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ABSTRACT

This paper presents the results of forecasting the Madden–Julian oscillation (MJO) and boreal summer

intraseasonal oscillation (BSISO) through the use of satellite-obtained global brightness temperature data

with a recently developed nonparametric empirical method. This new method, referred to as kernel analog

forecasting, adopts specific indices extracted using the technique of nonlinear Laplacian spectral analysis as

baseline definitions of the intraseasonal oscillations of interest, which are then extended into forecasts

through an iterated weighted averaging scheme that exploits the predictability inherent to those indices. The

pattern correlation of the forecasts produced in this manner remains above 0.6 for 50 days for both the MJO

and BSISO when 23 yr of training data are used and 37 days for the MJO when 9 yr of data are used.

1. Introduction

The Madden–Julian oscillation (MJO; Madden and

Julian 1972) and boreal summer intraseasonal oscilla-

tion (BSISO; Wang et al. 2009; Kikuchi et al. 2012; Lee

et al. 2013), are the two most dominant intraseasonally

varying patterns of the tropical atmosphere. The former,

an eastward-propagating envelope of convective activity

originating in the Indian Ocean during boreal winter, is

known to modulate Pacific and Caribbean cyclogenesis,

affect rainfall variability onmultiple coastal regions, and

alter the strength of the ENSO cycle, among other ef-

fects (Zhang 2005). The BSISO, meanwhile, is closely

related to intraseasonal oscillations of the South Asian

monsoon (Goswami 2011, and references therein) and

influences its onset and active and dry spells. More

broadly speaking, improved understanding of these two

intraseasonal modes would go a long way in filling the

gap that is beyond the reach of short-term weather

forecasts and below the resolution of long-term climate

models (Waliser 2011; Zhang et al. 2013). Yet, despite

the understood importance of these modes of variability

and several decades of research, there are still significant

challenges to improving the real-time monitoring and

forecasting of these two modes.

Among these challenges is the still-open problem of

defining intraseasonal oscillations in a consistent and

objective manner. Although the real-time multivariate

MJO index (RMM; Wheeler and Hendon 2004) has

emerged as the most commonly used standard for MJO

measurement, drawbacks such as biased sensitivity to-

ward wind velocity data and overreliance on prepro-

cessed data have meant that the development and testing

of alternative indices has yet to cease (Kiladis et al. 2014).

No comparably popular measure has emerged for the

BSISO, in no small part because of the relatively greater

complexity of monsoon dynamics (Lee et al. 2013). One

well-recognized common source of these difficulties,

among several, is that the majority of current techniques

are not ideally suited for multiscale phenomena like or-

ganized tropical convection, as they generally require ad

hoc data preprocessing to isolate the temporal and spatial

scales of interest. The recently developed technique of

nonlinear Laplacian spectral analysis (NLSA; Giannakis

and Majda 2011, 2012, 2013, 2014) seeks to redress this

mismatch by producing indices based on time-lagged

embedding and local measures of data similarity that

more sensitively capture nonlinear dynamics than stan-

dard eigendecomposition techniques, such as empirical
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orthogonal function (EOF) analysis. This technique has

been used to extract families of modes of variability from

equatorially averaged (Giannakis et al. 2012; Tung et al.

2014) and two-dimensional (2D) (Székely et al. 2016a,b)
brightness temperature (Tb) data spanning interannual to

diurnal time scales without prefiltering the input data.

These mode families include representations of the MJO

and BSISO with higher temporal coherence (Székely
et al. 2016b) and stronger discriminating power be-

tween eastward and poleward propagation (Székely et al.
2016a) than patterns extracted through comparable linear

approaches. Insofar as improved accuracy of representing

tropical intraseasonal oscillations (ISOs) can bolster pre-

dictability, we explore in this paper the extent to which

NLSA-derived indices can be used as a basis for fore-

casting the MJO and BSISO.

A second challenge is determining how to incorporate

information about both the past and present into pre-

dictions of any given tropical ISO pattern’s future evolu-

tion. There will always be, of course, some unpredictability

to tropical ISOs that cannot be overcome without nu-

merical simulations, especially since tropical ISOs are af-

fected by global warming (Subramanian et al. 2014), the

precise future spatiotemporal characteristics and magni-

tude of which remain uncertain. Nevertheless, the MJO

and BSISO have shown enough regularity and consistency

over the past 40yr to suggest that the past can serve as a

guide to the future. One of the simplest empirical fore-

casting techniques is the classical analog forecasting

method of Lorenz (1969), which first identifies, via Eu-

clidean distances, a moment in the past that is most

similar to the present and then casts the historical evo-

lution from thatmoment as the forecast for the future. In

the context of tropical intraseasonal oscillations, analog

techniques have been employed in real-time forecasting

of Indian monsoons with skill extending to 20–25 days

(Xavier and Goswami 2007). Generalizations of analog

forecasting based on modifications, such as taking

weighted averages of multiple historical paths, vary-

ing the type of distance measure by which analogs are

chosen, and iterating multiple times in order to account

for multiple scales, have recently been developed in a

framework called kernel analog forecasting (KAF;

Zhao and Giannakis 2016; Comeau et al. 2017), which

will be employed later in this paper.

Analog forecasting methods can preserve many of the

attractive qualities of NLSA-derived indices. The com-

patibility of these otherwise two distinct techniques lies

in their mutual reliance on dynamics-dependent geo-

metric measures of data similarity. In particular, NLSA

indices are the eigenvectors of a kernel operator (Belkin

and Niyogi 2003; Coifman and Lafon 2006; Berry and

Sauer 2016), which can be loosely thought of as a local

covariance matrix. Much of the character of these indices

is due to a specific choice of a smooth, data-dependent

Gaussian-like kernel that takes dynamics into account

through Takens delay-coordinate embeddings (Takens

1981; Packard et al. 1980; Broomhead and King 1986;

Sauer et al. 1991). Meanwhile, KAF methods produce

forecasts by taking weighted averages of historical data,

with weights determined by a measure of similarity be-

tween the present and any prior moment in time. By

letting these analog weights be determined by kernels of

the same class as that used in the extraction of the NLSA

indices, the resulting algorithm is more sensitive to os-

cillations in the intraseasonal range and can thus pro-

duce more faithful forecasts than otherwise (Zhao and

Giannakis 2016). As shown here, this pairing of NLSA

and kernel analog techniques can yield nearly 6 weeks’

worth of skill in forecasting the MJO and BSISO. This

result is comparable to those of the stochastic oscillator

models of Chen et al. (2014) and Chen and Majda

(2015a) for predicting the NLSA-derived MJO and

BSISO modes, respectively.

Some advantages that KAF can be said to have over

other recent skillful forecasting methods of tropical

ISOs are its nonparametric nature, which helps avoid

dynamical model error, and its ability to operate in real

time. Dynamical model errors, in particular, have his-

torically been a significant obstacle to forecasting ISOs

whether through numerical models or parametric sta-

tistical models, with skill of earlier models limited to 10–

15 days (Waliser 2011, and references therein). More

recently, however, advances in MJO simulation by

coupled models have led to skill as high as 27 days for

forecasting the RMM indices (Miyakawa et al. 2014;

Neena et al. 2014; Vitart 2014; Xiang et al. 2015). Similar

improvement of skill has also been attained by recent

parametric empirical models (Kondrashov et al. 2013;

Chen and Majda 2015b). It is important to note that the

higher predictive skill reported in this paper is at least

partly due to the higher intrinsic predictability of the

NLSA-derived modes compared to the RMM. Forecast

skill aside, while both coupled models and parametric

empirical models are important for elucidating the

physical processes underlying tropical ISOs, such

models often require iterative tuning of numerous pa-

rameters, which in many ways can introduce significant

biases. Kernel analog forecasting, on the other hand, is

purely empirical in the sense that none of its parameters

rely on any physical model. This nonparametric quality

allows the method to both avoid model error and be

automatic, at least in the sense that no manual in-

tervention is required after initial data entry. Moreover,

KAF can operate in real time, which is a feature that is

sometimes absent in statistical models.
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The dataset of interest in this paper, to which the KAF

technique is applied, is tropical 2D Tb data collected

under the CloudArchive User Service project (CLAUS;

Hodges et al. 2000), which is often viewed as a good

proxy for tropical convective activity. Our primary ex-

periment utilizes the first 24 yr of available CLAUS Tb

data as training data, from which MJO and BSISO

forecasts for the period from 2006 to 2009 are con-

structed. A secondary experiment with only 9 yr of

training data, from 1983 to 1992, is also performed, and

we additionally perform a suite of sensitivity tests to

assess the influence of factors such as the training time

series length and the delay embedding window on

forecast skill. In particular, standard measures of skill,

such as root-mean-square error (RMSE) and Pearson

correlation (PC) are presented for lead forecast times

varying from 15 to 60 days. The chief result of this paper

is that the PC score for kernel analog forecasts of the

MJO and BSISO can stay above a 0.6 threshold for

;40 days of lead time. Context for how this result fares

against other prediction methods and ISO indices is

provided in the discussion and conclusions of this paper.

