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ABSTRACT

Transformer-based models have achieved remarkable success in various Natural
Language Processing (NLP) tasks, yet their ability to handle long documents is
constrained by computational limitations. Traditional approaches, such as trun-
cating inputs, sparse self-attention, and chunking, attempt to mitigate these issues,
but they often lead to information loss and hinder the model’s ability to capture
long-range dependencies. In this paper, we introduce ChuLo, a novel chunk repre-
sentation method for long document classification that addresses these limitations.
Our ChuLo groups input tokens using unsupervised keyphrase extraction, empha-
sizing semantically important keyphrase based chunk to retain core document con-
tent while reducing input length. This approach minimizes information loss and
improves the efficiency of Transformer-based models. Preserving all tokens in
long document understanding, especially token classification tasks, is especially
important to ensure that fine-grained annotations, which depend on the entire se-
quence context, are not lost. We evaluate our method on multiple long document
classification tasks and long document token classification tasks, demonstrating
its effectiveness through comprehensive qualitative and quantitative analyses.

1 INTRODUCTION

Transformer-based models (Vaswani et al., 2017), including LLMs (Radford, 2018; Radford et al.,
2019; Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023a;b; Chowdhery et al., 2023;
Anil et al., 2023; Dubey et al., 2024), have achieved remarkable success across a wide range of Nat-
ural Language Processing (NLP) tasks, including Machine Translation, Text Summarization, Text
Generation, and Text Classification. A key factor behind their success is the self-attention mech-
anism, which allows the model to capture long-range dependencies by computing the similarity
between any two tokens and aggregating information accordingly. However, this mechanism incurs
a quadratic computational cost in terms of both time and space, relative to input length. This compu-
tational burden makes it difficult for Transformer-based models to scale to long documents, limiting
their application to real-world data with unrestricted document lengths.

To address this challenge, several approaches have been proposed for applying Transformer-based
models to long documents while managing computational resources. One of them is truncating,
where the model discards content exceeding a predefined input length. For instance, BERT (Kenton
& Toutanova, 2019) processes up to 512 tokens, and LLaMa (Touvron et al., 2023a) handles up
to 2048 tokens, with any additional content being ignored. Another one is sparse self-attention,
which reduces computational complexity by restricting each query token to attend only to a subset
of key tokens (Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020; Wei et al., 2021; Li
et al., 2023a). Lastly, chunking divides long documents into smaller, manageable segments that are
processed independently by the model (Zhao et al., 2021; Zhang et al., 2022).

While these methods enable Transformer-based models to process long documents, they have lim-
itations. Truncation risks discarding important information that falls beyond the maximum input
length. Although more efficient, Sparse attention reduces each token’s receptive field, leading to po-
tential information loss from the neglected tokens. Similarly, chunking breaks the input into isolated
segments, which can disrupt long-range dependencies critical for a comprehensive understanding of
the document. Preserving all tokens is particularly important in tasks that require fine-grained token-
level understanding, such as token classification. In such tasks, dropping tokens can severely impact
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the accuracy of fine-grained annotations, which often depend on the full context of the document.
Therefore, there is a need for methods that can handle long documents efficiently while retaining all
key information from the input.

In this paper, we introduce ChuLo, a novel chunk-level key information representation method that
addresses these challenges in long document classification and token classification. Our method
reduces input length while minimizing information loss by strategically grouping tokens using un-
supervised keyphrase extraction. By identifying and emphasizing semantically important tokens,
ChuLo ensures that each chunk retains the core content of the document. The resulting chunk repre-
sentation is used for training Transformer models, with more weight assigned to keyphrases to make
them more salient in each chunk. We evaluate ChuLo on various long document classification tasks
and long document token classification tasks, demonstrating its effectiveness through competitive
results and thorough analysis.

The key contributions of this paper are as follows: 1) Novel Chunk Representation Method: We
introduce ChuLo, a chunk representation method for long document understanding that leverages
unsupervised keyphrase extraction to prioritize semantically important information, effectively re-
ducing input length while preserving core content. 2) Enhanced Document and Token Classi-
fication: Our proposed method is designed to handle both document-level and token-level tasks,
addressing the limitations of existing models in retaining fine-grained annotations and global con-
text in long documents. 3) Scalable and Efficient Solution: ChuLo offers a scalable and efficient
approach for long document processing, making it suitable for various NLP applications where han-
dling long-range dependencies and context preservation are critical.

2 RELATED WORK

2.1 LONG DOCUMENT UNDERSTANDING

Document understanding includes two directions: global understanding (e.g., document classifi-
cation) and token-level understanding (e.g., named entity recognition). With Transformer-based
models, document length impacts classification performance. Approaches, shown in Appendix A.1,
to applying Transformer-based models on long document classification can be divided into input
processing and Transformer architecture optimization. Input processing involves truncating and
chunking. Truncating drops tokens exceeding the model’s input length (Park et al., 2022), while
chunking segments documents into smaller parts processed separately. For example, Hierarchical
Transformer (Pappagari et al., 2019) splits documents into non-overlapping chunks and computes
chunk representations. RoR (Zhao et al., 2021) generates regional answers from chunks, which
are combined for the final answer. However, neither considers the entire document context when
chunking. Transformer architecture optimization includes two strategies: improving self-attention
efficiency and incorporating RNN concepts. Longformer (Beltagy et al., 2020), BigBird (Zaheer
et al., 2020), and others (Roy et al., 2021) use sparse attention, restricting queries to focus on spe-
cific keys. Other methods (Peng et al., 2021; Wang et al., 2020; Choromanski et al., 2020) approx-
imate self-attention with reduced complexity. Meanwhile, (Dai et al., 2019; Hutchins et al., 2022;
Li et al., 2023b) integrate cache memory to update history information. These approaches involve
performance-efficiency trade-offs, making it valuable to explore improving performance by reduc-
ing input length. In document NER, text length has received less attention. Recent research focuses
on low-resource languages (Çetindağ et al., 2023; Mengliev et al., 2024), complex domain-specific
texts (Park et al., 2023; Bhattacharya et al., 2023), prompt-based large model methods (Wang et al.,
2023; Dagdelen et al., 2024; Hu et al., 2024), and multimodal NER (Yu et al., 2023; Zhang et al.,
2023). Our work addresses these existing challenges by introducing a novel chunk representation
that reduces input length while retaining key information, improving both classification and token-
level tasks through semantic grouping of important phrases. Our method will preserve global and
local features, achieving better efficiency and performance compared to existing models.

