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Abstract

Humans can naturally identify, reason about, and explain anomalies in their1

environment. In computer vision, this long-standing challenge remains limited to2

industrial defects or unrealistic, synthetically generated anomalies, failing to capture3

the richness and unpredictability of real-world anomalies. In this work, we introduce4

CAVE, the first benchmark of real-world commonsense anomalies. CAVE supports5

three open-ended tasks: anomaly description, explanation, and justification; with6

fine-grained annotations categorizing anomalies based on their visual manifes-7

tations, their complexity, severity, and commonness. These annotations draw8

inspiration from cognitive science research on how humans identify and resolve9

anomalies, providing a comprehensive framework for evaluating Vision-Language10

Models (VLMs) in detecting and understanding anomalies. Our results show that11

state-of-the-art VLMs struggle with visual anomaly perception and commonsense12

reasoning, even with advanced prompting strategies. By offering a realistic and13

cognitively grounded benchmark, CAVE serves as a valuable resource for advancing14

research in anomaly detection and commonsense reasoning in VLMs.15

1 Introduction16

Figure 1: CAVE Example: a real-world image anno-
tated with commonsense anomaly descriptions, expla-
nations and justifications, as well as numerical features
representing how humans perceive these anomalies.

“If you notice an abnormal situation, please17

contact an agent.” Such announcements are18

commonplace in public spaces, highlighting19

a fundamental human trait: the ability to de-20

tect anomalies—situations that deviate from21

expectations [27, 25]. As Vision-Language22

Models (VLMs) [30, 42, 1, 29] are increas-23

ingly deployed in dynamic real-world settings24

[24, 56], their ability to recognize and reason25

about uncommon or surprising situations is26

crucial for safe and efficient operation [39].27

Despite advances in multimodal learning,28

anomaly detection using VLMs remains un-29

derexplored. Existing benchmarks focus on30

specific domains like industrial inspection31

[11, 13, 3, 54], medical diagnosis [15, 61]32

or video surveillance [46]. More recently,33

commonsense-oriented anomaly detection34

benchmarks have started to appear. They typ-35

ically rely on synthetic image generation to36

create artificial scenarios [6, 31, 45, 5, 49].37
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Non-synthetic approaches rely on domain-specific datasets, such as understanding creative elements38

in advertisements [36] or detecting video game glitches [48]. As a result, existing benchmarks fail to39

capture the diversity, unpredictability, and realism of real-world anomalies, leaving a critical gap in the40

evaluation of VLMs’ true anomaly detection capabilities.41

In this work, we introduce Commonsense Anomalies in Visual Environments (CAVE), the first visual42

anomaly benchmark curated from images captured from a human perspective, in real-life settings or as43

screenshots from smartphones and laptops.44

Building on top of the cognitive science literature regarding the way humans identify and understand45

anomalies, we propose a multi-task anomaly understanding framework. We split the detection46

process into three open-ended tasks that align with human anomaly detection and sense-making47

processes: anomaly description, anomaly explanation, and anomaly justification. We also categorize48

anomalies based on the type of visual reasoning required to identify them (e.g., spatial or attribute49

reasoning) and further label them with three numerical features: severity, surprisal or rarity, and50

detection complexity (see Figure 1).51

This novel framework allows for systematic characterization and annotation of commonsense visual52

anomalies, allowing us to propose CAVE, a benchmark curated from Reddit comprising 361 images53

designed to evaluate VLMs’ ability to detect and understand anomalies (Section 3). It captures a54

wide range of anomalies varying in visual manifestation, commonness, severity, and complexity. We55

evaluate 3 proprietary models and 5 open-source state-of-the-art models on CAVE, experimenting56

with 5 advanced prompting strategies (Section 4). We show that the best model, GPT-4o, only reaches57

56% F1-score on anomaly detection with a multi-step reasoning strategy, highlighting significant room58

for improvement. We analyze VLMs’ success and failure modes, finding that they perform better on59

surprising and severe anomalies but struggle with anomalies involving complex visual perception60

abilities, especially spatial reasoning and pattern detection; and that they lack the commonsense61

knowledge and reasoning ability to accurately identify anomalies.62

2 Theoretical Framework63

Leveraging cognitive science literature, we formalize how humans detect and understand anomalies64

into tasks. This framework guides our dataset creation process, model assessment, and analysis,65

enabling us to explore the alignment between human and machine processing of visual anomalies.66

Perception of the anomaly. In this work, we define an anomaly not simply as a statistical rarity67

[17, 11, 43] but as a situation that disrupts an established pattern or expectation [27, 25]. This68

perspective underscores the key human ability to construct mental models of the world and identify69

deviations from these models [28]. The process of identifying this anomaly depends on three main70

characteristics:71

• Anomaly complexity. Visually complex anomalies require greater cognitive resources for process-72

ing [14, 18, 47]. We leverage this formalism to assess the difficulty of detecting anomalies.73

• Anomaly severity. Anomalies that signal immediate danger or high risk are more likely to be74

detected. Humans use both cognitive appraisal and emotional arousal to assess severity [44]. Hence,75

we operationalize severity by asking to what extent the anomaly requires immediate action.76

• Anomaly surprisal. Surprise-based theories focus on how much an event updates prior beliefs77

(Bayesian) [23] or the amount of unexpected information it contains (Information-theoretic) [2]. We78

quantify surprisal with “How much does the situation deviate from expectations?”.79

We use these three formalizations to assess how humans perceive and detect anomalies. Similarly to80

[8], we posit that there are commonalities in the way humans and machines process visual information,81

and evaluate VLMs’ ability to detect anomalies depending on these features.82

Understanding of the anomaly. When detecting an anomaly, humans seek to understand it via three83

key steps. (a) Description: Identifying which elements violate expectations [27, 25]. (b) Explanation:84

Revisiting mental models to understand why the situation appears anomalous [26, 21], highlighting85

the model’s understanding of the underlying commonsense knowledge. (c) Justification: Providing86

plausible explanations about the sequence of events that led to the anomalous situation, highlighting the87

model’s sense-making ability [53, 62, 26]. Unlike synthetic datasets, with staged anomalies, each image88

in CAVE represents a real-world anomaly, naturally encouraging this multi-step interpretive process.89
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Figure 2: CAVE statistics. Distribution of the number of anomalies per image (left). Number of
images in each anomaly category (middle). Density of severity, surprisal and complexity scores per
average score and standard deviation (right).

Manifestation of the anomaly. Anomalies manifest in distinct visual ways. Inspired by MMBench90

[33], we categorize them into: (a) Entity Presence/Absence: Unexpected presence or absence of an91

object. (b) Entity Attribute: Anomalous object traits like shape, color, or usage. (c) Spatial Relation:92

Incorrect spatial positioning between objects. (d) Uniformity Breach: Breaks in expected visual93

patterns or regularities. (e) Textual Anomaly: Contradictory or surprising information in image text.94

This taxonomy complements the cognitive framework and supports our fine-grained benchmarking of95

VLM anomaly reasoning across varied contexts.96

3 Dataset97

Dataset Construction. To build CAVE, we curated real-world images from subreddits featuring98

unusual or surprising content. After filtering out unclear or inappropriate samples, we conducted a99

three-stage annotation process involving crowdworkers (via Amazon Mechanical Turk) and expert100

reviewers. Each anomaly was annotated with rich textual features (description, explanation, justifica-101

tion), categorized by manifestation type, and rated along severity, surprisal, and complexity. Please see102

Appendix C for full details on the data collection and annotation pipeline.103

Figure 2 displays the distribution of these scores. The dataset is skewed toward visually simple104

anomalies, with severity showing moderate imbalance and surprisal tending toward more unexpected105

instances; the latter two having relatively high variance across annotators. A moderate but significant106

correlation exists between severity and surprisal, with a Spearman correlation of 0.52. This is consistent107

with the intuition that highly severe anomalies are typically rarer and hence more surprising.108

Final dataset. CAVE consists of 309 anomalous and 52 normal images for a total of 361 images.109

Images have up to 3 anomalies, totaling 334 anomalies. Overall, CAVE exhibits a rich diversity of110

anomalies as shown in Figure 2 and Figure 14.111

Evaluation.112

• Anomaly Description (AD). We evaluate whether model-generated descriptions match any ground-113

truth ADs via pairwise comparison. GPT-4o serves as an automatic judge (90% accuracy on114

human-labeled subset with prompt shown in Figure 33), scoring precision, recall, and F1 [34, 63, 35].115

Matched pairs are labeled as True Positives (TP), unmatched ground-truth descriptions as False116