The plan for the rest of the paper is as follows. An

overview of the KAFmethod is provided in section 2. The

specific data of interest are described in section 3. The

results of applying KAF to this data, as well as a sensitivity

analysis, are presented in sections 4 and 5, respectively. A

discussion of these results constitutes section 6, and

broader context, possible future research directions, and

other concluding remarks are given in section 7.

2. Kernel analog forecasting

We provide here a brief overview of ensemble kernel

analog forecasting, a more complete description of

which can be found in Zhao and Giannakis (2016). The

first subsection outlines the general framework of the

method, illustrating how the final forecast is the result of

multiple iterations of weighted averages. The sub-

sequent subsections describe the key components of the

method, including time-lagged embedding, creation of

training data via NLSA extraction, and kernel specifi-

cation. The final subsection describes the ways in which

the resulting forecasts are assessed.

a. Preliminaries

The forecasting problem consists of predicting what

the value of some physically meaningful quantity f will

be at some lead time t in the future. We refer to f as the

forecast observable and represent it as a map t/ f (t),

where t 2 R represents a moment in time, and f (t) lies in

some output space Y. For instance, in sections 3 and 4, f

will be the NLSA-based MJO or BSISO index, taking

values in Y5R. It is often useful, however, to focus

attention instead on the time-shifted forecast observable

Utf : t/ f (t1 t). With this new observable, the empiri-

cal forecasting task can then be stated as one of con-

structing, through empirical means only, a forecasting

function Ft :R/Y that reasonably approximates Utf

on the entire time domain and for arbitrary lead time t.

Empirical methods generalize a forecast from a

training period T � R over which Utf has already been

observed and recorded. We seek to extend this re-

stricted function, denoted by dUtf , to a function that

approximates Utf on the entire domain R. Once the

training period T has been fixed, the rest of the method

is completely determined by the manner in which dUtf is

extended to the full domain R. As such, it is often con-

venient to focus attention just on domain-extending

operators P, dependent on an empirical observation

map t/ x(t) of some data space X , and defining the

forecasting function as

F
t
5 P+dU

t
f , (1)

where + denotes composition of maps. The space X cor-

responds to the space of initial data for the forecast. In the

application presented in subsequent sections, X will be a

space of brightness temperature fields in time-lagged

embedding space.

It will be useful later on to keep in mind the slightly

more abstract interpretation of the forecasting problem

in the context of dynamical flows within a hidden state

space A (Zhao and Giannakis 2016), which, in the

present case, is interpreted as Earth’s entire climate

system. In particular, all relevant dynamical laws are

represented abstractly by a functionFt for whichFt(a) is

the state that occurs t time units after state a in A is at-

tained. A single realization fatgt2R of flow corresponds

to fixing a state a0 at some reference time t5 0 and de-

fining at 5Ft(a0). For any such realization, there is a

sequence of observations fxtgt2R and values of the

forecast observable fftgt2R. These sequences are alter-

natively represented by the maps f (t)5pYat and

x(t)5pXat, wherepY andpX are nonlinear projections

onto Y and X, respectively. Finally, the quantity of

interest is represented as Utf (t)5pYFt(at). In dy-

namical systems theory, the operators Ut governing

the evolution of observables are known as Koopman

operators and have several useful properties for mode

identification and prediction (Mezić 2005; Budisić et al.

2012; Giannakis 2016).

b. General analog forecasting

Kernel analog forecasting is characterized by havingP

act as a weighted average over training data acquired
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from past observations of the system. In particular, the

action of P on any map G :T/R is defined by

P+(s)5
1

N
�
t2T

G(t)r(x(s), x(s)), (2)

where s 2 R denotes the present time, and r :X3X/
[0, ‘) is a weight function. In particular, settingG5 dUtf

leads to the general forecast formula in (1). This pro-

cedure can also be described as identifying and averag-

ing, via a data similarity function r, moments of the past

that can serve as analogs for the present.

Conventional analog forecasting, as first proposed by

Lorenz (1969), consists of using only one analog, the ‘‘best

one,’’ at any given time. When X is equipped with a dis-

tance functionD, conventional analog forecasting consists

of first identifying the moment in time t* at which the

training data x(t*) is the nearest neighbor (in data space)

to the data x(s) observed at initialization time s: that is,

t*5 argmin
t2TD(x(s), x(t))

With the analog identified, the weights are then set to

Dirac delta functions r(x(s), �)5 dx(t*) centered at the

analog data point x(t*), and the forecasting function in

(1) becomes

F
t
(t)5 f (t*1 t) .

A major drawback to this method is the risk of the

resulting forecast Ft being highly nonsmooth in its argu-

ment, as the ‘‘best’’ analog jumps around. Such nonsmooth

behavior should be avoided in climate applications and is

generally a sign that the forecast is overfitting its training

data. In any case, considerations of smoothness aside, it is

generally beneficial to incorporate as much information

from different analogs as possible.

Kernel analog forecasting takes advantage of the in-

formation offered by multiple analogs by having r be

smooth in its first argument. Since we want P to have the

interpretation of being a weighted average, we always re-

quire that (1/N)�t2Tr(~x, x(t))5 1 for all ~x 2 X. Since

enforcing this normalization constraint can make it more

difficult to consider all of the possibilities for r, it is often

convenient to focus on choosing another function

K :X3X/ [0, ‘), known as the kernel, and letting nor-

malization be taken care of automatically via the formula

r(x
i
, x

j
)5

K(x
i
, x

j
)

(1/N)�
t2T

K(x
i
, x(t))

,

for all xi, xj 2 X. The kernel K is also a measure of

similarity between data points, except that no normalization

constraint is imposed. One of the most common kernel

choices in machine learning is the radial basis function

(RBF)K«(xi, xj)5 exp(2kxi 2 xjk2/«), where the double
vertical bar represent the Euclidean distance and « is a

positive bandwidth-controlling parameter. A key prop-

erty ofRBFs is their rapid decay away from xi 5 xj when «

is small; this property allows such kernels to localize on

small neighborhoods of datasets with nonlinear geo-

metric structures (in particular, datasets generated by

complex dynamical systems with attractors such as the

climate system), where the data geometry is approxi-

mately linear. As will be described in the next sub-

section, our choice of kernel is loosely based on

RBFs, with several anisotropies introduced.

c. Laplacian pyramid iteration

We have thus far shown, given a training period T on

which values of x and dUtf are known, how a forecast

function Ft is constructed from a kernel K. For many of

the most common forms of kernel, there is at least one

tunable parameter whose determination is not trivial.

For example, if one determines that RBFs are appro-

priate kernels, one is still left with the problem of

choosing an appropriate bandwidth parameter «. There

is a risk of overfitting if « is too small and of underfitting

if « is too large. Conventional analog forecasting, and

thus overfitting, lies in the extreme case of «/ 0, as the

weight r(xi, xj) approaches a point Dirac delta function

centered at xi. Simple averaging, a clear case of under-

fitting, lies at the opposite extreme of «/‘, where Ft(t)

always returns a constant that is equal to the average of

the training forecast observables [i.e., (1/N)�t2TdUtf (t)].

Even if one choice of « is found for a certain segment

of the training data that is neither overfit nor underfit, it

can be difficult to find just one choice for which all of the

training data are appropriately fit, especially if the data

are slowly varying in some parts and rapidly varying in

others. When such multiple scales of regularity in the

training data arise, it is reasonable to incorporate more

than one kernel, with a corresponding multitude of

bandwidth scales. This can be done with an iterative

generalization of (2), referred to as the Laplacian pyr-

amids extension scheme (Rabin and Coifman 2012;

Fernández et al. 2014). Suppose «1, «2, . . . is a sequence

of decreasing bandwidth parameters, with correspond-

ing kernelsK«i and extension operators P«i. At each step

‘ in the procedure, we produce a forecast Ft,‘ and

define a residual function r‘ :R/R, for lead time 0,

r
‘
5 f 2F

0,‘
,

and time shift that function to obtain a residual at lead

time t via
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r
t,‘
5U

t
r
‘
.

