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Abstract
Fine-tuning off-the-shelf pre-trained neural net-
works has become the default starting point
for a wide range of challenging prediction
tasks—especially in computer vision and natu-
ral language processing, where pre-trained mod-
els trained on millions or even billions of data
points are publicly available and can be fine-
tuned with a moderate compute budget. How-
ever, while fine-tuned models have been shown
to significantly improve predictive performance
compared to models trained from scratch, they
can exhibit poor calibration and fail to reliably
identify challenging distribution shifts. In this
paper, we improve uncertainty quantification in
fine-tuned models by constructing a data-driven,
uncertainty-aware fine-tuning prior that assigns
high probability density to parameters that induce
predictive functions with high uncertainty on in-
put points that are meaningfully different from
the data. We derive a tractable variational objec-
tive to perform approximate inference in mod-
els with data-driven, uncertainty-aware priors and
evaluate models fine-tuned with such priors on
different transfer learning tasks. We show that
fine-tuning with uncertainty-aware priors signifi-
cantly improves calibration, selective prediction,
and semantic shift detection on computer vision
and natural language classification tasks.

1. Introduction
How can we ensure that fine-tuning pre-trained models
leads to models with good predictive performance and re-
liable uncertainty quantification? In this paper, we design
uncertainty-aware priors (UAPs) for fine-tuning pre-trained
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neural networks and show that models fine-tuned with such
priors achieve significantly improved predictive uncertainty
quantification on image and natural language classification
tasks. We illustrate some of our results in Figure 1.

While fine-tuning off-the-shelf pre-trained neural networks
has become the default approach for most computer vision
and natural language processing tasks, standard fine-tuning
methods—such as expected risk minimization (ERM; Vap-
nik, 1998)—often fall short in providing reliable uncertainty
estimates that accurately indicate how confident a model is
about its predictions (Tran et al., 2022). Reliable uncertainty
quantification, in conjunction with uncertainty-based defer-
ral of predictions to human experts, can be a particularly use-
ful tool in creating scalable oversight for large pre-trained
models and help build trust for automated decision-making.

We present a simple addition to standard fine-tuning tech-
niques that enables more reliable uncertainty quantification
in fine-tuned models. More specifically, we derive a data-
driven, uncertainty-aware prior distribution over neural net-
work parameters designed to lead to improved uncertainty
quantification. Prior distributions over model parameters
can incorporate relevant information about the parameter
values into Bayesian inference. However, specifying mean-
ingful prior distributions over neural network parameters is
challenging since it is unclear which parameter values would
correspond to specific desired behaviors (e.g., good calibra-
tion, high predictive uncertainty under semantic shift, low
negative log-likelihood, etc.) (Fortuin et al., 2022; Rudner
et al., 2022a).

To tackle this challenge, we construct a data-driven
uncertainty-aware prior distribution explicitly designed to
encourage improved uncertainty quantification. This data-
driven prior is specified by constructing a distribution that
assigns high probability density to parameter values that
induce functions with high predictive entropy on points that
are meaningfully different from the training data.

We show how to use uncertainty-aware priors for fine-tuning
off-the-shelf pre-trained models using standard mean-field
variational inference for neural networks (Graves, 2011;
Blundell et al., 2015) and evaluate the fine-tuned models
on a wide range of benchmarking tasks—including image
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(c) Question-Answering NLI

Figure 1. Fine-tuning with Uncertainty-Aware Priors Significantly Improves Uncertainty Quantification. The figure showcases the
improvement of uncertainty-aware priors (UAPs) over expected risk minimization (ERM: the de facto standard method for fine-tuning) on
a representative subset of the datasets considered in our empirical evaluation. All values are estimated from five trials.

classification and text classification—using a diverse set of
uncertainty evaluation metrics. Uncertainty-aware priors
are probabilistically principled, simple, scalable, and easy
to implement in practice. Unlike existing data-driven priors
that require separate training procedures (e.g., Shwartz-Ziv
et al., 2022), uncertainty-aware priors allow for simple end-
to-end training without the need for additional prior pre-
training.

To summarize, our main contributions are as follows:

1. We construct a data-driven, uncertainty-aware prior
(UAP) distribution for fine-tuning pre-trained neural
networks. The prior distribution is explicitly designed
to enable reliable uncertainty quantification.

2. We demonstrate how to perform tractable approxi-
mate inference in neural networks with data-driven,
uncertainty-aware priors using a doubly lowerbounded
variational objective.

3. We perform a careful empirical evaluation in which
we compare models fine-tuned using the proposed
uncertainty-aware prior to ERM fine-tuning and to
a state-of-the-art method for Bayesian transfer learn-
ing. We find that mean-field variational inference with
uncertainty-aware priors significantly outperforms the
current state of the art in terms of uncertainty quantifica-
tion and performs on par or better in terms of predictive
accuracy.

2. Background
We consider supervised learning problems with N i.i.d.
data realizations D = {x(n)

D , y
(n)
D }Nn=1 = (xD, yD) of in-

puts X ∈ X and targets Y ∈ Y with input space X ⊆ RD

and target space Y ⊆ RK for regression and Y ⊆ {0, 1}K
for classification tasks with K classes.

2.1. Learning as Probabilistic Inference
For supervised learning tasks, we define a parametric obser-
vation model pY |X,Θ(y |x, θ; f), a prior distribution pΘ(θ),
and a parametric mapping f(· ; θ). In Bayesian inference,
we wish to find the posterior implied by the prior, the obser-
vation model, and the data. The posterior is given by

pΘ|Y,X(θ | yD, xD) =
pY |X,Θ(yD |xD, θ; f)pΘ(θ)

pY |X(yD |xD; f)
. (1)

Since neural networks are non-linear in their parameters,
exact inference over the stochastic network parameters is
analytically intractable.