2.2 UNSUPERVISED KEYPHRASE EXTRACTION

Unsupervised keyphrase extraction automatically identifies representative phrases from a document
to summarize its content without requiring labeled data (Hasan & Ng, 2014). Based on the fea-
tures used, unsupervised methods can be categorized into three types: statistics-based, graph-based,
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and embedding-based (Kong et al., 2023). Statistics-based methods rank candidate phrases using
features like TfIdf (El-Beltagy & Rafea, 2009), co-occurrence (Liu et al., 2009), and context statis-
tics (Campos et al., 2020; Won et al., 2019). Graph-based methods construct a graph where nodes
are candidate phrases and edges represent their relationships, such as TextRank (Mihalcea & Ta-
rau, 2004) and its variants (Wan & Xiao, 2008; Bougouin et al., 2013; Florescu & Caragea, 2017;
Yu & Ng, 2018). Embedding-based methods leverage distributional representations of words or
sentences to achieve state-of-the-art performance, as seen in EmbedRank (Bennani-Smires et al.,
2018), SIFRank (Sun et al., 2020), and PromptRank (Kong et al., 2023). Although these methods
have shown effectiveness in capturing keyphrases, they focus on optimizing phrase extraction and
ranking independently, rather than enhancing downstream tasks like long document representation.
Our work bridges this gap by integrating unsupervised keyphrase extraction with chunk represen-
tation to improve long document understanding. We highlight the limitations of existing methods,
which fail to preserve key content when reducing document length, and propose a novel approach
that groups semantically important phrases to maintain critical information for downstream tasks.

Figure 1: The Overall ChuLo Framework proposed in this paper. Each chunk is surrounded by a
pink box. C1 ... Cn represents the chunk representation.

3 CHULO

We introduce a novel chunk representation method, ChuLo, tailored to enhance Transformer-based
long document classification by effectively reducing input length while preserving semantic content.
Our approach addresses the challenges posed by existing techniques like truncation and standard
chunking, which often result in information loss and disrupted contextual dependencies. Specif-
ically, we first segment the document into non-overlapping, fixed-length chunks to manage long
input sequences. Next, we employ unsupervised keyphrase extraction to capture the semantically
critical information across the document. By integrating these keyphrases into the chunk representa-
tions, we strategically assign higher weights to the keyphrase tokens, emphasizing essential content
in each chunk. The resulting chunk representations are then used to train a Transformer-based chunk
attention module, which ensures that the model retains the global context while focusing on impor-
tant local information. This methodology not only mitigates the issue of information loss but also
enables the model to handle long documents with improved efficiency and performance. The details
of each component are in the following subsections, and the overall framework is in Figure 1.

3.1 DOCUMENT INPUT CHUNKING

To effectively manage long document inputs, we employ a chunking strategy that reduces input
length while preserving all relevant information. Transformer models, despite their success in cap-
turing long-range dependencies through self-attention, suffer from quadratic computational com-
plexity as input length increases (Ivgi et al., 2023; Beltagy et al., 2020). This complexity imposes
limitations on the maximum input length and, consequently, on the amount of text the model can
process at once. Common solutions such as truncating and sparse attention either disregard parts of
the document (Lewis et al., 2020; Park et al., 2022) or limit the receptive field of individual tokens
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(Beltagy et al., 2020; Zaheer et al., 2020; Brown et al., 2020), leading to information loss. Our
approach mitigates these issues by segmenting the document into non-overlapping chunks before
feeding them into the model. This strategy enables complete self-attention among chunk, ensuring
that all information is retained and enabling the model to process larger portions of the document
context. Specifically, we first tokenize the document D = (t0, t1, . . . , tlD−1) and divide it into
fixed-length chunks CD = (C0, C1, . . . , Cm−1), where lD is the number of the tokens, each chunk
C consists of n tokens, and m = ⌈ lD

n ⌉ is the number of chunks. The incomplete chunks will be
padded with the [PAD] tokens. The chunk size n is a hyper-parameter controlling the degree of
input length reduction. By grouping tokens this way, we maintain the integrity of the input content
while alleviating the computational burden associated with processing long sequences.

3.2 SEMANTIC KEY INFORMATION EXTRACTION

The fundamental reason for extracting keyphrases from the chunks, as defined in the document
chunking step, is to maintain the integrity of the document’s semantic content while reducing input
length. During chunking, the document is divided into smaller segments, which can inadvertently
distribute important semantic information unevenly across chunks or even cause it to be diluted.
Simply treating each chunk equally may lead to overlooking critical context essential for accurate
document classification and token-level understanding. Identifying and highlighting critical phrases
within these chunks ensures that the most relevant information is preserved and emphasized, allow-
ing the model to focus on the core content even within a limited input space. This compensates for
the information fragmentation caused by chunking and guides the Transformer’s attention mecha-
nism to prioritize the most informative parts of the text, enhancing the model’s ability to capture the
document’s overall meaning and relationships. Thus, extracting keyphrases from chunks is crucial
for bridging the gap between document segmentation and semantic coherence, ultimately improving
the effectiveness of the chunk-based representation for long document understanding. To achieve
this, we extract semantically important keyphrases to identify the core content of the entire docu-
ment. Since document understanding, such as document classification or token classification, in-
herently involves semantic understanding, it is crucial to highlight the most informative parts of the
text to create meaningful chunk representations. By making the extracted keyphrases more salient,
we can effectively emphasize the content that contributes most to the document’s overall mean-
ing. Hence, we employ unsupervised keyphrase extraction methods, ensuring our approach remains
adaptable across diverse domains without requiring annotated data. Building on the principles of
PromptRank (Kong et al., 2023), we adapt and enhance its template-based approach to prioritize
keyphrases that are contextually significant across the entire document. Our modified strategy, the
Semantic Keyphrase Prioritization (SKP) Algorithm, leverages prompts to assess the importance of
each candidate keyphrase, ensuring that semantically crucial information is highlighted for down-
stream document understanding. The details of this process are provided in Algorithm 1:

Algorithm 1 Semantic Keyphrase Prioritization (SKP) Algorithm
Input: A tokenized document D, an encoder-decoder pretrained
model represented by FE and FD , a POS tagger FPOS , a regular
expression FREG = ⟨NN. ∗ |JJ⟩ ∗ ⟨NN.∗⟩
Parameter: Experimentally determined α, γ
Output: Sorted keyphrases set Ks

1: Let S = ∅, Ks = ∅, i = 0, j = 0.
2: Get the candidate phrases set:

K = FREG(FPOS(D)) = {k0, k1, . . . , kn−1}
3: Split D into segments S = {D0, D1, . . . , Dm−1} to meet

the input requirement of FE

4: for i < n do
5: Calculate the position penalty ri = Lc

ld
+ γ

(ld)3

where Lc is the first occurrence position of ki in the docu-
ment, ld is the length of the document

6: Construct the prompt P “The * mainly discusses ki” and to-
kenize, * is the category of the document.

7: for j < m do
8: Calculate the probability pij of the phrase ki:

pij = 1
(lP )α

∑h+lk−1

g=h log p(tg | t<g),
p(tg | t<g) = FD(FE(Dj), t<g)
where lP is the length of the tokenized P , h is the start
index of ki in the prompt, lk is the length of ki, t is the
token of the prompt.