This residual is a measure of the difference between the

approximation Ft,‘ and the truth Utf . The restriction of

the residual to just the training period, denoted by crt,‘,
is a computable function that can be used to improve the

overall accuracy of the forecast. The complete recursive

procedure is then entirely described by the two formulas:

F
t,0

5 0 and

F
t,‘
5F

t,‘21
1P

«‘
br
t,‘21

.

This scheme can generally be run for as long as neces-

sary before there is no longer an appreciable change in

Ft,‘ from one step to the next. In practice, this means

stopping when rt,« drops below a certain threshold d,

which we take in this paper to be d 5 1026. The final

forecasting function is set to be Ft 5Ft,L, where L is the

step at which the procedure is halted.

A common iterative scheme that rapidly moves

through multiple scales, and one that we employ in this

paper, is that of a decreasing dyadic sequence of band-

width parameters: that is, letting each parameter be

twice as small as the previous one [i.e., «‘ 5 (1/2)«‘21 for

‘ . 1]. If the algorithm is run to completion, then only

the computation time, and not the final results, is sen-

sitive to the initial choice «1, provided that the latter is

large enough. One approach is to choose a value of «1
that is comparable to the size of a representative of the

training data x(T), which lets the algorithm not spend

time with bandwidth parameters that are too large to

capture any interesting geometric features. In practice,

we follow the recommendation in Fernández et al.

(2014) of setting «1 equal to the median of the pairwise

distances between the training data. Note that, with both

«1 and d specified, the iterative procedure is automatic, in

the sense that there are no free parameters left to be tuned.

d. Choice of observation map

The simplest choice for an observationmap x is simply

one for which the output at time t is all of the data

procured at that time. For example, if z(t) 2 R
n is a

vector containing the values of satellite-obtained bright-

ness temperatures at n spatial grid points, then the most

immediate candidate for x(t) is simply z(t) itself. It is

reasonable, however, to assume that previous values of

the data should also figure into predictions about the

future.As such, ourmap of choice is the delay-coordinate

map (Takens 1981; Packard et al. 1980; Broomhead and

King 1986; Sauer et al. 1991), defined by

x(t)5 fz(t), z(t2Dt), . . . , z(t2 q(2t)Dt)g,

where q is a positive integer parameter denoting the

number of delays, and Dt is a fixed time interval. The

interpretation here is that, at any given time t, we can

observe not just a single snapshot of the system, but a

succession of snapshots (i.e., a video). The parameter q

can be taken as large as we need it to be in order to have

the phenomena of interest represented in a single video

observation x(t). After embedding, the data x(t) reside

in a spaceX5R
N of dimensionN5 nq, and in practical

applications N can be very high (e.g., in the case of the

CLAUS Tb data studied in sections 4 and 6,N is of order

107). However, since both KAF and NLSA are based on

localizing kernels, the performance of these methods is

sensitive to the intrinsic dimension of the subset of RN

occupied by x(t), which is typically far smaller than N.

An alternative justification for the use of delay em-

bedding is found in dynamical systems theory. In that

framework, the obtained data inX are said to be merely

partial observations of a dynamical state in a hidden

state space A. It is a classic result (Packard et al. 1980;

Takens 1981; Broomhead and King 1986; Sauer et al.

1991) that, with a sufficiently large window q and weak

assumptions on the true system, time-lagged embedding

can recover the topology of the system’s dynamical at-

tractor. The result is that the system, as represented by a

path moving in the space X, rather than Z, is smoother

and more Markovian (i.e., predictable). Besides im-

provingMarkovianity, time-lagged embedding is known

to play an important role in improving the ability of

kernel eigenfunctions to recover distinct dynamical time

scales (Berry et al. 2013; Giannakis 2016); we discuss this

point further in section 2f.

A detail that is relatively inconsequential to the

overall theory, but important in actual implementation,

is that appropriate truncations of training data must

follow any time-lagged embedding. For example, as will

be discussed in section 3, we take one of our training

periods Tlong to span from 1 July 1983 to 30 June 2006,

and set q to correspond to 64 days. Since no data are

available before 1 July 1983, it is not possible to do full

time-lagged embedding for any data obtained before

3 September 1983. If s is the number of samples in the

original training period T , then the truncated period has

length s2 q1 1. Instead of always using different nota-

tion to differentiate between the original training period

and the truncated training period, we sometimes denote

both by T, with context determining which meaning is to

be understood. Alternatively, we just say that x is un-

defined for the first q samples.

e. Choice of forecast observable

One of the challenges to forecasting intraseasonal

tropical oscillations is the multiplicity of ways to define
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them. Nevertheless, one common way to define ISOs is

through eigenfunctions of the eigenvalue equation

L̂f
k
5 l

k
f

k
, (3)

for a suitable operator L̂ determined from the training

data. For instance, in EOF analysis, L̂ is the temporal co-

variance matrix, and fk are the principal components. In

NLSA, L̂ is a discretized version of a so-called Laplace–

Beltrami operator, which is based on a sequence of nor-

malizations of a kernel function K : X3X/R over a

specified (and appropriately truncated) training period T

(that is, T is of size s2 q1 1, to take into account time-

lagged embedding). This kernel is of the asymmetric ex-

ponential family described in (4) ahead. Letting

Kij 5K(x(tj), x(tj)) where ti, tj are all of the times avail-

able in T, the sequence of normalizations that builds the

matrix L, as proposed in the diffusion maps algorithm of

Coifman and Lafon (2006), follows

Q
i
5 �

s

j51

K
ij
, eK

ij
5

K
ij

Q
i
Q

j

,

D
i
5 �

s

j51

eK
ij
, P

ij
5

eK
ij

D
i

,

L
ij
5 d

ij
2P

ij
,

where dij is the Kronecker delta function. Since L is a

matrix of size s3 s, where s is typically on the order of

tens of thousands of samples in our applications, it is

useful to work with a sparse matrix L̂, obtained by re-

taining only the largest knn entries per row of L, where

knn is much less than s. Note that the ability to approx-

imate L by a sparse matrix relies on K(xi, xj) decaying

sufficiently rapidly to zero away from xi 5 xj [e.g., the

RBF kernel and the anisotropic NLSA kernel in (4)

ahead both have exponential decay]; this results in a

significant reduction of computational cost, which is

generally not possible with eigendecomposition tech-

niques based on covariance matrices. In what follows,

we generally set knn so that only about 15%of the entries

of L are retained. It can be shown that the resulting ei-

genmodes are orthogonal with respect to a weighted

inner product hfk, fli5�s

i51fikfilDi, where fik is the

ith component of the eigenvector fk.

Multiple eigenmodes fk are obtained by solving the

eigenvalue problem in (3). In NLSA, the eigenvalues lk

measure the roughness (Dirichlet energy) of the corre-

sponding eigenfunctions on themanifold sampled by the

data, much like the eigenvalues of the Laplacian on a

periodic domain are proportional to squaredwavenumbers

of Fourier modes. Eigenfunctions corresponding to small

eigenvalues are therefore smooth functions that can

be robustly extended to previously unseen test data.

In what follows, we order all eigenfunctions in order

of increasing lk. Note that, unlike in EOF analysis,

the eigenvalues here are not related to the variance

explained by spatiotemporal reconstruction associ-

ated with the corresponding eigenfunctions. In

practice, however, the small-lk eigenfunctions do

tend to be the ones explaining large variance.

By investigating some of the features of correspond-

ing spatially reconstructed modes (Székely et al. 2016a),
it can be possible to identify a particular mode fi* to

serve as a forecast observable f (e.g., as explained fur-

ther in section 3, the twelfth eigenmode is identified as

being one of the two MJO modes of interest, and thus

i*5 12). This mode is then used to define the restrictions

onto the training data of the forecast observable f̂ , and, by

consequence, the time-shifted observable dUtf .

For concreteness, the full, untruncated training period

can be represented as T5 ftjgsj51, where s is the total

number of samples, and the sampling times are uni-

formly separated by some interval Dt. The restricted

forecast observable function f̂ is then defined by

f̂ (t)5f
i*
(t), t 2 ft

j
gs
j5q

,

and the corresponding time-shifted functions dUtf become

dU
t
f (t)5 f̂ (t1 t), t 2 ft

j
gs2t

j5q
.