Variational Inference. Variational inference is an approxi-
mate inference method that seeks to avoid the intractability
of exact inference by framing posterior inference as a varia-
tional optimization problem,

min
qΘ∈QΘ

DKL(qΘ ∥ pθ|D) ⇐⇒ max
qΘ∈QΘ

F(qΘ),

where F(qΘ) is the variational objective

F(qΘ) = EqΘ [log pY |X,Θ(yD |xD, θ; f)]− DKL(qΘ ∥ pΘ)

and QΘ is a variational family of distributions (Wainwright
and Jordan, 2008). A commonly chosen variational family
is that of mean-field Gaussian distribution, where qΘ(θ) =
N (θ;µ,Σ) with diagonal Σ.

Priors over Parameters as Regularizers. In optimization-
based inference methods such as variational inference or
stochastic gradient Langevin dynamics (SGLD), the prior
log pΘ(θ) effectively acts as a regularizer. For example, in
SGLD training, selecting a prior pΘ(θ) = N (θ;0, τ−1

0 I)
results in standard L2-norm regularization (weight de-
cay) while pΘ(θ) = Laplace(θ;0, τ−1

0 I) leads to sparsity-
inducing L1-norm regularization (LASSO) (Bishop, 2006;
Murphy, 2013).
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3. Related Work
Informative Priors in Bayesian Deep Learning. Informa-
tive priors have the potential to greatly improve model
performance. However, certain challenges, such as cold
posterior effects and performance concerns compared to
traditional neural networks, have been reported in the lit-
erature (Wenzel et al., 2020). To address these shortfalls,
recent studies have focused on exploring informative pri-
ors, including heavy-tailed priors (Fortuin et al., 2022; Iz-
mailov et al., 2021b), noise-contrastive priors (Hafner et al.,
2020), and input-dependent priors for domain generaliza-
tion (Izmailov et al., 2021a; Rudner et al., 2023). Data-
driven priors, derived from relevant context data, have been
shown to improve group robustness (Rudner et al., 2024),
clinical decision-making (Lopez et al., 2023), and out-of-
distribution molecular and protein design (Klarner et al.,
2024). Furthermore, function-space priors (Sun et al., 2019;
Rudner et al., 2022a;b; Klarner et al., 2023; Qiu et al.,
2023), sparsity-promoting weight-space priors (Carvalho
et al., 2009; Ghosh et al., 2018), structured configuration
priors (Louizos and Welling, 2016), and priors driven by
learning algorithms (Khan et al., 2019; Immer et al., 2021)
have been developed. Several studies have also explored
formulating prior distributions in reference to related tasks.
For example, Bayesian meta-learning (Finn et al., 2018;
Rothfuss et al., 2021; Pavasovic et al., 2023) can be viewed
as a way to learn priors from data, and empirical prior learn-
ing has been investigated in Robbins (1992). Fortuin et al.
(2022) investigated learning empirical weight distributions
using stochastic gradient descent, Wu et al. (2019) applied
a moment-matching technique, and Krishnan et al. (2020)
proposed to learn the mean of a Gaussian prior distribu-
tion from a relevant dataset. To improve transfer learning,
Shwartz-Ziv et al. (2022) proposed a method to learn priors
from large datasets using the Stochastic Weight Averaging-
Gaussian (SWAG) framework (Maddox et al., 2019) which
resulted in state-of-the-art predictive performance on com-
puter vision transfer learning tasks (Harvey et al., 2024).

Transfer Learning. In transfer learning, representations
learned from one task are adapted to enhance another task.
This approach is foundational in deep learning, where large-
scale neural networks are pre-trained on extensive datasets
and then fine-tuned for specific tasks (Bommasani et al.,
2021; Tran et al., 2022). In computer vision, models with
vast pre-trained feature extractors are the default starting
point for any image classification task (Dai et al., 2021;
Dosovitskiy et al., 2021). Similarly, segmentation and ob-
ject detection models use ImageNet pre-trained CNN or
Transformer backbones combined with other modules (Chen
et al., 2018; Ren et al., 2015; Dosovitskiy et al., 2021). In
NLP, text classification is based on fine-tuned transformer
models (Devlin et al., 2019; Howard and Ruder, 2018).

Knowledge Transfer with Bayesian Principles. Leverag-
ing auxiliary data through Bayesian modeling can lead to
improved generalization and robustness. Xuan et al. (2021)
explored transfer with probabilistic graphical models, and
Karbalayghareh et al. (2018) presented a theoretical frame-
work for optimal Bayes classifiers informed by several do-
mains. Several studies have used Bayesian tools to exploit
auxiliary data across domains. For example, Chandra and
Kapoor (2020) proposed to learn from multiple domains
using round-robin task sampling with a single-layer neu-
ral network. Bayesian continual learning methods update
the posterior to accommodate new tasks without neglect-
ing previous ones (Ebrahimi et al., 2019; Kapoor et al.,
2021; Nguyen et al., 2018; Tseran et al., 2018; Rudner et al.,
2022b) or formulate kernels based on previously-trained
neural networks for Gaussian process inference (Maddox
et al., 2021; Pan et al., 2020; Titsias et al., 2020). Semi-
supervised algorithms can blend unlabeled data in Bayesian
neural network training pipelines, as shown in various stud-
ies (Do et al., 2021; Jean et al., 2018; Ravichandran et al.,
2021; Shwartz Ziv and LeCun, 2024).