Negatives (FN), and unmatched model outputs as False Positives (FP).117

• Anomaly Explanation (AE). Given a ground-truth AD, models are expected to generate plausible118

explanations. Again, GPT-4o is used for matching (89% agreement with humans, see judge prompt119

in Figure 34), comparing model and human explanations.120

• Anomaly Justification (AJ). Justification quality is assessed along three criteria: (1) Plausibil-121

ity—whether the justification makes sense for the anomaly; (2) Relevance—how well it aligns with122

the image context; and (3) Creativity—the depth and novelty of the reasoning, beyond generic or123

trivial explanations. Due to the possibility of having more than one correct anomaly justification and124

the subjectivity of these criteria, we rely entirely on human evaluation.1 Using the same 50 TPs and125

FNs as in the AE task, three annotators compare each model-generated justification with the human126

one and rate it as better (+1), similar (0) or worse (-1).127

1We experimented with LLM-as-a-judge for AJ, but observed low correlation with human assessments,
particularly for creativity and plausibility. Hence, we prioritize reliability through human evaluation.
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Model AD AE
Vanilla CoT SoM CoT + SoM MS CoT CoT + consist. Vanilla

Llama3.2 90b 24.9 36.13 (+11.23) 28.00 (+3.10) 29.64 (+4.74) 32.19 (+7.29) 38.56 (+13.66) 85.22
LlavaOV 72b 27.3 27.12 (−0.18) 43.21 (+15.91) 27.11 (−0.19) 29.38 (+2.08) 36.08 (+8.78) 85.22
InternVL2.5 38b 33.7 36.65 (+2.95) 37.79 (+4.09) 33.71 (+0.01) 32.42 (−1.28) 40.00 (+6.30) 84.24
QwenVL2.5 72b 35.7 32.92 (−2.78) 34.33 (−1.37) 29.13 (−6.57) 34.18 (−1.52) 34.32 (−1.38) 85.02
InternVL2.5 78b 36.7 39.06 (+2.36) 36.62 (−0.08) 37.55 (+0.85) 35.76 (−0.94) 39.88 (+3.18) 83.83

GPT-4o 51.2 54.26 (+3.06) 40.70 (−10.50) 45.05 (−6.15) 56.64 (+5.44) 53.69 (+2.49) 88.04
o1 46.0 49.76 (+3.76) 43.54 (−2.46) 41.55 (−4.45) 49.50 (+3.50) 52.78 (+6.78) 90.96
Claude 43.3 51.31 (+8.00) 34.66 (-8.65) 43.50 (+0.19) 51.31 (+8.00) 49.46 (+6.15) 80.54

Average 37.35 40.9 (+3.55) 37.35 (+0) 35.91 (-1.44) 40.18 (+2.82) 43.10 (+5.75) 84.67
Table 1: AD and AE Results. F1-scores on the Anomaly Description (AD) task using various
prompting strategies (gains over vanilla in parentheses). AE results (last column) are based on the
vanilla prompt only.

4 Experiments128

We evaluate five open-source and three closed-source VLMs on the Anomaly Description (AD),129

Explanation (AE), and Justification (AJ) tasks. We focus primarily on AD, the core detection task, and130

briefly report AE and AJ results. Additional analyses, including breakdowns by anomaly type, score131

distributions, and cultural biases, are provided in Appendix G.5.132

Anomaly Description. We prompt each model to describe anomalies in an image, then use GPT-4o as a133

judge to compare predicted descriptions against ground-truth. Using a vanilla prompt, GPT-4o achieves134

the best performance (51.2% F1) (Table 1). Qualitative analysis reveals two main failure modes:135

(i) perception errors: hallucinated or misidentified objects, and (ii) reasoning errors: misjudging136

contextually normal elements as anomalies. A breakdown of GPT-4o’s false positives shows nearly137

half of them stem from reasoning issues (Table 5).138

To improve performance, we test five advanced prompting strategies, including chain-of-thought (CoT),139

multi-step reasoning, and self-consistency. The best-performing strategy is CoT + self-consistency,140

improving F1 by +4.8% over vanilla on average (see details in Section D). However, improvements are141

limited and inconsistent across models, with some prompts introducing new errors due to noisy visual142

grounding.143

Anomaly Explanation and Justification. For AE, all models achieve over 80% accuracy when144

explaining why a provided anomaly is anomalous, with slightly higher performance on anomalies145

they also successfully described. For AJ, we conduct a human evaluation of plausibility, relevance,146

and creativity. GPT-4o justifications are often reasonable when the anomaly is correctly detected,147

but tend to be simplistic and less creative than human responses (see Figure 12). Failures largely148

correlate with perception and reasoning errors in the AD task. Detailed AE/AJ examples are available149

in Appendix G.2 and G.3.150

Analysis by anomaly category and numerical features. Using our taxonomy, we note that GPT-4o’s151

FPs in AD involve hallucinating attribute, relation and textual anomalies (Figure 7; see classifier details152

in Appendix G.1). Textual anomalies are most frequently hallucinated but detected (56.28%) and153

explained (92.40%) best, uniformity anomalies are rarely hallucinated but detected (28.92%) and154

explained (88.28%) worst. Interestingly absence anomalies are harder to detect (28.2%) but easily155

explained (94.52%) once provided. Overall, harder-to-detect categories are also harder to explain.156

5 Conclusion157

We introduce CAVE, a multimodal benchmark of 334 visual anomalies in 361 images spanning seven158

tasks, designed to test VLMs’ real-world anomaly detection and understanding. Leading proprietary159

and open-source models (>70B parameters) only score ∼56 % F1 on anomaly detection, highlighting160

significant room for improvement. While they perform better on anomalies seen as highly severe and161

surprising by humans, they struggle with anomalies that demand complex visual understanding, such as162

spatial reasoning and detection of pattern violations. Improving anomaly detection requires advances163

in both visual understanding and commonsense reasoning.164
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A Research Tools358

Compute details. We evaluated 5 open-source models: InternVL2.5 (38B et 78B parameters) [12],359

LlavaOneVision (72B) [30], QwenVL2.5 (72B) [58], and Llama 3.2 (90B) [37]. We use the PyTorch360

and Hugging Face Transformers implementations for all models examined in this work. Each model is361

publicly available on the Hugging Face Hub. Table 2 provides each model’s corresponding Hugging362

Face identifier. All models are run in a zero-shot manner, with a temperature of 0, unless a self-363

consistency prompting strategy is used. Inference with the large models is done on 4 A100 80B GPUs364

for up to 3 hours for the full dataset.365

Use of AI assistants. Portions of the code of this paper have been written with the support of a366

coding assistant (Copilot). All AI-generated codes were thoroughly verified. Portions of the paper367

were corrected using a writing assistant (Grammarly).368

Model Identifier

Open-source Models
InternVL2.5 38B OpenGVLab/InternVL2_5-38B
InternVL2.5 78B OpenGVLab/InternVL2_5-78B
Qwen2.5-VL 72B Qwen/Qwen2.5-VL-72B-Instruct

LlavaOneVision 72B llava-hf/llava-onevision-qwen2-72b-ov-hf
Llama3.2 90B Vision meta-llama/Llama-3.2-90B-Vision

Closed-source Models
o1 o1-2024-12-17

GPT-4o gpt-4o-2024-11-20
Claude claude-3-5-sonnet-20241022

Table 2: Models used. Overview of the models considered in our study and their corresponding
identifiers on the Hugging Face Hub.

B Related Works369

B.1 Vision Language Models370

Vision Language Models have made significant progress by integrating powerful vision encoders with371

LLMs. In most of the models considered in this work (Table 2), images are first processed by the vision372

encoder and then projected into the language model’s embedding space [37, 58, 12]. These visual373

representations are fused with textual inputs and subsequently passed through the LLM. However,374

the overall performance of VLMs remains constrained by the capabilities of their vision encoders,375

particularly in capturing fine-grained visual details or handling out-of-distribution (OOD) images.376

B.2 Anomaly detection benchmarks377

Anomaly detection spans various modalities using specialized datasets, from industrial defect identi-378

fication to autonomous driving [38, 3, 4, 7, 10]. Broadly, anomalies can be classified into structural379

(e.g., physically detectable flaws or distortions in industrial inspections) and semantic (deviations at380

higher hierarchical levels, including the entity, relation, and frame levels) [10]. In this work, we focus381

on semantic anomalies that necessitate commonsense reasoning for detection and interpretation, hence,382

we emphasize prior works relevant to this domain.383

Several recent multi-modal benchmarks have explored unusual, abstract, or commonsense-defying384

visual scenarios to evaluate the robustness of VLMs. Visual Riddles [6] introduces synthetically385

generated images, each depicting a unique situation and requiring commonsense to answer a question.386

WHOOPS [5] takes a broader approach, generating abnormal images across a wide range of scenarios387

using three diffusion models. Similar to our work, it extends beyond visual commonsense violations388

to include anomalies related to social norms, cultural knowledge, and celebrities. The main focus is389

on explanation generation and image captioning. HaloQuest [51] attempts to mitigate hallucination390

by collecting and generating unusual and abstract visual scenes along with VQA designed to trigger391

hallucinations and use them for VLM fine-tuning.392
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(a) Visual Riddles (b) Whoops (c) ROME (d) ISEKAI (d) HaloQuest

(e) NEMO (f) PittAdds (g) MMIR (h) GlitchBench

Figure 3: Related Benchmark Examples. Examples of images from related multimodal anomaly-
detection benchmarks. More details about each benchmark are given in Section B and Table 3.