The truncation of the last t samples in the above ex-

pression is due simply to the fact that f̂ (t1 t) is not

defined when t1 t. s. However, as mentioned in the

final remark of section 2d, it is often useful in an abstract

setting to simply let T denote all of the different trunca-

tions of the original training period. With this convention,

we consider both f̂ and dUtf as maps from T to Y.

f. Choice of kernel

The NLSA-derived forecast observable f is built

from a kernel that, insofar as it assesses local similarity

between points, is said to induce a geometry on the data

(Berry and Sauer 2016). If we want consistent forecast

results, the kernel that is chosen as weights in the

weighted ensemble should rely on a similar, if not ex-

actly identical geometry. The simplest way to do so is by

using the same kernel form as used in the definition of

the forecast observable f ; this choice is also theoreti-

cally motivated from the properties of bandlimited

observables in reproducing kernel Hilbert spaces

(Zhao and Giannakis 2016). For a given parameter «‘,

that kernel is given, as in Giannakis and Majda (2011,

2012, 2013, 2014), Giannakis et al. (2012), Tung et al.

(2014), and Székely et al. (2016a,b), by
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where z :X/R is a bandwidth function, to be specified

momentarily, that allows the kernel to modify the size of

its influence based on the inputs xi and xj. Note that if the

denominator in the exponent of the kernel is large, then the

inputs xi and xj are assigned a high similarity score, whereas

this score is small if the denominator is small. This fact is

relevant not just to the extraction of NLSA indices, but to

the analog weightings as well. In particular, kernels de-

scribed as above have smaller discriminating power in re-

gions of the phase space where z is large and thus will

produce indices that do not as aggressively separate modes

corresponding to high z. As for the effect on weights, ana-

logs x(t) for which z[x(t)] is large are weighted more

heavily in theKAFensemble than they otherwisewould be.

The choice of z is thus determined by considerations

of where in phase space we wish to relax the kernel’s

discriminating power and which analogs we deem wor-

thy of increased weighting. One intuitive idea is that

data corresponding to more energetic activity are rela-

tively more rare and yet more dynamically important

and therefore should be treatedmore generously in both

index extraction and analog forecasting steps. One way

of measuring activity is through the magnitude of the

time tendency of the data, which we refer to as phase

speed. In NLSA, if ai is the hidden state corresponding

to the data xi, we approximate the phase speed through

the finite-difference formula z(xi)5 kxi 2pXF2Dt(ai)k.
In practice, since we are dealing with just one realization

of the dynamical flow at a time, this expression becomes

z[x(t)]5 kx(t)2 x(t2Dt)k. In this manner, states with

large phase velocity are assigned large kernel values.

This specific choice of z also has a geometrical in-

terpretation as a conformal change (local scaling) in the

geometry of the data (Giannakis 2015).

Besides the bandwidth function z, a key feature of the

NLSA kernel in (4) is that it operates on the time-lagged

sequences xi, as opposed to the individual snapshots zi.

For certain classes of dynamical systems (viz., systems

with pure point spectra), it can be shown that, as q in-

creases, the associated kernel eigenfunctions fk at a

given eigenvalue lk converge to doubly degenerate pe-

riodic pairs with a frequency vk and span the same

subspace as eigenfunctions of the Koopman operatorUt

of the dynamical system (see section 2a) with eigen-

values e6ivkt (Giannakis 2016). Thus, in this special case,

the eigenfunctions from NLSA are periodic observables

(even if the underlying dynamical flow Ft is aperiodic),

evolving at frequencies intrinsic to the dynamical system.

Away from this idealized limit, the eigenfunctions from

NLSA are expected to retain at least some of the desirable

properties of Koopman eigenfunctions, including high

temporal coherence and physical interpretability, which

have been observed in a number of applications (e.g.,

Giannakis and Majda 2011, 2012, 2013, 2014; Giannakis

et al. 2012; Tung et al. 2014; Székely et al. 2016a,b). Note

that the effect of time-lagged embedding in the kernel does

not, in general, correspond to bandpass filtering at the

frequency bandwidth 1/(qDt). For instance, in Giannakis

et al. (2012), Tung et al. (2014), and Székely et al. (2016a,b),
and section 4 ahead, the embedding window qDt has in-
traseasonal length (64 days), but the NLSA spectrum

contains eigenfunctions spanning interannual to diurnal

time scales.

g. Out-of-sample extension

The efficacy of the produced forecast Ft is assessed

in a testing periodT (disjoint from the training periodT)

with s sampling times. One difficulty in doing so is that it

requires knowledge of what the ‘‘true’’ values of f , and

therefore also those of Utf , are over T. In other words,

we must specify f (T). One way of doing this is to re-

compute the NLSA eigenmodes over a period that spans

both the training and test periods. However, with this

choice, the measured forecast errors are due to both in-

trinsic loss of skill and the fact that the eigenfunctions

computed from the union of the training and test data may

have differences from those computed from the training

data alone (in particular, the MJO and BSISO modes of

interest come as nearly degenerate pairs and are therefore

arbitrary up to a phase rotation). In addition, recomputing

the eigenfunctions for different choices of test data can be

unnecessarily expensive. When the testing period is short

relative to the training period, it is possible to approximate

the full NLSA reconstruction with a so-called out-of-

sample extension that is easier to compute.

Out-of-sample extension relies on the fact that we

have at our disposal an already carefully constructed

function Ft that can be used for monitoring in addition

to forecasting. That is to say, in addition to Ft(t) pro-

viding forecasts of f at future times t1 t for t. 0, it also

provides a value for t5 0. Because Ft(t) is smooth in t,

we can say that F0(t) provides a ‘‘forecast’’ of f at the

present time t, or, alternatively, a ‘‘nowcast.’’ As the

length of the training period grows, F0(t) approaches

the value f (t), for arbitrary t. We therefore define the

‘‘true’’ signal f over T to be

f (t)5F
0
(t) for t 2 T

and say that f is the out-of-sample extension of f̂ . Note

that the analog of this approach in the context of EOF

analysis is computing EOFs from the training data and
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then determining the true values of the corresponding

principal components in the testing period by projection

of the test data onto those EOFs.

h. Error assessment

Having defined the true signal f over a testing period

T , various ways of assessing error can be performed by

examining the restriction of the residual error rt 5
Utf 2Ft to T , denoted by rt. In the case of seasonally

dependent phenomena such as theMJO and BSISO, it is

more meaningful to perform error assessments over

subsets ~T of the test period where these phenomena are

predominantly active. Specifically, in the case of theMJO,

we compute skill metrics over the portion of T excluding

June–August (JJA). For the BSISO, this is done over the

portion of T excluding December–February (DJF).

The first skill metric we use is the RMSE, defined for a

given lead time t by

RMSE(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

~s
�
t2 ~T

jr
t
(t)j2

s
,

where ~s is the number of samples in ~T.

Another valuable and commonly used measure of error

is Pearson correlation, also known as pattern correlation,

PC(t)5
1

~s
�
t2 ~T

[F
t
(t)2m

Ft
][U

t
f (t)2m

Utf
]

s
Ft
s

Ut f

,

wheremG and sG aremeans and covariances defined, for

any function G :T/R, by

m
G
5

1

~s
�
t2 ~T

G(t) and

s2
G 5

1

~s
�
t2T

[G(t)2m
G
]2 .

Because of the recentering and normalization steps in

its formula, pattern correlation gives a good measure of

how well Ft tracks Utf that does not depend on ampli-

tude. Therefore, instead of focusing on whether Ft and

Utf have the same value, the PC score highlights the

degree to which the two signals move together in the

same direction at the same time, which is useful in actual

forecasting. However, amplitude fidelity can also be

important, and thus RMSE is also considered in the

following results and discussion.