4. Uncertainty-Aware Fine-Tuning
In this section, we consider a family of data-driven priors,
build on this family of priors to construct uncertainty-aware
priors (UAPs) for fine-tuning pre-trained neural network
models, and finally, we show to perform tractable variational
inference in neural networks with such priors. Crucially,
the proposed uncertainty-aware prior does not require any
further pre-training and allows for straightforward end-to-
end fine-tuning with existing pre-trained models.

4.1. A Family of Data-Driven Priors

Consider again a parametric observation model
pY |X,Θ(y |x, θ; f), and let the mapping f be defined
by f(· ; θ) =̇h(· ; θh)θL, where h(· ; θh) is the post-
activation output of the penultimate layer, ΘL is the set of
stochastic final-layer parameters, Θh is the set of stochastic
non-final-layer parameters, and Θ=̇ {Θh,ΘL} is the
full set of stochastic parameters. We assume access to
pre-trained feature parameters, θ∗h, and context data that
encodes useful information about the downstream tasks.
We denote a batch of context inputs with corresponding
context labels by xc = {x1, ..., xM} and yc = {y1, ..., yM},
respectively, and let pXc,Yc be a joint distribution over
context batches.

To construct a family of data-driven priors, we begin by spec-
ifying a context inference problem. We consider a Bernoulli
random variable Ž denoting whether a given set of neural
network parameters induces predictions that exhibit some
desired property (e.g., high uncertainty on a set of evaluation
points). Furthermore, we define a context observation model
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p̌Ž |Θ(ž | θ; f, pXc,Yc
)—which denotes the likelihood of ob-

serving a yet-to-be-specified outcome ž under p̌Ž |Θ given
θ and pXc,Yc—and specify a base prior over the model pa-
rameters, pΘ(θ). For notational simplicity, we will drop the
subscripts going forward except when needed for clarity.
With this setup, we can now define the context inference
problem as finding the conditional distribution over neural
network parameters that we would obtain if we conditioned
on the desired property being satisfied. This conditional dis-
tribution will serve as our data-driven prior, and by Bayes’
Theorem, we can express it as

p(θ | ž; pXc,Yc
) =

p̌(ž | θ; pXc,Yc
)p(θ)

p̌(ž; pXc,Yc
)

. (2)

To define a family of data-driven priors that place high
probability density on neural network parameter values that
induce predictive functions with reliable uncertainty esti-
mates, we specify a Bernoulli context observation model
p̌Ž |Θ in which Ž = 1 denotes the outcome of ‘achieving
reliable uncertainty quantification’ and p̌(ž = 1 | θ; pXc,Yc

)
denotes the likelihood of ž = 1 given θ and pXc,Yc

. More
specifically, we define

p̌(ž = 1 | θ; pXc,Yc
) = exp(−EpXc,Yc

[c(Xc, Yc, θ)])

p̌(ž = 0 | θ; pXc,Yc
) = 1− p̌(ž = 1 | θ; pXc,Yc

),
(3)

where c : X ×Y×RP → R≥ is a cost function. By specify-
ing the outcome ž = 1 along with a distribution pXc,Yc

we
obtain a conditional distribution p̌(θ | ž; f, pXc,Yc

)—the dis-
tribution over neural network parameters that we would infer
if we observed outcome ž = 1 under the base prior and the
Bernoulli context observation model defined in Equation (3).
Naturally, the quality (i.e., the usefulness) of this conditional
distribution is determined by the quality of the context obser-
vation model p̌Ž |Θ, the data, and the prior. As a result, the
primary challenge in designing effective uncertainty-aware
priors lies in constructing a context observation model—via
a cost function c and a context distribution pXc,Yc

—that is as
well-specified as possible. The better specified the context
observation model, the more useful the data-driven prior.

4.2. Defining Data-Driven, Uncertainty-Aware Priors
for Fine-Tuning Pre-trained Models

In this section, we present a specific instantiation of an
uncertainty-aware prior for fine-tuning foundation models.
To define a data-driven prior p̌(θ | ž; pXc,Yc

) that incorpo-
rates useful information from the pre-trained parameters θ∗h
and assigns high probability density to parameter values θ
that induce models with reliable uncertainty quantification,
we need to specify a suitable context likelihood and suitable
layer-specific base priors p(θh) and p(θL). For the base pri-
ors, we let p(θh) = N (θh; θ

∗
h, τ

−1
h I), which assigns high

probability to parameters θh that are close to the pre-trained
parameters θ∗h, and p(θL) = N (θL;0, τ

−1
L I).

To define a context observation model that induces a data-
driven prior with desirable properties, we specify a cost
function c of the form
c(xc, yc, θ) =̇τ

∑K

k=1
D2

M([f(xc; θ)]k,m(xc, yc)k, C(xc)),

(4)
where K is the number of output dimensions, pXc,Yc is a
joint distribution over context batches xc and yc (each of
size M ),

D2
M([f(xc; θ)]k,m(xc, yc)k, C(xc)) =̇v⊤

k C(xc)
−1vk (5)

with vk =̇ [f(xc; θ)]k − m(xc, yc)k is the squared Maha-
lanobis distance between model predictions [f(xc; θ)]k
and an input-dependent distribution with mean m(xc, yc)k
and M -by-M covariance matrix C(xc). To obtain a data-
driven prior that assigns high probability density to pa-
rameters θ that induce models with reliable uncertainty
estimates, we specify a data-dependent mean function,
m(xc, yc)k =̇ [yc]k, and a covariance function

C(·) =̇ s1h(·; θ∗h)h(·; θ∗h)⊤ + s2I, (6)

parameterized by pre-trained model parameters θ∗h and fixed
scaling parameters τ , s1, and s2, that reflects structure in the
pre-trained model representations h(·; θ∗h). Finally, we de-
fine the context distribution as p(xc, yc) = p(yc |xc)p(xc),
where p(yc |xc) =̇ δ({0, ...,0}− yc) and p(xc) is an empir-
ical distribution constructed from a larger set of (domain-
and task-specific) context inputs.1

Under this cost function and context distribution, the data-
driven prior defined in Equation (3), by design, assigns
high probability density to parameters θ that induce pre-
dictions f(xc; θ) that have high predictive uncertainty on
the context inputs. If the distribution over context inputs,
pXc

, is specified to place high probability density on context
batches which contain input points that are meaningfully
distinct from the training inputs, then the data-driven prior
favors models that exhibit high predictive uncertainty on
such meaningfully distinct inputs.