Complementing synthetic scenario generation, other benchmarks focus on systematically altering393

concrete object attributes and relationships to directly probe VLM reasoning. ROME (Reasoning394

Beyond Commonsense Knowledge) [64] explicitly modifies object attributes—such as color, shape, and395

size—and object relationships using DALL-E 2, creating images that defy commonsense expectations.396

Similarly, NEMO [31] investigates how VLMs recognize objects with uncommon properties, such as397

a blue mango. ISEKAI [49] explores a different approach by transferring real-world entities into an398

alternate world using diffusion models, introducing novel objects and entities and evaluating models399

on image-pair classification.400

A separate line of research focuses on anomalies within structured visual styles, such as advertisements401

and video games. (author?) [36] leverage the PittAds dataset [22], which examines atypical visual ele-402

ments in advertisements and defines specific tasks like multi-label atypicality classification, atypicality403

statement retrieval, and atypical object recognition. However, unlike open-ended benchmarks, these404

tasks constrain atypicality to a specific visual style. Similarly, MMIR [57] introduces a benchmark to405

assess VLMs’ ability to detect and reason about semantic mismatches in webpages, presentation slides,406

and posters—focusing on images where performance is largely driven by OCR capabilities. In contrast,407

while CAVE also contains a category for such anomalies, it is limited to a subset of images with less408

amount of text.409

Some recent benchmarks focus on leveraging non-photorealistic yet complex visual environ-410

ments—such as video games—to evaluate anomaly detection and reasoning. GlitchBench [48] is a411

benchmark using unusual and glitched scenes from video games. Similar to ours, one of its strengths412

is the fact that, since it’s not model-generated, there can be many distracting elements in the image,413

making the detection very challenging. Moreover, it’s an open-ended benchmark that is also evaluated414

using LLMs as a judge. However, all the images are non-realistic and the anomalies defy commonsense.415

Similarly, PhysGame [9] benchmark models’ ability to identify physical commonsense anomalies in416

gameplay videos.417

B.3 Evaluation Methods418

Across these benchmarks, evaluation typically relies on zero-shot testing on large-scale pretrained419

models to assess how well they generalize to rare or absurd scenarios without task-specific adaptation.420

A few studies, like WHOOPS and HaloQuest, also explore fine-tuning on a training subset to boost421

performance, illustrating how effectively VLMs adapt to OOD data. In our study, we focus exclusively422

on zero-shot evaluation, as most anomalies in CAVE are relatively easy for humans to identify (Figure 2423

(right)), and the small size of our dataset makes fine-tuning impractical.424
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Figure 4: An overview of CAVE data collection process. (1) Image Collection: Images were sourced
from the top 1,000 posts across various subreddits and filtered to ensure high-quality, safe data. (2)
Human Annotation: Initial annotations were performed by Mechanical Turk workers, focusing on
basic tasks such as anomaly descriptions and anomaly category identification. (3)Expert Verification
& Annotation: A subsequent round of expert-driven annotation and verification ensured high-quality,
consistent annotations across all six tasks, refining and validating the initial labels.

C Dataset Construction425

Since our benchmark focuses on real-world, daily-life visual anomalies, our data collection process and426

annotation strategy are heavily human-centered. The dataset creation process is illustrated in Figure 4.427

Data Collection. We collect images from four subreddits: r/ocdtriggers, r/mildlyconfusing,428

r/mildlyinfuriating, and r/OSHA. These subreddits specialize in content featuring unusual or429

uncommon situations, providing a rich source of real-life anomalies.430

Data Filtering. We remove images that have unclear content, that contain non-realistic anomalies, and431

that contain NSFW content or content related to sensitive topics. We apply automatic and manual filters432

(see Section E.1 for details), and then annotate the remaining images through three annotation rounds.433

Data Annotation. First, each image was reviewed by 5 annotators via Amazon Mechanical Turk.434

Annotators were asked whether the image was anomalous. If so, they were instructed to (i) describe and435

explain the anomaly in detail, (ii) describe what they expected instead, and (iii) categorize the anomaly.436

Subsequently, expert annotators consolidated these initial annotations by validating and formalizing437

them along the following axes:438

1. Anomaly Description (AD): A visual description of the anomaly in the image.439

2. Anomaly Explanation (AE): An explanation of why it is anomalous.440

3. Anomaly Justification (AJ): A realistic and plausible explanation for how the anomaly might have441

occurred.442

4. Anomaly Category: Category based on the anomaly manifestation taxonomy outlined in Section 2;443

the most frequent are anomalies about entity attributes, spatial relations, and textual anomalies444

(Figure 2).445

Then, three annotators independently rated each anomaly along the 3 axes:446

• Anomaly Severity: From 1 (does not require action; has no impact on functionality/safety) to 5447

(requires immediate action).448
• Anomaly Surprisal: From 1 (common, not very surprising; frequently observed in similar contexts)449

to 5 (extremely rare).450
• Anomaly Complexity: From 1 (obvious and easy to notice) to 5 (very hard to detect or requires451

specific knowledge to identify).452

Figure 2 displays the distribution of these scores. The dataset is skewed toward visually simple453

anomalies, with severity showing moderate imbalance and surprisal tending toward more unexpected454

instances ; the latter two having relatively high variance across annotators. A moderate but significant455

correlation exists between severity and surprisal, with a Spearman correlation of 0.52. This is consistent456

with the intuition that highly severe anomalies are typically rarer and therefore more surprising.457
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We measure the agreement between the 3 annotators (Table 4 in Section E.4). Spearman’s Rank458

Correlation (0.65) and Krippendorff’s Alpha (0.62) indicate moderate-to-strong agreement among459

annotators for severity, and weaker for surprisal, which is more subjective. Since complexity and –to460

a lesser extent–surprisal features have imbalanced distributions, we turn to the more adapted Gwet’s461

AC2 [19], which shows a much higher agreement for the complexity score (0.76).462

Final dataset. CAVE consists of 309 anomalous and 52 normal images for a total of 361 images.463

Images have up to 3 anomalies, totaling 334 anomalies. Overall, CAVE exhibits a rich diversity of464

anomalies (see Figure 2 and Figure 14) across the dimensions of severity, surprisal, complexity and465

visual manifestation. Moreover, each anomaly is described through our comprehensive multi-task466

framework, which addresses anomaly detection, explanation, and justification.467

Dataset Anomaly Type Dataset Size Data source Task

Real Synthetic #features #Images #Anomaly tasks Y/N multi Open

Visual Riddles ✓ 2 400 Text-to-Image models 1 ✓ ✓

WHOOPS ✓ 4 500 Text-to-Image models 1 ✓ ✓

HaloQuest ✓ 3 3,157 Text-to-Image models + Open Images dataset 1 ✓

ROME ✓ 1 1,563 ViComTe + ThingsNotWritten 1 ✓

NEMO ✓ 1 900 Text-to-image models 1 ✓ ✓

ISEKAI ✓ 1 1,498 Text-to-Image models 1 ✓

PittAds ✓ 1 3,928 Product ads & public service announcements 3 ✓

MMIR ✓ 1 534 VisualWebArena, Zenodo 2 ✓ ✓

GlitchBench ✓ 1 593 Game-Physics dataset + Unity + YouTube 1 ✓

CAVE ✓ 7 361 Reddit 3 ✓ ✓

Table 3: Related Benchmarks. Overview of multimodal reasoning benchmarks in images. Each
benchmark is categorized based on the type of images it contains (real or synthetic), dataset scale
(features per image and total number of images), generation method, and task involved (number of
tasks related to anomaly, binary yes/no questions, multiple-choice VQA, and open-ended VQA).