9: end for
10: Calculate the final score of ki: si = ri ×

∑j<m
j=0 pij

11: end for
12: return Ks = Sort(K, s)

While PromptRank uses prompts to rank keyphrases across the first segment of the document de-
termined by its encoder model, our SKP applies this concept at the entire document level to ensure
that each chunk can preserve the most informative content for the entire document. After obtaining
the sorted phrases set Ks, we select top-n phrases as the keyphrases of the document, which can be
regarded as ranked phrases according to their contextual significance within the entire document.
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This approach emphasizes keyphrases during chunk representation, making critical semantic infor-
mation more salient. Consequently, our method bridges the gap between document segmentation
and semantic coherence by ensuring that key content is preserved and highlighted within the entire
document, despite input length constraints. By integrating these keyphrase extraction techniques,
our framework effectively identifies and emphasizes the most informative parts of a long document,
resulting in improved chunk-based representations. This ensures that the Transformer retains critical
context and relationships, ultimately enhancing its performance in long document classification and
token-level understanding tasks.

3.3 CHUNK REPRESENTATION WITH SEMANTIC EMPHASIS

After extracting the semantically significant keyphrases, we construct a chunk representation that
preserves and highlights this key information, ensuring that the chunk retains the core semantic
content of the document. While chunking helps reduce the input length, it may also result in an
uneven distribution of meaningful content across chunks. Thus, it is crucial to re-emphasize the
importance of these keyphrases within the chunk to maintain semantic integrity. Our approach
dynamically adjusts the representation of each chunk by assigning greater importance to keyphrase
tokens, enabling the model to focus on the most relevant content during downstream processing.

To achieve this, we label the tokens corresponding to the extracted keyphrases in the original text as
keyphrase tokens Tk, while other tokens are labeled as non-keyphrase tokens Tnk. Then, we feed
these chunked tokens t into the embedding layer to obtain their embeddings. The chunk embedding
eC is then computed using a weighted average of these token embeddings, as defined in Formula 1:wt =

{
a, t is Tk

b, t is Tnk

ec =
∑

wt∗et∑
wt

(1)

Here, wt represents the weight assigned to each token t in the chunk, where a and b are hyperparam-
eters with a > b. et denotes the embedding of token t, and ec is the resulting chunk embedding that
captures the weighted importance of keyphrase and non-keyphrase tokens. By assigning a higher
weight a to keyphrase tokens, we ensure that the resulting chunk representation emphasizes the most
critical information while maintaining a compact input length.

Finally, the chunk embeddings are fed into the Transformer-based model, allowing it to effectively
leverage the enhanced chunk representations during long document classification or token-level un-
derstanding tasks. This method not only preserves the semantic coherence of the document but also
allows the model to retain meaningful context and relationships, ultimately enhancing its perfor-
mance on long document tasks.

3.4 CHUNK REPRESENTATION TRAINING

In this final step, we train a Transformer-based model using our keyphrase-enhanced chunk represen-
tations to effectively incorporate the core semantic content of the document. We selected BERT-base
according to Table 8. By emphasizing key information in the chunk embeddings, we ensure that the
model can focus on the most relevant aspects of the text, thereby improving its ability to handle long
document inputs without losing critical context. To achieve this, we leverage a Transformer-based
backbone model, which is used to initialize the weights of the chunk attention module, as illustrated
in Figure 1. This chunk attention module is designed to capture the intricate contextual relationships
among chunks while retaining the influence of keyphrases. By doing so, the module can better un-
derstand local and global semantic patterns, enabling the model to perform robustly across various
long document tasks. The chunk embeddings are processed through the chunk attention module to
produce refined contextual representations, which are then fed into a classification head to generate
the final predictions. Our framework, ChuLo, is adaptable to any transformer-based architecture,
from pretrained to large language models, making it versatile for tasks involving long document
understanding. Through integrating keyphrase-enhanced chunk representations, the model achieves
superior performance in both document classification and token-level tasks, highlighting the effec-
tiveness of our approach in leveraging semantic information to tackle the challenges associated with
long document processing.
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4 EXPERIMENTS SET-UP

We evaluate ChuLo on document and token classification tasks, highlighting our motivation for
including both types. While document classification primarily requires global contextual under-
standing, token classification tasks test the model’s ability to retain and utilize detailed token-level
information within long documents. We compare it with BERT (Kenton & Toutanova, 2019) and
BERT variants (Park et al., 2022), Longformer (Beltagy et al., 2020), ToBERT (Pappagari et al.,
2019), CogLTX (Ding et al., 2020), ChunkBERT (Jaiswal & Milios, 2023), and instructions with
LLMs, GPT4o1 and Gemini1.5pro2. Baselines Details are listed in Appendix A.2.

Datasets: We conduct experiments using three(3) datasets for long document classification and
two(2) for long document token classification. For document classification, we use HP(Kiesel et al.,
2019), LUN (Rashkin et al., 2017), and Eurlex57k (Chalkidis et al., 2019). These datasets vary in
average document length from 707 to 1147 tokens, enabling us to assess performance on documents
of different lengths and complexities. Further details on dataset statistics and splits are available
in Appendix A.4. 1) HP (Hyperpartisan News Detection): evaluates the classification of news
articles based on hyperpartisan argumentation (Kiesel et al., 2019). We use the ‘byarticle’ version,
which contains 238 hyperpartisan and 407 non-hyperpartisan articles. The same train-test split as
in (Beltagy et al., 2020) is adopted. 2) LUN Used for unreliable news source classification, this
dataset includes 17,250 articles from satire, propaganda, and hoaxes (Rashkin et al., 2017). Our
goal is to predict the source type for each article. 3) Eurlex57k A multi-label classification dataset
consisting of 47,000 English EU legislative documents with 4,271 EUROVOC concepts. We also
include a simulated Inverted-Eurlex57k version, where the header and recitals are moved to the
end, compelling the model to read the entire document for key information. For token classification,
we use GUM and CoNLL-2012 for Named Entity Recognition (NER) tasks: 1) GUM (Georgetown
University Multilayer) is a richly annotated collection of 235 documents across various genres such
as academic texts, news, fiction, and interviews (Lin & Zeldes, 2021). GUM’s various linguistic
styles and structures make it an excellent benchmark for assessing token-level understanding in
lengthy documents, ensuring that the model captures complex entity relationships over extended
contexts. 2) CoNLL-2012 dataset Originally designed for coreference resolution, this dataset is
adapted for NER in our work (Pradhan et al., 2013). We convert the data to a document-level format
and select the top-k longest documents in each split, emphasizing the model’s ability to understand
and process extended text sequences for token classification tasks.