4.3. Variational Inference with Uncertainty-Aware Priors

In this section, we show how to perform variational infer-
ence with uncertainty-aware priors. We start by specifying
a probabilistic model with an uncertainty-aware prior,

p(yD, θ |xD, ž; pXc,Yc) = p(yD |xD, θ; f)︸ ︷︷ ︸
Likelihood

p(θ | ž; pXc,Yc))︸ ︷︷ ︸
Uncertainty-aware prior

.

To perform variational inference in this model and approxi-
mate the posterior distribution over the parameters of inter-
est, we begin by defining a variational distribution,

q(θ) =̇ q(θh) q(θL),

1Defining p(yc |xc) =̇ δ({0, ...,0} − yc) implies that under
pXc,Yc , all context batch samples have yc = 0, and therefore, we
effectively have m(xc, yc)k =̇0 for all context batch samples.
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where q(θL)=N (θL;µL,ΣL) and q(θh)=N (θh;µh,Σh)
with learnable variational parameters µ =̇ {µh, µL} and
Σ =̇ {Σh,ΣL}, and frame the inference problem of find-
ing the posterior p(θ |xD, yD, ž) variationally as

min
qΘ∈Q

DKL(qΘ ∥ pΘ |XD,YD,Ž),

where Q is a mean-field Gaussian variational family. This
variational problem can equivalently be expressed as maxi-
mizing the variational objective

F̄(qΘ) =̇EqΘ [log p(yD |xD,Θ; f)]− DKL(qΘ ∥ pΘ | Ž).

Unfortunately, this variational objective is intractable since
the data-driven prior p̌(θ | ž; pXc,Yc) defined in Equa-
tion (2)—which is required to compute DKL(qΘ ∥ pΘ | Ž)—
is not in general tractable.

To overcome this intractability, we take advantage of the
properties of the KL divergence and note that we can express
DKL(qΘ ∥ pΘ | Ž) as

DKL(qΘ ∥ pΘ | Ž) = EqΘh
qΘL

[
log

q(Θh) q(ΘL)

p(Θh) p(ΘL)

]
− EqΘh

qΘL
[log p̌(ž |Θ; pXc,Yc)]

+ log p̌(ž; pXc,Yc
),

where the intractable log-marginal likelihood
log p̌(ž; pXc,Yc) was factored out as an additive con-
stant independent of any learnable parameters. Using this
result, we can obtain a tractable lower bound

DKL(qΘ ∥ pΘ | Ž) ≥ −EqΘh
qΘL

[log p̌(ž |Θ; pXc,Yc
)]

+ DKL(qΘh
∥ pΘh

) (7)
+ DKL(qΘL

∥ pΘL
),

where each KL divergence term can be computed analyti-
cally, and we can obtain an unbiased estimator of the nega-
tive log-likelihood using simple Monte Carlo estimation.

Variational Objective. Since qΘh
and qΘL

are both mean-
field Gaussian distributions, we can obtain a doubly lower-
bounded variational objective

F(µ,Σ) =̇ EqΘ [log p(yD |xD,Θ; f)]︸ ︷︷ ︸
Expected log-likelihood

−DKL(qΘL
∥ pΘL

)︸ ︷︷ ︸
Pre-training regularization

− DKL(qΘL
∥ pΘL

)︸ ︷︷ ︸
Final-layer regularization

− EqΘ [EpXc,Yc
[c(Xc, Yc,Θ)]]︸ ︷︷ ︸

Uncertainty regularization

,

(8)

where the cost function and context distribution are as de-
fined above. We can estimate all expectations in the objec-
tive using simple Monte Carlo estimation, giving the final

variational objective

F̂(µ,Σ) =̇
1

J

∑J

j=1
log p(yD |xD, θ

(j); f)−DKL(qΘ ∥ pΘ)

− 1

JJ ′

∑J

j=1

∑J′

j′=1
c(x(j′)

c , y(j
′)

c , θ(j)),

(9)
with θ(j) ∼ qΘ, x(j′)

c ∼ pXc
, and y

(j′)
c ∼ pYc|Xc

for j =
1, ..., J and j′ = 1, ..., J ′. This objective can be maximized
with stochastic variational inference (Hoffman et al., 2013).

When maximizing this variational objective, the uncertainty-
aware prior explicitly encourages the predictive distribution
induced by the learned variational distribution qΘ to have
high uncertainty on the context inputs while taking into ac-
count the covariance under the pre-trained features h(·; θ∗h)
and pulling µh towards the pre-trained parameters θ∗h

4.4. Practical Considerations

Computational Complexity. Computing the uncertainty
regularizer requires inverting an M -by-M covariance ma-
trix, which limits the size of the context batches. How-
ever, we find that in practice, a small context batch size M
(roughly 25% of the mini-batch size) is sufficient, and the
main computational expense is the forward pass needed to
compute the context likelihood—not the matrix inversion.
As the context distribution pXc,Yc is defined over context
batches (i.e., as defined above, each sample x

(j′)
c and y

(j′)
c

is a randomly sampled batch of size M ), we find that setting
J ′ = 1 for each stochastic gradient descent step is sufficient
in practice, which significantly reduces the computational
cost of the nested Monte Carlo estimation in Equation (9).

