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Abstract

Achieving immersive auditory experiences in virtual environments requires flexible
sound modeling that supports dynamic source positions. In this paper, we intro-
duce a task called resounding, which aims to estimate room impulse responses at
arbitrary emitter location from a sparse set of measured emitter positions, analo-
gous to the relighting problem in vision. We leverage the reciprocity property and
introduce Versa, a physics-inspired approach to facilitating acoustic field learning.
Our method creates physically valid samples with dense virtual emitter positions
by exchanging emitter and listener poses. We also identify challenges in deploying
reciprocity due to emitter/listener gain patterns and propose a self-supervised learn-
ing approach to address them. Results show that Versa substantially improve the
performance of acoustic field learning on both simulated and real-world datasets
across different metrics. Perceptual user studies show that Versa can greatly im-
prove the immersive spatial sound experience. Code, dataset and demo videos are
available on the project website.

1 Introduction

The rapid development of AR/VR technology has highlighted the role of multi-sensory synthesis,
where both visual and audio signal must be rendered coherently to provide immersive experiences [[11}
42,153, 164]. While significant progress has been made in modeling dynamic visual field [17} 120} 163,
the acoustic counterpart remains largely limited to static scenarios. Recent works have demonstrated
impressive results in modeling acoustic fields [8, 34} 137, 139, 14446l 54, |59]], but primarily focus on
a fixed sound source. This constraint limits auditory experiences where sources move through the
scene, such as conversations between walking participants or footsteps echoing through corridors.

In this paper, we study a novel task of estimating acoustic fields at arbitrary emitter positions, given
observations from only a sparse (i.e., fewer than 10) set of emitters. This setup is motivated by
practical deployment constraints: while microphones are compact, inexpensive, and easy to place in
dense arrays, speakers are bulky, power-hungry, and challenging to install at scale [[18]. Moreover,
simultaneously operating multiple speakers in the same room can introduce significant interference.
We frame this task as resounding, parallel to relighting in computer graphics. Just as relighting
enables control over illumination in virtual scenes, resounding enables dynamic placement of sound
sources while preserving physical realism. The core challenge lies in modeling how acoustic fields
vary with emitter positions in a way that is physically consistent and generalizable.

Modeling acoustic fields fundamentally relies on estimating impulse responses, which characterize
how sound waves propagate within an environment. Existing learning-based approaches to this
problem can be broadly categorized into two classes. The first class follows the neural radiance field
paradigm [41] in graphics, where neural networks learn spatially continuous acoustic fields from
data [34) 136} 137, 139} 154]. However, these methods struggle with sparse emitter locations as they
require densely (i.e., hundreds or thousands) deployed emitters to generalize to novel emitter locations.
The second class leverages differentiable ray tracing [59,26] to explicitly model acoustic propagation
paths. While this approach improves generalization, it relies heavily on simplified geometry (e.g., a
few dozen planar surfaces), leading to significant errors in environments with complex structures.
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Figure 1: Estimated acoustic field at novel emitter position. For simulated scenes (five training emitters
each), we show loudness distribution (red: loud, blue: quiet) and phase patterns at 1 kHz (periodic blue-red).
Purple arrows mark emitter poses. Compared to the baseline (AVR [34]]), Versa-ELE improves phase map, and
Versa-SSL achieves accurate energy map with proper directivity.
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In this paper, we introduce Versa, a physics-inspired approach that facilitates realistic resounding
under sparse emitter configurations. Our method draws inspiration from reciprocity, a fundamental
principle in wave propagation. Reciprocity states that if the roles of an emitter and a receiver are
exchanged, the wave traverses the same path in reverse, and the cumulative propagation effects
remain unchanged. This principle holds across various wave phenomena, including light [52]],
radio-frequency signals [6]], and acoustic waves [31]]. In graphics, this principle underpins powerful
algorithms like bidirectional path tracing [32]. Similarly, in acoustics, for any path between source
and receiver, exchanging their positions preserves wave propagation characteristics 1481 [57].

Building on the principle of reciprocity, we propose Emitter Listener Exchange (Versa-ELE), a
strategy that generates physically valid virtual training samples by swapping the roles of emitters and
listeners while enforcing the same impulse response. This technique addresses a key asymmetry in
data collection: dense sampling of listener positions is relatively easier due to the compact and low-
cost nature of microphones, whereas emitter deployment is far more limited due to cost, interference,
and physical constraints. Versa-ELE effectively transforms densely placed microphones into dense
virtual speakers. We implement Versa-ELE as data augmentation and demonstrate that it consistently
improves performance across a range of acoustic field models.

While Versa-ELE is broadly effective, it assumes same directional patterns between emitters and
listeners to ensure that the exchanged impulse responses remain unchanged. In practice, however,
real-world devices can exhibit asymmetric directional gain patterns, such as an omnidirectional
speaker versus a highly directional shotgun microphone. To address this limitation without discarding
the core insight of reciprocity, we introduce a complementary Self-Supervised Learning strategy
(Versa-SSL) that incorporates reciprocity as a constraint on the model’s predictions. Our key idea is
to decouple directional patterns from the acoustic propagation effects, allowing the model to learn
from swapped emitter/listener pairs by enforcing consistency between their predicted outputs. This
approach generalizes reciprocity to a broader set of scenarios and leads to more robust and physically
grounded acoustic field estimation, as shown in Fig.[T}

We comprehensively evaluate Versa on the resounding task using both simulated and real-world
datasets. Versa-ELE is model-agnostic and can be applied to existing neural acoustic field models,
yielding average improvements of 34% on C50 and 31% on STFT. On top of the AVR [34]], Versa-SSL
further improves performance by 24% on C50 and 48% on STFT, demonstrating its effectiveness in
scenarios with asymmetric gain patterns. Perceptual study additionally confirms that Versa enhances
spatial audio realism and directional consistency.

In summary, our work makes the following contributions:

* We leverage reciprocity in wave propagation and propose Versa-ELE, a simple yet effective strategy
to augment sparse emitter data by generating physically valid virtual samples.

* We introduce Versa-SSL, a self-supervised learning framework that enforces reciprocity-based
consistency in model predictions and generalizes to asymmetric directional gain patterns. These
methods serve as a general machine learning training strategy grounded in physical reciprocity.