3. Application to global brightness temperature data

a. NLSA-derived MJO and BSISO modes

Our primary object of study is infrared brightness

temperature data recorded under the CLAUS project

over 26 yr, from 1 July 1983 to 30 June 2009, and used in

Giannakis et al. (2012), Tung et al. (2014), and Székely
et al. (2016a,b). This dataset is often considered to be a

reasonable proxy for convective activity in the tropics,

with positive Tb anomalies associated with reduced

cloudiness and negative anomalies with increased

cloudiness. The sampling is confined to the tropical belt

between 158S to 158N, with a resolution of 18 in both

longitude and latitude. Each 2D sample thus consists of

nlon 5 360 longitudinal and nlat 5 31 latitudinal grid

points. Each Tb observation z(t) is arranged as a vector,

with length n5 nlon 3 nlat 5 11 160. These observations

are collected at an interval of Dt 5 3 h, for a total

sample size of stotal 5 75 796 over the 26 yr of the

CLAUS record.

To examine the effects of differently sized training

datasets, our study in this section is broken into a long

training period set Tlong and a short training period Tshort.

The period Tlong spans 23 yr from 1 July 1983 to 30 June

2006, thus consisting of slong 5 67208 samples. The period

Tshort, meanwhile, covers the 9 yr between 1 July 1983 and

30 June 1992, for a sample size of sshort5 26304. Note that

no preprocessing, such as bandpass filtering, seasonal

partitioning, or equatorial averaging, is performed.

The testing period T long corresponding to the long

training period Tlong covers the 3 yr from 1 July 2006 to

30 June 2009. The reason for this particular choice of

training and testing periods is that we seek to utilize as

long a training period as possible while keeping the

testing period long enough for forecasts to be verified.

The testing period Tshort associated with the shorter

training period, meanwhile, covers the 3 yr between

1 July 1992 and 30 June 1995. The rationale for this

second choice of testing period is that it contains the

intensive observing period (IOP) of the Tropical Ocean

Global Atmosphere Coupled Ocean–Atmosphere Re-

sponse Experiment (TOGA COARE), which took

place between 1 November 1992 and 28 February 1993

(Webster and Lucas 1992). Our particular choice of

Tshort and Tshort is thus designed to not only test the ro-

bustness of the forecasting algorithm in the face of a

shortened training period, but to also benefit from pre-

existing research about this well-studied period, during

which two large MJO events were observed.

For any given period T consisting of s samples, the

observational data are stored in a matrix, denoted by

z(T), of dimensions n 3 s. The time-lagged embedding

procedure described in section 2d is applied to

construct a separate matrix x(T), of size nq by s2 q1 1,

where q is the length of embedding window. Following

Giannakis et al. (2012), Tung et al. (2014), and Székely
et al. (2016a,b), the embedding length is chosen to be

long enough to capture key features of intraseasonal

1328 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 74



activity, which occur on less than a 2-month time scale,

and short enough compared to the length of the training

time series. As such, a lag of 64 days is chosen, which,

given the 3-h sampling interval, means q 5 512. This

further means that the embedded vectors x(t) populate a

space of dimension N 5 nq ’ 2.3 3 107. As noted in

section 2d, NLSA and KAF are well-suited techniques

for data analysis and modeling in such high-dimensional

spaces, as their performance is governed by the intrinsic

dimension of the dataset x(T), which is generally sig-

nificantly smaller than N.

The forecast observables for Tlong are extracted from

x(Tlong) via NLSA and stored in time series vectors

f (Tlong) of length slong 2 q1 1. The bandwidth parame-

ter of the NLSA kernel is set to «5 2 and the nearest

neighbors parameter to knm 5 5000 (corresponding to

;10% of the dataset); these are the same parameter

values used by Giannakis et al. (2012), Tung et al.

(2014), and Székely et al. (2016a,b). Using these pa-

rameters, we compute the first 50 eigenmodes, fi(Tlong),

for i5 1, . . . , 50, of the discrete Laplace–Beltrami op-

erator L̂. The twoMJOmodes of interest are the twelfth

and fifteenth leading eigenmodes of L̂, while the two

BSISO modes of interest are the twenty-first and

twenty-second leading eigenmodes. Given that the two

MJO modes are very similar to each other (save for a

quarter-phase time shift), and thus produce forecasts of

nearly identical quality, we show results for just one of

the two MJO modes, setting fMJO(Tlong)5f12(Tlong).

This is also the case for the BSISO, for which we set

fBSISO 5f21(Tlong). These two representative forecast

observables are plotted in Fig. 1. The eigenfunction time

series and associated Tb phase composites for these

observables are plotted in Figs. 1 and 2.

Selecting which of the NLSA eigenmodes correspond

to the MJO or BSISO is done through a one-time quali-

tative assessment of their associated spatially reconstructed

patterns. In particular, the MJO forecast observables were

chosen as those corresponding to eastward-propagating

wave trains of enhanced and suppressed convection during

the boreal winter, initiating over the Indian Ocean, tra-

versing the Maritime Continent and western Pacific warm

pool, and eventually decaying in the central Pacific Ocean

near the date line. Meanwhile, the BSISO forecast ob-

servable was chosen as the one matching boreal summer

convective activity initiating in the Indian Ocean and

moving north toward the Indian subcontinent. We refer

the reader to Székely et al. (2016a,b) for additional

FIG. 1. (a) The time series of one of the MJOmodes (blue) and the amplitude of both MJOmodes (orange), between 1 Jul 1983 and 30

Jun 2006. (b) Phase plot with the MJO mode shown in (a) on the x axis, and the other mode as the y axis. (c),(d) As in (a) and (b),

respectively, but for the BSISO modes.
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discussions on the properties of these modes, including

coarse-grained predictability properties and initiation and

termination statistics. Besides theMJO and BSISOmodes

studied here, theNLSA spectrum recovered fromCLAUS

Tb data contains a multiscale hierarchy of modes (repre-

sented by distinct orthogonal eigenfunctions, as described in

section 2e), including representations of ENSO, the an-

nual cycle and its harmonics, and the diurnal cycle

Székely et al. (2016a). As will be discussed in section 6a,

the extracted MJO and BSISO modes from the long

training period are qualitatively robust to the embedding

length so long as it exceeds ’30 days.

To retain the real-time applicability of kernel analog

forecasting, the forecast observables corresponding to

the short training period Tshort are obtained using data

restricted the short training period. That is to say, al-

though it is tempting to simply use the first 9 yr of

fMJO(Tlong) as fMJO(Tshort), it is important to note that

each entry of fMJO(Tlong) depends on data from the en-

tirety of Tlong. This erroneous truncation would then

correspond to a forecaster living in 1992 using infor-

mation from the future. We must instead recompute the

eigenmodes of the NLSA kernel restricted to just Tshort.

Although several of the resulting eigenmodes are not as

clear, the MJO modes are still visible, and, like before,

we set fMJO(Tshort) to one of the two modes. The BSISO

modes over this shorter period, however, are degraded

to the point that no attempt is made to forecast them.

The higher sensitivity of the BSISO modes to the

training time series length is consistent with the fact that

they lie farther down in the NLSA spectrum than the

MJOmodes. That is, as stated in section 2e, the ordering

of the NLSA eigenfunctions is in order of increasing

‘‘roughness’’ on the data manifold (as measured by the

corresponding eigenvalues), and functions with higher

roughness are generally expected to bemore sensitive to

sampling errors. In section 5b, we will see that adequate

BSISO modes can be recovered for training time series

as short as 17 yr.

b. Comparison with the RMM index

That there is no unambiguously correct measure of

intraseasonal variability is part of the rationale for con-

structing alternative indices based on new techniques.

Nevertheless, the RMM index (Wheeler and Hendon

2004) is a commonly accepted and used measure of the

MJO. Therefore, for completeness, we include in our

analysis correlations between the RMMand our proposed

NLSA-derived indices. Figure 3 illustrates what the am-

plitude of the RMM’s two modes looks like, both before

and after performing a 64-day-running-mean smoothing.

The correlation of the NLSAMJO amplitude with that of

the raw RMM index is small at 0.20 but becomes a more

significant 0.46 after the RMM is smoothed. This correla-

tion does not change significantly upon restriction to the

DJF period, when the MJO is most active. Unlike the

MJO, the year-round BSISO data do not at all correlate

with the raw RMM amplitude and, moreover, barely ex-

hibit any increase after smoothing. Upon restriction to the

JJA active BSISO period, however, the correlation with

the smoothed RMM is also found to be 0.46.