Defining a Suitable Context Distribution. In order for
a data-driven prior to favor models that generate reliable
uncertainty estimates, the context input distribution must
be chosen carefully. We find that distributions over context
inputs that retain domain-specific structure work particularly
well. For example, when performing image classification,
specifying a distribution over images that are meaningfully
distinct from the training images is more effective than white
noise, and when performing text classification, specifying
a distribution over sentences that are meaningfully distinct
from the training data but make sense grammatically is more
effective than random sequences of words.

5. Empirical Evaluation
In this section, we evaluate the usefulness of uncertainty-
aware priors for fine-tuning pre-trained models using
uncertainty-based evaluation metrics, including the negative
log-likelihood, selective prediction accuracy, calibration,
and semantic shift detection AUROC. We find that using
uncertainty-aware priors leads to significant empirical im-
provements in uncertainty quantification on a diverse set of
computer vision and natural language classification tasks.
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5.1. Experiment Setup

Datasets. We evaluate our methods on the CIFAR-10
(Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), and Flowers102 (Nilsback and Zisserman, 2008)
computer vision datasets, and on the MultiNLI and QNLI
natural language datasets (Wang et al., 2018).

Semantic Shift Data. For CIFAR-10 and CIFAR-100, we
use the SVHN dataset as an example of semantic shift. For
Flowers, we use the Plantae subset from the iNaturalist
dataset (Van Horn et al., 2018) as an example of seman-
tic shift. For QNLI, we use the MultiNLI dataset and for
MultiNLI, we use the Emotions dataset (Saravia et al., 2018)
as an example of semantic shift.

Context Distributions. For all image classification tasks,
we sample uniformly from the ImageNet dataset (Deng et al.,
2009) to construct the context distribution. For MultiNLI
and QNLI, we use sample uniformly from the MathQA
dataset (Amini et al., 2019) as the context.

Models. We use a pre-trained ResNet-50 (He et al., 2016)
for image and a pre-trained BERT-base (uncased) model
(Devlin et al., 2019) for text classification tasks.

Baselines. The default—and most commonly used—
method for fine-tuning pre-trained neural networks is Ex-
pected Risk Minimization (ERM) (Chen et al., 2020b;
Bardes et al., 2022). In addition to ERM, we also com-
pare our method to the Pretrain Your Loss (PTYL) method
by Shwartz-Ziv et al. (2022), the state of the art for Bayesian
transfer learning from pre-trained models. For implementa-
tion details, see Appendix B.

Training Details. For full training details, see Appendix B.

5.2. Accuracy and Negative Log-Likelihood

While having reliable uncertainty estimates is a crucial com-
ponent of trustworthy models, it is important that efforts
to improve uncertainty quantification do not compromise
model accuracy. For this reason, we begin by evaluating
predictive accuracies and negative log-likelihoods obtained
with different methods.

Results. We report the accuracy and negative log-likelihood
(NLL) in Tables 1 and 2 and Figure 2. We find that train-
ing with uncertainty-aware priors results in similar or im-
proved performance accuracy and a consistent improvement
in the negative log-likelihood, reflecting improved uncer-
tainty quantification without deterioration in generalization.

5.3. Selective Prediction

Selective prediction modifies the standard prediction
pipeline by introducing a rejection class (El-Yaniv et al.,
2010). In selective prediction pipelines, input points for
which a model abstains from making a prediction can be

Method CIFAR-10 CIFAR-100 Flowers

ERM 96.45±0.08 85.76±0.20 89.64±0.24
PTYL 97.35±0.34 85.82±0.23 89.73±0.51
Ours 97.19±0.08 85.69±0.13 90.35±0.18

(a) Computer Vision Tasks.

Method QNLI MultiNLI

ERM 91.31±0.10 84.65±0.13
PTYL 91.29±0.11 84.60±0.19
Ours 91.28±0.13 84.64±0.06

(b) Language Tasks.

Table 1. Predictive Accuracy (in %). Our method achieves com-
petitive accuracy across modalities and datasets. The mean and
standard error are estimated from five trials.

deferred to a human expert for review, enabling collabora-
tive human-machine decision-making. This way, selective
prediction can provide a responsible approach to leveraging
machine learning systems in safety-critical domains while
maintaining human oversight. Given classifier f where
f(x) = argmaxk∈Y f(x|k), the selective prediction model
introduces a selection function s which determines whether
a prediction should be made. This selection function can be
based on the outputs of f , such as s(x) = maxk∈Y f(x|k)
The selective prediction model fs is then defined as

f(x; τ) =

{
f(x) if s(x) ≥ τ

⊥ otherwise s(x) < τ
(10)

where τ represents the rejection threshold.

Predictive uncertainty is a natural choice for a selection func-
tion: If a model’s predictive uncertainty is above a certain
threshold, the selection function will decline to make a pre-
diction. Using predictive uncertain as a selection function,
selective prediction allows us to assess both a model’s pre-
dictive accuracy and the quality of its uncertainty estimates.
If a model is successful at rejecting data points for which it
would have made an incorrect prediction based on its level
of predictive uncertainty, the accuracy of the remaining,
non-rejected points will increase as more and more points
are rejected. To evaluate the selective prediction model, we
compute its predictive accuracy over a range of thresholds
τ and compute the area under the selective prediction accu-
racy curve. Successful selective prediction models are able
to obtain high accuracy across many thresholds.

