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Introduction

Drivers’ visual behavior is highly associated with driving 
safety (He, 2020). The visual channel is estimated to take 
over 90% of the information in driving tasks (Sivak, 1996). 
To quantitatively analyze the impact of visual cues on driv-
ing safety, the eye tracker has been widely adopted. By ana-
lyzing eye-tracking data, researchers are able to reveal 
drivers’ attention allocation strategies during driving 
(Werneke, 2012), based on which, adaptive driver assistance 
systems, such as adaptive human-machine interfaces (HMI), 
can be developed. Thus, a number of research has been con-
ducted to model and predict drivers’ visual attention alloca-
tion strategies (Baee, 2021; Fu, 2023).

Gaze points are commonly utilized in eye-tracking 
research to estimate drivers’ visual attention. Still, they rep-
resent only a fraction of overall visual perception (Ahlström, 
2021; Wolfe et al., 2017), and can be noisy due to the fast eye 
movements in order to scan the environment, and the less-
than-ideal tracking accuracies. Such characteristics can neg-
atively impact the performance of data-driven visual attention 
predictive models (Gómez-Poveda, 2016). Specifically, most 
of the data-driven visual behavior predictions were based on 
discrete focal gaze points, which may suffer from a decrease 
in algorithm robustness and prediction accuracy.

As such, this paper proposes a driver visual model called 
the Differential 2D Gaussian Ellipse (D2DGE) to describe 
drivers’ visual attention allocation with the distribution of 
multiple focal gaze points considered. D2DGE balances gaze 

noise across all directions without altering the spatial distribu-
tion of the original gaze data. Consequently, it outperforms 
raw gaze data in data-driven visual attention prediction algo-
rithms. Statistical analysis was performed to compare the 
gazes from the eye-tracker (i.e., raw gaze) and D2DGE data to 
evaluate the invariance of D2DGE relative to raw gaze data in 
their two-dimensional spatial distribution. Further, given the 
vital role of visual attention prediction in human-machine 
interface (HMI) design and autonomous driving, we further 
generated visual attention based on the raw gaze data and 
D2DGE data using Generative Adversarial Imitation Learning 
(GAIL; Ho & Ermon, 2016) to check if D2DGE performs bet-
ter in data-driven visual attention analysis than gaze data.

Approach

D2DGE Data

As shown in Figure 1, inspired by the research on focal and 
peripheral vision (Larson, 2009), the D2DGE eye-tracking 
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data representation was proposed as the k times of the sigma 
(k-sigma) range of the 2D Gaussian distribution that the gaze 
points follow within a sliding window, where the distance 
between the participant and the presented visual stimulus 
determines the magnitude of k. This enables a new eye-track-
ing data representation based on eye-tracker-recorded gaze 
points while eliminating noise in the recorded data. For an 
eye-tracking sequence with a window size of n and a sliding 
step size of m, a 2D Gaussian distribution is calculated for all 
gaze points within the window. The k-sigma range of the 
Gaussian distribution is then extracted to obtain an ellipse, 
representing the visual attention area of the driver during that 
time window. This ellipse is described by five parameters: 
� � �x y s r, , , ,major�� �� , where µx  and µ y  represent the mean 

coordinate of the Gaussian distribution, s  is the area of the 
ellipse calculated from the k-sigma range, rmajor  is the length 
of the ellipse’s major axis, and θ  represents the rotation angle 
of the ellipse. After the calculation for one window, the win-
dow is shifted by the step size of m, and then the next ellipse 
is calculated, thereby obtaining a continuous sequence of 
D2DGE eye-tracking data from the original gaze points data.

Driving Simulation Data for Validation

To validate the effectiveness of the D2DGE representation, a 
driving simulator experiment was conducted to record the 
visual behaviors of experienced and novice drivers during spe-
cific driving scenarios in a SAE L3 vehicle (Society of 
Automotive Engineers). A fixed-base simulator with three 
1,920 × 1,080 screens was used and the eye-tracking data was 
captured at 60 Hz using a Smart Eye desktop tracker. In total, 
original image sequences from 87 scenes were extracted based 
on the Deepaccident dataset (Wang, 2024). Then, the image 
sequences were enhanced (Wang, 2021), converted to video 

