in red, while RUDDER’s corrected, factual output is in blue. (Right)
A comparison showing that unlike existing non-steering and steering-based methods, RUDDER pro-
vides adaptive, low-overhead control without requiring extra forward passes.

lightweight, operating within a single forward pass, and context-specific, capable of adjusting its
intensity at each generation step. This requires identifying a reliable signal within the model’s in-
ternal computation that can correlate with its generation state. Thus, our research is guided by the
question: Can we identify a stable, informative and low-cost signal within the model’s standard
computational flow to ground generation without introducing extra forward passes?

We propose Residual-Update Directed DEcoding Regulation (RUDDER), a framework designed
to sidestep the efficacy-efficiency trade-off. By leveraging a single-pass intervention that steers
generation only when it is consistent with the instance-specific evidence, RUDDER achieves perfor-
mance comparable to costly, state-of-the-art steering methods while introducing negligible compu-
tational latency, effectively making it a low-overhead solution.

Our approach is built on two innovations: (1) the Contextual Activation Residual Direction
(CARD) vector, a per-sample visual evidence vector extracted from a self-attention layer’s residual
update during a standard forward pass, and (2) the Beta Gate: a Bayesian-inspired adaptive gate that
performs token-wise injection of the CARD vector, applying a strong corrective signal only when
needed. RUDDER thus offers a pragmatic approach towards visually-grounded generation without
compromising on deployment feasibility.

Our main contributions are:

1. We propose the CARD vector, a novel and efficient method for extracting a dynamic, per-
sample visual steering vector at a negligible additional cost.

2. We introduce the Beta Gate, an adaptive, token-wise gating mechanism that provides a
principled and fine-grained intervention.

3. We demonstrate through extensive experiments across LVLMs with distinct architectures
that RUDDER significantly reduces object hallucination to a level comparable with state-
of-the-art methods, while introducing negligible computational overhead, thereby offering
a superior balance between efficacy and efficiency.

2 RELATED WORK

Our research is situated at the intersection of inference-time intervention (ITI) and probabilistic
gating.

Inference-time intervention. ITI aims to guide a model’s generative behavior without modifying
its weights. We group existing methods based on where they act on the computation path. Non-
steering methods operate at the output logits. Many of these methods recalibrate final logits to
improve visual grounding, but often at the cost of significant latency due to extra forward passes.
For instance, VCD (Leng et al., 2023) uses perturbed images to create a negative context, PAI (Liu
et al., 2024b) subtracts unconditional (text-only) logits, and MARINE (Zhao et al., 2025) employs
a classifier-free guidance style. Similarly, DoLa (Chuang et al., 2023) contrasts deep vs. shallow
logits to suppress generic text. More efficient alternatives such as constrained decoding (Hokamp &
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Liu, 2017) or post hoc editing (Manakul et al., 2023) are typically less adaptive. Steering methods
directly modify the hidden representations to guide the generation trajectory. Most of these methods
also incur high computational costs on-the-fly. For example, ASD (Su et al., 2025) steers away from
a predefined hallucination direction, and VISTA (Li et al., 2025) injects a signal vector computed
from activation differences. VTI (Liu et al., 2025) attempts to mitigate this cost by shifting the
computational burden to an offline precomputation step.

Bayesian and Probabilistic Gating. Our work is also inspired by Bayesian and probabilistic gating
for uncertainty modeling. This includes concepts from Evidential Deep Learning (Sensoy et al.,
2018), which frames outputs as parameters of a Dirichlet distribution for uncertainty quantification.
Other relevant work explores stochastic gates. For instance, Yamada et al. (2020) use stochastic
gates based on a relaxation of the Bernoulli distribution for feature selection. More directly related
to our method, Beta-LSTM (Song et al., 2019) replaces standard sigmoid gates with ones derived
from a Beta distribution, validating the use of Bayesian principles in gating mechanisms.

3 OUR METHOD

To mitigate object hallucination without the high computational costs of existing steering meth-
ods, we present Residual-Update Directed DEcoding Regulation (RUDDER). RUDDER is a low-
overhead guided decoding framework that adaptively steers LVLMs toward visually-grounded
generation by injecting a dynamically derived visual evidence vector into each step of the auto-
regressive decoding process. Crucially, it delivers context-specific steering with no calibration data
and no extra forward pass.

This section details the components of our method. We begin with a brief overview of the Transform-
ers residual stream. We then describe two core principles of RUDDER: (1) the zero-cost extraction
of the Contextual Activation Residual Direction (CARD) vector, and (2) Beta Gate, an adaptive
injection mechanism guided by a Bayesian-inspired gate.

3.1 PRELIMINARIES

The decoder in a Transformer-based LVLM operates on a residual stream, where each sublayer’s
output (e.g., self-attention of the decoder layer) is added back to its input. This output, termed
the residual updates ∆l, represents the new information contributed at layer l. We leverage these
updates during the two-stage auto-regressive generation process: 1. Prefill Stage: The model pro-
cesses the prefill span, comprising both image tokens and text prompt tokens, in a single parallel
forward pass to populate a Key-Value cache. During this mandatory step, we extract the CARD
vector by aggregating the self-attention residual updates across all tokens in the prefill span. 2. De-
coding Stage: The model generates the output sequentially, one token at a time. It’s during this
phase that we employ Beta Gate for adaptive steering.

3.2 CARD VECTOR: A ZERO-COST PER-SAMPLE EVIDENCE DIRECTION

Motivation. LVLMs fuse visual and textual information through self-attention. The residual up-
date from the self-attention sublayer, therefore, encodes the net effect of the visual context on the
representation of each text token. We hypothesize that by aggregating these updates over the image
tokens and text prompt tokens in the prefill span, we can obtain a robust, per-sample vector that
captures the direction of visual evidence for the specific input (Liu et al., 2024a). Our empirical
analysis supports this: the extracted CARD vector creates a systematic, image-conditioned rotation
away from a text-only (language prior) direction, and this rotation aligns coherently with the down-
stream steering mechanism. This confirms the aggregated updates provide a meaningful directional
signal rather than random noise (a detailed visualization and quantification is in Appendix A.4).

To identify the optimal layer for extracting the CARD vector, we analyze internal dynamics of
LLaVA-1.5–7B (Liu et al., 2024a). We find that intervening in the late decoder layers has the
greatest potential to influence the model’s final output. Full analysis is provided in Appendix B.1,
Figure 6a, 6c.