* We implement Versa on multiple models with comprehensive evaluations. Results demonstrate
Versa significantly improves acoustic field estimation and enables perceptually realistic resounding.



2 Related Work

Room Impulse Response Modeling. Impulse response modeling has recently gained a lot of
attention, driven by advances in neural acoustic field learning and immersive audio rendering for
virtual environments. Early methods [} 140} 58] relied on audio codec and spatial interpolation, which
incurred high memory costs and limited inference fidelity [18}[39]]. Recent works [8| [13} 26} 34, 36|
37,139, 154] employ neural acoustic fields that directly map emitter/listener poses to impulse response
and achieve better performance. However, these methods require dense emitters to achieve resounding.
Our proposed Versa serves as an add-on to achieve better resounding performance on these methods.
In addition, several works have investigated acoustic adaptation to novel scenes [12}14}38]. Although
generalization to unseen environments is beyond our current scope, our reciprocity-inspired approach
can be naturally integrated into both their training and inference pipelines.

Virtual Experience. Novel view synthesis and realistic relighting techniques have enabled many
immersive virtual experiences. Neural Radiance Fields (NeRF) [41]] and Gaussian Splatting [27]]
have transformed the ability to synthesize highly realistic novel view images from sparse inputs.
More recent works, including relighting-focused variants [[63} [17, 20, 22]], extend these methods
to dynamic lighting conditions. Our resounding task, analogous to the relighting problem, aims to
enhance flexibility in audio experiences [33} 134} 62]].

PINN for Acoustic Modeling. Physics-Informed Neural Networks (PINNs) (9}, 30,149 [50]] solve the
Helmholtz equation directly within a neural framework to estimate acoustic fields from measured
impulse responses. These methods learn an implicit representation of the underlying PDE parameters
without requiring an explicit mesh, but they usually require dense sampling to enforce boundary
conditions. In contrast, our method incorporates the physics of acoustic propagation in the training,
improving both efficiency and robustness of neural acoustic field estimation.

Self-Supervised Learning. SSL has by now become a staple of feature representation learning for
computer vision [60} [15, 25} 116], audio learning [[19} 13} 47, 2], and other multi-modal learning tasks
[43L 11} 24, 61]. SSL relies on augmentation to create synthetic positive pairs to enforce semantic
invariance in the trained model, represented by contrastive methods like SimCLR [25]] and so on [[1}13]].
Different from prior SSL methods that learn feature representations, our work enforces consistent
impulse response outputs to make the model follow signal propagation physics.

3 Method

Impulse response is the summation of the sound propagating through multiple paths, including direct
path, early reflections and late reverberations. We first describe the impulse response reciprocity with
a single path, then extend it to multiple paths. Finally, we introduce our method to improve impulse
response estimation inspired by reciprocity via exchanging emitter and listener poses.

3.1 Impulse Response and Acoustic Reciprocity

Single-Path Impulse Response. We model the acoustic impulse response with a ray-based Geometric
Acoustic (GA) model similar to [34}59]]. We consider first sound propagation between an emitter
located at p. and a listener located at p; along a single path P. This path P is defined as a sequence
of points: P = {pg = pe, p1,P2,- - -, Pk, PK+1 =P }- For each consecutive pair of points p; and
DPr+1 along the path, we define wy, as the direction from py, to pi1. We define the impulse response
h(t; P, we,w;) for this single path, which characterizes the sound received at p; when the emitter at
Pe sends out a pulse (i.e., a Dirac delta function), with w,. and w; being the orientations of emitter
and listener. The response is influenced by the gain patterns of the emitter and listener as well as the
effects of sound propagation along the path:

h(t; Pywe,wr) = Ge(wo;we) T'(E; P) Gi(wie; wy), )]

where G, (-) and G| (+) represent the gain patterns of the emitter and listener, respectively. I'(¢; P)
denotes the path impact function for the path P, as described below. Note that for any dry source
signal s(t) emitted at p,, the listener at p; receives the reverberant signal y(t) = s(t)*h(t; P, we,w;),
i.e., the convolution of the dry signal with the path-dependent impulse response h.

Path Impact Function. I'(¢; P) is a time signal that represents the impulse response along a single
propagation path P. It characterizes the propagation effect [S1] (both attenuation and time delay) in
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Figure 2: Left: Reciprocity in acoustic propagation. The path impact function I'(-) is invariant to swapping
the emitter and listener poses, because the local acoustic transfer function f(-) at each point is unchanged
when the incident and outgoing signal directions are reversed. Right: Impact of gain patterns. Although the
propagation path and path impact function remain the same, differences in emitter and listener gain patterns G
produce distinct impulse responses h(t; -).

response to a Dirac delta function:
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The right-hand side of the equation consists of three components. 1) ﬁ models the attenuation due to
wave propagation, where dp is the total travel distance along path P. This term captures the free-space
propagation loss, accounting for the energy spreading as the wave travels through space. 2) The time
delay is modeled by the shifted delta function 6 (¢t — de ), where c is the speed of sound. It indicates that

C

the signal arrives only after traveling for time %73 along the path. 3) f(pk,wr—1,wk; V) is an acoustic
transfer function modeling how the signal changes when interacting with a surface at point py, given
the incoming direction wy_1, outgoing direction wy, and frequency v. These interactions include
reflection, diffraction, scattering, and transmission. The overall frequency-dependent attenuation due
to environmental interactions is captured by HkK:1 f(pr, wk—1,wk; ), where the product accumulates
the effect of all K interactions along the path. The inverse Fourier Transform F~!(-) converts this
frequency-domain response into the time domain. Finally, the convolution operation % models how
the propagation-related terms are modulated by the frequency-dependent interaction effects.

Reciprocity in a Single Path. Reciprocity in acoustic propagation at an interaction surface (similar
to BRDF in light transport [21]) implies that the transferred energy remains consistent when the
signal direction is reversed: f(pg,wk—1,wk; V) = f(pk, wk,wr—1; V). Since each interaction along
the path is reversible, the overall signal propagation along the whole path is also reversible. If the
emitter and listener poses are exchanged, the path impact function remains the same (left of Fig.[2)
along the reversed path P’ = {px 11 =Ppe, DK, - -+ D1,P0=D1}:

K
1 d
Lt P) = %5 (t—:> *f_l(H f(pk,wmw—ﬁl/))
k=1

1 d s
= %6 <t:> x« F1 <kl:[1 f(pk,wk_l,wk;l/)> L(t;P).

