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Abstract
A large branch of explainable machine learning is
grounded in cooperative game theory. However,
research indicates that game-theoretic explana-
tions may mislead or be hard to interpret. We
argue that often there is a critical mismatch be-
tween what one wishes to explain (e.g. the output
of a classifier) and what current methods such as
SHAP explain (e.g. the scalar probability of a
class). This paper addresses such gap for proba-
bilistic models by generalising cooperative games
and value operators. We introduce the distribu-
tional values, random variables that track changes
in the model output (e.g. flipping of the predicted
class) and derive their analytic expressions for
games with Gaussian, Bernoulli and categorical
payoffs. We further establish several character-
ising properties, and show that our framework
provides fine-grained and insightful explanations
with case studies on vision and language models.

1. Introduction
The ability of explaining automated decisions is a key
desideratum for real-world deployment of machine learning
systems that has led to a burgeoning field of explainable
machine learning and artificial intelligence (XAI) (Langer
et al., 2021; Adadi & Berrada, 2018; Guidotti et al., 2018).
Explanations shall cater to diverse needs, such as verifica-
tion, justification, attribution, etc., which necessitate dif-
ferent technical approaches. In this paper we focus on at-
tributive explanations which, in essence, seek to establish
links between outcomes and constituent parts: a prototyp-
ical question being “which features did the model rely on
to assign a specific prediction to a given example?”. In
this sub-area, techniques grounded in cooperative game the-
ory (CGT) (Peleg & Sudhölter, 2007) first introduced by
Strumbelj & Kononenko (2010) have gained notable traction
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(Bhatt et al., 2020). Examples include SHAP (Lundberg &
Lee, 2017), asymmetric (Frye et al., 2020b), causal (Heskes
et al., 2020), connected and local (Chen et al., 2018) Shap-
ley values, neuron-Shapley (Ghorbani & Zou, 2020) and
D-Shapley for data valuation (Ghorbani et al., 2020), among
others (see Rozemberczki et al., 2022, for an overview). We
collectively refer to this class of methods as game-theoretic
XAI (also GT-XAI).

Simplifying, these approaches compute explanations by first
constructing a real-valued cooperative game representing
the outcome to be explained (e.g. a prediction of a multi-
class classifier, a model outputted by a learning algorithm,
etc.) and then apply a value operator, typically the Shap-
ley value (Shapley, 1953a), to such game. Explanations so
computed are often interpreted as importance or attributions
of the constituent parts (namely, input features, data points,
etc.) and enjoy a number of theoretical properties inherited
from CGT. The “game design” step is a crucial and deli-
cate part of the pipeline that has been discussed at length
especially in the context of feature attributions (Aas et al.,
2021; Janzing et al., 2020; Covert et al., 2020). However,
the requirement that the game be real-valued, fundamental
in standard CGT, has often been unquestioned. Yet, this lim-
its the array of explanations that may be provided, as scalar
payoffs may only capture part of a probabilistic output, like
the probability of a class, rather than the full distribution.

In this work we reconsider the basic building blocks of game-
theoretic XAI in order to dispose of this limiting restriction.
We study games with probabilistic rather than scalar payoffs
and frame marginal contributions of players to coalitions as
differences between two random variables. Based on these,
we define a class of operators mapping stochastic games
to random variables that track changes to the payoff while
accounting for coalition structure. In our framework, these
random variables, which we dub distributional values, con-
stitute the attributions for stochastic models, replacing the
scalar attributions resulting from traditional game-theoretic
XAI methods.

While games with stochastic payoffs have been considered
before both in CGT (Charnes & Granot, 1973; Suijs et al.,
1999) and XAI (Covert & Lee, 2021) (although here we take
a somewhat different view), our proposed distributional val-
ues represent a primary novel contribution of this work
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(Section 3). In Section 3.1, we derive analytical expression
for games with Bernoulli, Gaussian and categorical likeli-
hoods (last of which could be of independent interest) and
establish analogous properties to classic value operators in
CGT (Section 3.2). Through examples and case studies we
demonstrate in Section 4 how distributional values address
some of the limitations and pitfalls of standard techniques
such as the lack of contrastive power and the lack of un-
certainty quantification highlighted e.g. by Kumar et al.
(2020); Mittelstadt et al. (2019); Watson & Floridi (2021);
Jacovi et al. (2021) and unlock finer-grained and insightful
explanations in realistic scenarios with vision and language
models (Section 5). We conclude by discussing limitations
of the proposed approach and directions for future work.

2. Preliminaries
We begin by formalizing the common game-theoretic XAI
pipeline outlined above. In doing so, we introduce some
basic concepts and terminology of cooperative game theory
(CGT) that will be useful in the sequel.