Extraction. In a single standard prefill pass with the image and text prompt, we place a lightweight,
read-only hook at the target decoder layer l and cache the self-attention output for each token i in
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the prefill span Tpre, denoted Al
i. In a pre-norm decoder, the residual update is simply the attention

output,
∆l

i = Al
i, (1)

We then pool these updates and apply L2 normalization to obtain a per-sample direction:

vCARD =
Pool

(
{∆l

i}i∈Tpre

)∥∥Pool ({∆l
i}i∈Tpre

)∥∥
2

, Pool(·) can be mean or ∥∆l
i∥-weighted mean. (2)

This entire process occurs within the single prefill pass and introduces negligible overhead, as no
additional forward pass or calibration is required.

3.3 BETA GATE: ADAPTIVE INJECTION VIA BAYESIAN-INSPIRED GATING

While other steering methods apply a corrective signal with a fixed strength, this can be suboptimal.
As shown in the analysis in Appendix B.1 Figure 6b, the directional coherence of internal update
vectors tends to collapse in late decoder layers, which suggests that a fixed, global steering direction
could be misaligned at certain steps. A strong correction is only needed when the model’s generation
deviates from the visual evidence. When the generation is already grounded, a strong intervention
may harm output quality.

To address this, we introduce Beta Gate, a dynamic, adaptive gating mechanism inspired by
Bayesian principles. We frame this problem as determining the “probability of visual groundedness”
for each token. This probability is represented as a Bayesian update over a latent gate gt ∈ [0, 1],
which modulates the strength of the corrective signal on a per-token basis.

Bayesian view and practical gate. Let hl,t be the hidden state for generating the answer token t
at our target intervention layer l, specifically the output of the LayerNorm operation that precedes
the self-attention block. We measure its alignment with the visual context via the cosine similarity
st = cos(hl,t,vCARD). This score indicates how consistent the current generation trajectory is with
the visual evidence. Using a Beta–Binomial intuition, we use st to parameterize a Beta distribution,
and the gate value gt is taken as its posterior mean. (The detailed motivation and derivation from a
Naı̈ve Bayes perspective are provided in Appendix A.2.). The gate’s parameters are calculated as:

αt = softplus(k st + c), βt = softplus(−k st + c), gt =
αt

αt + βt
, (3)

Here, k is a sensitivity hyperparameter that controls the steepness of the gate’s response to changes
in alignment, and c is a concentration parameter that controls its bias.

To ensure stability, we clamp the gate’s output to a predefined range, gt ∈ [gmin, gmax]. This prevents
the gate from completely shutting off (gt=0) or saturating at the maximum correction (gt=1) too
readily, making the intervention more robust.

For generating each token t in the answer, the final steering update vsteer
t combines the adaptive gate

with a global cap αmax:
vsteer
t =

(
αmax gt

)︸ ︷︷ ︸
adaptive strength

vCARD, (4)

This vector is injected into the residual stream immediately after the Self-Attention (SA) operation.
The updated hidden state, hnew

l,t , is thus computed as:

hnew
l,t =

(
hl,t + SA(hl,t)

)
+ vsteer

t . (5)

The term αmaxgt represents the adaptive strength of the intervention, ensuring a strong corrective
signal is applied only when needed; the injection is restricted to the answer span.

3.4 RUDDER

Our complete method, Residual-Update Directed DEcoding Regulation (RUDDER), integrates
the CARD vector and the adaptive Beta Gate to mitigate hallucination by steering LVLMs toward
visually grounded outputs. As detailed in Algorithm 1, RUDDER can be seamlessly integrated into
the standard auto-regressive decoding loop. By operating within a single inference pass, RUDDER
mitigates hallucination with negligible computational overhead, resolving the common trade-off
between efficacy and efficiency. The overall workflow of this approach is illustrated in Figure 2.
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Pool
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∆𝑖= 𝐴𝑖

𝑣𝑡
𝑠𝑡𝑒𝑒𝑟

Cosine 
similarity

Softplus
Self-Attn

Layer Norm
FFNN

Layer Norm

+

Decoder Layers

Decoder Layers

Layer 𝑙

∆𝑖
𝑙= 𝐴𝑖

𝑙 Self-Attn

Layer Norm
FFNN

Layer Norm

+

Decoder Layers

Decoder Layers

Layer 𝑙

Prefill Stage Decoding Stage

Beta Gate

clamp

ℎ𝑙,𝑡

Cache
𝑣CARD

ℎ𝑙,𝑡

𝑣CARD

Figure 2: The overall workflow of RUDDER. Our method operates in two stages. (1) Prefill Stage
(Yellow Arrows): We extract CARD vector vCARD by first collecting attention-induced residual
updates ∆l

i from a target layer l for each token i in the prefill span. These updates are then aggregated
using pooling and normalization. The final CARD vectors are cached for each (image, prompt) pair.
(2) Decoding Stage (Orange Arrows): When generating each answer token t, the adaptive Beta Gate
computes a steering vector vsteer

t , which is then injected into the residual stream to guide the LVLM
towards a more visually-grounded output.

4 EXPERIMENTS

In this section, we validate RUDDER, demonstrating its ability to mitigate hallucination effectively
with negligible computational overhead. We conduct a series of experiments across diverse LVLM
architectures and benchmarks to assess the performance, general capabilities, efficiency, and hyper-
parameter sensitivity.

4.1 EXPERIMENTAL SETUP

Model Architectures. We evaluate RUDDER on three representative LVLMs with distinct
visual-textual alignment mechanisms: LLaVA-1.5–7B (Liu et al., 2024a) and Idefics2–8b–
base (Laurençon et al., 2024) (which both use a linear projection), and InstructBLIP (Dai et al.,
2023) (which uses a Q-former (Li et al., 2023a)).

Decoding Strategies. We validate RUDDER’s versatility across three widely used decoding strate-
gies: greedy decoding, beam search (beam size of 5), and nucleus sampling (top-p=0.9; tempera-
ture fixed at 1.0 for all scenarios).

Baselines. We compare RUDDER with a set of state-of-the-art inference-time intervention methods
to demonstrate its superior trade-off between efficacy and efficiency. Baselines include logit-based
strategies like DoLa (Chuang et al., 2023), VCD (Leng et al., 2023), and PAI (Liu et al., 2024b);
and steering-based interventions like VISTA (Li et al., 2025), representing the dominant paradigms
in the field. All baseline results were reproduced under identical evaluation settings for a fair com-
parison, using the authors’ publicly available code whenever possible.