D Advanced Prompting Strategies468

(1) Chain-of-thought prompting (CoT) This strategy works by instructing models to “think step by469

step" before answering, breaking complex reasoning into explicit sequential steps [52]. See prompt in470

Figure 25.471

(2) Set-of-Marks prompting (SoM) We incorporate object-level annotations and bounding boxes472

generated by Grounding DINO [32] to supplement the prompt with visual cues. Specifically, Grounding473

DINO identifies relevant regions in the image and provides precise bounding box coordinates, which474

serve as explicit visual references to guide the model’s attention. Each bounding box is labeled with475

a number in the top-left corner, indicating the detected object. Following (author?) [59], we keep476

the textual prompt unchanged and instead replace the original images with versions that include these477

annotated boxes. As in the original work, the prompt does not explicitly mention the presence of478

bounding boxes. This strategy aims to reduce perceptual errors, such as hallucinations or counting479

mistakes, by focusing the model’s attention on concrete visual entities [59]. The prompt used here is480

the vanilla inference prompt (see Figure 24.481

(3) Combined CoT+SoM prompting This strategy integrates the step-by-step reasoning of CoT with482

visual cues of SoM. This hybrid approach first establishes precise visual references using bounding483

boxes, then builds logical reasoning chains based on these grounded elements, enabling both spatial484

understanding and logical inference. The prompt used is identical to the CoT inference prompt (see485

Figure 25), with the only change being the replacement of original images with versions containing486

bounding boxes.487

(4) Multi-step CoT prompting Unlike standard CoT, this method decomposes the task into three488

sub-steps: (i) planning the reasoning process, (ii) identifying key visual elements, and (iii) generating489

anomaly descriptions based on these observations. Each sub-task is explicitly prompted, encouraging490

more organized and interpretable reasoning [55]. See prompt in Figure 26.491
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Figure 5: Examples from CAVE. Each image is accompanied by a human-provided image description,
anomaly description, anomaly explanation, anomaly justification, anomaly manifestation category, and
numerical features of severity, surprisal, and complexity scores, for each of the anomaly manifestation
categories present in CAVE.

(5) CoT + Self-consistency prompting , In this strategy, the model is prompted multiple times (e.g.,492

three) using the CoT format with stochastic sampling (temperature = 0.5). The resulting outputs are493

then aggregated using a majority-vote mechanism: only anomalies mentioned in at least two of the494

three generations are retained. This technique reduces spurious detections by encouraging agreement495

across multiple reasoning paths, effectively filtering out unstable or hallucinated outputs [50]. See496

prompt in Figure 27.497

E Human Annotations498

E.1 Data Collection and Filtering499

We scraped images from Reddit, focusing on four subreddits: r/ocdtriggers, r/mildlyconfusing,500

r/mildlyinfuriating, and r/OSHA. Using the PRAW2 library, we downloaded the top 1,000 posts501

2https://github.com/praw-dev/praw
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from each subreddit. We kept only posts that contained images, and performed a first automated502

filtering, keeping only images above icon size.503

We then manually filtered the remaining 1,725 images using the following criteria:504

• Remove toxic, harmful, and not safe for work content.505

• Remove image featuring unrealistic content.506

• Remove images with annotations: text added on top of the image, circles, etc. When possible,507

we manually edited images that could be cropped to hide the annotations on the image.508

• Remove images that are ambiguous or have unidentifiable content.509

Many samples contain anomalies that were done on purpose; often for convenience, but sometimes510

as a joke. We keep these ones, as detecting the presence of a visual anomaly created on purpose for511

humoristic purposes, and understanding why it is anomalous, is part of the VLM abilities we want to512

probe.513

E.2 Annotation round 1: Amazon Mechanical Turk514

We used Amazon Mechanical Turk to obtain annotations for the Reddit images. To ensure high-quality515

annotations, we conducted a worker selection round, ultimately selecting 40 workers for the task.516

Workers were pre-screened using Amazon Mechanical Turk’s automatic metrics with the following517

criteria: (a) HIT approval rate above 80%, (b) location in the United States, and (c) more than 1,000518

approved HITs. Workers were compensated at a rate of 10 USD per hour, during the qualification and519

the annotation round. Each image received five annotations. We split the annotation into 3 rounds,520

allowing us to review the annotations between each round and provide feedback to the annotators when521

needed.522

Below are the detailed instructions that were given to the annotators.523

We need your help to identify and annotate anomalies in images. An anomaly refers to anything
that deviates from what most people consider standard, normal, or expected. It can be an
unusual element, action, or occurrence in an image that most people would find surprising or out
of place. For example, bowls of soup accompanied by forks but no spoon would be considered an
anomaly because a spoon is expected for eating soup. In contrast, a plant placed on a computer desk
is not an anomaly, as most people wouldn’t find it unusual.

Task Instructions:
1. Presence of Anomaly: Observe carefully the given image. Is there any anomalous

element, according to the definition given above? Not all of the images necessarily have
anomalies! You can right-click on the images and select “Open in a new tab" to zoom in.

2. Description of Anomaly: Describe the image and the anomaly in detail: What does the
image show? What is abnormal or unexpected about it? Why is it considered an anomaly?

3. Type of Anomaly: Select the type of anomaly (an example for each type is given below):
• Entity Presence: Something is present in the image but shouldn’t be there.
• Entity Absence: Something that should be present is missing.
• Entity Attribute: An object has an anomalous attribute such as color, shape, label,

orientation, or usage.
• Spatial Relation: Something is incorrectly located or oriented relative to another element.
• Uniformity Breach: There is an unexpected or misplaced element in an ensemble that

should be uniform or symmetrical.
• Textual Anomaly: The text in the image presents an unexpected, surprising, or illogical

message.
You may choose more than one type of anomaly if applicable.

524

15



E.3 Annotation round 2: Expert annotation consolidation525

Following the first round, we manually filtered out samples that were confusing for annotators. Our526

pool of expert annotators includes undergraduate degree holders, graduate students, and PhD students527

with a background in NLP.528

Below are the detailed instructions that were given to the annotators.529

Overview.
We are studying how well large vision-language models can identify anomalies that defy common-
sense in images. Our goal is to assess their understanding of a situation, its severity, and potential
solutions.
You will annotate anomalies visible in images. Each annotation form contains 5 images. Each
image has already been annotated by 4 to 5 workers via MTurk, who answered the following
questions:

1. Is there an anomaly in this image?
2. If yes, they described:

(a) Anomaly Description (AD): Describe the image and the anomaly in detail: what
does the image show, what is wrong about it, and why?

(b) Correct Version Description (CVD): Describe what the correct version of the image
would look like if the anomaly weren’t present.

Definition of an Anomaly An anomaly is anything that deviates from what most people consider
standard, normal, or expected. It can be an unusual element, action, or occurrence in an image
that would seem surprising or out of place to most people.
Examples:

• A bowl of soup served with a fork but no spoon is an anomaly because a spoon is the
expected utensil for soup.

• A plant on a computer desk is not an anomaly, as it is a common and expected item in
such a setting.

Key Principle: Identifying an anomaly should rely only on what is clearly visible in the image—it
should not require excessive assumptions about the situation.
Don’t spend too much time on a single image. If you’re unsure or confused about an image or an
annotation, skip it and leave a note in the open field at the bottom of the page.

Instructions.
Workers often identified different anomalies in the same image. Your task is to consolidate their
annotations into a structured format. You may input up to 3 anomalies per image. Most images
contain only one anomaly. For each image, based on the workers’ annotations, provide a final set of
anomalies in the following format:

1. Image Description: Provide a short description of the image, without describing the anomaly.
Include any useful context, such as whether the image is a photo, screenshot, or illustration, the
location, etc.

2. Anomaly Description (AD): Clearly describe the anomaly.
3. Correct Version Description (CVD): Describe what the image would look like if the anomaly

weren’t present. Do not describe how to fix the anomaly—only describe the correct version as if
it were normal.

4. Anomaly Explanation (AE): Explain why it is anomalous. Avoid vague statements like “because
it’s abnormal.” Instead, consider: Why is the correct version expected? What makes the anomaly
logically inconsistent or unexpected?

5. Anomaly Justification: Provide a realistic and plausible explanation for how the anomaly might
have occurred. Keep it concise (max 2 sentences). Example: If an object is blocking a door, a
plausible justification might be: “The door is not in use because it leads to an empty space.”

6. Anomaly Severity (Does the anomaly require immediate action?)
• 1 = Does not require action; purely aesthetic or has no impact on functionality/safety.

Example: A small stain on a non-critical surface.
530
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• 3 = Moderately concerning; might cause inconvenience or minor inefficiencies but does not
pose immediate risks. Example: A misaligned sign that is still readable.

• 5 = Requires immediate action; it could present a safety hazard, major malfunction, or
significant risk. Example: A worker using a circular saw without protection gear.