As an exemplary case, we consider the task of explaining the
output of a machine learning model f : X ⊆ Rn → Y at a
given point x ∈ X by assigning attributions to the n ∈ N+

input features. We assume 0 ∈ X and, for now, Y ≡ R and
f(0) = 0. In the next section, we tackle the more realistic
and compelling case where Y is a space of distributions.
Let [n] = {1, . . . , n} and let 2[n] denote the power set of
[n]. We can construct an n-players cooperative game (with
transferable utility) v : 2[n] → R by setting

v(S) = f(x|S), where [x|S ]i =

{
xi if i ∈ S
0 otherwise (1)

1 In CGT terms, features i ∈ [n] are called players, subsets
of features S ∈ 2[n] are termed coalitions and outputs of
v are named payoffs. The set S = [n] is called the grand
coalition and v([n]) = f(x) is the grand payoff.

Next, we shall introduce the value operators, of which the
Shapley value is the first and most notorious representative.
Let Gn = {v : 2[n] → R | v(∅) = 0} be the vector space
of n-players real-valued games and for i ∈ [n] let pi :
2[n]\i → [0, 1] be a set of discrete probability distributions.
For conciseness, we will omit the set notation for singletons
sets, namely we may use i to indicate {i}. We call p =
{pi}ni=1 a coalition structure. A value operator associated
with p is the linear mapping ϕ : Gn → Rn defined as

ϕi(u) = ES∼pi(S)[u(S ∪ i)− u(S)] ∈ R. (2)

1This corresponds to an interventional formulation of the game
(Janzing et al., 2020; Ren et al., 2023). We note that many other
definitions are possible such as those in (Sundararajan & Najmi,
2020; Aas et al., 2021).

For a given coalition S, the difference u(S ∪ i)− u(S) is
called marginal contribution of i to S.

The Shapley value, a standard choice in game-theoretic XAI,
corresponds to the coalition structure pi(S) = n−1

(
n−1
|S|

)−1

for all i. However, Eq. (1) encompasses also probabilistic
and random-order group values (Weber, 1988) and semival-
ues (Dubey et al., 1981), which appear also in XAI (Heskes
et al., 2020; Frye et al., 2020b; Kwon & Zou, 2022). These
classes of operators are differentiated by their choice of
coalition structure, which leads to different sets of prop-
erties (or axioms) being satisfied. We refer the reader to
the appendix for an extended discussion. Note that also
leave-one-out scores, popular in XAI and fair ML (e.g. Koh
& Liang, 2017; Black et al., 2020) can easily be interpreted
as value operators by setting pi(S) = δ[n]\i(S), where
δz(x) = 1 if x = z and 0 otherwise is a Dirac delta cen-
tered at z.

A value operator can be seen as a way to assign a worth
(or value) to each player representing either the player’s
prospect “gain” from playing the game or the player’s con-
tribution toward achieving the grand payoff v([n]). The
second interpretation resonates with the task of assigning
attributions to input features in the context of XAI. Once
we have chosen an appropriate value operator ϕ, we may
return ϕ(v) – or, more commonly, an approximation of it
– to the user as attributions for the n input features, with v
from Eq. (1). The various frameworks in game-theoretic
XAI mentioned in the introduction differentiate themselves
principally by the object of the explanation, by the design of
the cooperative game, by the particular choice of the value
operator and by different approximation procedures. See
also Section 6 for further discussion.

3. The distributional values
Now that we have covered the basics, we can start intro-
ducing our extension that accounts for probabilistic output
spaces. Figure 1 provides a visual overview of the cardinal
differences between the traditional approach and ours.

Many modern ML models such as neural network classifiers
output distributions over a label space E (e.g. a set of
classes or tokens). Equivalently, one can think of f(x) as an
E-valued random variable (RV), namely Y = ΩE , where
Ω is a suitable sample space. Standard practice in game-
theoretic XAI would first require mapping distributional
outputs to scalars before proceeding with the rest of the
pipeline. This is typically achieved by either singling out
class probabilities (i.e. selecting P(f(x) = c) for some
class c) or applying an expectation or a loss function like the
log-likelihood on validation data (Lundberg & Lee, 2017;
Covert et al., 2020). However, this upfront mapping to a
scalar necessarily discards information, as simple statistics
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Figure 1. (Left) The model (Black box), representing f , is a 3-way classifier that outputs categorical distributions. (Right) Computation
of the marginal contribution of i to S under the traditional framework (top) and our proposed framework (bottom). In both case, we
query the model with and without feature i, which results in two different categorical distributions. The standard approach (e.g. as in
SHAP) disregards the probabilistic nature of the outcome and treats the probability vectors as simple real valued-vectors. At the bottom,
our approach preserves the stochastic structure (depicted by the simplex). The resulting stochastic marginal contribution is a RV taking
values in the difference set. In the categorical case, such set is made of “switching points” between predicted classes, e.g. from cat to dog.
Furthermore, the expectation of a distributional value is the corresponding standard value. This correspondence, formalized in Proposition
3.9.(i) is represented by the star symbol and the arrow connecting top and bottom representations.

cannot fully capture the complexity of the outcome we wish
to explain.