Therefore, when the poses of the emitter and listener are exchanged, the impulse response becomes:

3

h(t; P’ wi, we) = Ge(wie;wi) Tt P Giwo; we)- 4)
If the gain patterns of the emitter/listener are omnidirectional (3.2)), i.e., G.(-) =G, (-) =1, we get:
h(t; P, we,wi) = h(t; P, wi, we). 5)

Impulse Response via Multiple Paths with Reciprocity. In realistic environments, signal propaga-
tion occurs along multiple paths between the emitter and the listener due to reflections, diffractions,
and other interactions. Let P,, denote the n-th path. The overall impulse response h(t) is modeled as

the superposition of individual path contributions: h(t) = ZN h(t; Pp,we,w;). Since each path-

n=1
specific response h(t; Py, we,w;) satisfies reciprocity as shown earlier, the sum of these responses

also preserves this property. Thus, the full impulse response h(t) remains reciprocal.
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Figure 3: Leveraging reciprocity for modeling acoustic fields. a) The vanilla method uses direct supervision
with measured impulse responses. b) Versa-ELE enforces response invariance under pose exchange to create
physically valid virtual samples. c) Versa-SSL aligns emitter and listener gain pattern to maintain consistency
under pose exchange and to enable reciprocity-based self-supervision.

3.2 Reciprocity Learning with Versa-ELE

We propose Emitter Listener Exchange (Versa-ELE) to leverage the reciprocity property under
omnidirectional emitter/listener gain patterns. We denote one training sample with emitter and
listener poses as (e, pi, we, wi, h(t)). We exchange the emitter and listener poses and let the impulse
response remain identical, resulting in a physically valid new sample (p;, pe, wi, we, h(t)). This
is implemented as data augmentation as shown in Fig. [3(b). Versa-ELE leverages the inherent
asymmetry in the acoustic field to transform dense listener positions into virtual emitter locations.
It effectively mitigates the sparsity of emitter positions by increasing them from a few to N, where
N is the number of unique listener positions in the dataset. This exchange encourages the model to
understand the signal propagation path and improves its performance in resounding tasks (Fig. ).

Versa-ELE also extends to directional emitters and listeners. Specifically, when both of them have
the same gain pattern, i.e., G.(-) = G;(-), we have: G¢(wo;w;) = Gi(wo;w;) and Ge(wi;we) =
Gi(wk;we). These equations ensure that the joint effect of the emitter and listener’s pattern on the
impulse response remains unchanged after exchanging. With the single-path reciprocity (Eqn. [3), the
final impulse responses A (t) remain the same, and Versa-ELE can also be applied here.

3.3 Reciprocity Learning with Versa-SSL

Versa-ELE works well if the emitter and listener share the same gain pattern. However, as shown in
Fig. PJright, if they have different patterns, directly exchanging their poses would result in a different
impulse response, i.e., h(t; P, we, w;) # h(t; P’, wy, we). To deal with this, our solution is to decouple
and control the influence of the gain pattern to leverage reciprocity for impulse response learning.

For the rest of this section, we first provide a primer on acoustic volume rendering (AVR) [34], which
we find could decouple the influence of the listener’s gain pattern. We then introduce a self-supervised
learning framework based on this to leverage reciprocity under different gain patterns conditions.

Primer on AVR and modeling gain patterns. AVR models the acoustic field with direct control over
the listener gain pattern GG, enabled by its acoustic volume rendering technique. To synthesize the
impulse response received at a listener location, it integrates signals spherically from all directions:

h(t) = /Qhw(t;pe,pz,we)Gz(w;wz)dw, (6)
where hy, (t; pe, pi,we) denotes the predicted signal received by the listener at position p; from
direction w. hy,(t; pe, pr, we) is obtained through acoustic volume rendering, which is similar to
the volume rendering in image synthesis, but considers acoustic propagation effects. We ignore
the parameters p., p;, w. on the left side (h(t)) of the equation for brevity. From this equation, we
can manipulate the effect of the listener gain pattern by multiplying weights G;(w; w;) to different
receiving directions. It allows us to separately control the listener pattern in the final impulse response
synthesis, and we find it to be basis to exploit reciprocity for impulse response training.

Versa-SSL. We introduce an impulse response Self-Supervised Learning (Versa-SSL) method that
leverages the reciprocity theory by decoupling gain patterns from impulse response modeling. We



model the emitter and listener gain patterns G, (G; in the neural acoustic field F' to output impulse
response h(t), parameterized by emitter and listener poses:

F(peaphweawlaGmGl) — h(t) (7)

We propose to manually replace the emitter/listener pattern with a shared one, i.e. G. Under this
condition, the acoustic field model should output the same impulse response consistently when
emitter/listener poses are exchanged, based on previous discussion (Sec. [3.2):

F(Plypevwl7w€7G7G) :F(P€7B7wevwl7G’G)' (8)

With this equation defining a reciprocity-based consistency constraint, we formulate a self-supervision
learning with pairs created by exchanging poses (Fig.[3[(c)). As a result, it forces the neural acoustic
field to output consistently after exchanging the emitter/listener poses in a self-supervised way.

Incorporating AVR into our self-supervision framework is not straightforward, as AVR’s acoustic field
does not explicitly model the emitter pattern, which can not be directly replaced for self-supervision.
Instead, we exploit the ability to freely manipulate the listener pattern in Eqn.[6] We propose to keep
the emitter’s pattern unchanged and swap out the listener’s pattern with the emitter’s to enable this
self-supervision. To achieve this, we first query the neural acoustic field at emitter positions and
sample the emitted signals across all directions to get the emitter pattern G, which is used to swap
the listener pattern, making both patterns the same and satisfying the condition for self-supervision.