Results. In Table 3 and Figure 3, we show the selective
prediction results on data with a mixture of in-domain and
out-of-distribution samples. The quality of the uncertainty
estimates determines the accuracy of the predicted inputs,
where in-domain samples are compared to their true label,
and any out-of-distribution samples are marked as incorrect.
We find that our method consistently outperforms the base-
line methods across all downstream tasks, both for images
and language classification tasks.
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Method CIFAR-10 CIFAR-100 Flowers

ERM 0.17±0.01 0.67±0.02 0.48±0.02
PTYL 0.11±0.01 0.68±0.01 0.47±0.01
Ours 0.11±0.01 0.62±0.01 0.45±0.02

Table 2. Negative Log Likelihood. Lower values are better. Our
method consistently achieves the best negative log-likelihood
compared to other methods. The mean and standard error are
estimated from five trials.

Method CIFAR-10 CIFAR-100 Flowers

ERM 76.46±0.27 71.99±1.01 78.87±0.62
PTYL 82.48±0.92 72.10±1.69 77.88±0.34
Ours 83.42±0.03 77.61±0.10 79.68±0.08

Table 3. Selective Prediction Accuracy (in %). Higher values
are better. Our method consistently achieves the best compared to
other methods. The mean and standard error are estimated from
five trials.
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Figure 2. Improvement in Negative Log Likelihood. We plot
the difference in the mean negative log-likelihood between ERM
and other methods. The mean and standard error are estimated
from five trials.
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Figure 3. Improvement in Selective Prediction Accuracy (in
%). We plot the difference in the mean selective accuracy be-
tween ERM and other methods. The mean and standard error are
estimated from five trials.

5.4. Model Calibration

Calibration expresses how closely the confidence of a
model’s predictions is aligned with its accuracy, and well-
calibrated models allow users to reliably estimate the accu-
racy of a model’s prediction from its confidence. This is
especially important in safety-critical applications, where it
is crucial to identify inaccurate predictions. Well-calibrated
models are also more trustworthy, as they provide users with
a clearer understanding of when to rely on the model.

One notion of miscalibration is the Expected Calibration
Error (ECE; Naeini et al., 2015), which computes the gap be-
tween model accuracy and confidence. The ECE estimator
is defined as

ECE=
∑M ′

m=1

|Bm|
n

|Accuracy(Bm)− Confidence(Bm)|,

where n is the number of samples, M ′ is the number of bins,
Accuracy(Bm) is the accuracy of samples within bin Bm,
and Confidence(Bm) is the average maximum probability
outputs of the classifier of all samples within the bin. A
perfectly calibrated model has an ECE of zero since its
accuracy is perfectly aligned with its confidence, and a
more miscalibrated model has a higher ECE.

Results. In Table 4 and Figure 4, we see that our method
significantly improves model calibration on all downstream
image tasks. We note that this improvement in performance
is dependent on the uncertainty-aware fine-tuning prior, as
the prior used by PTYL does not see similar benefits for cali-
bration. For language tasks such as QNLI and MultiNLI, we
find our method leads to slight improvements in calibration
compared to the ERM baseline (see Appendix A).

5.5. Semantic Shift in Vision and Language Data

In real-world prediction tasks, models may be tested on
data that is meaningfully different from the training data.
Semantic shift is a type of distribution shift where the test
data contains labels that are semantically different from any
labels seen during training, that is, ptrain(x, y) ̸= ptest(x, y).
This poses a significant challenge to model performance, as
a model will, by definition, not be able to output the correct
prediction for semantically different inputs. It is, therefore,
important to detect instances of semantic shift so that users
can trust a model’s prediction.

Semantic shift in natural language can be particularly subtle,
and semantic shifts may occur unexpectedly at deployment,
which can lead to catastrophic failures. To assess the re-
liability of semantic shift detection in language data, we
evaluate our method on two different language datasets,
MultiNLI and QNLI.

Uncertainty estimates can be used to identify semantic shifts
in the data, and reliable models should have high uncer-
tainty for input points whose true labels are semantically
different from the training labels. To evaluate the model’s
performance on detecting semantic shift, we compute the
predictive entropy H(p(y |x)). We design test sets that con-
sist of a mixture of in-distribution and semantically shifted
test samples, and we construct a binary classifier that only
uses the uncertainty score to separate the two groups. We
then compute the area under the ROC curve (AUROC) of
this classifier as an evaluation metric for model uncertainty
performance. Models that are able to successfully detect a
semantic shift achieve higher AUROC scores.
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Method CIFAR-10 CIFAR-100 Flowers

ERM 3.42±0.13 8.61±0.26 11.00±0.47
PTYL 3.10±0.27 8.65±0.56 10.99±0.64
Ours 1.68±0.08 7.22±0.20 10.07±0.18

Table 4. Expected Calibration Error (ECE). Lower values are
better. Our method consistently achieves the best ECE compared
to other methods. The mean and standard error are estimated from
five trials.

Method CIFAR-10 CIFAR-100 Flowers

ERM 94.96±0.72 86.57±1.21 95.68±1.85
PTYL 96.94±1.92 88.23±2.98 92.30±0.57
Ours 99.86±0.04 98.93±0.22 97.81±0.10

Table 5. Semantic Shift Detection AUROC (in %). Higher val-
ues are better. Our method consistently achieves the best AUROC
compared to other methods. The mean and standard error are
estimated from five trials.
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Figure 4. Improvement in ECE. Lower values are better. We
plot the difference in the mean ECE between ERM and other
methods. The mean and standard error are estimated from five
trials.
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Figure 5. Improvement in Semantic Shift Detection (in %).
We plot the difference in the mean detection AUROC between
ERM and other methods. The mean and standard error are esti-
mated from five trials.