Metrics and Implementation: For the HP and LUN datasets, we use accuracy as the evaluation
metric, while for Eurlex57k, Inverted Eurlex57k, GUM, and CoNLL-2012, we adopt micro F1.
These metrics are chosen to maintain consistency with prior work and facilitate direct comparison.
Regarding implementation, we provide key details here, with the complete setup in Appendix A.5.
We use CrossEntropy loss for training on the Hyperpartisan, LUN, CoNLL and GUM datasets,
and Binary CrossEntropy loss for the Eurlex57k and Inverted Eurlex57k datasets. All models are
optimized using the AdamW optimizer, and training employs early stopping based on the respective
validation metric, with a patience threshold set to 10 epochs. A learning rate search is conducted for
each experiment to ensure optimal model performance for comparison. Top-n value is set to 153.

5 RESULTS

5.1 DOCUMENT CLASSIFICATION PERFORMANCE

We evaluate the effectiveness of our ChuLo by comparing it with fine-tuned PLMs and previously
published baselines (Park et al., 2022; Jaiswal & Milios, 2023) on several benchmark datasets: HP,
LUN, EURLEX57K, and Inverted EURLEX57K. The comparative results are summarized in Table
1, with input configurations provided in Table 2 and detailed descriptions available in Appendix A.3.
Our method demonstrates clear superiority on three of the four datasets, achieving a significant im-
provement of 6.43% accuracy on the LUN dataset compared to the second-best model, BERT. This
marked improvement presents ChuLo’s ability to capture comprehensive document context through

1https://openai.com/index/hello-gpt-4o/
2https://deepmind.google/technologies/gemini/pro/
3We tested with different n values, but 15 was generally better in most datasets
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Model HP LUN EURLEX57K I-EURLEX57K
BERT (Kenton & Toutanova, 2019) 0.9200 0.5797 0.7309 0.7053
ToBERT (Pappagari et al., 2019) 0.8954 0.3697 0.6757 0.6731
CogLTX (Ding et al., 2020) 0.9477 - 0.7013 0.7080
Longformer (Beltagy et al., 2020) 0.9569 0.5552 0.5453 0.5647
BERT+TextRank (Park et al., 2022) 0.9115 0.4880 0.7287 0.7130
BERT+Random (Park et al., 2022) 0.8923 0.3015 0.7322 0.7147
ChunkBERT (Jaiswal & Milios, 2023) 0.9300 - 0.6494 0.6294
Ours 0.9538 0.6440 0.7332 0.7244

Table 1: Document classification Result. Following previous work, we use accuracy for HP and
LUN, and micro F1 for other datasets. Results for LUN are obtained by our own experiment based on
provided baseline codes and methods, while baseline results for the other datasets are from previous
work(Park et al., 2022; Jaiswal & Milios, 2023). The best performance for each dataset is bolded
while the second best is underscored, and we can see that our final model, a BERT-based backbone,
generally outperforms other baselines across all datasets by achieving the best or second-best.

its keyphrase-based chunk representation, despite using only 512 input embeddings. The results
suggest that our method effectively mitigates the limitations of traditional truncation and chunk-
ing strategies by preserving critical semantic information, which contributes to higher classification
accuracy. On the EURLEX57K and Inverted EURLEX57K datasets, ChuLo achieves consistent per-
formance gains over baselines, further validating its capability to handle long documents efficiently.
In these datasets, which have hierarchical labels and require understanding complex semantic struc-
tures, our model benefits from enhanced chunk representations that emphasize key content. This
allows ChuLo to capture document semantics better, even when compared to models that can pro-
cess larger input lengths. While our model delivers competitive results on the HP dataset, it trails
behind Longformer by a slight margin of 0.0031 in accuracy. This marginal difference corresponds
to only one additional correctly classified instance out of a total of 65 test samples.

Model The Usage of Input
BERT (Kenton & Toutanova, 2019) F-512 tokens
ToBERT (Pappagari et al., 2019) All
CogLTX (Ding et al., 2020) S-512 tokens
Longformer (Beltagy et al., 2020) F-4096 tokens
BERT+TextRank (Park et al., 2022) F-512 + S-512 tokens
BERT+Random (Park et al., 2022) F-512 + S-512 tokens
ChunkBERT (Jaiswal & Milios, 2023) All
Ours All (512*Chunk Size)

Table 2: The usage of the input content in
the experiments.“F-512“ and “F-4096“ means the
first 512 tokens and the first 4096 tokens, “S-512“
means the selected 512 tokens.

Interestingly, for the other datasets, Long-
former underperforms compared to models like
BERT variants or CogLTX, which use the first
512 tokens and focus on selecting key sen-
tences. This observation indicates that unfil-
tered additional content can introduce noise,
negatively impacting classification accuracy. In
contrast, ChuLo expands the input content and
strategically emphasizes key semantic elements
during chunk representation. This approach
mitigates noise interference, ensuring that only
the most relevant information is retained and
highlighted. ChuLo achieves superior perfor-

mance by balancing content and semantic emphasis, outperforming other models. Overall, the re-
sults confirm that ChuLo consistently outperforms standard PLM baselines and existing chunking
methods in long document classification tasks. Its ability to retain and emphasize key semantic con-
tent, while efficiently handling long inputs, makes it a robust solution for various document classifi-
cation challenges. The subsequent sections delve deeper into the impact of our chunk representation
strategy and discuss its contributions to improving document classification performance.

5.2 DOCUMENT CLASSIFICATION PERFORMANCE IN LONGER DOCUMENTS

To further validate the robustness of our model, we evaluate its classification performance across
various document length ranges, with a particular focus on longer documents. For this analysis,
we consider the documents with more than 1024 tokens and more than 2048 tokens in the test set.
To provide a fair comparison, we use Longformer based on its original code and hyperparameters
as described in Table 1 and off-the-shelf LLMs, GPT4o and Gemini1.5 pro. As shown in Table 3,
our model consistently outperforms others on longer documents in the LUN dataset. Specifically,
for documents exceeding 2,048 tokens, ChuLo maintains a higher accuracy compared to all base-
lines, demonstrating its capacity to handle lengthy inputs effectively. This performance gain can be
attributed to our chunk representation’s emphasis on keyphrases, which preserves crucial semantic
content even when document length increases. On the HP dataset, ChuLo and Longformer achieve
perfect accuracy (1.0) for documents longer than 2,048 tokens. However, for shorter documents
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(more than 1,024 tokens), ChuLo surpasses Longformer. This improvement is likely due to our
chunk representation strategy, which selectively highlights key content rather than averaging infor-
mation across the entire document. As a result, ChuLo maintains high semantic fidelity, leading to
better overall performance even with condensed text inputs.

LUN All(2250) 1024(243) 2048(49)
Longformer 0.5552 0.4062 0.5306
GPT4o - - 0.7143
Gemini1.5pro - - 0.6531
Ours 0.6741 0.5911 0.7959

(a) LUN dataset
HP All(65) 1024(28) 2048(9)
Longformer 0.9538 0.8929 1.000
GPT4o - - 0.8889
Gemini1.5pro - - 0.7778
Ours 0.9538 0.9286 1.000

(b) HP dataset

Table 3: Document classification results for com-
parison on documents of different lengths: all
documents in the test set, the subset of documents
longer than 1024 tokens, and longer than 2048 to-
kens respectively. Values in brackets indicate the
number of documents for each specific document
set. The best performance (Accuracy) for each
document set is bolded.