Versa-SSL Training. We use a two-stage training pipeline for Versa-SSL. In the first stage, we let
the AVR model to estimate impulse response h and fit into the ground truth 2*. This is guided by
the audio loss L,(h, h*) following AVR. This first stage allows the model to capture the acoustic
field of the environment. After it, we extract the emitter pattern from the trained neural acoustic field
and use a set of spherical harmonic parameters to encode this pattern, i.e. G.. In the second stage,
we swap out the listener pattern with the estimated emitter pattern and force the model to predict
identical impulse response pairs (h; and ho) before and after emitter/listener poses exchange. To
enforce this consistency, we use a self-supervision loss £, s1(h1, he). We use both real sample and
self-supervision in the second stage: £ = L,(h, h*) + ALags1(h1, ha), where X balances two losses.
Moreover, since Versa-SSL does not rely on valid data, we can flexibly select any emitter/listener
poses. However, excessive flexibility can make the model learn shortcuts. To prevent these, we sample
emitter/listener poses from the dataset and gradually add noise to them as Versa-SSL progresses.

Versa-SSL Inference. During inference, we can either use the learned listener gain pattern or swap
in any head-related transfer functions (HRTFs) for personalized auditory experiences for immersive
auditory rendering.

3.4 Discussion on the Reciprocity

While the principle of reciprocity holds under idealized conditions [31} 48] (e.g., linear, time-invariant
media with symmetric reflection), real-world environments and simulated systems may deviate from
these assumptions due to many factors like measurement noise, non-ideal hardware responses, or
complex material properties and so on [23]]. Rather than assuming perfect reciprocity in the impulse
responses, Versa introduces reciprocity as a structural regularization term that enforces consistency
between predicted acoustic fields under exchanged emitter—listener configurations. This approach
allows the model to benefit from symmetry in wave propagation, even when perfect reciprocity does
not strictly hold. We provide some preliminary verification of reciprocity [57] in Sec.[4.2]

4 Evaluation
4.1 Setup

Dataset. We use both simulated and real-world datasets to comprehensively evaluate our methods. We
use MeshRIR [29]] and RAF [18] as our real datasets, where MeshRIR shows similar emitter/listener
gain patterns, and RAF features different emitter/listener patterns. We use the AcoustiX [34]]
simulator to create synthetic datasets because it provides flexibility to customize emitter and listener
gain patterns in the simulation. We apply the AcoustiX simulator on three scenes from iGibson [35]
and create two batches of datasets, including using the same emitter/listener gain patterns (AcoustiX-
Same) and different gain patterns (AcoustiX-Diff). There are fewer than ten training emitter positions
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Figure 4: Comparison of acoustic field predictions across baseline methods with and without Versa-ELE.
We visualize loudness distribution and phase patterns for three simulated scenes (each with five training emitter
positions and identical emitter/listener gain patterns). Purple stars mark emitter positions. Versa-ELE enhances
all baseline methods’ predictions, particularly in modeling energy distribution around emitters. Ground truth
shown in the bottom row.
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Figure 5: Paired (left) vs. unpaired Table 1: Preliminary verification of reciprocity.

(right) impulse responses.

in each room for all simulated datasets, with densely sampled emitter positions for evaluation. Please
refer to Appx. [A]]for more details.

Models. We compare the performance of our method with traditional audio encoding baselines
using linear and nearest-neighbor interpolation [39, [54] [59]. We implement various neural acoustic
field models including NAF [39]], INRAS [54]], AV-NeRF [37], and AVR [34]. We apply Versa-ELE
(Sec.[3:2) to all these model. We only apply Versa-SSL (Sec. [3.3) to AVR as it is the only one
to explicitly model the gain patterns. In addition, we also implement DiffRIR [59]] as a baseline.
However, since DiffRIR explicitly traces acoustic paths, Versa is excluded from it because the paths
naturally remain consistent after exchanging emitter and listener positions. Please refer to Appx.[A.J]
for implementation details.

Evaluation Metrics. Following prior work[54} 37, 34]], we measure the energy trend of impulse
response by Reverberation Time (T60), Clarity (C50), and Early Decay Time (EDT). To evaluate the
waveform correctness, we include envelope error (Env.), frequency domain amplitude (Amp.) error,
and multi-resolution short-time Fourier transform error (STFT).



Scene 1 Scene 2 Scene 3
STFT Amp. Env. T60 C50 EDT STFT Amp. Env. T60 C50 EDT STFT Amp. Env. T60 C50 EDT
NN 287 035 33 158 284 196 354 047 3.1 438 1071 255 329 047 39 489 742 356
Linear 272 094 6.0 159 337 208 332 1.09 56 69.7 1564 373 315 1.08 67 628 113 512
DiffRIR 157 036 80 122 268 239 163 048 67 136 257 194 174 076 88 31.1 517 425

INRAS 1.96 072 3.6 123 271 246 19 072 3.6 123 271 246 422 103 35 935 7.14 503
w/ELE 136 023 28 12.0 172 136 181 031 26 116 198 177 167 041 34 201 279 22.7

NAF 469 069 37 141 273 233 729 076 35 169 547 273 561 074 34 282 586 439
w/ELE 327 066 35 132 22 182 327 0.6 31 141 217 182 337 058 33 237 331 265
AV-NeRF 1.69 0.85 4.6 110 498 441 187 235 48 187 526 366 185 1.17 52 262 6.09 493
w/ELE 115 016 24 107 170 125 141 035 29 125 243 203 136 042 35 198 297 237

AVR 182 040 3.1 143 209 159 256 046 29 202 343 376 265 069 3.6 286 296 423
w/ELE 112 015 220 105 1.61 122 128 019 1.7 112 131 129 121 032 23 189 233 203

Method

Table 2: Quantitative results on AcoustiX-Same (5 emitter positions) when emitter/listener shares a gain pattern.
We deploy Versa-ELE (i.e., w/ ELE) on existing neural acoustic fields.

4.2 Results

Preliminary Verification of Reciprocity. We begin by empirically verifying the acoustic reciprocity
property. We collect impulse responses in an office room, a conference room, and a kitchen. Record-
ings are performed using an omnidirectional microphone [4] and an omnidirectional loudspeaker [10],
both connected via an audio interface [7]] to ensure synchronization. We capture impulse responses
between pairs of locations (A, B) within each environment. For every pair, we measure the impulse
response emitted from A to B and the reciprocal one from B to A. According to our analysis, these
two impulse responses should be identical since both the microphone and speaker are omnidirectional.
To quantify reciprocity, we collect 20 such pairs in each scene and compute the distance between (i)
paired impulse responses with swapped emitter/listener positions and (ii) un-paired ones for rest of
the data. As shown in Tab.[I] the paired ones exhibit ~z10x smaller acoustic distance compared with
the un-paired ones in all real-world scenes. Examples of paired and un-paired impulse responses are
presented in Fig. [5] the waveform similarity between the paired one also confirm that reciprocity is
well preserved. We also replicate this experiment in the AcoustiX simulated dataset. We vary the
number of rays in the simulation to analyze how rendering granularity affects reciprocity consistency.
In simulated dataset, paired ones achieve ~100x smaller distances with 1000k rays.