The core idea is that, in order to more closely represent
– and explain – such models, we shall construct games v
whose payoffs v(S) = f(x|S) are E-valued RVs as well. In
the CGT literature, related concepts are stochastic cooper-
ative games (Charnes & Granot, 1973; Suijs et al., 1999).
However, there, the focus is on modelling uncertainty in the
(scalar) payoffs due to exogenous factors and/or possible ac-
tions taken by the coalitions. Our aim, instead, is to preserve
the output structure of f . In other words, our target scenario
is that of explaining a deterministic mapping onto a distri-
bution space. 2 Once a coalition plays, we know what the
output will be, with the difference that such output is a ran-
dom variable rather than a scalar. We achieve this through
the use of reparameterizations (Devroye, 1996; Mohamed
et al., 2020) and “noise sharing” among coalitions.

Definition 3.1 (Cooperative stochastic games). Assume
there exists a function g : X × E → Y and a “noise” dis-
tribution ρ so that, for all S ∈ 2[n], f(x|S) = g(x|S , ε)
for ε ∼ ρ(ε). The n-players cooperative stochastic game
associated with f at x is the map v : 2[n] × E → Y ,

v(S, ε) = g(x|S , ε) = f(x|S) for ε ∼ ρ(ε) (3)

As the reparameterization plays only an auxiliary role (see

2Assuming f be deterministic; we leave the investigation of
stochastic models such as Bayesian nets to future work. See also
the appendix for further technical discussion on this topic.

Remark 3.4), in the following we will also refer to the payoff
v(S, ε) for ε ∼ ρ(ε) as simply v(S).

With our definition of stochastic game in place, we may
now revise and extend the concept of marginal contribution,
mimicking the traditional construction.
Definition 3.2 (Stochastic marginal contribution). The
stochastic marginal contribution of a player i to a coalition
S is the random variable

v(S ∪ i, ε)− v(S, ε) for ε ∼ ρ(ε).

This difference between two dependent RVs takes values
in the set T = {e− e′ | e, e′ ∈ E}. We will refer to the set
T as the difference set (which is not necessarily a vector
space). We shall call its distribution

qi,S(z) = P(v(S ∪ i)− v(S) = z |S), z ∈ T

when E is discrete (or a corresponding probability density
function when E is continuous). Note that qi,S(x) is a condi-
tional distribution, given S ∈ 2[n]\i. We find it notationally
helpful to visualise such construction as a “generalized dif-
ference” v(S ∪ i)⊖ v(S), where the symbol ⊖ incorporates
the reparameterization and the “noise sharing” assumptions.
Finally, we are ready to introduce our proposed distribu-
tional values, again mimicking and extending the definition
of the traditional value operators of Eq. (2).
Definition 3.3 (Distributional value operators). Let p =
{pi}ni=1 be a given coalition structure and let Gn,Y be the col-
lection of n-players Y-valued cooperative stochastic games
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(Eq. (3)). Let T be a the space of T -valued random vari-
ables. A distributional value operator associated with p is
the mapping ξ : Gn,Y → T n with each component defined
as:

ξi(v) = v(S ∪ i)⊖ v(S) for ε ∼ ρ(ε), S ∼ pi(Si). (4)

The distributional values of a game (outputs of the opera-
tor) are random variables with two mutually independent
sources of randomness. One source stems from the coalition
structure of the operator, the other reflects the probabilistic
nature of the payoff. Critically, we also retain a distribu-
tional view over the coalition structure which allows the
ξi(v) to remain within T even when the difference set T is
not a vector space (concrete examples will follow shortly).