Evaluation Benchmarks. To rigorously evaluate RUDDER, we use a combination of specialized
hallucination benchmarks and a comprehensive benchmark for general multimodal capabilities.

• Hallucination Benchmarks. We directly measure object hallucination using two standard
benchmarks: (1) CHAIR (Rohrbach et al., 2019): The Caption Hallucination Assessment
with Image Relevance benchmark evaluates hallucination in open-ended image captioning
tasks. We report two metrics: CHAIRS = |{captions with ≥1 hallucinated object}|

|{captions}| , which measures

the rate of hallucination at the sentence level, and CHAIRI = |{hallucinated objects}|
|{mentioned objects}| which

measures the rate of hallucination at the object level. For both metrics, lower scores in-
dicate better performance. Following the established protocol, we randomly select 500
samples from the MSCOCO 2014 (Lin et al., 2015) validation set, and evaluate them using
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the prompt “Please help me describe the image in detail” with a max-
imum generation length of 512 tokens. (2) POPE (Li et al., 2023b): The Polling-based Ob-
ject Probing Evaluation examines object hallucination through targeted yes/no questions,
such as “Is there a <object> in the image?”. Performance is measured by
accuracy and F1 score across its random, popular, and adversarial splits in MSCOCO 2014
subset.

• General Capabilities Benchmark. To confirm that our hallucination mitigation does not
harm the model’s overall abilities, we use MME (Fu et al., 2024), a challenging benchmark
that assesses a model’s performance on a wide range of tasks, including color perception,
counting, and positioning, to provide a holistic view of its multimodal capabilities.

Implementation Details. We optimize hyperparameters on a holdout validation set of 100
MSCOCO 2014 images to balance generation quality and hallucination reduction. The model-
specific configurations are as follows: For LLaVA-1.5, we set the injection layer L = 30, with
Beta-gate parameters αmax = 20, k = 5.0. For Idefics2, we use L = 28, αmax = 8.0, and k = 5.0.
Since InstructBLIP’s Q-former architecture is less effective with mid-to-late layer injections, we set
its injection layer to L = 1, with αmax = 6.5, and k = 8.0. Across all models, the gate’s concentra-
tion parameter c is fixed at 1, and the output was clamped to the range [0, 1]. These settings define
our main adaptive method, RUDDER-Beta, while our fixed-strength ablation, RUDDER-Add, uses
a constant injection strength equal to each model’s respective αmax without the adaptive gate.

4.2 RESULTS ON HALLUCINATION BENCHMARKS

4.2.1 CHAIR: OPEN-ENDED CAPTIONING

On the CHAIR benchmark, which evaluates hallucination in open-ended captioning, RUDDER
demonstrates a strong ability to reduce factual errors while preserving caption quality.

A key challenge in hallucination mitigation is the trade-off with recall: aggressive steering can
artificially lower hallucination scores by producing overly simplistic captions. To ensure a fair and
practical evaluation, we constrain our analysis to configurations that maintain at least 95% of the
vanilla model’s recall (i.e., Recall {evaluated methods} ≥ 0.95× Recall {vanilla model}).
Under this constraint, RUDDER-Beta consistently outperforms the vanilla baseline across all tested
LVLMs and decoding strategies, as shown in Table 1. It achieves average relative reductions of
33.2% in sentence-leve (CHAIRS) and 28.6% in object-level (CHAIRI) hallucination.

Compared to strong baselines like VCD and DoLa, our method is consistently superior on both
metrics. Furthermore, RUDDER-Beta performs on par with the state-of-the-art VISTA and, on
average, yields a greater reduction in object-level hallucinations (CHAIRI).

RUDDER-Beta’s ability to reduce CHAIRI more effectively than CHAIRS highlights its precision.
We attribute this to the token-wise gating mechanism, which selectively amplifies corrections on
visually incongruent or content-noun tokens while leaving already grounded tokens largely unper-
turbed. This allows RUDDER to preferentially suppress object-level hallucinations without degrad-
ing overall caption quality and recall.

4.2.2 POPE: VISUAL QUESTION ANSWERING

Moving from open-ended captioning to a more constrained task, we next evaluate RUDDER on the
POPE benchmark for object probing. This benchmark tests the model’s factuality through targeted
yes/no questions, offering a different perspective on hallucination. In this setting, RUDDER again
demonstrates competitive performance. As shown in Table 2, RUDDER consistently outperforms
the vanilla baselines and most competing methods across all tested models. Concretely, RUDDER-
Beta improves accuracy by 1.0/0.7/0.5 absolute points (pp) and F1 by 1.6/1.3/0.14 pp on LLaVA-
1.5, Idefics2, and InstructBLIP, respectively.

Notably, RUDDER-Beta achieves the highest F1-score and accuracy on both LLaVA-1.5 and
Idefics2, surpassing strong steering-based methods like VISTA. While its performance on Instruct-
BLIP is slightly surpassed by VISTA when employing greedy decoding and nucleus sampling, RUD-
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Table 1: Hallucination evaluation on the CHAIR benchmark. We compare RUDDER against
state-of-the-art training-free methods, with a maximum generation length of 512 tokens. For each
metric, the best-performing method is bolded and the second-best is underlined.

Decoding Method LLAVA-1.5 (Liu et al., 2024a) Idefics2 (Laurençon et al., 2024) InstructBLIP Dai et al. (2023)

CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓
Greedy Vanilla 48.6 13.6 46.6 14.9 39.2 12.8

DoLa (Chuang et al., 2023) 47.6 13.4 - - - -
VCD (Leng et al., 2023) 49.8 14.5 - - 46.4 15.3
VISTA (Li et al., 2025) 38.6 11.4 33.5 11.6 27.7 9.7
RUDDER-Beta (Ours) 39.5 10.5 28.4 10.9 27.1 8.5
RUDDER-Add (Ours) 42.1 11.8 30.1 11.8 28.3 10.4

Beam Search Vanilla 52.8 15.6 48.6 14.5 38.2 12.7
VCD (Leng et al., 2023) 52.4 15.5 - - 47.4 16.3
VISTA (Li et al., 2025) 33.9 10.5 32.2 11.8 27.1 9.6
RUDDER-Beta (Ours) 33.1 9.3 29.2 10.1 26.2 9.5
RUDDER-Add (Ours) 35.2 10.6 31.4 10.9 27.4 11.1

Nucleus Sampling Vanilla 55.6 16.0 53.8 16.7 46.0 16.2
DoLa (Chuang et al., 2023) 49.3 14.8 - - - -
VCD (Leng et al., 2023) 57.5 17.2 - - 53.3 19.8
VISTA (Li et al., 2025) 39.2 11.9 35.5 11.8 29.0 11.3
RUDDER-Beta (Ours) 39.9 11.0 34.1 11.3 28.9 13.7
RUDDER-Add (Ours) 41.6 12.1 36.5 12.9 30.1 14.4

DER remains highly competitive, highlighting its effectiveness as a versatile solution for reducing
object hallucination.