Results of Versa-ELE. We first evaluate Versa-ELE on similar emitter/listener gain patterns datasets,
namely the AcoustiX-Same dataset in Tab. [2|and the real-world MeshRIR dataset in Tab. |3} We find
that ELE can be applied to all existing learning-based impulse response estimation methods and
improve their performance by a large margin.

Fig. @] shows a qualitative visualization of the
spatial field distributions in birds-eye view. With
an unseen fixed emitter, we densely sample lis- NN 246 042 133 76 234 269
tener locations in the entire scene and plot the ~_ Mnear 265 122 276 99 276 309
loudness and phase map across three scenes. INRAS 182 054 132 136 404 4738
With Versa-ELE, all baseline methods (INRAS, _WELE 173 036 122 129 251 282
NAF, AV-NeRF, and AVR) achieve notably en- NAF 481 069 118 99 228 202
hanced spatial field distributions that better re- WELE 443 065 1M 86 217 25
flect the emitter positions. Notably, the improve- %EE izg 8'2; i'{z)g 175-26 ‘1‘-% gg-g
ment on the AVR model is the most signifi- — . - . - . .
cant. It produces a field that best aligns with the Table 3: Evaluation on Versa-ELE method on MeshRIR

ground truth in both loudness and phase map. (7 emitter positions).

Method  STFT Amp. Env. T60 C50 EDT

Though Versa-ELE does not consider different emitter/listener gain patterns, we evaluate it on such
datasets including AcoustiX-Diff in Tab. 4] and RAF-Furnished in Tab.[5] Results show that Versa-
ELE can still improve these baselines by a reasonable margin, showing ELE’s wide applicability to
various datasets and real-world settings, especially on neural acoustic fields that cannot incorporate
gain patterns modeling (NAF, INRAS, AV-NeRF). Although Versa-ELE may not accurately account
for varying gain patterns, it enhances the model’s awareness of reciprocity in the propagation path,
leading to improved acoustic field modeling. Quantitatively, averaging over all models and simulated
scenes, Versa-ELE improves their performance by 34% at C50, and 31% at STFT.

Results of Versa-SSL. We evaluate Versa-SSL on datasets with different emitter/listener gain patterns,
including the AcoustiX-Diff dataset in Tab.[4]and the RAF dataset in Tab.[5] While we show that Versa-
ELE can be applied to all the existing neural network-based impulse response estimation methods and



Scene 1 Scene 2 Scene 3
STFT Amp. Env. T60 C50 EDT STFT Amp. Env. T60 C50 EDT STFT Amp. Env. T60 C50 EDT
NN 286 048 58 69.1 139 1044 252 048 49 777 181 1165 274 060 95 609 17.13 2085
Linear 244 067 9.1 705 181 2334 196 095 81 775 222 2388 226 069 11.6 61.1 1734 2169
DiffRIR 159 035 73 165 252 242 161 068 74 188 3.17 245 168 064 82 267 391 328

INRAS  3.12 105 53 309 645 488 265 156 3.8 679 671 443 412 105 43 948 694 67.1
w/ELE 191 031 43 168 293 231 176 0.64 34 255 436 313 158 038 39 384 313 296
NAF 521 059 48 375 417 349 621 073 32 405 561 403 812 071 42 577 641 516
w/ELE 412 056 45 20.0 297 244 451 061 31 228 443 325 4.09 056 41 324 450 359
AV-NeRF 199 1.17 63 185 432 431 216 122 3.6 165 3.01 247 227 149 6.0 351 545 497
w/ELE 157 035 47 161 272 21.6 1.61 042 3.0 169 285 229 1.62 072 47 327 497 401

AVR 265 077 41 361 496 417 265 095 3.6 761 550 643 245 095 42 462 569 512
w/ELE 183 034 39 173 283 292 179 048 2.5 244 379 268 1.62 048 3.8 321 436 425
w/SSL 139 025 36 157 209 215 126 027 23 154 131 216 131 027 35 194 207 241

Table 4: Results on AcoustiX-Diff (5 emitter positions) when emitter and listener have different gain patterns.
We apply Versa-ELE for all the models, and Versa-SSL method on AVR.

Method

Azimutraupattern EIevatio(;\a pattern 25 T60 (%) 8 C50 (db) EDT (ms)
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Figure 6: Learned gain pattern with direction- Figure 7: Performance across different numbers of emitter
integrated impulse responses. positions.

improve their performance, Versa-SSL could further surpass Versa-ELE by 24% at C50, and 48% at
STFT on the AVR model. In total, Versa-SSL improves vanilla AVR by 49% at C50, and 66% at STFT.
These improvements can be largely attributed
to handling the gain pattern correctly with self-
supervision, which makes the model aware of NN 075 118 234 65 1671 474
reciprocity in the acoustic propagation. Linear 099 169 291 76 2019 428

Method Amp. Env. T60 C50 EDT STFT

DiffRIR 0.71 223 289 423 154.3 1.61
INRAS 0.66 8.8 19.4  5.63 149.6 3.21

Recall Fig.[T] we visualize the spatial field dis-

tributions when the emitter and listener have WELE 050 66 163 467 1173 343
different gain patterns. With both the ELE and
SSL . he AVR model q NAF 065 60 154 591 1236  6.22
strategies, the model can produce w/ELE 063 59 147 520 1095 546
more accurate phase maps that align with the ANRE 127 101 153 457 1107 25
ground-truth. However, Versa-ELE cannot accu- Ww/ELE 066 65 127 412 964 241
rately reflect the direction of the emitter in the AVR 059 58 148 424 996 235
loudness map, as we force the model to learn w/ELE 051 52 139 414 958 216
inaccurate impulse responses after exchanging w/SSL 048 49 122 365 836 191
poses, which causes directionality confusion. In Table 5: Results on RAF-Furnished (4 emitters).

contrast, as Versa-SSL deals with gain pattern

properly through self-supervision, it helps to build a correct acoustic field with better directionality.
We also show our estimated gain pattern on the AcoustiX-Diff in Fig. [f] indicating that our estimation
is close to the ground truth.