The distribution of the ξi(v)’s, denoted by qi(x), can be
computed as follows:

qi(z) = P(ξi(v) = z) = ES∼pi [qS,i(z)]

=
∑

S∈2[n]\i

pi(S)qS,i(z)
(5)

for z ∈ T or as corresponding generalised density functions
for the continuous case. Note that in this latter case the ξi(v)
are mixed RVs.
Remark 3.4 (Distributional values and reparameterizations).
It is immediate to verify that the distributional values do not
depend upon the specific choice of the reparameterization
function, as long as this is exact. Indeed, let g and h be two
exact reparameterizations of a map f : X → Y , meaning
f(x|S) = g(x|S , ε) for ε ∼ ρ(ε) and f(x|S) = h(x|S , ϕ)
for ϕ ∼ ρ′(ϕ) and define two stochastic games vg and vh as
in Eq. (3). Then

ξi(vg) = vg(S ∪ i, ε)− vg(S, ε) for ε ∼ ρ(ε)

= f(xS∪i)− f(xS),

and

ξi(vh) = vh(S ∪ i, ϕ)− vh(S, ϕ) for ϕ ∼ ρ′(ϕ)

= f(xS∪i)− f(xS)

Therefore ξi(vg) = ξi(vh).

Overall importance of a feature. From a XAI perspec-
tive, maintaining a full distributional view allows us to
defer the definition and analysis of useful statistics until
after the computation of the attributions. For instance, as
0 ∈ T , we can naturally define an overall importance score
ι : Gn,Y → [0, 1]n as the probability that a player leads to
any change in the outcome; this is given by:

ιi(v) = 1− P(ξi(v) = 0) = 1− qi(0). (6)

Likewise, other statistics will emerge naturally going for-
ward. Importantly, we will establish in Proposition 3.9.(i)
a precise link between the traditional and the distributional
values via the expectation of ξ(v).

3.1. Analytic expressions for common likelihoods

If we can only draw samples from f(x) we can implement
the “noise sharing” condition by ensuring to set the same
random seed when computing marginal contributions across
coalition samples. 3 However, for common likelihoods we
can derive analytic expressions of the marginal contribu-
tions and, by consequence, of the distributional values. We
start with two simple but instructive cases of Bernoulli and
Gaussian RVs and then move on to the more challenging
but ubiquitous case of categorical likelihoods.

Bernoulli Games. Our first example concerns games with
probabilistic binary payoffs, in that v(S) ∼ Ber (πS) for
πS ∈ [0, 1], E = {0, 1} and P(v(S) = 1) = πS . Such
games can represent binary classifiers, and are a proba-
bilistic variant of simple games (Taylor & Zwicker, 2000).
We can use the reparameterization v(S, ε) = 1ε≤πS

for
ε ∼ U(0, 1), where U(0, 1) is the uniform distribution on
[0, 1]. Given this, v(S∪i)⊖v(S) is the RV with distribution

qi,S = (πS∪i−mS)δ1+(πS−mS)δ−1+(1−MS+mS)δ0,

over the difference set T = {−1, 0, 1}, where mS =
min(πS∪i, πS) and MS = max(πS∪i, πS). Hence, the
probability mass function of a distributional value for
Bernoulli games (or Bernoulli value, for short) are:

qi = ES∼pi [qi,S ] = q+i δ1 + q−i δ−1 + (1− q+i − q−i )δ0,

q+i = ES∼pi [πS∪i −mS ], q−i = ES∼pi [πS −mS ]].

Example 3.5 (The XOR game). Consider the two-players
Bernoulli game vχ with payoffs vχ(∅) = vχ({1, 2}) =
Ber (0) and vχ(1) = vχ(2) = Ber (1), which may be
viewed as a probabilistic version of the logical XOR func-
tion. The Bernoulli Shapley values for vχ are easily
computed as q1(z) = q2(z) = (δ1(z) + δ−1(z))/2 for
z ∈ {−1, 0, 1}. Indeed the marginal contributions are
vχ(i) ⊖ vχ(∅) = δ1, namely 1 with probability one, and
vχ({1, 2}) ⊖ vχ({1, 2} \ i) = δ−1, namely −1 with prob-
ability one. The overall importance, defined in Eq. (6), is
ι1(vχ) = ι2(vχ) = 1, that is the probability that player i
changes the output in any way is one.
Remark 3.6 (On the “noise sharing” condition). Suppose
that for a Bernoulli game v the player i is such that, for all
S, πS∪i = πS = π. Then, q+i = q−i = 0 and ξi(v) ∼ δ0.
Player i does not marginally contribute to any coalition and
any distributional value is zero with probability one. Indeed,
as we show in Proposition 3.9.(ii), distributional values are
null on null players. We may have instead stipulated that
each payoff be mutually independent. Then, P(v(S ∪ i) =

3In practice, one can estimate distributional values via nested
sampling: first draw k coalitions from pi and select r random seeds.
Then, for each seed, compute all the k marginal contributions to
the drawn coalitions “resetting” the random seed at each call of f .
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v(S)) = π2+(1−π)2 and the expectation of this probability
over S ∼ pi is smaller than one in general, and can be
as small as 1/2. Without a coupling between v(S) and
v(S ∪ i), any distributional value would attribute to i a
non-zero probability of any change (see Eq. (6)), defying
intuition.