Results. As can be seen in Table 5 and Figure 5, we find
that our method improves semantic shift detection by a sig-
nificant margin across all computer vision datasets, and we
are able to achieve an AUROC of above 96% for all tasks.
This indicates that uncertainty-aware fine-tuning priors en-
able models to successfully separate in-domain data from
semantically shifted data using only uncertainty values at
a much higher rate than existing methods. Additionally, as
can be seen in Table 6, uncertainty-aware fine-tuning pri-
ors significantly improve models’ ability to detect semantic
shifts in natural language, as evidenced by both the selective
prediction accuracy and the semantic shift detection AU-
ROC relative to the ERM baseline and PTYL. For semantic
shift examples, see Appendix B.

Method Selective Acc. (↑) Det. AUROC (↑)

ERM 72.18±0.42 81.15±0.42
PTYL 73.17±0.23 84.27±0.35
Ours 79.71±0.10 96.90±0.34

(a) Multi-Genre NLI (MultiNLI).

Method Selective Acc. (↑) Det. AUROC (↑)

ERM 75.41±0.13 94.28±0.59
PTYL 75.88±0.15 94.74±0.41
Ours 76.34±0.13 98.17±0.72

(b) Question-Answering NLI (QNLI).

Table 6. Semantic Shift Detection Selective Prediction. Our
method significantly outperforms ERM at selective prediction with
in-domain and semantically shifted data (Selective Acc.) and at
uncertainty-based semantic shift detection (Detection AUROC).
The mean and standard error are estimated from five trials.

6. Discussion and Limitations
Reliable uncertainty quantification is a key ingredient for
creating trust in machine learning systems. We showed that
explicitly incorporating uncertainty-aware priors into fine-
tuning routines for pre-trained models consistently and, in
many cases, significantly improves uncertainty quantifica-
tion across modalities and datasets. Intriguingly, the extent
to which fine-tuning pre-trained models with data-driven,
uncertainty-aware priors improves uncertainty quantifica-
tion depends heavily on the design of the context distribu-
tion, which governs the input points on which the prior
encourages the model to have high uncertainty. In our
empirical evaluation, we used fairly naive context distri-
butions: For computer vision tasks, we used ImageNet, and
for language tasks, we used the MathQA dataset to define
domain-related context distributions. We hypothesize that
using more carefully tailored, domain-specific context dis-
tributions will further improve performance. Finally, we
emphasize that uncertainty-aware priors are complementary
to other efforts for improving model performance, such as
more sophisticated pre-training techniques or alternative ar-
chitectures, can be used with any Bayesian inference method
that only requires access to an unnormalized prior density
(like SGLD, SG-HMC, or the Laplace approximation), and
we recommend uncertainty-aware priors as a simple, scal-
able, and probabilistically principled plug-and-play addition
to standard fine-tuning routines.
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Appendix
A. Further Empirical Results
A.1. Tabular Results

Dataset Method Accuracy(↑) Selective Acc.(↑) NLL(↓) ECE(↓) Detection AUROC(↑)

CIFAR-10 ERM 96.45±0.08 76.46±0.27 0.17±0.01 3.42±0.13 94.96±0.72

PTYL 97.35±0.34 82.48±0.92 0.11±0.01 3.10±0.27 96.94±1.92

Ours 97.19±0.08 83.42±0.03 0.11±0.01 1.68±0.08 99.86±0.04

CIFAR-100 ERM 85.76±0.20 71.99±1.01 0.67±0.02 8.61±0.26 86.57±1.21

PTYL 85.82±0.23 72.10±1.69 0.68±0.01 8.65±0.56 88.23±2.98

Ours 85.69±0.13 77.61±0.10 0.62±0.01 7.22±0.20 98.93±0.22

Flowers ERM 89.64±0.24 78.87±0.62 0.48±0.02 11.00±0.47 95.68±1.85

PTYL 89.73±0.51 77.88±0.34 0.47±0.01 10.99±0.64 92.30±0.57

Ours 90.35±0.18 79.68±0.08 0.45±0.02 10.07±0.18 97.81±0.10

MultiNLI ERM 91.31±0.10 72.18±0.42 0.34±0.01 6.14±0.11 81.15±0.42

PTYL 91.29±0.11 73.17±0.23 0.35±0.01 6.15±0.09 84.27±0.35

Ours 91.28±0.13 79.71±0.10 0.34±0.01 6.08±0.06 96.90±0.75

QNLI ERM 84.65±0.13 75.41±0.13 0.51±0.01 8.44±0.20 94.28±0.59

PTYL 84.60±0.19 75.88±0.15 0.52±0.02 8.48±0.31 94.74±0.41

Ours 84.64±0.06 76.34±0.13 0.51±0.01 8.37±0.20 98.17±0.72

Table 7. Comparison of Predictive Performance Across Datasets. Our method consistently outperforms existing methods on all
uncertainty metrics across downstream image and language tasks, and remains competitive on accuracy and negative log-likelihood. We
achieved improved results for Expected Calibration Error (ECE), Selective Prediction Accuracy (Selective Acc.), and Semantic Shift
Detection AUROC on all five datasets. We show the mean and standard error over five trials.