4.2.3 ANALYSIS OF ADAPTIVE VS. FIXED-STRENGTH STEERING

A key design choice in RUDDER is whether to use the adaptive gate (RUDDER-Beta) or a fixed-
strength injection (RUDDER-Add). Our experiments show a clear trade-off between these variants,
guiding the choice based on the task and model architecture.

For complex, open-ended generation (CHAIR), RUDDER-Beta is consistently superior. Its token-
wise precision is crucial for suppressing specific hallucinations in long-form text without harming
overall recall. In the simpler, binary-choice POPE task, the distinction is more nuanced. While
RUDDER-Beta remains the top performer on LLaVA-1.5 and Idefics2, RUDDER-Add is compet-
itive and even surpasses RUDDER-Beta on InstructBLIP. We hypothesize this is partly because
InstructBLIP’s Q-Former provides a highly-condensed visual representation that responds well to
a uniform steering signal in a simple setting. For single-token ”yes/no” answers, the aggressive
push from fixed-strength steering can be sufficient and sometimes more beneficial for certain model
architectures.

In summary, RUDDER-Beta is recommended for robust and precise control in complex tasks, while
the simpler RUDDER-Add is a powerful option for constrained tasks and certain model architec-
tures.

4.3 RESULTS ON COMPREHENSIVE BENCHMARKS

To ensure that hallucination mitigation does not compromise general multimodal capabilities, we
evaluate RUDDER on MME benchmark. The results show that RUDDER successfully reduces
hallucinations without sacrificing the overall abilities of the tested LVLMs. As demonstrated in Ta-
ble 3, both RUDDER-Beta and RUDDER-Add achieve higher MME scores than the vanilla models
for Idefics2 and InstructBlip. On LLaVA-1.5, RUDDER’s scores are slightly lower than the vanilla
model, but the difference is still acceptable.

4.4 EFFICIENCY TESTS

A critical advantage of RUDDER is its low computational overhead, making it practical for real-
world deployment. Unlike many state-of-the-art intervention methods that require extra forward
passes and significantly increase latency, RUDDER is designed to operate within a single gener-
ative pass. We measure the practical latency and throughput of RUDDER against vanilla models
and other methods, with results presented in Table 4. All experiments are conducted on a single
Nvidia A100 GPU with 80 GB VRAM and a batch size fixed at 1. RUDDER-Beta maintains an
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Table 2: Performance on the POPE benchmark across three LVLMs. The reported values are
the mean accuracy and F1 score, aggregated over the random, popular, and adversarial object splits.
The best scores are bolded, and the second best scores are underlined.

Decoding Method LLAVA-1.5 (Liu et al., 2024a) Idefics2 (Laurençon et al., 2024) InstructBLIP Dai et al. (2023)

Avg. Accuracy ↑ Avg. F1 ↑ Avg. Accuracy ↑ Avg. F1 ↑ Avg. Accuracy ↑ Avg. F1 ↑
Greedy Vanilla 85.34 84.91 78.40 74.86 85.74 84.75

DoLa (Chuang et al., 2023) 85.51 84.96 - - - -
VCD (Leng et al., 2023) 85.46 84.87 - - 85.79 84.89
PAI (Liu et al., 2024b) 85.98 85.31 - - - -
VISTA (Li et al., 2025) 86.21 85.42 78.28 74.66 86.25 85.06
RUDDER-Beta (Ours) 86.53 86.03 78.74 76.52 86.02 84.93
RUDDER-Add (Ours) 85.92 84.98 78.43 75.91 86.05 85.05

Beam Search Vanilla 85.46 84.98 78.67 77.55 84.73 84.37
VCD (Leng et al., 2023) 85.60 85.06 - - 84.95 84.59
PAI (Liu et al., 2024b) 85.58 85.01 - - - -
VISTA (Li et al., 2025) 86.10 85.35 78.40 77.31 85.64 84.61
RUDDER-Beta (Ours) 86.51 86.19 79.33 77.96 85.54 84.40
RUDDER-Add (Ours) 85.98 85.02 78.91 77.60 85.71 84.75

Nucleus Sampling Vanilla 83.00 81.08 74.84 67.78 85.50 84.52
DoLa (Chuang et al., 2023) 82.94 81.12 - - - -
VCD (Leng et al., 2023) 82.82 81.90 - - 85.61 84.65
PAI (Liu et al., 2024b) 83.17 82.14 - - - -
VISTA (Li et al., 2025) 83.58 82.21 74.66 67.70 86.12 85.26
RUDDER-Beta (Ours) 84.02 83.57 75.89 69.69 85.79 84.74
RUDDER-Add (Ours) 83.20 82.38 74.95 67.84 85.95 84.95

Table 3: Overall performance scores on the MME full evaluation set. Higher scores indicate
better general capability across perception, reasoning, and knowledge-based tasks.

Decoding Method LLAVA-1.5 (Liu et al., 2024a) Idefics2 (Laurençon et al., 2024) InstructBLIP (Dai et al., 2023)

Greedy Vanilla 1745.87 1518.84 1566.77
RUDDER-Beta 1724.17 1540.56 1592.07
RUDDER-Add 1715.45 1526.03 1585.28

Beam Search Vanilla 1760.20 1450.59 1539.16
RUDDER-Beta 1746.66 1484.21 1565.77
RUDDER-Add 1738.13 1475.80 1560.64

Nucleus Sampling Vanilla 1752.65 1362.45 1538.18
RUDDER-Beta 1721.94 1374.77 1556.43
RUDDER-Add 1713.74 1364.16 1546.01

average throughput of 96.0% compared to vanilla LVLMs. RUDDER-Add is even more efficient
as it bypasses the Beta Gate calculation. In contrast, competing methods that require extra forward
passes see a significant drop in efficiency. On average, the throughput of a method like VISTA is
only 58.1% of the vanilla models.

Table 4: Throughput and Latency Comparison on Three LVLMs. Measurements are conducted
using greedy decoding to evaluate the computational overhead of different methods on the CHAIR
benchmark. Throughput is measured in tokens per second (higher is better), and latency is the time
in milliseconds per token (lower is better).