Overall, these results indicate that, while the two sets

of modes are by no means equivalent, the NLSA-based

MJO and BSISO modes are related to the RMMmodes

when restricted on the boreal winter and summer periods,

respectively, and smoothed to remove high-frequency

spectral content. In particular, that NLSA represents the

twodominant ISOs through distinctmodeswithmoderately

FIG. 2. Phase composites ofTb anomalies (K) for theNLSA-derived (left)MJO and (right) BSISOmodes. The composites were created

by averaging spatiotemporal Tb reconstructions for these modes over eight temporally sequential phases in the corresponding two-

dimensional modal spaces, subject to the requirement that the modal amplitudes exceed one standard deviation of the amplitude time

series. Further information on these composites can be found in Székely et al. (2016a,b).

1330 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 74



narrowband spectra likely plays an important role in the

higher predictability of thesemodes compared to theRMM

modes (which represent the twodistinct ISOsas a singlepair

of modes). We will discuss the sensitivity of the correlation

results presented in this section on the NLSA embedding

window and the RMM smoothing window in section 5a.

4. Hindcast results

In this section, we present the results of applying the

KAFmethod to theNLSA-basedMJO andBSISOmodes

described in section 3. The main result is that the pattern

correlations of forecasts remain above 0.6 for 50 days for

both the MJO and BSISO when 23 yr of training data

are used. Another result is that the RMSE stays below

one standard deviation of the historical variability. Other

results, such as the relatively worse predictability at the

beginning of an ISO event than toward the end and the

specifics of individual years, are also presented.

a. MJO 2006–09

Figure 4 shows running forecasts and corresponding

RMSE and PC scores for lead times of up to 60 days,

corresponding to the application of KAF in predicting

one of the two MJO modes during the 2006–09 testing

period, using the 1983–2006 training period. The rel-

atively large amplitude of the monitored MJO signal

around January 2007 and January 2008 corresponds to

the fact that the winters of 2007 and 2008 contained

significant MJO activity, and the relatively small am-

plitude around January 2009 corresponds to a season

of weak MJO in 2009. A key question to ask of any

forecasting method is if it can capture these periods of

relatively increased and decreased activity. From a

strictly visual inspection of Figs. 4a–d, this can be said

to be true of KAF with 15- and 30-day lead times and

to be false in the case of a 60-day lead time. That the

ability to qualitatively discern periods of greater MJO

activity is only lost well after 30 days is already an

improvement over some of the existing methods dis-

cussed in the introduction. One qualitative feature

that deteriorates faster than the general ability to

discern activity is the ability to detect initial activity.

More specifically, the forecast fails to capture the full

amplitude of the first spike of theMJOseason, occurring in

December 2007 and December 2008. The difficulty of

FIG. 3. Visualization of theRMMamplitude, as discussed in section 3b: (a) amplitude of theWheeler–HendonRMMmodeswithin the period from

1 Jul 1983 to 30 Jun 2006. (b) The 64-day moving average of the RMM amplitude and the amplitude of the NLSA-derived MJO modes.
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predicting initiations, however, is a challenge that is not

unique to this method.

A quantitative analysis of these results is obtained

through RMSE and PC evaluation. A typically used

threshold for separating skillful and unskillful forecasts

is a PC score of 0.6. As such, the 0.97 and 0.86 scores

for the 15- and 30-day lead forecasts in Figs. 4e and 4f

reflect the qualitatively good nature of those forecasts,

whereas the 0.41 pattern correlation of the 60-day lead re-

flects thenatural decrease in forecast skill at long lead times.

The RMSE and PC of forecasts with lead times

ranging from 0 to 60 days are also displayed. The de-

crease in pattern correlation score for the entire testing

period is very slight up to 20 days. The decrease is

slightly more modest between 20 and 50 days of lead

time. The skill dips below 0.6, and is thus said to become

unskillful, when the lead time exceeds 50 days.

The RMSE and PC plots also show scores over three

shorter time periods (July 2006–July 2007, July 2007–

June 2008, and July 2008–June 2009), which we refer to

by the year in which the period begins. Although the

scores of the 2006 and 2007 periods are similar to those

over the entire testing period, the 2008 scores have no-

table differences. First, the RMSE of the 2008 period

diverges from that of the other periods at around

t5 10 days of lead time and stays significantly below the

others. Second, the PC of the 2008 period dips faster

than that of the other periods after about 40 days of lead

time. It may seem paradoxical at first how a period can

simultaneously have better RMSE and a worse PC.

However, both aspects are explained by the fact that the

2008 period contains less activity than the others; that is,

it contains few large peaks, if any. Thus, the relatively

small RMSE of the 2008 period is because there is only

modest deviation from the mean.

b. BSISO 2006–09

Figure 5 shows the results of KAF applied to predicting

one of the BSISOmodes during the 2006–09 period, using

the same 1983–2006 training data as before. The significant

FIG. 4. Kernel analog forecasting of the NLSA-basedMJOmode over the 2006–09 testing period using the 1983–

2006 training period, as discussed in section 4a. (a)–(d) Running forecasts (orange) with lead times of 15, 30, 45, and

60 days, respectively, along with the true signal (blue). (e) RMSE and (f) PC error metrics for individual years as

well as for the entire testing period. The amount of time spent above the 0.6-PC threshold is listed in the legend of

(f) for each grouping. The PC and RMSE skill scores are calculated by excluding JJA, as discussed in section 2h.
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BSISO events during this time occurred in the summers of

2007 and 2008, as shown in the plots, and their durations

are longer than those of MJO events. As in the previous

two cases, the 15- and 30-day-lead-time forecasts are

qualitatively good, while the 60-day-lead-time forecast

is not. Although the skillful PC score extends slightly

farther than for the MJO, not falling below 0.6 until

about 50 days, there is more variance, with the 2006 PC

score dipping below 0.6 at 45 days, and the 2007 and 2008

scores doing so after 50 days. This may be explained by

the seeming property of KAF forecasts to be markedly

better when locked onto a regular, oscillatory event.

Therefore, the fact that the KAF method produces a

slightly better PC score for the BSISOmode is probably

due to the longer and more sustained BSISO events.

c. MJO 1992–95

Figure 6 shows the results of applying KAF to predict

values of one of the MJO modes during the 1992–95

testing period, using the 1983–92 training period. As

stated in section 3, the reason this testing period was

chosen is that it contains the well-documented large

MJO events that occurred during the TOGA COARE

IOP (Yanai et al. 2000). The plots show that the true

signal captures the succession of these two events, as

well as a similarly large MJO event in the winter of 1995

and a couple of smaller ones in the winter of 1994. The

goals of applying KAF with these testing and training

periods are twofold: to determine the effects on the

KAF of 1) a shorter training period and 2) a testing

period with well-documentedMJO events. Note that the

shortened training period impacts the KAF skill in two

distinct ways: namely, through poorer-quality MJO in-

dices in the NLSA step and fewer available analogs in

the forecast step.Wewill return to this point in section 6.

Qualitatively speaking, many of the results in Fig. 2

are similar to those of Fig. 1: the KAF forecasts perform

reasonably well with lead times of 15 and 30 days, but

not so well with a lead time of 60 days. That being said,

the initial detection of MJO events is more difficult be-

cause of the smaller training sample size. Quantitatively,

although the overall RMSE scales similarly as in the pre-

vious case, there is more variance, with a low RMSE for

1993 and highRMSE for 1995. There is alsomore variance

in the PC scores, as the 1994 forecast remains well above a

score of 0.5 beyond 50 days. Most significantly, however, is

FIG. 5. As in Fig. 4, but for the NLSA-based BSISO mode, and discussed in section 4b. The RMSE and PC skill

scores are calculated by excluding DJF, as discussed in section 2h.
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that the overall PC score dips below 0.6 after about

37 days, which is 13 days earlier than in the previous case.

5. Sensitivity analysis

The main factors affecting the robustness of the

hindcast results presented in section 4 are the choice of

NLSA and KAF parameters, the sampling frequency,

and the length of the training and test intervals. The

NLSA parameter values, sampling frequency, and train-

ing interval influence the properties of the extracted ISO

modes (i.e., the truth signal), the KAF parameters affect

the predictive skill of the forecast model, and the length

of the test interval affects the robustness of the skill scores

computed for the given choice of NLSA parameters,

training interval, andKAF parameters. In this section, we

present assessments of the sensitivity of our hindcast

results on these factors, focusing on the influence of

the embedding window size (section 5a) and length of the

training and test time series (section 5b). To manage the

computational cost of this study, we reduce the frequency

of the time sampling of the raw CLAUS data from eight

times a day to four times a day; this downsampling cuts

the overall computational cost of the pairwise kernel

evaluations (which scale quadratically with the number of

samples) by a factor of 4.Aside from amoderate decrease

in forecast skill (by approximately 10 days of PC . 0.6

lead time), the resulting MJO and BSISO modes are

qualitatively very similar to those presented in section 3.

a. Sensitivity to lagged embedding window length

The parameters of the combined NLSA–KAF algo-

rithm described in section 2 are the number of embed-

ding lags q (section 2d), the kernel bandwidth « and

nearest neighbor truncation knn used in the training

stage (section 2f), and the bandwidth «‘ and termination

threshold d used in the prediction stage (section 2c).