Perceptual user study. We conducted a user study to
evaluate the subjective quality of impulse response esti-
mation. In total, we generate eight audio clips from three Volume 90.0% 88.3%
simulated scenes involving moving listeners and speakers.
We also simulate reference impulse responses as ground
truth. Each estimated and reference impulse response Overall 93.3% 85.0%
is convolved with dry sound, and participants watch a
video from the microphone’s perspective for added real-
ism. They are then asked to compare the generated audio to the reference in terms of volume,
directional cues, and overall similarity.

ELE vs Vanilla SSL vs ELE

Directional 90.0% 90.0%

Table 6: Results of the perceptual user study.

Our user study with 15 participants shows that 93.3% of responses preferred Versa-ELE over the
vanilla model in terms of overall similarity. Additionally, 85% of responses indicated that Versa-SSL



outperforms Versa-ELE in sound volume and directional cues. As shown in Tab.[f] Please find more
details in the Appx.

4.3 Ablation studies

What is the influence of number of emitter positions? We analyze how varying the number of emitter
positions affects Versa. As shown in Fig.[/| while increasing the number of emitter positions in
the dataset can improve the vanilla AVR performance, with the help of Versa-ELE, we can further
improve the model’s performance by 50%. This shows that Versa consistently improves the vanilla
model by a large margin across different numbers of emitter positions. More ablation results on
different methods with various numbers of emitter and listener positions can be found in Appx.[B.1]

Study objective Variant Amp  Env T60  C50  EDT

NAF w/o Versa-ELE ~ 0.33 59 135 283 50.4
Does the model NAF w/ Versa-ELE 0.27 3.0 54 0.45 8.4
learn reciprocity?

AVR w/o Versa-ELE 0.54 10.6 16.6  4.13 86.9
AVR w/ Versa-ELE 0.06 0.5 4.8 0.61 10.8

Comparison with Vanilla 089 397 528 535 524
) SSL loss Contrastive loss 0.47 3.45 253 3.22 36.0
common S35 Loss Versa-SSL 026 310 168 182 224

Table 7: Ablation on the reciprocity verification on the trained model and self-supervision loss.

Does the model learn reciprocity with Versa? We emphasize the importance of verifying whether the
neural acoustic field models trained with Versa indeed exhibit reciprocity. To this end, we randomly
query the trained AVR and NAF models with swapped emitter—listener pairs across different scenes
and measure the similarity between the predicted impulse responses. As summarized in Tab.|/| the
models trained with Versa produce paired predictions that achieve substantially lower acoustic metric
differences compared to those trained without Versa. These results demonstrate that Versa effectively
encourages the neural acoustic field to learn and preserve reciprocity.

How effective is Versa-SSL compared with standard contrastive loss? We also evaluate standard
contrastive loss by treating emitter/listener swapped pairs as positives and others as negatives. As
shown in the bottom of Tab.[/| contrastive loss yields smaller gains over the Versa-SSL. We attribute
this to the ambiguous notion of negatives pairs in acoustic field modeling. Unlike vision tasks with
clearly separable categories, impulse responses from different spatial locations can exhibit nearly
identical patterns, while responses from nearby poses may differ drastically due to occlusions or
boundary effects. As a result, spatial distance alone does not reliably define negative pairs.

5 Discussion

Conclusion. In this work, we leverage acoustic reciprocity to improve impulse response estimation,
addressing the challenge of resounding under sparse emitter configurations. We introduce the Versa-
ELE to augment training data which leads to substantial improvements in neural acoustic models.
In addition, we propose a Versa-SSL to handle complex gain pattern asymmetries, enabling more
accurate acoustic field synthesis. More broadly, our results highlight a paradigm where fundamental
physical laws can be translated into machine learning training strategies, improving generalization
under sparse data. This principle applies beyond acoustics to light transport and RF propagation,
where physical symmetries also govern wave interactions. By embedding these constraints directly
into the learning process, models can extrapolate more robustly to unseen configurations and maintain
physical correctness even under limited supervision. We envision that such physics-grounded learning
frameworks will serve as a foundation for future research at the intersection of simulation, perception
and more across multiple sensing modalities.

Limitation and Future Works. Despite its effectiveness, Versa still requires a non-sparse number of
listener positions per scene, limiting its scalability in scenarios where dense microphone deployment
is impractical. Moreover, our current acoustic modeling relies on ray-based geometric acoustics,
which may be less accurate for low-frequency sounds whose wavelengths are comparable to or larger
than scene dimensions. Future work can explore few-shot or zero-shot approaches by integrating
more audio-visual correspondence and other acoustic properties beyond reciprocity, which can further
reduce the need for dense sampling of listener positions.
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A Additional Implementation Details

A.1 Dataset Details

AcoustiX. We show the emitter locations in three different simulated scenes from the iGibson
dataset [35]] in Fig.[8] For each scene, there are five emitter positions in the training set, and each
with around 5K emitter pairs, resulting 25K training samples. We randomly sample 10 novel emitter
locations to construct the testing set, resulting in a total of 15K samples.

Scene 1 Scene 2 Scene 3

Figure 8: Visualization of dataset emitter placements.

MeshRIR. We subdivide the S32-441 variant to use 7 emitter positions (3K emitter/listener pairs) as
training samples, while reserving 25 emitter positions (11K total emitter/listener pairs) for testing.

RAF. We randomly select 4 emitter positions in both FurnishedRoom and EmptyRoom split, resulting
in a total of 1.5K training samples, and we resample 6K testing samples in each setting.