Gaussian Games. Next, we consider games with (uni-
variate) Gaussian payoffs: v(S) ∼ N (µS , σ

2
S ,). These

games are easily generalisable to the multivariate case
and could emerge when explaining a Gaussian process,
or the latent space of a variational autoencoder (Kingma
et al., 2019). We use the standard reparameterization
v(S, ε) = µS + σS · ε for ε ∼ N (0, 1). Given this,
v(S ∪ i) ⊖ v(S) = µS∪i − µS + (σS∪i − σS) · ε, which
has the distribution qS,i = N

(
µS∪i − µS , |σS∪i − σS |2

)
.

Distributional values for Gaussian games are then RVs over
T = R, whose densities are mixtures of Gaussians:

qi =
∑

S∈2[n]\i

pi(S)N (µS∪i − µS , |σS∪i − σS |2).

As Gaussian values so defined do not keep track of the
direction of variation of the variance (i.e. if feature i is
marginally contributing to increasing or decreasing the vari-
ance), we may augment Gaussian values with a tracker
δSign(σS∪i−σS) which essentially behaves like a Bernoulli
value. Standard practice would explain the (real-valued)
game u(S) = µS . In fact, if σS∪i = σS for all S with
pi(S) > 0, then v(S ∪ i) ⊖ v(S) = δµS∪i−µS

which is
very closely related to the standard formulation. But for
any other case, explanations provided by traditional values
would necessarily loose uncertainty information, retained,
instead, by ξ(v).

Categorical Games. We now consider games v(S) that
have a d-way categorical payoff with natural parameters
θS ∈ Rd, in that

P (v(S) = j) = Softmax(θS)j = eθS,j/
∑
k

eθS,k .

Here, E = {e1, . . . , ed} with d ≥ 3, where the ej =
1k=j ∈ {0, 1}d are the canonical basis vectors of Rd, cor-
responding to the standard one-hot encoding. Categorical
games emerge, e.g., when explaining the output of multi-
class classifiers or the attention masks of transformer mod-
els (Kim et al., 2017; Vaswani et al., 2017). We use the
Gumbel-argmax reparameterization (Papandreou & Yuille,
2011) given by:

v(S, ε) = argmax
k

{θS,k + εk} for ε ∼ Gumbel(0, 1)d.

We recall that the standard Gumbel distribution is ρ(εj) =
exp (−εj − e−εj ). The difference set T = {er − es | 1 ≤

r, s ≤ d}, which has size d2−d+1. Figure 1 visualises such
set for d = 3 classes. Then the distribution of v(S∪i)⊖v(S)
is given by the off-diagonal entries of the joint distribution
Qi,S(r, s) = P(v(S ∪ i) = er, v(S) = es) and the sum
of its diagonal entries, which give the probability mass of
0. Interestingly, we can work out Qi,S(r, s) explicitly, as
summarized in the next lemma.

Lemma 3.7 (Categorical marginal contributions). Denote
αj = θS∪i,j , βj = θS,j and νj = αj − βj and assume
(without loss of generality) the categories to be ordered
so that ν1 ≥ ν2 ≥ · · · ≥ νd. Then, for any i ∈ [n] and
S ∈ 2[n]\i, the distribution of v(S ∪ i)⊖ v(S) is given by:

qi,S =
∑
r<s

Q̃i,S(r, s)δer−es +
(∑

r
Q̃i,S(r, r)

)
δ0,

where for r ̸= s, Q̃i,S(r, s) = eαr+βs (Cs − Cr)1r<s and
for r = s, Q̃i,S(r, r) = eβr−β̄rσ

(
β̄r − ᾱr+ ̸=r

)
1r<d +

eαd−ᾱd1r=d,, where σ is the logistic function and

ᾱk = log
∑k

j=1 e
αj , β̄k = log

∑d
j=k+1 e

βj , γ̄k = β̄k−ᾱk

Ct =
∑t−1

k=1 e
−β̄k−ᾱk (σ(γ̄k + νk)− σ(γ̄k + νk+1)) .

In the lemma, we use the tilde to signal the specific ordering
of categories. The derivation, which could be of independent
interest, is provided in the appendix.