Method LLaVA-1.5 (Liu et al., 2024a) Idefics2 (Laurençon et al., 2024) InstructBLIP (Dai et al., 2023)

ms/token ↓ token/s ↑ ms/token ↓ token/s ↑ ms/token ↓ token/s ↑
Vanilla 17.6 56.7 20.9 47.8 16.1 62.3
VCD (Leng et al., 2023) 33.2 30.1 - - - -
PAI (Liu et al., 2024b) 33.9 29.5 - - - -
VISTA (Li et al., 2025) 27.7 36.1 31.4 31.9 34.6 28.9
RUDDER-Beta (Ours) 18.2 54.9 21.8 45.8 16.8 59.5
RUDDER-Add (Ours) 17.9 55.8 21.5 46.5 16.4 60.8

4.5 ABLATION STUDIES

We conduct an ablation study on Idefics2 using the CHAIR benchmark to analyze the key hyper-
parameters: injection layer L, maximum steering strength αmax and the gate sensitivity k. We first
identify the optimal intervention layer, finding Layer 28 is the most effective for the Idefics2 model,
as shown in Figure 3a. Focusing on this layer, we then tune the hyperparameters αmax and k. The
heatmaps in Figures 3b through 3d reveal a core trade-off: increasing the steering strength (αmax)
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Figure 3: Ablation study of RUDDER’s hyperparameters on the Idefics2 (Laurençon et al., 2024)
model. (a) The bar plot shows the impact of the intervention layer L. (b-d) The heatmaps analyze
the trade-off between steering strength αmax and gate sensitivity k, showing their effect on CHAIR
scores and recall.

effectively reduces CHAIR scores but at the cost of lower recall. The gate sensitivity k, does not
exhibit a simple linear trend; instead, it plays a crucial modulating role in this trade-off. Ultimately,
we find that the best balance for Idefics2 is achieved with αmax = 8.0 and k = 5.0. Ablation results
for other models are presented in Appendix B.2.

4.6 CASE STUDY

Qualitative analysis in Appendix B.3 demonstrates RUDDER’s effectiveness. The case studies show
that RUDDER not only eliminates object hallucinations present in the vanilla model’s outputs but
also produces more conservative content. By avoiding the vanilla model’s confident yet incorrect
assertions, RUDDER enhances the model’s overall reliability.

5 CONCLUSION AND LIMITATIONS

In this work, we introduce RUDDER, a low-overhead inference-time intervention framework that
mitigates LVLMs hallucination using two key innovations: the zero-cost CARD vector, which ex-
tracts a per-sample visual evidence from the model’s own residual updates, and the adaptive Beta
Gate, which applies a corrective signal with principled, token-wise strength. Experiments confirm
RUDDER achieves state-of-the-art comparable performance on benchmarks like CHAIR and POPE
with negligible computational overhead, resolving the common efficacy-efficiency trade-off. RUD-
DER presents a practical and effective solution for enhancing the reliability of LVLMs in real-world
settings. RUDDER’s primary limitation is its sensitivity to hyperparameters, which must be tuned
for each model architecture. Future work could focus on automated hyperparameter optimization to
improve its robustness and ease of deployment.
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ETHIC AND REPRODUCIBILITY STATEMENT

Our research aims to improve the reliability of LVLMs by mitigating object hallucination. By avoid-
ing the extra forward passes required by many alternative methods, our approach offers a more
sustainable path to enhancing model safety.

All experiments are conducted on publicly available benchmarks. Our code is available as open
source at the link provided in the Abstract. For our comparative analysis, we reproduced all base-
line results using the authors’ publicly available code whenever possible. The only exception was
VISTA (Li et al., 2025) on the Idefics2 (Laurençon et al., 2024), which we implemented ourselves
based on its original code.
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A ADDITIONAL ILLUSTRATION ON THE METHODOLOGY

A.1 RUDDER ALGORITHM

Here we present the pseudo-code for RUDDER illustrated in Sec. 3.

A.2 FROM NAÏVE BAYES TO THE BAYESIAN GATE

Problem setup. At each decoding step t, we want a scalar gate gt∈ (0, 1) that reflects how much
the current token should be nudged toward the visual evidence direction vCARD. Let the alignment
statistic be st = cos(ht,vCARD) ∈ [−1, 1].
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Algorithm 1 RUDDER (single-pass, test-time steering; fixed target layer ℓ)

Require: Model M ; image ximg, text xtext; fixed layer ℓ; hyperparams (αmax, k, c, gmin, gmax)
1: Tpre ← TokenizePrefill(ximg, xtext) ▷ image + prompt tokens
2: Prefill: run M once (read-only hook at layer ℓ) to build KV cache and cache {Aℓ

i}i∈Tpre

3: ∆ℓ
i ← Aℓ

i by Eq. 1 ▷ pre-norm: residual update equals SA output
4: vCARD ← by Eq. 2 (Pool→ L2-Normalize over {∆ℓ

i}i∈Tpre )
5: Decode: for t = 1, 2, . . . ▷ auto-regressive generation
6: st ← cos

(
hℓ,t, v

ℓ
CARD

)
7: (αt, βt, gℓ,t)← by Eq. 3; gℓ,t ← clip(gℓ,t, gmin, gmax)
8: vsteer

t ← αmax gt vCARD by Eq. 4
9: hnew

ℓ,t ←
(
hℓ,t + SA(ℓ)(hℓ,t)

)
+ 1[t ∈ Tans] · vsteer

t ▷ post-SA residual add; answer span
only

10: emit next token

Naı̈ve Bayes view (posterior as a gate). Introduce a latent Bernoulli variable Zt ∈ {0, 1} indi-
cating whether the token is visually grounded (Zt = 1) or at risk of drifting (Zt = 0). We use the
posterior mean gt = E[Zt | st] as a continuous gate (rather than a hard on/off decision).

Beta–Bernoulli conjugacy with “soft counts”. With a Beta prior Beta(αt, βt) on Zt, the poste-
rior mean is

gt =
αt

αt + βt
.

We map the alignment st to positive pseudo-counts via a smooth, monotone transform:

αt = softplus(k st + c), βt = softplus(−k st + c),

where k controls sensitivity and c controls concentration/bias. The softplus ensures strictly positive,
numerically stable “counts”.