7. Anomaly Surprisal (How much does it deviate from expectations?)
• 1 = Common, not very surprising; frequently observed in similar contexts. Example: A car

parked in an inconvenient way.
• 3 = Unusual but not shocking; uncommon but plausible.
• 5 = Extremely rare and highly surprising; would cause strong reactions (shock, confusion,

amazement). Example: A tree growing upside down from a roof.

8. Anomaly Complexity (How hard was this anomaly to detect?)
• 1 = Obvious and easy to notice; immediately stands out. Example: A red apple in a pile of

green apples.
• 3 = Requires some attention to notice; not the first thing seen but becomes clear after a few

seconds. Example: A misspelled word on a sign.
• 5 = Very hard to detect; blends into the environment or requires specific knowledge to

identify. Example: A minor defect in complex machinery.

Guidelines:
In practice, you will reuse the MTurk annotations. Here are common situations you may encounter
and how to handle them:

• Same Anomaly from Different Workers. If multiple workers describe the same anomaly, merge
their descriptions into one clear and accurate version. Two anomalies are the same if they have
the same description and explanation.

• One Worker Describes Multiple Anomalies Jointly. If a worker describes multiple anomalies
together, split them into separate entries and fill in the necessary fields for each.

• Invalid Anomaly.
– Does this truly qualify as an anomaly based on the definition?
– Did the worker make assumptions about the situation that are not straightforward using the

image alone?
– Did the worker misinterpret the image?

If invalid, flag it and do not include it in the consolidated list.
• Unclear Anomaly Description. If an anomaly is valid but poorly described, rephrase it clearly

and complete the required fields (AD, AE, CVD, etc.).
• Unclear or Incorrect Correct Version Description (CVD). If a worker’s CVD does not align

with the anomaly or is poorly phrased, rewrite it according to the guidelines.
• No Workers Found an Anomaly. If no worker identified an anomaly, check if you can spot an

obvious one. If not, leave the fields empty.
• All Reported Anomalies Are Invalid. If none of the workers’ anomalies match the definition

and you don’t see any other valid anomaly, leave everything empty.

In practice:
For convenience, you can:

• Copy-paste the list of MTurk annotations to the side for easy reference.
• Open the image in full resolution in another window.
• Keep these instructions open in a separate tab.

LLM Usage:
• You can use a language model to check and correct the grammar of your annotations.
• DO NOT upload or share the image with an LLM!

531
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Figure 6: Culture-specific examples of CAVE. Examples of anomalies from CAVE annotated as
Western-centric, along with culturally grounded justifications explaining why they should not be
considered anomalies.

E.4 Numerical features inter-rater agreement532

Each numerical feature – anomaly surprisal, complexity and relevance – is annotated by 3 people.533

We measure the agreement between the 3 annotators (table 4) using Spearman’s Rank Correlation,534

Krippendorff’s Alpha, and Gwet’s AC2. Spearman’s Rank Correlation (0.65) and Krippendorff’s Alpha535

(0.62) indicate moderate-to-strong agreement among annotators for severity, and weaker for surprisal,536

which is more sujective. Since surprisal and complexity are imbalanced, we turn to Gwet’s AC2 [19],537

a paradox-resistant agreement score, where the chance agreement is measured in a less distribution-538

sensitive fashion. We use quadratic weights, meaning that larger disagreements are exponentially more539

problematic than smaller ones. Indeed, likert-scale ratings with relatively subjective tasks such as here540

may lead to confusions between similar ratings (4 and 5, 1 and 2). Gwet’s AC2 highlights a much541

higher agreement for the complexity score of 0.76, which is considered good [20].542

Spearman ρ Krippendorff α Gwet AC2

Severity 0.65 0.62 0.58
Surprisal 0.34 0.32 0.54
Complexity 0.28 0.23 0.76
Table 4: Inter-rater agreement for each numerical feature.

E.5 Cultural representation & bias543

An anomaly is generally defined as a deviation from the norm. In this context, "norm" refers to a set544

of expectations commonly shared within a particular social or cultural group. Some of these norms545

are broadly universal, for example, adhering to safety standards to avoid hazardous situations, while546

others are culturally specific, such as the custom of wearing red at weddings in China [16, 40, 41]. As a547

result, interpretations of what constitutes an anomaly can differ significantly across cultural contexts,548

leading to situations that may appear ordinary to individuals from one background and anomalous to549

those from another [60].550

To explore the extent to which cultural bias influences the perception of anomalies, we conducted551

an analysis of the CAVE dataset. Specifically, we examined whether a subset of visual anomalies552

presented in the dataset reflected culturally contingent interpretations. We selected a subset of 35553
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anomalies based on high variance (above 1.5 for each feature) in the numerical features obtained from554

annotator responses, as this variance suggests a lack of consensus that may be attributable to differing555

cultural perspectives. Among these, we identified four images containing anomalies that appeared556

Western-centric but would not be considered anomalous in other cultural contexts. In addition, from557

the full benchmark, we selected 20 examples reflecting personal biases, such as anomalies related to558

how individuals park their cars or behave in public spaces, as well as a set of universally recognized559

anomalies. For each of these 24 samples, we provided explanations of the relevant cultural context,560

where applicable, and updated the corresponding Anomaly Justification (AJ) annotations accordingly.561

Using these manually curated annotations as reference labels, we constructed a prompt to evaluate562

whether each anomaly aligned with specific cultural, religious, regional, or historical norms, and not563

with personal biases. This prompt was submitted to GPT-4o for analysis on the same subset. The model564

performed well, misclassifying only one instance: a train seat colored differently from the rest. While565

this was intended to reflect a "uniformity breach," the model interpreted it as a designated priority566

seat—an error likely due to contextual ambiguity.567

We subsequently applied the same automatic bias assessment method to the entire CAVE dataset to568

verify the initial manual annotation. This broader analysis identified the same four anomalies that569

exhibited a Western-centric bias. These instances are presented in Figure 6, along with the model’s570

culturally influenced anomaly justifications for each. This analysis indicates that while the majority of571

anomalies in the CAVE dataset are perceived as universally anomalous and actionable, a small number572

are influenced by culturally specific norms, particularly those aligned with Western perspectives. These573

findings underscore the importance of accounting for cultural variability in the development of robust574

and inclusive anomaly detection systems.575

F Prompts576

The prompts for six tasks, the automatic evaluation and the cultural assessment are listed below:577

• Anomaly Description: Figure 24578

• Anomaly Explanation: Figure 28579

• Anomaly Justification: Figure 29580

• Anomaly Severity: Figure 30581

• Anomaly Surprisal: Figure 31582

• Anomaly Complexity: Figure 32583

• AD judge prompt: Figure 33584

• AE judge prompt: Figure 34585

• Cultural bias assessment prompt: Figure 36586

G Additional Results587

G.1 Anomaly Description588

WE categorize all false positives (anomalies hallucinated by the VLM) into the different anomaly589

visual manifestation types (according to our taxonomy), by tuning a classifier of Anomaly Descriptions.590

We run the classifier on GPT-4o’s false positives using the prompt given in Figure 35. Figure 7 shows591

that GPT-4o predominantly hallucinates anomalous entity attributes (e.g., count, color), anomalous592

spatial relations, and textual anomalies (anomalies in the context of text seen in the image).593

To further understand the limitations of the models, we perform a qualitative error analysis. We iden-594

tify two main failure modes with the vanilla prompt. First, perception errors—hallucinations of missing595

or non-existent objects, miscounts, or incorrect spatial relations—arise from over-reliance on language596

priors and weak visual cues. For instance, in Figure 21, GPT-4o claims a chair is missing, despite all597

spots being filled. Second, reasoning errors occur when models flag contextually normal elements as598

anomalous due to faulty commonsense reasoning or limited commonsense knowledge. In Figure 18,599

QwenVL incorrectly marks a star next to the elevator button “1” as anomalous, overlooking its common600

use to denote the ground floor. Finally, some cases involve both perception and reasoning errors.601
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Figure 7: FP classifier performance. Anomaly category proportions in GPT-4o FP.

Additional examples of model errors can be found in Figures 18-23. We perform a manual classification602

to assign each GPT-4o FP (hallucinated anomaly) into one of these categories in Table 5, finding that603

around half of them are reasoning mistakes.604

Prompt Perception Reasoning Both Count

Vanilla 44% 49% 7% 86
MS CoT 68% 32% 0 95

Table 5: GPT-4o Qualitative Analysis. Proportion of FP error analysis across prompting strategies as
determined by human evaluation.