We also benchmarked against newly released
LLMs, GPT-4o and Gemini 1.5 Pro, using
longer document inputs for both the LUN and
HP datasets. On LUN, GPT-4o achieved an ac-
curacy of 0.7143 and Gemini 1.5 Pro scored
0.6531, both surpassing Longformer. How-
ever, ChuLo achieved the highest accuracy of
0.7959, showcasing its superiority in handling
long documents with diverse content. On the
HP dataset, GPT-4o (0.8889) and Gemini 1.5
Pro (0.7778) performed worse than Longformer
and ChuLo, both of which achieved a perfect
accuracy of 1.0 on the longer documents. This
highlights ChuLo’s robustness and consistency
in classifying documents with varying length,
even compared to advanced language models.
The prompt and response samples are in Ap-
pendix A.6 and A.7. Overall, these results
demonstrate that ChuLo not only outperforms
standard PLM baselines and chunking methods
on long documents but also remains competi-

tive against the latest large language models. By prioritizing key semantic elements and effectively
managing document length, ChuLo maintains stable performance across varying input lengths.

5.3 TOKEN CLASSIFICATION PERFORMANCE

Model CoNLL GUM
Longformer (4096) 0.5560 0.9427
BigBird (4096) 0.5553 0.9418
GPT4o 0.2290 0.3231
Gemini1.5 0.3036 0.3262
Ours (All) 0.9334 0.9555

Table 4: Results on token classification tasks. The
best performance for each dataset is bolded, and
our model achieves the best on both datasets.

To further demonstrate the effectiveness
of our chunk representation method, we
evaluated it on a token-level classification
task—specifically, Named Entity Recognition
(NER) using long documents. We compared
our model against two state-of-the-art long-
document pre-trained models, Longformer
(Beltagy et al., 2020) and BigBird (Zaheer
et al., 2020), as well as newly released large
language models, GPT-4o and Gemini 1.5 Pro.

As shown in Table 4, our model consistently outperforms both Longformer and BigBird and LLM
models on the NER tasks, particularly on the CoNLL, where document lengths often exceed the
input limitations of these baseline models. To leverage the broader context captured by our chunk
representation, we integrate a BERT-decoder module that utilizes the enhanced chunk embeddings
to predict token labels more accurately. This configuration allows the model to maintain a global
understanding of the document while focusing on the local dependencies necessary for precise
token classification. The superior performance of our ChuLo on the CoNLL demonstrates the
significance of retaining global contextual information when dealing with long documents. All
baselines struggle with these longer inputs due to their limited capacity for handling extensive
sequences. In contrast, our method’s ability to encode the entire document’s context through
keyphrase-based chunk representations enables it to achieve higher accuracy in recognizing and
classifying named entities. This is particularly evident in cases where long-distance dependencies
and contextual nuances play a critical role in determining the correct labels. Overall, the results
indicate that our model’s chunk representation not only enhances performance on document-level
classification tasks but also proves highly effective for token-level tasks such as NER. By retaining
global context while emphasizing key semantic content, our method enables more accurate token
classification, validating its application in downstream tasks that require detailed and comprehensive
understanding of long document tokens.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.4 TOKEN CLASSIFICATION PERFORMANCE IN LONGER DOCUMENTS

We further analyze the NER performance across different document length ranges. As presented
in Table 5a and Table 5b, we report the number of documents exceeding specific length thresholds
and their corresponding performance metrics. On the CoNLL, as document lengths exceed the
maximum input capacities of Longformer and BigBird, both models exhibit significant performance
drops to 31.56% and 31.45%, respectively. In contrast, our model experiences a minimal decrease
of 1.28%, showcasing its resilience and effectiveness in handling long sequences. For the GUM,
where all document lengths are within the acceptable range for these models, performance remains
stable across all models, with our approach consistently achieving the best results.

CoNLL Entire dataset (20) Longer than 2048 (17) Longer than 4096(6) Longer than 8192 (2)
Longformer 0.5560 0.5268 0.3156 0.3116
BigBird 0.5553 0.5261 0.3145 0.3106
GPT4o 0.2290 0.2217 0.1252 0.0282
Gemini 1.5 0.3036 0.2633 0.1652 0.0584
Ours 0.9334 0.9325 0.9287 0.9206

(a) Results on CoNLL dataset.
GUM Entire dataset (26) - Longer than 512 Longer than 1000(8) Longer than 1042 (6)
Longformer 0.9427 0.9427 0.9439
BigBird 0.9418 0.9417 0.9426
GPT4o 0.3231 0.3018 0.2808
Gemini 1.5 0.3262 0.3093 0.3215
Ours 0.9555 0.9558 0.9574

(b) Results on GUM dataset.

Table 5: NER results for comparison on documents of different lengths. Values of brackets indicate
the # of documents for each document. The best performance (Micro F1) is bolded and the second
best is underscored, and our model consistently outperforms all the baselines for each document set.

(a) CoNLL Performance (Range: 1798 to 9778) (b) GUM Performance (Range: 628 to 1281)

Figure 2: Comparison of performance in different length ranges for CoNLL and GUM datasets.
Values of brackets includes the min and max length of each dataset
Figures 2a and 2b visualize the performance breakdown across varying length ranges. For the
CoNLL, our model maintains high performance in all length intervals, while Longformer and Big-
Bird exhibit comparable performance within the [1k-2k) range but degrade significantly for longer
texts, even for documents that do not exceed their maximum input length. This discrepancy suggests
that the uneven distribution of document lengths in their pretraining corpora may lead to inconsistent
performance on longer sequences. In contrast, our model’s ability to compress the entire document
into 512-length chunks for the decoder enables it to leverage complete contextual information, re-
sulting in better stability and accuracy even on longer documents. For the GUM, where document
lengths are shorter (up to 1.3k tokens), our model consistently outperforms Longformer and Big-
Bird in all intervals. The stable performance of all models on GUM aligns with the results on
CoNLL, further confirming that our approach’s chunk representation is particularly effective when
documents reach lengths that exceed the standard input capacities of the baselines. These results
underscore the effectiveness of our chunk representation, which emphasizes keyphrase informa-
tion, for coarse-grained document classification and fine-grained token-level classification tasks like
NER. The ability to maintain performance across varying document lengths highlights the impor-
tance of incorporating global contextual information in NER tasks—a largely underexplored aspect.
Additionally, off-the-shelf LLMs such as GPT-4o and Gemini 1.5 Pro show suboptimal performance
on NER tasks without fine-tuning, and their performance deteriorates further as document length in-
creases. This indicates that, despite their advancements, LLMs still require substantial optimization
for token classification tasks and effective long document understanding.
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5.5 ABLATION STUDIES

Keyphrase method HP LUN
Average 0.9538 0.5951
YAKE 0.8769 0.5951
PromptRank 0.9538 0.6440

Table 6: Effect of keyphrase ex-
traction methods; Average: Av-
erage Chunk Representations

Sentence Embedding HP LUN
w/o sentence emb. 0.9538 0.6440
sentence emb. 0.9076 0.5537

Table 7: Effect of sentence em-
bedding, adding the sentence-
level information to the chunk
representations.