While all of these parameters will generally affect forecast

skill,q plays a distinguished role, as it controls the time-scale

separation in the recovered eigenfunctions (see section 2f),

influencing their physical significance and potential

predictability.

Figure 7 displays the truth signals and RMSE and PC

scores for the MJO, evaluated using the Tlong and T long

training and testing periods (at the 6-h sampling in-

terval), respectively, and embedding window sizes Dt of
48, 64, 80, and 96 days. All other NLSA and KAF pa-

rameters are kept fixed to the same values as in section 3.

FIG. 6. As in Fig. 4, but for the short 1983–92 training period and the 1992–95 testing period. Discussed in section 4c.
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As shown in Fig. 7a, while the MJOmodes from all four

cases are qualitatively robust, increasing q leads to an

increase of temporal coherence; that is, as q increases,

the MJO modes acquire the structure of amplitude-

modulated oscillators with a distinct intraseasonal carrier

frequency and a low-frequency modulating envelope.

Correspondingly, there is a monotonic increase of

forecast skill as measured by both the RMSE (Fig. 7b)

and PC (Fig. 7c) scores, which appears to saturate for the

larger q values. In particular, the PC5 0.6 crossing times

for the 48-, 64-, 80-, and 96-day windows are approxi-

mately 35, 42, 56, and 58 days, respectively. This increase

of skill is consistent with the theoretically expected prop-

erty of the NLSA eigenfunctions to become increasingly

temporally coherent (and hence more predictable), with

increasing embedding window size. At large q values, this

increase of predictability can come at the expense of

introducing additional modes that are related to the

phenomenon of interest. Here, we observe that, besides

theMJOpair shown in Fig. 7, additionalMJO-likemodes

are present in the NLSA spectra for the 80- and 96-day

embedding windows. It is possible that, for these em-

bedding window sizes, the ‘‘fundamental’’ MJO modes

represent events that undergo at least one full cycle of the

oscillation (and such events are more predictable once

they initiate), and the ‘‘secondary’’ MJO modes are

harmonics required to capture weak or stalling events.

Our nominal choice of a 64-day embedding window is a

compromise between a sufficiently long window so that

the NLSA eigenfunctions separate the MJO from other

modes of tropical variability (in particular, BSISO),

and a sufficiently short window so that secondary MJO-

like modes are not present in the top part of the NLSA

spectrum. Similar behavior also occurs for the BSISO

(shown in Fig. 8).

The effect of changing the size of the embedding

window is further analyzed in Fig. 9 by computing cor-

relations of the NLSA-derived MJO and BSISO ampli-

tudeswith theRMMamplitude for theNLSAembedding

windows examined above and different values of (back-

ward) running-average smoothing of the RMM ampli-

tude. For both MJO and BSISO, the RMM smoothing

window for maximum correlation is an increasing func-

tion of the NLSA embedding window, but that relation-

ship is not proportional and appears to saturate at the

larger (80 and 96 day) Dt values examined. In the case of

the MJO (Fig. 9a) the maximum correlation between

NLSAandRMMis 0.51 and occurs forDt5 80 days and a

;65-day RMM smoothing window. As stated in section

3b, the correlation between NLSA–BSISO and RMM

FIG. 7. (a)Out-of-sample extensions ofMJO signals to the testing period from1 Jul 2006 to 30 Jun 2009, with sizes

of embedding window varying from 48 to 96 days. (b) RMSE and (c) PC for each experiment (with JJA excluded, as

per section 2h).
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(Fig. 9b) is significantly higher when conditioned on JJA.

In particular, the highest correlation is 0.53 and occurs for

Dt 5 96 days and an ;80-day RMM smoothing window.

b. Sensitivity to training size

As with any statistical method, the size of training

dataset is a critical ingredient of KAF, as it influences

the quality of the extracted eigenfunctions (the truth

signal) and the availability of adequate analogs for

prediction given previously unseen initial data. The size

of the test dataset is also important, as it influences the

robustness of skill scores. In particular, besides being

important for accurately assessing the performance of

the method in a hindcast setting, the availability of ac-

curate skill scores is also important in operational

forecast settings, where the parameters of the method

would be tuned in a validation stage (analogous to the

hindcasts performed here) prior to its deployment in

actual forecasts.

In this section, we examine the robustness of the

forecast skill results presented in section 3 by comparing

PC and RMSE scores from multiple hindcast experi-

ments of the MJO and BSISO with different sizes of

training and test data. In all cases, we work with 6-hourly

sampled data, a 64-day embedding window, and the

same «, «‘, and d parameters as in section 3. Moreover,

the start of the training period is fixed at 1 July 1983 for

all experiments, and the end of the training period is

30 June of various years from 1992 to 2006. We vary the

number of nearest neighbors knn so that it is roughly

equal to 15% of the training data in each experiment. In

addition, we set the test period to either 1 July 2006 to

30 June 2009, or to the largest test interval available in

each case (i.e., the interval starting immediately after

the end of the training period and ending on 30 June

2009). Note that we do not individually tune the NLSA

and KAF parameters in each experiment in order to

optimize skill, and this likely increases the spread of the

computed scores but reduces the risk of overestimating

skill. Also, in the case of BSISOwe do not show hindcast

results for training periods shorter than 1983–2000, as

we find that for those periods the BSISO modes are

significantly degraded.

The RMSE and PC scores for the MJO and BSISO

hindcasts from these experiments are shown in Figs. 10

and 11, respectively. There it is evident that the scores

have noticeable spread (particularly at large leads); they

are largely consistent with those in Figs. 4 and 5, re-

spectively. In particular, even for the shortest training

period examined in each case, both MJO and BSISO

FIG. 8. As in Fig. 7, but for the BSISO mode (and thus excluding DJF from the calculation of the RMSE and PC

scores, as per section 2).
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have PC scores greater than 0.6 out to ;40-day leads.

Moreover, the skill scores computed for 2006–09 and the

longest possible test periods are mutually consistent.

This suggests that in an operational setting it should be

possible to tune the parameters of the method using a

modest,;3-yr, validation period and utilizing the rest of

the available samples to obtain high-quality eigenfunc-

tions and analogs. Note that the RMSE and PC scores in

Figs. 10 and 11 are not monotonic functions of the

training or test period size. This is likely due to both lack

of optimality of NLSA/KAF parameters and variance of

the skill scores (particularly at large leads).

Figure 12 shows more precisely the increase in train-

ing data dependency with respect to forecast time by

plotting ratio of the standard deviation of the skill scores

at given lead times, across all available experiments, to

the mean amount of skill deterioration by that time.

Roughly speaking, for each of the plots in Figs. 10 and

11, we are plotting the ratio of the vertical spread (as

measured by the standard deviation) to the mean in-

crease in RMSE (or mean decrease in PC). This metric

provides a way of approximating how much of the

change in skill is due to choice of training data. Overall,

Fig. 12 shows that this ratio remains bounded between

0% and 23%.

6. Discussion

Although it is tempting to directly compare the PC

scores of KAF to those of other methods, it is important

to note that it is often not the case that the same MJO

and BSISO definitions are used in different methods.

While KAF could be used to predict other commonly

defined ISO indices (e.g., the RMM index), investing too

much in making such comparisons risks missing the

important point that all indices are representations of

physical phenomena that depend on a choice of data

analysis technique and that much of the appeal of KAF

is that it incorporates the same class of kernel operators

for both ISO definition and prediction in a unified

scheme. Instead, a true comparison with other methods

would require assessing how each method fares in pre-

dicting physical observables of interest (e.g., precipita-

tion on intraseasonal time scales) conditioned on the

predicted values of the indices. Such comparisons are

outside the scope of this work, but we believe that the

FIG. 9. Correlations between NLSA-derived modes and RMM, for lengths of RMM averaging. Discussed in both sections 3b and 5a.
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high predictability and coherent spatiotemporal struc-

ture of the NLSA-based ISO modes are encouraging

properties for future predictability studies of physical

observables.