G.2 Anomaly Explanation605

Each model’s performance on TP and FN from the AD task is detailed in Table 6. Most of the models606

have higher performance on TP examples than FN.

Model TP Acc. (%) FN Acc. (%)

open-source models
Llama3.2 90b 82.22 76.88
LlavaOV 72b 90.67 79.76
InternVL2.5 38b 84.26 84.21
QwenVL2.5 72b 87.39 82.64
InternVL2.5 78b 81.08 86.58

closed-source models
GPT-4o 90.86 85.22
o1 93.02 88.89
Claude 87.10 73.97

Average 83.97 81.02
Table 6: AE Results on TP vs FN. AE Accuracy on TP vs FN for each model.

607
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GPT-4o: A banana is 
unusually shaped like 
a phone receiver.

GT: The avocado was 
eaten from the outside

GPT-4o: A truck is parked on the roof of 
a building.

GT: The wooden planks on the cargo 
bed of the truck penetrated the driver's 
cabin and the windshield.

GPT-4o: A car is parked on top of another car 
in a parking lot.

GT: The big Chevrolet truck is crossing over 
into the parking spot on its right, taking up two 
parking spots.

GPT-4o: The car is parked on the roof of a 
house.

GT: The car is parked between the handicap 
spots, on the blue lines.

Figure 8: Set-of-Marks images. GPT-4o anomaly descriptions based on images with bounding boxes
derived from GroundingDINO.

Prompting Strategy TP FP FN Precision Recall F1 Score
Vanilla 119.75 191.38 219.13 41.19 35.37 37.35
CoT 139.63 (+19.88) 159.00 (-32.38) 247.38 (+28.25) 47.95 (+6.76) 36.08 (+0.71) 40.90 (+3.55)

SoM 136.00 (16.25) 222.38 (+31.00) 251.00 (+31.88) 43.38 (+2.20) 35.14 (-0.23) 37.35 (+0.00)

CoT+SoM 123.50 (+3.75) 181.13 (-10.25) 263.50 (+44.38) 42.01 (+0.83) 31.91 (-3.46) 35.91 (-1.44)

MS CoT 144.50 (+24.75) 150.13 (-41.25) 242.50 (+23.38) 50.45 (+9.26) 33.88 (-1.49) 40.18 (+2.82)

Self-consistency 145.13 (+25.38) 141.75 (-49.63) 240.63 (+21.50) 51.72 (+10.53) 37.50 (+2.13) 43.10 (+5.75)

Table 7: Overall anomaly detection performance. Values in parentheses indicate deltas from the
Vanilla baseline; green with for improvement, red for decline.

Prompting Strategy Absence Attribute Presence Relation Textual Uniformity

Vanilla 24.78 35.10 51.13 32.02 53.00 28.86
CoT 30.84 (+6.05) 39.13 (+4.03) 56.95 (+5.82) 35.62 (+3.60) 60.58 (+7.58) 30.56 (+1.71)
SoM 27.03 (+2.25) 33.58 (-1.52) 47.46 (-3.67) 30.57 (-1.45) 55.36 (+2.36) 25.95 (-2.91)
SoM+CoT 27.85 (+3.06) 33.20 (-1.91) 52.85 (+1.72) 30.74 (-1.28) 54.61 (+1.61) 28.38 (-0.48)
MS CoT 26.74 (+1.95) 39.90 (+4.79) 53.44 (+2.31) 33.63 (+1.61) 57.15 (+4.15) 27.35 (-1.51)
Self-consistency 31.97 (+7.19) 41.83 (+6.73) 56.12 (+4.99) 36.52 (+4.50) 56.97 (+3.97) 32.45 (+3.59)

Average 28.20 37.12 52.99 33.18 56.28 28.92

Rank 6 3 2 4 1 5

Table 8: F1 scores per anomaly category. Values in parentheses indicate deltas from the Vanilla
baseline; green for improvement, red for decline.

G.3 Anomaly Justification608

Figure 13 compares InternVL2.5 78B with human anomaly justifications.609

G.4 Numerical features prediction610

The last set of tasks of CAVE is the classification of the anomalies into ordinal features: surprisal,611

severity, and complexity, across a scale of 1 to 5. Echoing the inter-rater agreement that we computed612

between the 3 expert annotators on the surprisal, severity, and complexity scores, we measure the613

agreement between the human average score for each feature and the models’ predictions of each score.614

The prompts used for these features can be found in section F.615

GPT-4o and InternVL show high agreement with humans for severity (section G.4), with both models616

achieving strong agreement scores. Surprisal and complexity prediction are harder tasks for both617

models.618

The analysis of complexity, severity, and surprisal scores across different anomaly categories has619

been shown in Figure 14. The severity scores indicate anomalies categorized under entity absence620

and presence tend to be perceived as more severe. Conversely, anomalies related to uniformity621

breaches are consistently viewed as less severe. Examining the complexity scores, we observe622
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Figure 9: Models’ performance across severity feature. Plot showing the deviation in the models’
performance across different levels of anomaly severity for the anomaly description task. The results
indicate that models perform well on less severe anomalies, while performance drops significantly for
highly severe anomalies on average.

GPT-4o InternVL2.5 78b
ρ AC2 ρ AC2

Severity 0.78 0.79 0.75 0.77
Surprisal 0.49 0.81 0.28 0.24
Complexity 0.27 0.80 0.26 0.61

Table 9: Numerical Feature Prediction. Comparison of GPT-4o and InternVL2.5 78b prediction of
Anomaly Severity, Surprisal and Complexity. We measure Gwet’s AC2 and Spearman’s ρ.

that categories like textual anomalies exhibit greater variability, suggesting diverse perceptions of623

complexity within annotators, whereas uniformity anomalies show lower complexity scores with624

minimal variance. The distribution of surprisal scores indicates that anomalies in the textual and625

presence categories consistently evoke stronger feelings of unexpectedness, while again, anomalies626

categorized as uniformity remain at lower surprise levels.627

G.5 Analysis by numerical features628

We analyze anomaly detection TPs and FNs across CAVE’s three numerical features: severity, surprisal,629

and complexity (Figure 15). GPT-4o with vanilla prompt performs best on anomalies that are more630

surprising and less complex – i.e., those humans found the most uncommon and easy to spot – while631

missed ones are often less severe, less surprising, and more complex. Other models show similar trends632

(Section G.4).633
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Figure 10: Models’ performance across surprisal feature. Plot showing the deviation in the models’
performance across different levels of anomaly surprisal for the anomaly description task. The results
reveal that models perform well on high-surprisal anomalies but also exhibit more false positives for
more surprising anomalies on average.

Model Absence Attribute Presence Relation Textual Uniformity

Open-source Models
Llama3.2 90b 92.00 83.66 87.91 88.57 89.66 86.15
LlavaOV 72b 94.34 89.57 91.49 91.16 94.51 92.75
InternVL2.5 38b 94.34 90.91 90.32 87.32 93.33 91.18
QwenVL2.5 72b 94.34 90.91 91.49 90.41 90.91 87.88
InternVL2.5 78b 92.31 88.89 90.32 89.66 92.13 86.15

closed-source models
GPT-4o 98.18 94.74 94.85 91.89 92.13 94.29
o1 2 96.30 94.1 96.97 94.04 95.65 91.18
Claude 94.34 87.90 92.47 88.11 90.91 76.67

Average 94.52 90.09 91.98 90.15 92.40 88.28

Rank 1 5 3 4 2 6

Table 10: AE performance per category. AE performance per anomaly category for vanilla inference
prompt.

G.6 Analysis by anomaly category634

Using our anomaly taxonomy (Section 2), we categorize GPT-4o’s FPs in AD and find it most often635

hallucinates attribute, relation, and textual anomalies (Figure 7; see classifier details in Section G.1).636

Although textual anomalies are among the most frequently hallucinated, they are handled best, with637
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Figure 11: Models’ performance across complexity feature. Plot showing the deviation in the
models’ performance across different levels of anomaly complexity for the anomaly description task.
The results reveal that models perform well only on low-complex tasks but also exhibit false positives
for much simpler anomalies on average.

Figure 12: AJ Results. Comparison of GPT-4o vs. Human Anomaly Justifications.

top detection (56.28%) and strong explanation scores (92.40%) (See Appendix Table 8 and Table 10).638

In contrast, uniformity anomalies, which are rarely hallucinated, are the hardest to detect (28.92%)639

and explain (88.28%). Interestingly, absence anomalies show low detection (28.20) but the highest640
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Figure 13: Comparison of InternVL vs. Human Anomaly Justification. Bars above the x-axis
indicate cases where InternVL outperformed humans, while bars below indicate cases where InternVL
underperformed. The 3 bars on the left are results over 50 False Negatives (FN), where the model failed
to identify anomalies; the 3 bars on the right are over 50 True Positives (TP).