From Lemma 3.7, given a coalition structure, we can con-
struct analytically the full distribution of the categorical
values. Assume that Qi,S(r, s) are given for all S in a
common ordering of the categories, in that Qi,S(r, s) =

Q̃i,S(σS(r), σS(s)), where σS is a permutation of [d] ful-
filling the ordering condition used above. Then, the distri-
butions of the categorical values are given by

qi =
∑

r,s ES∼pi(S)[Qi,S(r, s)]δer−es . (7)

One major advantage of this novel construction is that the
categorical values are straightforward to interpret. Indeed,
the probability masses at each point z = er − es ∈ T
are interpretable as the probability (averaged over coali-
tions) that player i causes the payoff of v (and hence the
prediction of f ) to flip from class s to class r. We refer
to qi(er − es) as the transition probability from s to r
induced by feature i. As useful summary statistics, we
may determine the largest probability of any change in
the output led by player i (i.e. the mode of ξi(v) disre-
garding 0) as ℓmc = max

∑
r ̸=s Qi(r, s) as well as the

maximising classes r and s. Interestingly, ℓmc can be
computed more efficiently as maxQi(s)−Qi(s, s), where
Qi(s) = ES∼pi [Qi,S(s)] with Qi,S(s) = P(v(S) = s) =

Q̃i,S(πS(s)), Q̃i,S(s) = eβs−β̄0 . In the next section we
will show how such quantities, unattainable by standard
methods, support contrastive statements.
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3.2. Properties

We conclude the section with a result that formally relates
the distributional values to the standard values and shows
a number of properties akin to the classic axioms in CGT
(Shapley, 1953a; Weber, 1988; Peleg & Sudhölter, 2007).
Before doing so, we briefly define efficient and symmetric
coalition structures.

Definition 3.8 (Efficient and symmetric coalition structures).
A coalition structure p is efficient if∑
i∈[n]

pi([n] \ i) = 1 and
∑
i∈S

pi(S \ i) =
∑
j ̸∈S

pj(S). (8)

and it is symmetric if there exist a PMF p̄ over [n− 1] such
that

pi(S) = p̄(|S|) for all i ∈ [n]. (9)

In classic CGT, efficient and/or symmetric coalition struc-
tures give rise to efficient (i.e. the values sum up to the
grand payoff) and/or symmetric (i.e. if two players yield
the same marginal contributions, they attain the same value)
value operators. The Shapley value is both efficient and
symmetric, random-order group values are efficient and
semvalues are symmetric. 4 We refer to the appendix for
further discussion.

Proposition 3.9. Let v, v′, v′′ be E−valued n-players
stochastic games, E ⊆ Rd, and let T be the corresponding
difference set. Let ξ be a distributional value operator with
associated coalition structure p. Then:

(i) let ϕ be the standard value operator associated with
p and let u(S) = Eε[v(S)] ∈ Rd, then ES,ε[ξi(v)] =
{ϕi(uc)}dc=1;

(ii) if i is a null player for v, i.e. v(S ∪ i) = v(S) for all
S ̸= ∅, then ξi(v) = δ0;

(iii) if v = v′ with probability π ∈ [0, 1] and v = v′′ with
probability π̄ = 1− π, then

qi(z) = πq′i(z) + π̄q′′i (z); (10)

(iv) if the coalition distribution p is efficient then

v([n])⊖ v(∅) =
∑
i∈[n]

ES∼pi(S)[ξi(v)], (11)

where the sum on the right hand side is the sum of
(dependent) T -valued RVs;

(v) if the coalition distribution p is symmetric and i, j are
symmetric players, namely v(S ∪ i) = v(S ∪ j) for all
S ∈ 2[n]\{i,j}, then ξi(v) = ξj(v).

4In fact the uniqueness of the Shapley value can also be inter-
preted as a property of the coalition structure: there is only one
coalition structure that is both efficient and symmetric.

The proof is given in the appendix. Property (i) essentially
shows that the distributional values are strictly more expres-
sive than their traditional counterparts. This is depicted in
Figure 1 by the star mark and the arrow that connects the
top and bottom parts of the figure. In particular note that for
the likelihoods of Sec. 3.1 the games u are precisely those
tracking the mean or the class probabilities often explained
in practice (e.g. in SHAP). Property (ii) is the natural
adaptation of the null player axiom, with δ0 in place of 0.
Property (iii) replaces the familiar linearity axiom with a
natural convolution property. Linearity would be of little
consequence for instance when explaining neural net clas-
sifiers – a criticism raised by Kumar et al. (2020). Indeed,
taking a linear combination of, e.g., categorical RVs does
not lead to another categorical RV, making it unclear how
one should interpret the linearity of ϕ in this context. On the
other hand, (iii) addresses the common situation where the
classifier one wishes to explain is a probabilistic ensemble.
Properties (iv) and (v) are linked to the coalition structure
p and essentially state that the concepts of both efficiency
and symmetry, valuable in the XAI context, “transfer” to
distributional values. In particular, distributional Shapley
values are both efficient and symmetric while asymmetric
distributional values are only efficient in the sense of Eq.
(11), noting also that we no longer assume v(∅) = 0.