Dataset setup. For similar emitter/listener gain patterns, we utilize the S32-M441 split MeshRIR
dataset and sub-divide it to include seven emitter positions in the training set. We create simulated
AcoustiX datasets while maintaining the emitter and listener to have the same pattern, naming it
AcoustiX-Same. For different emitter/listener gain patterns, we use real-world RAF Furnishedroom
and Emptyroom split, while re-dividing these to include several sparse (< 10) emitter positions for
training. We again use AcoustiX to simulate the same three scenes but set different emitter and
listener gain patterns, naming it AcoustiX-Diff. The impulse responses are resampled to 16 kHz
sampling rate for the AcoustiX and RAF datasets and 24 kHz sampling rate for the MeshRIR dataset.

A.2 Model Details

NAF. We create 3D grid features for original NAF [39] implementation. We use a STFT window size
of 256 (hop size 64) to deal with 16 KHz impulse response and a STFT window size of 512 (hop size
128) to deal with 24 KHz impulse response. We let the model directly predict the amplitude of the
spectrogram and use a random phase to synthesize the final impulse response. We only implement
the Versa-ELE method on NAF. We fully exchange the emitter and listener poses and generate a
new impulse response sample in the AcoustiX and MeshRIR datasets. For the RAF dataset, we only
exchange the emitter and listener positions, since no listener orientation is provided.

AV-NeRF. We use AV-NeRF [37] SoundSpace variant to predict the room impulse response on all the
experiments. We train a vision NeRF model first and reconstruct novel-view RGB and depth images
at the listener location and direction in 256 X256 resolution. We used a frozen ResNet-18 trained on
ImageNet as the feature extractor. We follow a similar implementation for the Versa strategy as in
NAF.

INRAS. We use the 3d positions of emitter, listener, and bounce points in the scene and the orientation
of emitter and listener as network input, similar in [[18]. We randomly sample 1024 points in the
scene to represent the scene geometry. We also follow a similar implementation for the Versa strategy
as in NAF.

AVR. We implement the Versa-ELE method on AVR [34] by fully exchanging the emitter and listener
poses and generating a new impulse response sample. For Versa-SSL, to estimate the emitter gain
pattern in AVR, we query the network with the emitter’s positions to obtain the signals transmitted
from these positions in various directions. To reconstruct the gain pattern, the directionality is
characterized by the average signal energy in each specific direction, which is subsequently normalized
across all directions.

DiffRIR. DiffRIR [59] takes the emitter locations and listener locations to trace paths between them.
Then it optimizes a set of acoustic parameters along the traced path. For each scene, we use around
40 simplified meshes to represent the room geometries. We used a maximum of 3-bounce ray tracing
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(a) Performance on MeshRIR dataset. (b) Performance on AcoustiX-Same dataset.

Figure 9: Performance comparison of different methods on (a) MeshRIR and (b) AcoustiX-Same datasets.

with up to 10 axial bounces to keep the training time manageable. DiffRIR is excluded from using
any of our Versa method because it already traces the propagation paths, enforcing that the reciprocity
property holds.

A.3 Implementation Details

For NAF, INRAS, AV-NeRF, and AVR experiments, we use the AdamW optimizer [28] with a cosine
learning rate scheduler that starts from 10—2 and decays to 10~4, with a batch size of 64 for NAF,
INRAS, and AV-NeRF, and a batch size of 4 for AVR. To implement Versa-SSL method on AVR, we
use a fourth-order spherical harmonics [27] to estimate the emitter gain pattern. We initiate the second
stage of Versa-SSL on AVR halfway through the total training epochs, gradually adding position
variation to a standard deviation of 0.3 m. We use a loss weight A=0.8. In the DiffRIR experiments,
we use an AdamW optimizer with a learning rate 10~3 and a batch size of 4. For AV-NeRF, we
use nerfacto [55] to render RGB and depth images following [37, [18]. We train all the models on
NVIDIA L40s GPUs for 200 epochs.

B Additional Experiment Results
B.1 Quantitative Results

More results on RAF dataset. We show more results on the RAF-EmptyRoom on Tab. [§| our
evaluation metrics show the effectiveness for both Versa-SSL and Versa-ELE as well.

More results on different scales of the dataset.
To further show that our proposed method is
robust to different methods with various num- NN 195 111 159 725 1744 542
bers of emitter positions, we plot the metrics for Linear 2603 129 277 803 2164 497
each method in Fig. @and |25|0n MeshRIR and DiffRIR 1.40 42 244 329 1220 193
Acousth-Same datgset. Versa can cons.lstently INRAS 19 162 191 713 1232 259
improve each baseline model under different W/ELE 107 96 182 425 892 254
numbers of emitter settings, even with denser

Method Amp. Env. T60  C50 EDT STFT

. | NAF 099 73 135 387 847 342
emutter placements. w/ELE 089 66 135 412 841 339
In addition to emitter positions, we also Show  AV-NeRF 268 119 119 375 888 244
that our method is effective when training with w/ELE 114 749 122 345 808 221
fewer listeners. We experiment on AcoustiX, AVR 121 98 128 448 1095 298
which only uses 10x less (around 400) listener w/ELE 098 78 124 395 856 243
positions per emitter. Our method is also ef- _ W/SSL 078 62 110 321 713 183
fective in this case with fewer listeners and im- Table 8: Results on RAF-Furnished (4 emitters).

proves baseline performance as shown in the
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Variant STFT Amp. Env. T60 C50 EDT

INRAS (5k) 1.9 072 36 123 27 246 STFT Amp. Env. T60 C50 EDT

10x less 26 172 38 195 34 259

10xlesswELE 15 043 33 165 2.6 177 NN 26 083 114 261 44 528
Linear 2.5 084 134 236 42 477

NAF (5k) 47 069 37 141 27 233

10x less 58 072 39 176 29 258 NAF 33 079 104 237 3.6 499

10xlesswELE 35 067 3.6 165 25 183 Ww/ELE 26 054 79 179 23 282

AV-NeRF (k) 1.7 085 4.6 110 50 445 INRAS 25 098 98 265 38 477

10x less 21 133 46 175 62 537 w/ELE 22 076 75 189 23 316

10xlessw/ELE 15 032 26 168 38 195
AVR 22 082 11.1 229 29 454

AVR (5k) 1.8 0.4 3.1 143 21 159 w/ELE 1.7 057 73 168 21 279
10x less 1.9 055 33 151 26 169
10x lessw/ELE 1.3 024 2.6 12.6 2.0 143 (b) Results on GWA dataset.

(a) Versa is also effective with 10 x fewer listeners.