Backbone HP LUN
BERT (Ours) 0.9538 0.6440
RoBERTa 0.8615 0.5906
Longformer 0.8923 0.5600

Table 8: Effect of different
backbone models for the chunk
attention.

We performed a few ablation studies on the HP and LUN to assess the impact of various components
within our model. First, we analyzed the effectiveness of different keyphrase extraction methods
and the effect of using average chunk representations. As shown in Table 6, the PromptRank-
based method yields the highest performance across both datasets, outperforming alternatives like
YAKE-based. This improvement can be attributed to PromptRank’s ability to extract higher-quality
keyphrases by considering semantic relationships within the document, whereas YAKE relies pri-
marily on statistical features such as phrase frequency, resulting in less semantically rich keyphrases.
Then, we explored the effect of incorporating sentence embeddings into the chunk representations to
introduce global sentence-level context. Surprisingly, as shown in Table 7, the results indicate a per-
formance drop when sentence embeddings are included. We hypothesize that adding sentence-level
information at the initial representation stage may cause chunk embeddings within the same sentence
to become too similar, hindering the model’s ability to learn distinctive patterns and reducing overall
classification performance. We also evaluated the performance of different backbone models for the
chunk attention module while keeping the keyphrase extraction and chunk representation settings
consistent. Table 8 shows that BERT outperforms Longformer as the backbone. This result suggests
that, after document chunking, the input sequences become relatively short, making it difficult for
Longformer to leverage its long-range attention capabilities fully. Consequently, Longformer may
suffer underutilization during training, resulting in suboptimal performance compared to BERT.

5.6 QUALITATIVE ANALYSIS

We performed a qualitative analysis by visualizing a sample document from the GUM, comparing
the outputs of Longformer, GPT-4o, Gemini 1.5 Pro, and our ChuLo. ChuLo captures the context
and semantic patterns of the document, providing accurate predictions, whereas the other models
struggle to maintain coherence and consistency. We have more examples in Appendix A.7.

Figure 3: Prompt and output for a sample document of length 895 in GUM dataset for NER task,
where correct predictions are highlighted in green and wrong predictions are highlighted in red.

6 CONCLUSION

We introduced ChuLo, a novel chunk representation method that enhances the performance of
Transformer-based models on long document classification and token-level tasks. By utilizing un-
supervised keyphrase extraction, ChuLo effectively reduces input length while preserving critical
information, addressing the limitations of truncation and sparse attention. Extensive experiments
demonstrate that ChuLo outperforms existing methods by maintaining both global context and high
accuracy, even for lengthy inputs. Our results highlight the effectiveness of ChuLo as a robust solu-
tion for long document understanding, enabling processing of complex texts in NLP applications.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Kamil Bennani-Smires, Claudiu Musat, Andreea Hossmann, Michael Baeriswyl, and Martin Jaggi.
Simple unsupervised keyphrase extraction using sentence embeddings. In Proceedings of the
22nd Conference on Computational Natural Language Learning, pp. 221–229, 2018.

Medha Bhattacharya, Swati Bhat, Sirshasree Tripathy, Anvita Bansal, and Monika Choudhary.
Improving biomedical named entity recognition through transfer learning and asymmetric tri-
training. Procedia Computer Science, 218:2723–2733, 2023.
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A APPENDIX

A.1 RELATED WORKS

As shown in Table 9, most of the previous works addressing the problem of processing long docu-
ments cannot fully utilize all the content. Those methods either reduce input length via truncation
or focus on local context learning to improve efficiency by applying sparse attention, approximated
attention or RNN integration. Such approaches will lead to a certain level of information loss, unlike
our chunking approach which can take all the content into consideration. Hierarchical Transformer
(Pappagari et al., 2019) splits documents into non-overlapping chunks and computes chunk repre-
sentations. RoR (Zhao et al., 2021) generates regional answers from chunks, which are combined
for the final answer. However, neither considers the entire document context when chunking. In
addition, previous works applying the chunking method for processing long document context only
focus on a single task, either document classification or token classification, while our framework
can be applied to both tasks to guarantee both document-level and token-level understanding.

Model Year Task Lengthy Document Solution Core Architecture
Efficient Classification (Park et al., 2022) 2022 D Truncating Transformer
Hierarchical transformer (Pappagari et al., 2019) 2019 D Chunking (Partial, Phrase) Transformer
RoR (Zhao et al., 2021) 2021 T Chunking (Partial, Voting) Transformer
Longformer (Beltagy et al., 2020) 2020 D, T Sparse Attention Transformer
BigBird (Zaheer et al., 2020) 2020 D, T Sparse Attention Transformer
Routing Transformer (Roy et al., 2021) 2021 D, T, G Sparse Attention Transformer
Macformer (Peng et al., 2021) 2021 D, T Approximated Attention Transformer
Linformer (Wang et al., 2020) 2020 D, T, G Approximated Attention Transformer
Performer (Choromanski et al., 2020) 2020 D, T, G Approximated Attention Transformer
Transformer-xl (Dai et al., 2019) 2019 G RNN Integration Transformer
Block-Recurrent Transformer (Hutchins et al., 2022) 2022 G RNN Integration Transformer
RAN (Li et al., 2023b) 2023 D, T RNN Integration Attention
(Çetindağ et al., 2023) 2023 T N/A LSTM
(Mengliev et al., 2024) 2024 T N/A Neural Network
(Park et al., 2023) 2023 T N/A Transformer
(Bhattacharya et al., 2023) 2023 T N/A LSTM
Gpt-NER (Wang et al., 2023) 2023 T N/A Transformer
(Dagdelen et al., 2024) 2024 T N/A Transformer
(Hu et al., 2024) 2024 T N/A Transformer
(Yu et al., 2023) 2023 T N/A Transformer
(Zhang et al., 2023) 2023 T N/A Transformer
Ours 2024 D, T Chunking (Entire) Transformer

Table 9: Summary of Related Works. D, T, G represent tasks of document classification, token
classification, and text generation, respectively.

A.2 BASELINES

We use BERT (Kenton & Toutanova, 2019) as our backbone model, comparing it with ToBERT
(Pappagari et al., 2019), CogLTX (Ding et al., 2020), Longformer (Beltagy et al., 2020), various
BERT variants (Park et al., 2022) and ChunkBERT (Jaiswal & Milios, 2023) for the document
classification task. For the NER task, we compare against Longformer, BigBird (Zaheer et al.,
2020), and two large language models, GPT4o and Gemini1.5pro. Below are brief descriptions of
the baseline models:

• BERT: A transformer model pre-trained on masked language modeling (MLM) and next-
sentence prediction (NSP). We fine-tuned the BERT-base variant on each dataset.