clips, and interpolated (Wu, 2024), resulting in 5,760 × 1,080 
resolution videos at 20 FPS. Out of the 87 scenes, 42 involved 
accidents, while 45 did not. Twelve participants (6 males, 6 
females) were recruited, with 3 experienced drivers (years of 
licensure ≥ 5 and mileage in the last year over 20,000 km) and 
3 novice drivers (years of licensure < 2 and mileage in the last 
year less than 5,000 km) in each group. Participants were 
informed of L3 driving automation and instructed to take over 
the vehicle when hazards were perceived. The experiment 
lasted 18 min for each participant. Based on this experimental 
design, the parameters for D2DGE were set as follows, that is, 
windows size n = 10 frames, sliding step size m = 5 frames, and 
times of sigma range k = 2.

Analyses

To determine whether D2DGE data confer an advantage in 
data-driven visual attention prediction, a Generative 
Adversarial Imitation Learning (GAIL) model was trained 
independently on both D2DGE and raw gaze datasets, and 
the divergence between the generated outputs and the origi-
nal gaze distributions was quantified using the Kullback–
Leibler (KL) divergence.

GAIL is an imitation learning algorithm in which genera-
tive adversarial networks are combined with reinforcement 
learning, enabling decision-making policies that approxi-
mate expert-level performance to be learned without manual 
specification of reward functions. The KL divergence 
(Hershey, 2007) is an asymmetric measure of information 
that quantifies the information loss or discrepancy of one 
probability distribution relative to a reference distribution.
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Figure 1.  The proposed D2DGE representation.
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Typically, distributions P and Q are compared via their 
KL divergence, with smaller values indicating greater simi-
larity, whereas larger values indicating greater divergence.

Specifically, in our work, the two sets of data (i.e., raw 
gaze and D2DGE data) were used as inputs to train a GAIL 
algorithm, with Proximal Policy Optimization (PPO; 
Schulman, 2017) as the policy generator. The generated data 
were then compared with their corresponding original data 
based on the KL divergence metric. It should be noted that, 
to make a fair comparison, the central point [ , ]µ µx y  of the 
generated samples based on D2DGE data was determined by 
calculating the mean coordinates of all gaze points within a 
specific window, which ensures that the spatial distribution 
characteristics of the D2DGE central points remain consis-
tent with those of the raw gaze points. Consequently, the 
transformation from raw gaze points to D2DGE representa-
tion preserves the fundamental spatial distribution properties 
of the raw gaze data.

Further, to explore if the new eye-tracking data represen-
tation contains more information compared to the raw data, 
one-way ANOVA tests were conducted, with the mean of the 
five parameters of D2DGE, and the mean coordinates of the 
raw gazes from each trial as dependent variables and driver 
experience (novice vs. experienced) as the independent 
variable.

The model was built using the Proc Mixed in SAS on 
demand, which included a random intercept for participant 

and a compound symmetry (CS) residual structure, estimated 
using REML (Corbeil, 1976).

Results

First, as shown in Table 1, the KL divergence between the 
generated data and the original data showed that, for both 
novice and experienced drivers, the D2DGE-generated data 
exhibited smaller differences between the original and gen-
erated data as compared to the raw-gaze-generated data for 
both novice and experienced drivers.

Then, a linear mixed-effects model was used to examine 
the influence of driving experience on raw gaze-point coor-
dinates and the five D2DGE parameters for each participant. 
As shown in Table 2, no significant differences were observed 
between experienced and novice drivers in either lateral or 
longitudinal gaze positions (p > .05), a result that held for 
both the raw gaze points and the gaze based on D2DGE 
representation.

Likewise, as shown in Table 3, we did not observe a sig-
nificant difference between novice and experienced drivers 
regarding D2DGE major-axis length rmajor  and orientation 
angle θ  (p > .05). However, the D2DGE ellipse area s  dif-
fered significantly between experienced and novice drivers 
(p = .02), indicating that novice drivers scanned a broader 
region of the traffic scene than experienced drivers within 
any specific time window.

Table 1.  KL Divergence Between the Original Data and the Generated Data.

Comparison Data type Driver type KL divergence

Original data versus generated data Gaze point Experienced .588
D2DGE .351
Gaze point Novice .709
D2DGE .389

Table 2.  The Influence of Driving Experience on Gaze Locations.