Properties (useful for calibration). The resulting gt is monotone in st, symmetric g(−s) =
1− g(s), and bounded in (0, 1). Around s = 0, the slope

∂g

∂s

∣∣∣∣
s=0

=
k σ(c)

2 softplus(c)
, σ(x) =

1

1 + e−x
,

gives a handy knob to set how fast the gate reacts to alignment changes.

Stability: clamping and optional per-token cap. For robustness we clamp gt ←
clip(gt; gmin, gmax) to avoid both shutting off (gt → 0) and saturating (gt → 1). Optionally, we
enforce a per-token norm cap τ :∥∥αmaxgt v̂CARD

∥∥
2
≤ τ, v̂ = v/∥v∥2,

which further prevents rare spikes when hidden-state norms vary.

Final update (matches Algorithm 1).

vsteer
t =

(
αmax gt

)︸ ︷︷ ︸
adaptive strength

vCARD (6)

hnew
l,t =

(
hl,t + SA(hl,t)

)
+ vsteer

t (7)
We apply this only on the answer span using the mask mt as in Algorithm 1.

Implementation notes.

• We compute st with L2-normalized ht and vCARD (cosine similarity).
• gt is clamped to [gmin, gmax]; the global scale αmax controls the maximal push.
• vCARD is extracted once during the mandatory prefill pass (zero extra forwards).
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Figure 4: Structure in steering space (b) and its sample-wise projection to vCARD (a).

Practical calibration recipe. Choose c to set the overall smoothness (typical c∈ [0.5, 1.5]), then
increase k until gt becomes sufficiently responsive on a small dev set. Finally tune αmax and
[gmin, gmax] for stability/strength trade-offs.

Complexity. The gate requires only light-weight vector ops during decoding and reuses the prefill
to compute vCARD. Hence no extra forward pass compared to vanilla generation.

A.3 CLARIFICATION

RUDDER maintains the same inference efficiency as the original model, requiring no extra forward
passes. The CARD vector is extracted opportunistically during the mandatory prefill pass, and the
steering is applied within each step of the subsequent decoding pass.

By no extra forward pass we mean no additional model.forward invocations beyond the vanilla
prefill and decode; our overhead comes only from cheap per-token vector operations implemented
via hooks.

A.4 VISUALIZATION AND QUANTIFICATION OF THE GEOMETRY OF vCARD AND vSTEER
t

Setup and link to motivation. Large VLMs fuse vision and text via self-attention; the residual
update of this sublayer thus captures the net impact of visual context on token representations.
Motivated by this, we aggregate the prefill-phase residual updates to obtain a per-sample direction
vCARD∈Rd and define its steering counterpart vsteer

t =(αmax gate)vCARD (Sec. 3). For each image
we export (i) vCARD (image+prompt) and its text-only variant, and (ii) vsteer

t . We reduce vectors
by PCA (k=50) then t-SNE (default perplexity unless noted), and cluster the steering space with
KMeans (best silhouette over K ∈ {2, . . . , 10}). Figure 4 shows two key views: a paired overlay
of image+text vs. text-only vCARD with one-to-one lines, and the clustered t-SNE of vsteer

t . The
overlay reveals systematic sample-wise rotations from the language prior (text-only) to the image-
conditioned direction, and these rotations point toward coherent steering clusters—visual evidence
is therefore directional rather than noise, directly supporting our motivation.

Quantifying directional structure. We quantify two effects central to our hypothesis: (i) Ro-
tation from text-only to image-conditioned CARD: ∆θ = arccos⟨vtext,vimg+txt⟩ shows a tight
distribution around∼40◦ (mean≈40.5◦, median≈40.4◦), indicating a consistent, non-trivial visual-
induced rotation rather than random drift (Fig. 5a); this effect persists across steering clusters
(Fig. 5c). (ii) Alignment gain w.r.t. steering: ⟨vimg+txt,v

steer⟩ − ⟨vtext,v
steer⟩ is positive on aver-

age (mean ≈0.239, median ≈0.238) and remains positive across clusters (Figs. 5b,d), showing that

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5
 (degrees)

0

2

4

6

8
Co

un
t

 distribution
mean=40.479
median=40.365

(a) ∆θ distribution.

0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260
alignment gain (cosine)

0

2

4

6

8

Co
un

t

Alignment gain: vimg + txt, vsteer vtext, vsteer

mean=0.239
median=0.238

(b) Alignment gain histogram.

0 1
-cluster

39.0

39.5

40.0

40.5

41.0

41.5

42.0

 (d
eg

re
es

)

[ Ck] (per cluster)

(c) E[∆θ | Ck] by cluster.

0 1
-cluster

0.220

0.225

0.230

0.235

0.240

0.245

0.250

0.255

0.260
al

ig
nm

en
t g

ai
n 

(c
os

in
e)

Alignment gain by cluster

(d) Alignment gain by cluster.

0 1
Cluster

0.70

0.75

0.80

0.85

0.90

av
g_

ga
te

avg_gate by cluster (Beta space)

(e) gate by cluster (sanity).

Figure 5: Directional evidence with reflowed layout. (a) Consistent vtext→vimg+txt rotation; (b) pos-
itive alignment gain to vsteer; (c,d) cluster-wise stability; (e) systematic gate differences.

image-conditioned vCARD is closer to the actual steering geometry used by the β-gate. Together,
these results substantiate our motivation: aggregating self-attention residual updates yields a robust
sample-specific visual-evidence direction that aligns with the downstream steering mechanism.

Notes. Silhouette scores are typically higher for vsteer
t than for vCARD, consistent with the gate

organizing/scaling directions across samples. We emphasize that t-SNE primarily supports local
neighborhood interpretation; all scalar statistics are computed in the original vector spaces.

B ADDITIONAL EXPERIMENT

B.1 LLAVA INTERNAL DYNAMIC ANALYSIS

As mentioned in Section 3.2, our method is guided by an analysis of the internal dynamics of
LLaVA-1.5 (Liu et al., 2024a), with key findings illustrated in Figure 6. By examining the residual
update vector from the self-attention module at each layer, we identified two properties that informed
our intervention strategy:

Intervention Leverage Peaks in Late Layers. We can find that the magnitude of the residual
update, which represents the “leverage” an intervention can have, is not uniform. We found that its
strength grows with model depth, peaking in the late decoder blocks (approx. layers 26-32). This
indicates that interventions in these layers have the greatest potential to influence the model’s final
output (Figure 6a, 6c).