• ToBERT: A BERT variant designed for long document classification, utilizing an addi-
tional transformer layer to learn inter-chunk relationships.

• CogLTX: A framework for applying BERT to long documents by training a key sentence
identification model to assist in document understanding

• Longformer: Optimized for long sequences using sparse attention, combining dilated slid-
ing window and global attention patterns

• BigBird: Utilizes block sparse attention, integrating sliding window, global, and random
attention patterns across token blocks.
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Model Input
BERT (Kenton & Toutanova, 2019) The first 512 tokens
ToBERT (Pappagari et al., 2019) Segmented all input tokens
CogLTX (Ding et al., 2020) Selected 512 tokens
Longformer (Beltagy et al., 2020) The first 4096 tokens
BigBird (Zaheer et al., 2020) The first 4096 tokens
BERT+TextRank (Park et al., 2022) The first 512 tokens with the selected 512 tokens
BERT+Random (Park et al., 2022) The first 512 tokens with the selected 512 tokens
ChunkBERT (Jaiswal & Milios, 2023) The first 4096 tokens
GPT4o All input tokens with instruction
Gemini1.5pro All input tokens with instruction

Table 10: The input of the baseline models

• BERT+TextRank and BERT+Random: Proposed to select other tokens randomly or with
the help of TextRank(Mihalcea & Tarau, 2004) to feed into the BERT model as the supple-
mentation for long document understanding.

• ChunkBERT: A BERT variant for long document classification that processes self-
attention within document chunks and adds a TextCNN module for classification using
the chunk representation.

• GPT-4o: A transformer-based multi-modal large language model developed by OpenAI,
which leverages large-scale pretraining data to process diverse language tasks via instruc-
tion prompts.

• Gemini 1.5 Pro: an advanced multi-modal AI model from Google, leveraging a Sparse
Mixture-of-Experts (MoE) Transformer architecture, with a context window of up to 2
million tokens. This architecture allows for the efficient handling of long documents.

A.3 BASELINE INPUT

We selected these baseline models because they represent diverse methods for processing long doc-
uments. As summarized in Table 10, BERT truncates the input to 512 tokens. Longformer and
BigBird utilize sparse attention mechanisms, allowing them to process up to 4096 tokens while con-
serving computational resources. ToBERT divides the input into 200-token chunks, feeds them to
BERT for chunk representations, and uses a transformer layer for downstream tasks. However, it
cannot capture dependencies across the entire input sequence. CogLTX selects key sentences to form
a 512-token input, limiting its input size to that constraint. BERT variants like BERT+TextRank
and BERT+Random select up to 512 tokens using TextRank or random selection. They concate-
nate the [CLS] representation of the initial 512 tokens with the selected tokens, creating an aug-
mented input for a fully connected classification layer, with a maximum input length of 1024 tokens.
ChunkBERT splits the input into chunks, computes self-attention, and feeds chunk representations
into a TextCNN module for classification. The original implementation processes up to 4096 tokens
per document. It has the same limitation as the ToBERT. For GPT4o and Gemini1.5pro, we input all
tokens together with our instruction in the prompt due to the large input size supported by these large
language model. In contrast to these baseline models, our approach flexibly segments the entire input
into chunks of varying sizes, using semantic keyphrases to minimize information loss. Additionally,
we compute chunk-level attention to capture long-range dependencies more effectively.

A.4 DETAILS OF DATASETS

Datasets Train/Dev/Test #Classes Avg. Length
HP 516/64/65 2 705
LUN 12003/2992/2250 3 480
EURLEX57k 45000/6000/6000 4271 707
-INVERTED 45000/6000/6000 4271 707
GUM 179/26/26 21 972
CoNLL 120/20/20 37 5065

Table 11: The split and statistics of the datasets, including document classification task (HP, LUN,
EURLEX57K, and Inverted EURLEX57K) and token classification task (GUM, CoNLL)
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We analyzed the data distribution across the datasets used in this paper. Of these, the CoNLL dataset
has the highest average number of tokens per document at 5,065. In contrast, LUN has the shortest
average length, with 480 tokens per document. Both HP and EURLEX57K have similar average
document lengths, measuring 705 and 707 tokens respectively. GUM presents a relatively higher
token count, averaging 972 tokens per document.

Regarding the number of classes, EURLEX57K is the most complex dataset, containing 4,271
unique labels. In comparison, HP and LUN are more limited, with only 2 and 3 classes respec-
tively. GUM and CoNLL are more diverse, with 21 and 37 different classes. Beyond label diversity,
EURLEX57K also has the largest sample size, comprising 45,000 training samples, 6,000 devel-
opment samples, and 6,000 test samples. LUN is the second-largest dataset, with 12,003 training
samples, 2,992 development samples, and 2,250 test samples. Due to our selection strategy, CoNLL
has the longest average document length, with the fewest samples. It has a total of 160 documents
split into 120/20/20 for training, development, and test sets. GUM follows a similar distribution
with 179/26/26 samples. The HP dataset includes 516 training samples, 64 development samples,
and 65 test samples.

A.5 IMPLEMENTATION DETAILS

A.5.1 EXPERIMENT HYPERPARAMETERS

We performed extensive experiments to select the hyperparameters, including chunk size, token
weights, learning rates, and warm-up strategies and steps. The optimal hyperparameters for each
dataset for our proposed ChuLo model are presented in Table 12.

Hyperparameter HP LUN EURLEX57K I-EURLEX57K CoNLL GUM
Number of top-n phrases 15 15 15 15 15 15
Chunk size n 10 50 5 5 20 50
Weight for Tk 0.8 0.5 0.8 0.8 0.8 0.8
Weight for Tnk 0.1 0.1 0.1 0.1 0.1 0.1
Learning Rate 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
Batch Size 16 32 16 16 2 8
Warm-up Strategy Linear Linear Cosine Cosine Linear Linear
Warm-up Steps 10% 10% 5% 5% 10% 10%
Mex epoch 100 100 100 100 100 100
Stop Patience 10 10 10 10 10 10
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Optimizer Weight Decay 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Optimizer Betas 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999

Table 12: The optimal hyperparameters used in our experiments.

A.5.2 HARDWARE INFORMATION

Our experiments are run on the Linux platform with an A6000 Nvidia graphic card and an AMD
Ryzen Threadripper PRO 5955WX 16-core CPU, and the RAM is 128G.

A.6 PROMPT METHOD

We employed zero-shot prompting with large language models (LLMs), specifically Gemini 1.5 Pro
and GPT4o, in our experiments. The prompts used for each dataset are detailed in Table 13 and 14:
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Dataset Prompt

LUN Task Definition: You are provided with a news article. Your task is to classify the
article into one of the following categories: ”Satire” ”Hoax” or ”Propaganda” Respond
only with the appropriate category. The news is: [{input}].