Outcome Estimate SE DoF t-Value p-Value

x 46.9217 48.9552 859 .96 .3381
y 95.0166 72.2254 859 1.32 .1887

Note. In this table and the following tables, DoF = degrees of freedom, which is the approximate value adjusted by the Kenward–Roger method; 
SE = standard deviation.

Table 3.  The Influence of Driving Experience on D2DGE Parameters.

Outcome Estimate SE DoF t-Value p-Value

µ x 15.4 44.0 280 .35 .7264
µ y 65.6 63.8 280 1.03 .3050
s −21,933 9392.9 280 −2.34 .0202*
rmajor −106.76 108.56 280 −0.98 .3262
θ −4.5919 12.7964 280 −0.36 .7200

Note. “*” denotes p < .05.
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Discussions

In this study, we proposed a new eye-tracking data format, 
the D2DGE, to describe the characteristics of drivers’ visual 
scanning behaviors during driving. A driving simulator 
experiment was conducted to validate the effectiveness of 
the proposed model based on the distribution of the gaze 
positions and the data generated by GAIL.

First, as indicated by the KL divergence, the D2DGE 
can better recover the original distribution of the gaze 
positions than directly using the raw gaze position data. 
First, it is possible that due to the technical difficulties, the 
raw gaze locations are noisy. For example, the commonly 
used eye-tracking systems, such as SmartEye, Tobii or 
Dikablis, can only achieve an accuracy of .5, .6 and .5 
degrees (EST, 2025; Smart Eye, 2025; Tobii, 2025). 
Second, some of the fast eye movements might be random 
and may not be associated with conscious attention alloca-
tion. Thus, the models based on the raw data may be over-
fitted and not be able to learn meaningful visual attention 
allocation strategies.

Second, a comparison between the novice and experi-
enced drivers regarding the key metrics of D2DGE indicates 
that richer information can be extracted from the D2DGE 
data representation. Specifically, though lateral or longitudi-
nal gaze positions, length and orientation angle were not 
found to be different between novice and experienced driv-
ers, the ellipse area differed between novice and experi-
enced drivers. It should be noted that, the lack of difference 
in terms of the lateral or longitudinal gaze positions might 
be due to the design of the experiment—it does not require 
drivers to drive the vehicle, but just to observe the environ-
ment. Thus, the superior performance of experienced driv-
ers in distributing their visual attention to a broader area 
(Underwood, 2007) was not observed in our study. Instead, 
the driving scenarios started from a moment when predict-
able hazards are about to appear. Thus, experienced drivers 
might be quicker to notice the potential hazardous areas and 
pay more sustained attention to them compared to novice 
drivers. As a result, they exhibited an even narrower obser-
vational field compared to novice drivers. This result indi-
cates that, compared to raw gaze-point data, D2DGE 
representation, owing to its greater number of parameters, 
may capture richer visual attention information and thus 
offers advantages in statistical analyses and gaze data gen-
eration based on artificial intelligence.

However, several limitations remain in this study. First, 
the parameters used to compute D2DGE, namely, the sliding 
window size, step length, and the k-sigma range, directly 
affect the resulting data and its characteristics, and the opti-
mal k-sigma is dependent on the distance between partici-
pants and the presented stimulus, which should be carefully 
calibrated in future research. Second, we used relatively 
homogeneous driving scenarios. Future research should fur-
ther validate our results in more diverse scenarios, preferably 
based on the data from on-road studies. Further, we only 

considered one algorithm to generate the eye-tracking data. 
Future research should consider more advanced and robust 
models to generate eye-tracking data based on both the raw 
gaze data and the D2DGE data, and explore how additional 
contextual information can be incorporated so that each gen-
erated trajectory can more accurately reflect real-world 
driver gaze behavior.

In summary, our results showed that the new eye-tracking 
data representation based on the original gaze data preserved 
the spatial distribution characteristics of the visual attention 
allocation in the 2D plane and contains more information 
describing drivers' eye-tracking behaviors than the raw gaze 
data. Additionally, the D2DGE representation enabled supe-
rior performance for data-driven eye-tracking analysis. 
Future research is needed to explore how D2DGE parame-
ters are associated with driving performance.
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