4. Some limitations of traditional GT-XAI
Traditional game-theoretic attributions offer useful theoret-
ical grounding and wide applicability. However, several
studies identified some key limitations (Kumar et al., 2020;
Watson & Floridi, 2021; Jacovi et al., 2021). Before turning
to the application of distributional values to realistic scenar-
ios, in this section we discuss how our proposed approach
resolves some of the controversial aspects, while retain-
ing theoretical properties of which we laid foundations in
the previous section. We will resume the discussion about
remaining limitations in Section 6.

For concreteness, we take as running examples the tasks
of explaining the output of a logistic multiclass classifier
f(x) = Softmax(x⊺W + b) trained on the Iris dataset and
the XOR game of Example 3.5. We take the Shapley coali-
tion structure, denote by ϕ the standard Shapley value (SV)
operator and by ξ its distributional counterpart. We con-
struct 3-ways categorical and Bernoulli games as delineated
in Section 3 and take the class probabilities as scalar pay-
offs (for applying ϕ). We shall use the letter v to refer to
stochastic games and u for scalar ones.

Importance scores. Often attributions are used to deter-
mine (class-independent) “importance” of the input features
and to rank them accordingly. Consider the Iris case: in the
standard approach we are in effect computing three Shap-
ley values of three, in principle independent, games. This

6



Distributional Values for XAI

makes unclear how one can harmonize the resulting infor-
mation across classes, as standard SV may range anywhere
in [−1, 1]. Often this issue is resolved heuristically by con-
sidering the score ιAbs

i (u) =
∑3

c=1 |ϕi(uc)| (Lundberg &
Lee, 2017), which has neither clear interpretation nor prop-
erties. In contrast our definition of overall importance ι of
Eq. (5) has a very direct interpretation: it is the probability
that i induces any change in the outcome (weighted by p).

Aggregation bias. The aggregation caused by taking expec-
tation over the coalitions may lead to terms being cancelled
out. To see this, consider the XOR case: the Shapley value
for player 1 is ϕ1(vχ) = (vχ(1)− vχ(∅))/2 + (vχ(1, 2)−
vχ(2))/2 = 0, however, for both S = ∅ and S = 2, player 1
flips the outcome of the game. The SV may lead to the rather
counterintuitive conclusion that player 1 is unimportant. On
the contrary, distributional values faithfully keep track of
such changes, as we saw in Example 3.5, showing that both
players are maximally important, as they flip the prediction
every time they enter a coalition. In less extreme cases,
the behaviour may lead to underestimate the importance of
several features. In the Iris case, we found discrepancies
between the feature order induced by the standard SV (using
ιAbs introduced above) versus the categorical SV (using ι
from Eq. 6) for around 80% of the points in the training set.
Around one third of these discrepancies concern also the
most important feature.

Contrastive statements. Although Kumar et al. (2020)
mention that some contrastive interpretations of standard
values are unlocked via properly setting out-of-coalitions
feature values, there is no obvious way to use the ϕ(ui)’s to
formulate contrastive statements of the type “the feature that
is most responsible to makes x to be classified as c1 rather
than c2 is i“. These are particularly noteworthy statements
on points where f errs, where one wants to understand why
f predicts c1 rather than the ground truth c2 (Jacovi et al.,
2021). Miller (2019) claims that contrastive reasoning is
one of the principal mental model when individuals look
for explanations. As we argued in Section 3.1, the statistics
ℓmc may precisely support such statements. Returning to
the Iris classifier, standard SV find that one single feature is
the most important with respect to all the three classes. This
contravenes the fact that for categorical outputs when a class
becomes more likely, then the aggregated probability of the
others need necessarily decrease. Conversely, in no single
instance do the categorical SVs exhibit such behaviour.

Uncertainty quantification. Finally, we note that standard
formulations by construction do not support statements in-
volving (endogenous) uncertainty, such as “the contribution
of feature i exhibits σ2

i variance”. This makes it impossi-
ble to detect cases where a feature is important because it
makes the model flip prediction several times, such as in
the XOR case. It also does not allow to distinguish features

that consistently contribute toward a certain prediction ver-
sus features that exhibit “unstable” behaviour. In contrast,
distributional value support such statements. We refer the
reader to Appendix D.5 for a case study on the Adult in-
come dataset and the Bernoulli Shapley value that shows
the meaningfulness of uncertainty-related statistics when
assessing model behaviour.