Directional Coherence Collapses in Late Layers. While late layers offer the most leverage, the
directional coherence of their update vectors collapses after approximately layer 21 (Figure 6b).
Coherence is moderate only in the early-to-mid layers. This suggests that applying a fixed, global
steering vector in the high-leverage late layers is suboptimal, as the intervention may be misaligned
with the model’s unstable internal state.
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B.2 ADDITIONAL ABLATION RESULTS

We provide supplementary abalation results on LLaVA-1.5 and InstructBlip, as shown in Figure 11
and Figure 12. These analyses complement the main ablation study conducted on Idefics2 in Sec-
tion 4.4.

The results for both models confirm the same core trends observed with Idefics2. Specifically, the
heatmaps reveal a consistent trade-off between hallucination mitigation and recall. As the steering
strength αmax increases, both CHAIRS and CHAIRI scores improve (decrease), but this is often
accompanied by a drop in recall. The gate sensitivity parameter, k, plays a similar, non-linear mod-
ulating role in this balance. While the general trade-off is consistent, the optimal hyperparameter
values vary by model architecture, highlighting the need for model-specific tuning.

B.3 CASE STUDY

To provide a qualitative illustration of our method’s real-world performance, we present a series of
case studies in Figures 7, 8, 9 and 10. From these examples, we can find that RUDDER is highly
effective at eliminating object-level hallucinations. It successfully removes entirely non-existent ob-
jects from the captions (e.g., a hallucinated “second person” or “cup”), and corrects misidentified
objects (e.g., correctly identifying “skis” instead of “snowboard”). Moreover, RUDDER’s outputs
are not only more factually accurate but also more semantically cautious. The corrected descrip-
tions often adopt more conservative language, such as using phrases like “appears to be”, “may
be”, or “suggesting that”. By replacing the baseline models’ confident yet incorrect assertions with
more grounded and appropriately qualified statements, RUDDER significantly enhances the overall
reliability and trustworthiness of the generated text.

C LLMS USAGE STATEMENT

Generative AI has been utilized to enhance the writing and to assist with coding tasks.
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Figure 6: Analysis of the internal dynamics of LLaVA-1.5 (Liu et al., 2024a). (a, c) Both the absolute
and relative strength of self-attention updates peak in the middle-to-late layers, which identify a
”computational core”. (b) Mid-late layers show significantly lower directional coherence than other
regions.
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Baseline: 
"In the image, a man is standing in front of a motorcycle with his legs crossed. 
He is wearing a helmet and safety gear, possibly indicating that he is the 
motorcycle owner or rider. The motorcycle is prominently placed in the scene, 
occupying a significant portion of the image. The man seems to be posing for 
the photo and showcasing his motorcycle.

RUDDER: 
"In the image, a man stands close to a parked black dirt bike and sidewalk 
benches. He is wearing a blue outfit and appears to be enjoying the 
environment around him. The dirt bike is parked prominently in front of him, 
taking up most of the frame. There are benches placed further back from the 
man, creating a natural seating area in the scene."

Baseline: 
"The image captures a man standing in a room, fully engaged in playing a 
video game on a TV. He is using a Nintendo Wii controller to control his 
gameplay. In addition to the man, there is another person located to the far 
left of the image. There are also several books scattered across the room, 
along with a cup placed on a surface. A potted plant can be found towards 
the right side of the room, adding a touch of greenery to the space."

RUDDER: 
"In the image, a man is actively playing a video game on his living room. TV 
setup stands outstanding. He is wearing jeans and appears to be dancing 
while swinging a controller or using a motion device that allows him to 
physically participate in the gameplay. There are multiple books visible on a 
table or shelf, suggesting that this living area may be used for studying or 
enjoying various forms of reading material. Additionally, a potted plant is 
present in the space adding a touch of greenery to the setting."

Figure 7: Case study. Hallucinated contents generated by the vanilla LLaVA-1.5 are marked in red,
while the factual contents from our method are colored with blue.
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Baseline: 
“The image features a small, clean kitchen with a white countertop and a 
stove top oven. The kitchen is equipped with a sink and a microwave, and 
there is a toilet visible in the background. The room also has a dining table 
and a few chairs placed around it. In addition to the main kitchen appliances, 
there are a few other items in the room. "

RUDDER: 
"The image features a clean and tidy kitchen with a variety of appliances 
and utensils. There is a sink positioned towards the center of the room, with 
a microwave oven placed above it. A refrigerator can be seen on the left 
side of the room, while an oven is located towards the bottom left corner.

Baseline: 
"The image features a cozy living room with a couch and a chair. On the 
couch, there are two cats lying down, one on the left side and the other on 
the right side. They appear to be relaxed and enjoying their time together. In 
addition to the cats, there are two books placed on the couch, one near the 
left cat and the other near the right cat. The scene gives off a warm and 
comfortable atmosphere, with the cats and books adding to the overall 
ambiance of the living room."

RUDDER: 
"The image features two cats lying down on a couch, enjoying each other' 
sierp company. One cat is positioned towards the left side of the couch, 
while the other cat is laying down further to the right side. They both seem 
to be resting comfortably on newspapers that are spread out on the couch. 
The scene creates a cozy atmosphere with the cats sharing their space on 
the couch."

Baseline: 
"The image features a wooden table with a variety of kitchen utensils and 
items. There are several knives, including a large knife and a smaller one, 
placed on the table. A spoon is also visible, along with a couple of spoons and 
a fork. In addition to the utensils, there are multiple bottles on the table, 
with one being larger and positioned towards the left side, and the others 
being smaller and scattered around the table. A cup can be seen on the right 
side of the table, and a bowl is placed in the middle. table."

RUDDER: 
“The image features a tabletop with a variety of items laid out on it. There 
are several spices neatly arranged in a line. Additionally, a number of spoons 
are positioned around the tabletop, some pointing upwards and others 
pointing downwards. There are also several bottles dispersed across the 
tabletop, adding to the assortment of items present. The scene gives off an 
impression of a well-organized and functional space for preparing meals or 
engaging in culinary activities."

Baseline: 
"The image features a red fire hydrant situated on a sidewalk next to a 
building. The fire hydrant is prominently placed in the scene, and it appears to 
be the main focus of the image. The sidewalk is located near a street, and 
there is a truck parked on the street, slightly to the left of the fire hydrant."

RUDDER: 
“The image features a red fire hydrant prominently positioned on the 
sidewalk near a building wall. The fire hydrant is sitting on top of a sidewalk 
curbing, making it easily accessible for emergency services. In addition to the 
fire hydrant, there are several graffiti tags on the building wall behind it. 
These tags add an urban touch to the scene and provide contrasting visual 
interest against the red fire hydrant."