A.2. Ablation Study

To better understand the difference between using our uncertainty-aware fine-tuning prior compared to standard Gaussian
prior, we show how KL divergence between the variational distributions increases between our empirical prior compared
to a standard Gaussian prior as we fine-tune in Figure 6. We have the mean and the log of the variance of the variational
distribution qours and the standard Gaussian prior qstandard. We compute the KL divergence between the two distributions as
follows:

DKL(qours||qstandard) =
1
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Figure 6. Comparison of Learned Variational Distributions Under Different Priors. The plot shows the KL divergence from the
variational distribution learned with an uncertainty-aware prior to the variational distribution learned with an uninformative Gaussian prior.
The variational distribution learned under the uncertainty-aware prior differs significantly from the variational distribution learned with an
uninformative Gaussian prior. The plot shows the mean and the standard error of the KL divergence on CIFAR-10 with ResNet18 over
five trials. We fixed the parameter initialization and the stochasticity in the data loader to ensure comparability.
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A.3. Improvement Over Expected Risk Minimization
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Figure 7. On downstream image tasks, our method improves on all uncertainty metrics compared to the ERM baseline while
maintaining similar or improved levels of accuracy. For each metric, we plot the improvement over ERM, where positive values
indicate the metric has changed in the preferred direction (e.g., increased accuracy or decreased ECE). Means and standard errors are
calculated over five trials.
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B. Experiment Details
B.1. Training Details

Image Tasks. We use the SGD optimizer with momentum of 0.9 and learning rate of 0.005 with a batch size of 128 and
context batch size of 32 for methods with context dataset. We train all models for 50 epochs with a cosine annealing learning
rate scheduler and use the paramters at the last epoch to evaluate the models.

Language Tasks. We use the AdamW optimizer with a learning rate of 0.0001 with a batch size of 32 and a context batch
size of 8 for methods with context datasets. We train our models for three epochs with a linear learning rate scheduler and
use the parameters at the last epoch to evaluate our models.

Shared Details. We use the Monte Carlo sampling with 1 sample during training and 10 samples during evaluation for all
non-deterministic methods.

Sweep Protocol. We keep the same training setting for ERM training from SoTA results from (Shwartz-Ziv et al., 2022).
For our method, we sweep the cov-scale from 1e-5 to 1e-3, we report the best hyperparameter as our result. We use the
converge point to evaluate the models.

Computational Resources. All the experiments can be run on a single NVIDIA RTX8000 GPU, A40 GPU, or A100 GPU,
with 50GB of RAM and 16 core CPU 3.4GHZ (Intel Cascade Lake Platinum 8268 chips). The training time of CIFAR-10 is
around six hours for image tasks. The average running time is 294 minutes for ERM and 312 minutes for our method with a
ResNet-18 architecture, and 294 minutes for ERM and 432 minutes for our method with a ResNet-50 architecture.

B.2. Bayesian Transfer Learning with “Pretrain Your Loss” (Shwartz-Ziv et al., 2022)

Bayesian transfer learning method with pre-trained priors as presented in Shwartz-Ziv et al. (2022) serves as our baseline for
comparison in the subsequent experiments. This approach enables the transfer of knowledge acquired through pre-training
to downstream tasks by following a three-step pipeline. First, we fit a probability distribution with a closed-form density to
the posterior distribution over feature extractor parameters using a pre-trained checkpoint. Second, we adapt this distribution
to reflect the discrepancies between the pre-training and downstream tasks. Finally, we employ this re-scaled prior within
a Bayesian inference algorithm, accompanied by a zero-mean isotropic Gaussian prior for added parameters, such as
classification heads, to effectively learn on the downstream task.

In our experiments, following the original setup in Shwartz-Ziv et al. (2022), we utilize a prior learned over the parameters
of a pre-trained SimCLR ResNet-50 feature extractor trained on ImageNet (Deng et al., 2009; Chen et al., 2020a; He et al.,
2016). For Bayesian inference, we adopt the SWA-Gaussian (SWAG) method (Maddox et al., 2019), known for its strong
performance. SWAG involves an initial phase of exploring a basin in the loss function using SGD with a cyclic learning rate.
Subsequently, a Gaussian distribution is fitted to the SGD iterates, with the covariance matrix composed of diagonal and
low-rank components, including ten components. After obtaining a closed-form distribution using SWAG, we exclude the
head from the feature extractor, focusing solely on the distribution’s parameters related to the feature extractor. Any new
layers added for downstream tasks receive a non-learned prior over their parameters.

To perform approximate Bayesian inference, we employ stochastic gradient Hamiltonian Monte Carlo (SGHMC) (Chen
et al., 2014).
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B.3. Dataset Details

Training Examples Context Point Examples Semantic Shift Examples

CIFAR-10

Label: Dog

ImageNet

Label: Maltese (Dog)

SVHN

Label: 19

CIFAR-100

Label: Sunflower

ImageNet

Label: Maltese (Dog)

SVHN

Label: 19

Flowers102

Label: Common Dandelion

ImageNet

Label: Maltese (Dog)

iNaturalist (Plantae)

Label: Plantae

MultiNLI

Premise: He started slowly
back to the bunkhouse.

Hypothesis: He returned
slowly to the bunkhouse.

Label: Neutral

MathQA

Problem: the banker ’
s gain of a certain sum
due 3 years hence at 10
% per annum is rs . 36 .

what is the present worth ?

Emotions

I feel so cold

QNLI

Question: What was the port
known as prior to the Swedish

occupation of St. Barts?
Sentence: Earlier to their
occupation, the port was

known as “Carénage”.

Label: Not Entailment

MathQA

Problem: the banker ’
s gain of a certain sum
due 3 years hence at 10
% per annum is rs . 36 .

what is the present worth ?

MultiNLI

Premise: He started slowly
back to the bunkhouse.

Hypothesis: He returned
slowly to the bunkhouse.

Label: Neutral

Table 8. Representative training, context input, and semantic shift examples.
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