Despite the difficulty of making objective compari-

sons to other methods, it is nevertheless valuable to

place our results in context with existing ISO forecasting

techniques. For instance, when efforts to forecast the

MJO first began in the 1990s, global climate models

(GCMs) were frequently unable to achieve more than

6 days of predictability (Chen and Alpert 1990; Lau and

Chang 1992; Slingo et al. 1996; Jones et al. 2000; Hendon

et al. 2000). Much of the difficulty of these early GCMs

stemmed from their inability to sufficiently represent

organized convection, which eventually led to a shift in

research focus to empirical methods that are not affected

bymodel error in GCMs. That said, the switch in focus to

empirical methods did not yield immediate benefits, as

many of the earliest attempts, such as applying principal

oscillation pattern (POP) analysis to 200-hPa equatorial

velocity potentials (von Storch and Jinsong 1990), still did

not attain predictability beyond 1 week.

Multiweek MJO predictability with empirical methods

was eventually attained through improvements to both

ISO definition and forecasting methods. For instance,

multiple-field EOF analysis that includes outgoing long-

wave radiation data, as first recommended by Kousky

and Kayano (1993), was performed by Waliser et al.

(1999) to obtainMJOpredictability for up to 15–20 days.

Time-lagged embedding, meanwhile, was used in a sin-

gular spectrum analysis of similar data by Mo (2001) to

consistently obtain 20-day predictability. That KAF uses

elements of these techniques, in particular the use of

cloudiness data (in this case Tb) and time-lagged em-

bedding, can help explain why we obtained limits of

predictability that exceed these previous results. More

recently, methods based on physics-constrained, low-

order, nonlinear stochastic models (Chen and Majda

2015b; Kondrashov et al. 2013) have demonstrated 30–

40-day skill for the RMM index, though these results are

not for real-time forecasts. Such low-order stochastic

models have been used to establish 40–50-day internal

predictability of the NLSA-based MJO Chen et al.

(2014) and BSISO Chen and Majda (2015a) indices,

respectively, over the 1983–2006 training interval used

in this work. The KAF results presented here show that

these predictability limits can also be attained without

the use of such stochastic models.

FIG. 10. RMSE and PC of forecasts created by training data spanning the range from 1 Jul 1983 to 30 Jun of the

year specified by the legend, excludingDJF as per section 2h. (a) RMSE and (c) PC over the testing range from 1 Jul

of the specified year up to 30 Jun 2009; (b) RMSE and (d) PC over a fixed range from 1 Jul 2006 to 30 Jun 2009. See

section 5b.
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As with any empirical method, two important factors

affecting the skill of KAF are the length of the training

time series and its relevance to the future behavior of the

system. As discussed in sections 4c and 5b, the length of

the training time series affects prediction skill in terms of

both the quality of the extracted ISO indices and the

availability of analogs matching the current initial data.

Those results illustrate that decreasing the length of

the training dataset generally leads to a degradation of

the quality of theNLSA ISOmodes, in the sense that the

modes of interest become mixed with modes that are

unrelated to ISOs, with the effect more pronounced for

the BSISO than for the MJO. For the MJO, 35-day

predictability is still within reach when the training size

is reduced to 9 yr, and for the BSISO, 30-day pre-

dictability is available when the training size decreases

to 17 yr.While these experiments may appear somewhat

artificial (since there is no reason why a forecaster would

not use all of the available CLAUS data in practice),

they nevertheless illustrate some of the long-term im-

pacts of forced climate variability (as well as low-

frequency natural variability) on future analog ISO

forecasts. In particular, GCM simulations suggest that

climate change on decadal time scales will have statis-

tically significant impacts on the characteristics of ISOs

(Subramanian et al. 2014), and such changes would limit

the effective time span of training data available for

extracting faithful ISO indices. Similarly, the effective

number of analogs would be limited to the latter por-

tions of the training data commensurate with the char-

acteristic time scale of climate change. For tropical

variability, that time scale is expected to be in the in-

terdecadal range (e.g., Deser et al. 2012), suggesting that

the useful length of available training data is comparable

(and possibly longer) than the 23-yr training interval

employed in sections 4a and 4b, which was sufficient for

skillful MJO and BSISO forecasts. Thus, KAF methods

should be useful for ISO forecasts even in the presence

of climate change.

7. Conclusions

In this paper, we have demonstrated that qualitative

features of tropical ISOs can be forecasted, in an empirical

and nonparametric manner, on a scale of 5–7 weeks with

appropriate kernel algorithms for ISO index definition and

analog forecasting. In particular, using kernels developed

in the context of NLSA algorithms, it is possible to obtain

indices from unprocessed CLAUS Tb data that are fair

representations of theMJOandBSISO, all thewhile being

FIG. 11. As in Fig. 10, but for the BSISO (and thus excluding DJF from the calculation of the RMSE and PC scores,

as per section 2). See section 5b.
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easier to predict than alternate definitions based on clas-

sical linear approaches (e.g., theRMM index). Specifically,

the PC of forecasts produced via KAF remains above 0.6

for 50 days for both the MJO and BSISO when 23yr of

training data are used.

The overall robustness of the KAF method applied to

MJO and BSISO forecasting should continue to be in-

vestigated. Varying both the type of kernels used and

the size and type of training data is important. One class

of kernels to be tried is the so-called cone kernel family

(Giannakis 2015), which takes into account not only the

speed at which data varies, but also the direction in

which it changes. Relaxing or tightening certain regu-

larity conditions is another potentially interesting ap-

proach, as well as incorporating additional predictor

variables (e.g., circulation) in a multivariate kernel

analysis. Equally importantly, KAF should be assessed

in forecasts of physical variables, such as intraseasonal

precipitation.

Combining aspects of KAF with other methods has

the potential to extend overall tropical ISO predict-

ability even further than what has already been shown.

Several numerical models, such as the European Centre

for Medium-Range Weather Forecasts model (Vitart

2014), a 10-petaflop ‘‘K’’ supercomputer (Miyakawa

et al. 2014), and a coupled GFDL model (Xiang et al.

2015) have recently obtained MJO predictability of up

to 27 days with theRMMas the baseline definition of the

MJO. It should be explored whether using NLSA indices

in these models would lead to greater predictability. Fur-

thermore, an ensemble of numerical simulations and em-

pirical KAF forecasting can be combined to create an

optimizedmethod that produces forecastsmore accurately

when initialized with novel conditions and yet more

quickly when given familiar conditions.

Acknowledgments. The authors gratefully acknowl-

edge the financial support given by the Earth Sys-

tem Science Organization, Ministry of Earth Sciences,

Government of India (Grant/Project MM/SERP/CNRS/

2013/INT-10/002) to conduct this research under the

Monsoon Mission. D. Giannakis, E. Székely, and Z. Zhao

acknowledge support from ONR Grant N00014-14-0150

and ONR MURI Grant 25-74200-F7112. D. Giannakis

and Z. Zhao also acknowledge support from NSF Grant

DMS-1521775. The authors thank Nan Chen and Andrew

Majda for stimulating discussions on low-order modeling

of intraseasonal oscillations.

FIG. 12. For both theMJO andBSISO, ratio of the standard deviation of skill across all available training data to the

mean amount of (a),(b) RMSE gained and (c),(d) PC lost by a given lead time. See section 5b.

1340 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 74



REFERENCES

Belkin, M., and P. Niyogi, 2003: Laplacian eigenmaps for dimen-

sionality reduction and data representation. Neural Comput.,

15, 1373–1396, doi:10.1162/089976603321780317.

Berry, T., and T. Sauer, 2016: Local kernels and the geometric

structure of data.Appl. Comput. Harmonic Anal., 40, 439–469,

doi:10.1016/j.acha.2015.03.002.

——, R. Cressman, Z. Greguric Ferencek, and T. Sauer, 2013:

Time-scale separation from diffusion-mapped delay coordinates.

SIAM J. Appl. Dyn. Syst., 12, 618–649, doi:10.1137/12088183X.

Broomhead, D. S., and G. P. King, 1986: Extracting qualitative

dynamics from experimental data. Physica D, 20, 217–236,

doi:10.1016/0167-2789(86)90031-X.

Budisić, M., R. Mohr, and I. Mezić, 2012: Applied Koopmanism.
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