Figure 8: Case study. Hallucinated contents generated by the vanilla LLaVA-1.5 are marked in red,
while the factual contents from our method are colored with blue.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Baseline: 
"The image features a man wearing a jacket and a cap, standing on a snowy 
hill. He appears to be posing for a photo while holding his snowboard. The 
man has his hands close to his chest. The snowy terrain surrounds the man, 
and in the background, there are additional trees scattered across the area. A 
second person is visible in the background, standing further to the right. "

RUDDER: 
"The image features a man posing on top of a snow-covered ski slope during 
winter. He is wearing snow gear and is standing confidently on skis. The 
scene appears to be captured during the winter season, with the 
mountainous setting serving as a striking background."

Baseline: 
“The image features a busy city street with several police officers patrolling 
the area on their motorcycles. There are three police officers prominently 
visible in the scene, with one officer positioned slightly to the left of the 
center, another officer slightly to the right of the center, and the third officer 
slightly to the right of the rightmost officer. Multiple cars are parked or 
driving down the street, including one car parked on the left side of the 
image, another car parked further down the street on the right side, and 
several cars driving down the roadway. Additionally, there are two handbags 
visible in the scene one near the leftmost officer and the other slightly to 
the right of the center officer."

RUDDER: 
“The image depicts a busy city street filled with various vehicles and 
pedestrians. There are two police officers on motorcycles, one on the left 
side and the other on the right side of the street. They appear to be 
directing traffic or monitoring the area. In addition to the motorcycles, 
there are several cars and a truck on the street. Some cars are parked, while 
others seem to be in motion. A few pedestrians can be seen walking along 
the sidewalk, with one person carrying a handbag. Overall, the scene 
captures the hustle and bustle of city life, with the police officers playing a 
crucial role in maintaining order and safety."

Baseline: 
" The image captures a lively concert scene with a crowd of people gathered 
around a stage. A man is standing on the stage, singing into a microphone, 
while a woman is also present on the stage, possibly accompanying the singer.
There are several people in the audience, some of them holding cell phones, 
likely capturing the moment or sharing the experience with others. The 
atmosphere appears to be energetic and engaging, with the performers and 
the audience enjoying the concert together."

RUDDER: 
“The image features a live concert event taking place indoors. At the center
of attention is a person singing into a microphone while a band plays 
instruments behind them. There are several other people watching the 
performance from various positions around the room. Some of these 
individuals are standing close to each other, while others are spread out 
across the venue. In addition to the live performance setup, there are 
multiple cell phones being used by concertgoers to capture memories of the 
event. ”

Baseline: 
"The image features a black cat sitting in a bathroom sink, surrounded by 
various toiletries. The sink is filled with toothbrushes, some of which are 
placed near the cat, while others are scattered around the sink. There are also 
multiple bottles in the scene, with some located near the cat and others 
placed further away. The cat appears to be relaxed and comfortable in the 
sink, surrounded by the bathroom items."

RUDDER: 
"The image features a black cat comfortably lying down inside a bathroom 
sink. The sink occupies most of the scene, with the cat occupying its central 
space. The cat appears to be enjoying its time in the sink, possibly finding it 
cozy or cooler than its surroundings."

Figure 9: Case study. Hallucinated contents generated by the vanilla Idefics2 are marked in red,
while the factual contents from our method are colored with blue.
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Baseline: 
" There are four plates with different types of cakes and pastries, each with a 
unique flavor and design. The desserts are arranged in a way that they are 
easily accessible for the diners. The table is set with utensils, including a fork 
and a knife, and a cup is also present. The dining area is well-lit, providing a 
pleasant atmosphere for enjoying the delicious treats."

RUDDER: 
" There are four plates on the table, each containing a different dessert. The 
dessert selection includes a slice of cake, a slice of cheesecake, a slice of 
lemon cake, and a slice of chocolate cake. The dessert plates are arranged in 
a way that allows for a variety of flavors to be enjoyed."

Baseline: 
" He is looking upwards, possibly in a contemplative or thoughtful manner. 
The room appears to be a dining area or a gathering place, with a table and 
chairs visible in the background. The man's facial expression and body 
posture suggest a sense of seriousness or concentration "

RUDDER: 
"He is looking upwards, possibly at a person or object in the room. The man 
is the focal point of the scene, and his presence is quite prominent. There 
are two lights in the room, one on the left side and another on the right 
side. The man is the center of the scene, and his presence is quite 
prominent."

Baseline: 
" Two men and a woman present, all wearing different clothing. One man is 
holding a kite, while the other man is holding a bottle. The woman is standing 
nearby, possibly assisting with the kite or enjoying the activity. "

RUDDER: 
" There are two kites in the air, one of a kite shaped like a killer whale. The 
people are having fun and flying the kites, possibly enjoying the day 
together."

Baseline: 
" The baby is wearing a white outfit, and the man is smiling at the camera. 
The baby is positioned close to the man's face, making it a heartwarming
moment captured in the photo. There are several other people in the 
background, including a man and a woman, both standing in the same room. 
The man and woman are positioned on opposite sides of the room, with the 
man holding the baby and the woman standing in the background "

RUDDER: 
" The baby is wearing a white outfit, and the man is smiling at the camera. 
There are two other people in the room, one on the left side and another on 
the right side. The room appears to be a church, with a cross visible in the 
background. The man and the baby are the focal point of the scene."

Figure 10: Case study. Hallucinated contents generated by the vanilla InstructBlip are marked in
red, while the factual contents from our method are colored with blue.
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Figure 11: Ablation matrices for RUDDER on LLaVA-1.5 (Liu et al., 2024a)
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0.0 2.5 5.0 5.5 6.0 6.5 7.0
Strength max

0.0

2.0

4.0

6.0

8.0

Se
ns

iti
vi

ty
 K

62.0 63.1 63.0 62.5 60.2 53.9 47.5

62.0 62.8 63.4 62.8 60.3 55.5 48.7

62.0 62.8 61.6 62.4 61.7 57.6 51.5

62.0 63.5 61.8 62.7 62.0 57.2 53.1

62.0 63.5 62.7 62.4 60.8 59.9 53.9

Recall ( )  layer 1  (value: %)

48

50

52

54

56

58

60

62

Va
lu

e 
(%

)

(c) Recall αmax × k heatmap.

Figure 12: Ablation matrices for RUDDER on InstructBlip (Dai et al., 2023)
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