Table 9: Quantitative comparison across datasets. (a) Fewer listener positions; (b) GWA dataset.

Tab @ With Versa, each model can predict
much better results when having 10X fewer listener samples, even compared with the vanilla method
with 10X more samples.

More results on GWA dataset. Furthermore, we also experiment on the GWA dataset [56] that
simulates impulse response with a hybrid ray-based and wave-based method. Each room contains
only 5 emitter positions, and there are 100 listener positions per emitter. We demonstrate that Versa
still consistently improves the performance as shown in Tab. [0b]

B.2 Discussion on the permutation invariant structure.

Versa is grounded in the physical principle of acoustic reciprocity. Based on the reciprocity principle,
it is possible to design permutation-invariant neural networks like shared encoders for emitter and
listener. Such architecture enforces symmetry unconditionally, regardless of whether impulse response
remains the same with direct swapping. However, emitters and listeners can have different directional
gain patterns, which breaks the impulse response invariance. Enforcing strict symmetry in such cases
would mislead the model to make incorrect assumptions.

We provide results on AcoustiX-Diff with a permutation-invariant version of NAF. As shown in the
Tab. [0} this structure can improve the performance on the original NAF under the sparse emitters
settings. As this design treats the emitter/listener exactly the same, it can alleviate the problem
of sparse emitters. However, the permutation-invariant design strictly forces the model to output
symmetric results and does not consider the unique features of the emitter or listener including
different gain patterns. In contrast, vanilla neural acoustic models that encode emitter/listener features
separately are not strictly constrained to this inappropriate symmetry and can benefit from the Versa-
ELE for better performance. Finally, AVR with Versa-SSL achieves the best overall performance as it
correctly handles the different gain patterns.

Variant STFT  Amp. Env. T60 C50 EDT

NAF 6.51 0.68 4.1 456 549 423
NAF + permutation 4.47 0.62 4.0 259  3.90 379
NAF + Versa-ELE 4.24 0.58 39 15.1  3.67 30.9
AVR + Versa-SSL 1.32 0.26 31 168 1.85 224

Table 10: Comparison on the permutation invariant structure.

B.3 Perceptual Study

Study setup. We render eight audio-video clips using AVR and various Versa variants. Each clip
includes three impulse responses: a reference (simulated with AcoustiX), a baseline (either vanilla
or Versa-ELE), and an improved method (either Versa-ELE or Versa-SSL). This setup allows us to
compare the vanilla method versus Versa-ELE and Versa-ELE versus Versa-SSL. We convolve each
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impulse response with dry sounds and pair it with microphone-view videos and trajectory animations.
Participants first watch and listen to the reference clip, then evaluate the baseline and improved clips
on three criteria:

* Volume accuracy: Which clip conveys changes in volume more accurately?

* Directional accuracy: Which audio made it easier for you to identify the direction of the sound
source more accurately?

* Overall similarity: Which clip aligns better with the reference overall?

We provide a snapshot of our user study interfaces in Fig. [T0}

Between Video 1 an
compared to the Re

2, which one's audio conveyed changes in audio volume more accurately

Video 1 Video 2

2, which one's audio made it easier for you to identify the direction of the
ely?

Video 1 Video 2

Between Video 1 and Video 2, which one's audio do you feel aligns better with the Reference overall?

Video 1 Video 2

Figure 10: The interface for the user study evaluations.

Result. We present the user study results in Tab. [6] averaging participants’ choices across all
audio clips (in total 15 participants). 90% of responses indicate that Versa-ELE better aligns with
the reference impulse response in terms of volume, directional accuracy, and overall similarity.
Additionally, over 85% of responses favor Versa-SSL over Versa-ELE as well. With these user study
results, we demonstrate that our method can greatly improve the spatial audio listening experience,
including sound direction and loudness.

Perceptual metric. We computed the Deep Perceptual Audio Metric (DPAM) on the audio clips
rendered for user study. As shown in Tab. @ Versa-ELE reduces DPAM error by 20%, and Versa-SSL
further reduces error by 36% compared with Versa-ELE on the AVR method. Versa-ELE also boosts
the performance of other methods by 18%. These show our method can improve the perceptual
similarity to ground truth. These results are consistent with the user study findings and reinforce the
perceptual benefit of our method in the resounding task.

Method DPAM score

NAF + Versa-ELE 1.53->1.26
INRAS + Versa-ELE 1.42->1.19
AV-NeRF + Versa-ELE 147 ->1.15

AVR + Versa-ELE 1.44 ->1.17
AVR + Versa-SSL 1.44 ->0.86

Table 11: Results of the perceptual metric.

B.4 Details about demo videos

We render a video/audio clip named demo.mp4 attached to the complementary file. We render scene
3 with three different settings.

* Setting-1: emitter is directional and rotating
* Setting-2: emitter is at novel position and omnidirectional
e Setting-3: emitter is moving and directional

We demonstrate the effectiveness of Versa-SSL in setting-1 and Versa-ELE in setting-2 and setting-3.
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C Social Impact

Our resounding framework promises to greatly enhance immersion and presence in AR/VR appli-
cations by delivering physically accurate, dynamic acoustics even when sound sources move freely
through virtual spaces. However, the same technology could be misused to generate deceptive or
manipulative audio-visual scenarios with “fake” acoustic environments that mislead users about their
surroundings, or deep-fake conversations where background sounds betray false contexts. To mitigate
this, a potential way is to inject an inaudible watermark into the audio to detect whether it is being

used for malicious purposes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state our contributions in the abstract and introduction and conduct
extensive experiments on different datasets to support our claim.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitations in the Discussion session.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the detailed derivations about our acoustic modeling equations and
the basis for our method.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly detailed our methods and parameters for the training of the network.
The code, and the dataset will be open-sourced once the paper is accepted.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: Our code and dataset will be open-sourced after the review process.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have all the training and testing details, including data splits, hyperparame-
ters, ablation studies on hyperparameters and the description of the used optimizer.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We exclude error bars because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have all details in the experiment setup in the main tex and the supplemen-
tary results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics and preserve anonymity.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We mention both potential societal impacts in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model and data do not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the corresponding paper when needed and follow the corresponding
license when using public datasets and the license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We discuss the model architecture details, training details, dataset composition
process in the paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our paper does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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