Figure 14: Distribution of anomaly scores across categories. The boxplots illustrate the distribution of
complexity, severity, and surprisal scores across different anomaly categories, highlighting variations
in human perception of anomalies.

explanation performance (94.52), suggesting models can reason well once the anomaly is identified.641

Overall, harder-to-detect categories are also harder to explain.642

G.7 Cultural bias assessment643

Considering the diversity of cultures and personal experiences, a situation may be perceived as644

anomalous in one cultural context while appearing entirely normal in another [16, 41, 60]. To investigate645

this phenomenon, we manually investigate which of the anomalies in CAVE reflect cultural biases. Our646

analysis shows that while the majority of anomalies are independent from cultural influence, a subset of647

four cases may reflect a Western-centric bias in their annotations. Notably, when GPT-4o is prompted648

with these images, it consistently identifies them as anomalies, suggesting an implicit alignment with649

Western cultural norms in the model’s internal knowledge. Further details on the experimental setup650

and findings are provided in Section E.5 and the four cases are depicted in Figure 6.651
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Figure 15: Distribution of anomaly descriptions stratified by GPT-4o’s TP vs FN across severity,
surprisal, and complexity scores.

H Failure examples652

Examples of model predictions on images of CAVE are shown in Figure 18 to 23.653

Examples of incorrect AE generations using GPT-4o are given in Figure 16. In the first image, the654

model generation mentions that the rusty wrench is a functional part of the control panel rather than655

recognizing it as an improvised obstruction to the switch usage. In the second image, it doesn’t give656

reason for why the toilet bowl should not have objects. In the third image, it misidentifies the anomaly657

by describing the miscolored chair as white and entirely ignoring the missing chair.658

Examples of incorrect AJ generations using GPT-4o are given in Figure 17. In the first image, the659

provided justification is highly implausible and lacks creativity. In the second example, the model660

makes a reasoning mistake when generating the AJ, assuming that 292 is a valid age displayed on a661

birthday cake. In the third example, the model makes a perception mistake, incorrectly describing the662

trash can as full or not properly open; the resulting AJ is plausible but incorrect given the image.663
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(1)The second from left chair in the first row is 
in the wrong color. (2)There is a chair missing on 
the second row from the back. 

GT Anomaly Description

The regularly alternating pattern is 
broken due to the second from left chair 

in the first row being red instead of white.

Human Explanation

The second chair from the left in the first 
row is white, while the rest of the chairs 
in that row are red, disrupting the color 

pattern.

GPT4o Explanation

There is a soda can in the toilet bowl.

GT Anomaly Description

A toilet needs to be devoid of any objects 
in the bowl that might cause blockages for 

proper functioning.

Human Explanation

A soda can is typically found in kitchens 
or dining areas, not in a toilet bowl, which 

is meant for sanitation purposes.

GPT4o Explanation

A rusty wrench is bolted to a control 
panel to hold a switch in a permenant 

position.

GT Anomaly Description

The presence of the rusty wrench 
prevents the usage of the switch.

Human Explanation

Using a rusty wrench to hold a switch in 
place on a control panel is unusual 

because it is an improvised and 
potentially unsafe method for securing 
electrical components, which should be 

done with proper tools and mechanisms.

GPT4o Explanation

Figure 16: GPT-4o Incorrect AE Generations. Three examples from the AE task where GPT-4o
incorrectly explains the anomaly. Note: In the rightmost image, two anomalies are present, but only the
first one is considered in this example of a failed explanation.

The logo for the restaurant is 
off-center and sticks out of the side 

of the building

GT Anomaly Description

There used to be a second sign on 
the right, but it fell before the photo 

was taken

Human Justification

The logo may have been improperly 
installed due to lack of precise 

measurement or 
miscommunication during the 

installation process

GPT4o Justification

The candles depict the age of 
“Jermey” as 292 years old

GT Anomaly Description

The candles have been placed as 
a joke and exaggerating Jermey’s 

age

Human Justification

The candles might have been 
arranged incorrectly, resulting in 

the age being displayed as 292 
instead of the intended order, 

such as 29 or 92.

GPT4o Justification

There is trash on the floor 
next to the trash can

GT Anomaly Description

A person threw the trash 
towards the bin and 

missed it

Human Justification

The trash can is full or 
was not opened properly, 

causing overflow and 
resulting in trash being 

left outside

GPT4o Justification

Low plausibility and creativity Reasoning error Perception error

Figure 17: GPT-4o Incorrect AJ Generations. Three examples from the AJ task where GPT-4o
provides a poor or incorrect justification.
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Example 1

GT AD: The button for floor number 2 is missing.
✗o1: The braille labels for 3 and 5 appear identical., The floor numbers are arranged out of a
typical sequence.
✗GPT-4o: The button for floor 1 is labeled with a star instead of a number.
✗LlavaOneVision: The elevator button for the first floor is marked with a star instead of the
number 1., The close button is red, which is unusual as it is typically found in a different color.
✗InternVL: The number 1 button is missing its label.
✗QwenVL: The button labeled ‘1’ has a star symbol next to it, which is not present on other
numbered buttons.

Figure 18:
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Example 2

GT AD: The poster says forty carrots but there are only twenty eight illustrations of carrots.
✗o1: No output
✗GPT-4o: The word ’forty’ is written with a carrot symbol replacing the letter ’i’.
✗LlavaOneVision: No output
✗InternVL: No output
✗QwenVL: No output

Figure 19:

Example 3

GT AD: One of the men is standing on the far end of the plank with no other support or safety
gear.
✗o1: no output
✗GPT-4o: no output
✗LlavaOneVision: no output
✗InternVL: no output
✗QwenVL: no output

Figure 20:
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Example 4

GTAD: There is a chair missing on the second row from the back.
✗o1: No output
✗GPT-4o: The seating arrangement is missing a seat in the bottom row, creating an empty
space.
✗LlavaOneVision: No output
✗InternVL: No output
✗QwenVL: The seat at the bottom right corner appears to be partially cut off by the edge of the
image.

Figure 21:

Example 5

GT AD: The vending machine is sponsored by Aquafina, a water brand, but there are no
Aquafina water bottles being sold by the machine.
✗o1: No output
✓GPT-4o: The vending machine labeled ’Aquafina’ contains a variety of drinks other than
Aquafina water.
✗LlavaOneVision: No output
✗InternVL: A power cord is visible inside the vending machine.
✗QwenVL: No output

Figure 22:
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Example 6

GT AD: The label on the water bottle is positioned upside down.
✓GPT-4o: The label on the water bottle is upside down.
✗o1: There is a small hole in the tile with brownish staining surrounding it.
✗LlavaOneVision: The water bottle is upside down., The water bottle is not properly sealed.
✓InternVL: The label on the water bottle is upside down.
✓textbfQwenVL: The water bottle label is upside down.

Figure 23:
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Vanilla Anomaly Description (AD) Prompt

System: You are an advanced Vision-Language Model designed to extract and describe if any
visible anomalies are present in images with precision and brevity.
User: Your task is to accurately describe anomalies observed in images in a concise manner.
An anomaly is anything that deviates from what most people consider standard, normal, or
expected. It can be an unusual element, action, or occurrence in an image that would seem
surprising or out of place to most people.
Key principles for anomaly identification:
1. Base your descriptions solely on what is clearly visible in the image—no assumptions or
external knowledge.
2. Descriptions must be objective and straightforward, without explanations, justifications, or
subjective language.
Example Format:
If anomalies are present:
{
“anomaly_description_1”: [Anomaly description],
...
}
If no anomalies are visible:
{}
Please just provide the description of the anomaly or return ‘{}‘ if there are no anomalies. **Do
not provide any explanation or justification of why it is anomalous.**
Note:
• Limit each description to a maximum of two sentences.
• Focus on describing the anomaly itself.
• Do not focus on **why it is unusual or unexpected**.
Let’s analyze the image and describe the visible anomalies:

Figure 24:

32



Chain-of-Thought (CoT) Prompt

System: You are an advanced Vision-Language Model designed to extract and describe if any
visible anomalies are present in images with precision and brevity.
User: Your task is to carefully analyze the image, reason step-by-step through what is visible,
and then describe any anomalies in a concise and objective manner.
An anomaly is anything that deviates from what most people consider standard, normal, or
expected. It can be an unusual element, action, or occurrence in an image that would seem
surprising or out of place to most people.
Key principles for anomaly identification: 1. Base your descriptions solely on what is clearly
visible in the image—no assumptions or external knowledge. 2. Descriptions must be objective
and straightforward, without explanations, justifications, or subjective language.
Example Format:
Let’s think step by step: [Thinking steps]
If anomalies are present:
{
“anomaly_description_1”: [Anomaly description],
...
}
If no anomalies are visible:
{}
Note:
• Limit each description to a maximum of two sentences.
• Focus on describing the anomaly itself.
• Do not focus on **why it is unusual or unexpected**.
Let’s analyze the image, think step by step and then describe the visible anomalies:

Figure 25:
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Multi-step reasoning (MS CoT) Prompt

System: You are an advanced Vision-Language Model designed to extract and describe if any
visible anomalies are present in images with precision and brevity.
User: Your task is to accurately describe anomalies observed in images in a concise manner.
An anomaly is anything that deviates from what most people consider standard, normal, or
expected. It can be an unusual element, action, or occurrence in an image that would seem
surprising or out of place to most people.
Your goal is to carefully analyze the image using simple, structured reasoning, and describe any
visible anomalies. Do not use external knowledge or assumptions — only what can be clearly
seen in the image.
Use the following structure in your response:
1. **Planning**: Briefly explain the steps you will take to perform the task.
2. **Image Contents**: List the main elements visible in the image (e.g. objects, people,
actions, text).
3. **Step-by-step reasoning**: Think through the image in a logical sequence to identify if
anything looks unusual or out of place.
4. **Final Answer**: If anomalies are present:
{
“anomaly_description_1”: [Anomaly description],
...
}
If no anomalies are visible:
{}
Note:
• Limit each description to a maximum of two sentences.
• Focus on describing the anomaly itself.
• Do not focus on **why it is unusual or unexpected**.
Let’s begin by planning, then analyzing the image step by step, and finally reporting any
anomalies found:

Figure 26:

Self-consistency ensembler Prompt

System: You are an advanced Vision-Language Model designed to extract and describe if any
visible anomalies are present in images with precision and brevity.
User:
You are given three sets of anomaly descriptions for the same image:
1. [Anomaly Descriptions from 1st inference]
2. [Anomaly Descriptions from 2nd inference]
3. [Anomaly Descriptions from 3rd inference]
Your job is to identify the anomaly descriptions that are repeated — that is, descriptions that
appear in at least twice. These may be worded slightly differently but must describe the same
anomaly.
Do not make up any new descriptions. Ignore differences in phrasing if the meaning is clearly
the same.
Return only the repeated anomaly descriptions in the given json format.
**Only include those that appear atleast twice.**
Example Output Format:
{
“anomaly_description_1”: [Anomaly description],
...
}
Do not include any extra explanation.

Figure 27:
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Anomaly Explanation (AE) Prompt

System: You are an advanced Vision Language Model designed to analyze anomalies seen in
images.
User: You will be provided with an image along with a textual description of an anomaly present
in the image. Explain why the anomaly is anomalous.
Anomaly: [Anomaly description and explanation]
Let’s analyze the image and the anomaly first and then provide a concise response (max 2
sentences) in a json format:
{
“explanation”: [Explain why it is unusual or unexpected]
}

Figure 28:

Anomaly Justification (AJ) Prompt

System: You are an advanced Vision Language Model designed to analyze anomalies seen in
images.
User: You will be provided with an image and the description of an anomaly seen in the image.
Provide a single, most realistic and plausible reason for how the anomaly happened.
Anomaly: [Anomaly description and explanation]
Let’s analyse the image and the anomaly first and then provide a concise response (max 2
sentences) in a json format:
{
“justification”: [Describe how the anomaly happened]
}

Figure 29:

Anomaly Severity Prompt

System: You are an advanced Vision-Language Model designed to analyze images and detect
anomalies.
User: Assess the severity of the consequence of the anomaly on a scale from 1 to 5:

1. (No consequence): The anomaly is purely aesthetic or has no functional/safety impact.
Example: A tile of a different color on the pavement.

2. (Low Concern)
3. (Moderate Concern): The anomaly may cause inconvenience or inefficiency but does not

pose immediate risks. Example: A misaligned sign that is still readable.
4. (High Concern)
5. (Requires Immediate Action): The anomaly presents a safety hazard, major malfunction, or

significant risk. Example: A worker using a circular saw without protection gear.
Inputs:
- Image: (Attached image)
- Anomaly Description: {}

Provide a severity rating in this format:
{
“severity”: [Score between 1 and 5]
}

Figure 30:
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Anomaly Surprisal Prompt

System: You are an advanced Vision-Language Model designed to analyze images and detect
anomalies.
User: Assess how surprising or uncommon the anomaly is on a scale from 1 to 5:

1. (Common): Frequently observed in similar contexts; most people would not be surprised.
Example: A car parked in an inconvenient way.

2. (Relatively Common)
3. (Average): Might raise curiosity but not shock. Example: A person eating spaghetti with

chopsticks.
4. (Uncommon)
5. (Extremely Rare): Highly uncommon and surprising; most people have never seen it before.

Example: A tree growing upside down from a roof.
Inputs:
- Image: (Attached image)
- Anomaly Description: {}

Provide a surprisal rating in this format:
{
“surprisal”: [Score between 1 and 5]
}

Figure 31:

Anomaly Complexity Prompt

System: You are an advanced Vision-Language Model designed to analyze images and detect
anomalies.
User: Assess how difficult it would be for a person to detect the anomaly on a scale from 1 to 5:

1. (Easy): Most people would notice the anomaly immediately without effort. Example: A red
apple among green apples.

2. (Mild)
3. (Moderate): Requires some focus to identify but becomes clear after a few seconds. Example:

A misspelled word on a sign.
4. (Difficult)
5. (Very difficult): Blends into the surroundings or demands specific knowledge to identify.

Example: A contradiction in the screenshot of an email.
Inputs:
- Image: (Attached image)
- Anomaly Description: {}

Provide a complexity rating in this format:
{
“complexity”: [Score between 1 and 5]
}

Figure 32:
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Anomaly Description Evaluation Prompt

System: You are an advanced AI assistant designed to compare two descriptions of an anomaly
in the image attached.
User: Compare the following two descriptions of an anomaly in an image. Judge whether they
describe the same anomaly. If they match, respond with ’Yes’ and briefly explain why. If they
differ, respond with ’No’ and provide a reason for the difference.
REFERENCE: [Ground truth anomaly description]
RESPONSE: [Model-generated anomaly description]

Figure 33:

Anomaly Explanation Evaluation Prompt

System: You are an advanced AI assistant designed to compare two explanations for a visual
anomaly.
User: Determine whether the model explanation accurately reflects the core reasoning in the
human annotation for why the given anomaly is considered unusual in the image.
The explanation does not need to match the human annotation word-for-word, but it should be
logically aligned and refer to the same underlying cause.
Minor differences in wording are acceptable, but explanations that are unrelated or based on a
different logic should be marked as incorrect.
Anomaly Description: [Ground truth anomaly description]
Human explanation: [Human annotation]
Model explanation: [Model-generated anomaly explanation]
If the explanations are unrelated or based on a different logic, answer ’False’.

Figure 34:

Anomaly Category Classification Prompt

System: You are an expert in classifying visual anomalies based on descriptions.
User: You are given a taxonomy of anomaly types:
1. Entity Presence –An object is present when it shouldn’t be.
2.Entity Absence – An expected object is missing.
3. Entity Attribute – An object has an unusual attribute (color, shape, label, orientation, usage).
4. Spatial Relation – Objects are positioned or oriented incorrectly relative to one another.
5. Uniformity Breach – A disruption in an expected pattern or symmetry.
6. Textual Anomaly – The image contains text that is contradictory, unexpected, or illogical.
Given the following anomaly description, classify it into one of the five categories. Only
respond with the category name.

Anomaly description: [Model generated anomaly description]

Figure 35:
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Anomaly Cultural Analysis Prompt

User: You are a culturally-aware AI with expertise in global customs, social norms, and visual
analysis. Based on the image, description, and noted anomaly:
Analyze the anomaly within its cultural context.
Determine if it aligns with any specific cultural, religious, regional, or historical norms.
If yes, identify the culture/region and explain why this is considered normal there.
If no, clearly state that and briefly explain why it does not align culturally.
Be objective, respectful, and avoid stereotypes. Consider that some anomalies may have
universal meaning without cultural bias.
Respond as a dictionary with keys:
- cultural alignment: “yes” or “no”
- context: the relevant cultural norm that explains the anomaly (or null if none)
- justification: explanation why the anomaly is normal or not culturally aligned
Inputs:
- Image: (Attached image)
- Anomaly Description: [Ground truth anomaly description]

Figure 36:
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