HP Task Definition: You are provided with a news article. Your task is to classify whether
the article is hyperpartisan. Respond only with ”True” if the news is hyperpartisan or
”False” if it is not. The news is: [{input}].

Table 13: The prompt we used for each dataset in our experiments.

Dataset Prompt

CoNLL In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly
used to annotate slot types, indicating the boundaries and types of slots. These labels
typically represent: B- (Begin): Signifies the beginning of a slot, marking the start
of a new slot. I- (Inside): Represents the interior of a slot, indicating a continuation
of the slot. O (Outside): Denotes parts of the input that are not part of any slot. For
instance, in a sentence where we want to label a ”date” slot, words containing date
information might be tagged as ”B-date” (indicating the beginning of a date slot), fol-
lowed by consecutive words carrying date information tagged as ”I-date” (indicating
the continuation of the date slot), while words not containing date information would
be tagged as ”O” (indicating they are outside any slot).
Definition: In this task, you are given a conversation, where the words spoken by a
person are shown as a list. Your job is to classify the words in the following con-
versation into one of the 37 different entities. The entities are: ”O”, ”B-PERSON”,
”I-PERSON”, ”B-NORP”, ”I-NORP”, ”B-FAC”, ”I-FAC”, ”B-ORG”, ”I-ORG”, ”B-
GPE”, ”I-GPE”, ”B-LOC”, ”I-LOC”, ”B-PRODUCT”, ”I-PRODUCT”, ”B-DATE”,
”I-DATE”, ”B-TIME”, ”I-TIME”, ”B-PERCENT”, ”I-PERCENT”, ”B-MONEY”, ”I-
MONEY”, ”B-QUANTITY”, ”I-QUANTITY”, ”B-ORDINAL”, ”I-ORDINAL”, ”B-
CARDINAL”, ”I-CARDINAL”, ”B-EVENT”, ”I-EVENT”, ”B-WORK OF ART”,
”I-WORK OF ART”, ”B-LAW”, ”I-LAW”, ”B-LANGUAGE”, ”I-LANGUAGE”.
Only output entities. And the entity types should be output as a list without any ex-
planation. The input is [{input}].

GUM In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly
used to annotate slot types, indicating the boundaries and types of slots. These labels
typically represent: B- (Begin): Signifies the beginning of a slot, marking the start
of a new slot. I- (Inside): Represents the interior of a slot, indicating a continuation
of the slot. O (Outside): Denotes parts of the input that are not part of any slot. For
instance, in a sentence where we want to label a ”date” slot, words containing date
information might be tagged as ”B-date” (indicating the beginning of a date slot), fol-
lowed by consecutive words carrying date information tagged as ”I-date” (indicating
the continuation of the date slot), while words not containing date information would
be tagged as ”O” (indicating they are outside any slot).
Definition: In this task, you are given a conversation, where the words spoken by a
person are shown as a list. Your job is to classify the words in the following conversa-
tion into one of the 37 different entities. The entities are: ”I-abstract”, ”B-object”,
”B-place”, ”I-substance”, ”I-time”, ”I-place”, ”B-time”, ”B-abstract”, ”I-person”,
”B-plant”, ”B-substance”, ”I-animal”, ”B-organization”, ”I-event”, ”B-person”, ”B-
event”, ”I-plant”, ”I-organization”, ”O”, ”I-object”, ”B-animal”. Only output entities.
And the entity types should be output as a list without any explanation. The input is
[{input}].

Table 14: The prompt we used for each dataset in our experiments.
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Table 3 shows that LLMs outperform Longformer in the document classification task with zero-shot
prompt tuning. However, their performance drops significantly in the NER task in Table 5a and
Table 5b. For instance, in Figure 12, both GPT4o and Gemini1.5pro only predicted a single correct
label, “O”. Moreover, the models often fail to predict a sufficient number of token labels for longer
inputs, or they repeatedly predict all “O” labels or redundant label sequences. These inconsistencies
suggest that LLMs struggle to generate outputs matching the input length in token classification,
highlighting substantial room for improvement in this area.

A.7 MORE CASE STUDIES

In this section, we will present several prompt and output samples for the long documents from the
LUN (Figures 4) and 5) and Hyperpartisan (Figures 6 and 7) datasets for document classification,
as well as GUM (Figures 9 and 10) and CoNLL (Figures 11, 12, 3 and 14) datasets for NER task.
Documents with various lengths are randomly selected to see the comparison of our model against
GPT-4, Gemini1.5pro and Longformer. While there is always at least one baseline which predicts
wrongly for the difficult cases presented for the document classification task, we can observe that
our model consistently classifies those documents well. For the token classification task, our model
can also correctly classify more tokens than each baseline across the shown cases.

Figure 4: Prompt and output for a sample document of length 3928 in LUN dataset, where the
correct prediction is highlighted in green and wrong predictions are highlighted in red. Compared
to GPT4o, Gemini1.5pro and Longformer, our model can correctly classify the given document as
Hoax.
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Figure 5: Prompt and output for a sample document of length 2410 in LUN dataset, where the
correct prediction is highlighted in green and wrong predictions are highlighted in red. Compared
to GPT4o, Gemini1.5pro and Longformer, our model can correctly classify the given document as
Propaganda.

Figure 6: Prompt and output for a sample document of length 6800 in Hyperpartisan dataset,
where correct predictions are highlighted in green and the wrong prediction is highlighted in red.
Compared to Gemini1.5pro, our model, GPT4o and Longformer can correctly classify the given
document as False.
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Figure 7: Prompt and output for a sample document of length 2445 in Hyperpartisan dataset, where
correct predictions are highlighted in green and wrong predictions are highlighted in red. Compared
to GPT4o and Gemini1.5pro, our model and Longformer can correctly classify the given document
as False.

Figure 8: Prompt and output for a sample document of length 895 in GUM dataset for NER task,
where correct predictions are highlighted in green and wrong predictions are highlighted in red.
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Figure 9: Prompt and output for a sample document of length 1029 in GUM dataset for NER task,
where correct predictions are highlighted in green and wrong predictions are highlighted in red.

Figure 10: Prompt and output for a sample document of length 1281 in GUM dataset for NER task,
where correct predictions are highlighted in green and wrong predictions are highlighted in red.
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Figure 11: Prompt and output for a sample document of length 1798 in CoNLL dataset for NER
task, where correct predictions are highlighted in green and wrong predictions are highlighted in
red.

Figure 12: Prompt and output for a sample document of length 3038 in CoNLL dataset for NER
task, where correct predictions are highlighted in green and wrong predictions are highlighted in
red.
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Figure 13: Prompt and output for a sample document of length 7474 in CoNLL dataset for NER
task, where correct predictions are highlighted in green and wrong predictions are highlighted in
red.

Figure 14: Prompt and output for a sample document of length 9778 in CoNLL dataset for NER
task, where correct predictions are highlighted in green and wrong predictions are highlighted in
red.
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