5. Case studies
In this section, we showcase applications to image classifier
and autoregressive language models; we refer the reader to
Appendix D for details, additional plots and results. 5 In
the first batch of experiments, we consider a simple LeNet5
neural net (LeCun et al., 1998), we take as players single
pixels and as example an 8 (correctly classified). We use
the categorical Shapley value (CSV) as operator ξ. We
show some visualizations in Figure 2 (top). The second and
third images show the contributions from and to the digit
‘3’. Note that, contrarily to other works in GT-XAI (e.g.
Lundberg & Lee, 2017), our approach allows to explain
the whole model at once, without needing to extract binary
classifiers. Interestingly, we can also analyse the transitions
from and to other classes (see the two rightmost plots),
where we see how the CSV highlights what distinguishes
an ‘8’ from a ‘2’ (rightmost plot) and which pixels, instead,
moves some probability mass from ‘8’ to ‘5’.

The second and third rows of Figure 2 show attributions
for the output of a ResNet-50 (He et al., 2015) trained on
ImageNet (Deng et al., 2009). We divide the image into a
32x32 multi-channel grid and collapse all but the 25 most
probable classes to one (denoted ‘other’). The second row
presents the case of a cat (classified as c =‘Egyptian cat’
by the model): the leftmost plot shows pixel importance
as defined in Eq. (6). More interestingly, the three central
figures show transition probabilities toward c that highlight
very different regions of the image: ears and tail for ‘Fox
squirrel’, a paw for ‘Plastic Bag‘ and portions of the face for
the terrier. The right-most plot shows the pixel-wise most
important (MAP) transitions (after thresholding) which may
serve as a quick overview of the CSV. The third row shows
additional examples of wrongly classified images: ‘Shoe
shop’ instead of ‘Confectionery’ and ‘Monitor’ rather than
‘Desktop computer’. In the latter case we see that the model
(understandably) picks at the base of the screen as a distin-
guishing factor, while in the ‘Confectionery’ example the
model seems to mistake bottles for shoes (in the background
of the image). Appendix D.3 presents fidelity studies for
these models aimed at corroborate the contrastive capabili-
ties of the categorical values.

5Franceschi et al. (2023) present an application of the cat-
egorical values to explain the output of a residual network for
pneumonia detection and subtyping using X-ray images.
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Figure 2. Applications of categorical Shapley value for a digit (top) and an object classifiers (bottom). Test images from MNIST (LeCun
et al., 1998) and ImageNet (Deng et al., 2009). All gradations of white represent pixel-wise probabilities.

Table 1. Distributional values for explaining differences in model outputs related to female vs male subjects, for two cases. The second
and third rows report the probability of change, the entropy H of the categorical value and the top-3 transition probabilities.

Probing sentences and rephrases GPT2 GPT2-XL
She works as a [...].

She earns her living by working as a [...]
He works as a [...].

He earns his living by working as a [...]

ι(v) = 0.801 |H(ξ) = 2.902
Pilot → Nurse: 0.2948

Pilot → Volunteer: 0.1223
Manager → Designer: 0.1194

ι(v) = 0.458 |H(ξ) = 2.792
Lawyer → Nurse: 0.0716

Designer → Volunteer: 0.0713
Pilot → Doctor: 0.0645

She wanted to go to the [...] with friends.
He wanted to go to the [...] with friends.

At the [...] with her friends is where she wanted to be.
At the [...] with his friends is where he wanted to be.

ι(v) = 0.280 |H(ξ) = 1.715
Game → School: 0.0998
Game → Party: 0.0416
Bar → Party: 0.0288

ι(v) = 0.126 |H(ξ) = 0.793
Bar → House: 0.0607

Party → School: 0.0443
House → School: 0.0065

Finally, we showcase an application to explain conditional
probabilities of autoregressive LMs. We set up an experi-
ment similar in spirit to FlipTest (Black et al., 2020) taking
inspiration from (Nangia et al., 2020) where we probe the
model for gender stereotyping on different sentences using
ChatGPT-generated rephrases (ChatGPT-3.5 Turbo, 2023).
We compute average categorical differences between out-
put given prompts with female versus male subject. We
restrict the output to a number of tokens in the order of 100
(depending on the sentence), picking a mix of manually
selected, most probable (for a GPT2 model) and ChatGPT
generated short continuations. We refer the reader to the
appendix for details and for the formal definition of this
experimental setting in a GT-XAI context. We show results
in Table 1 for two types of sentences and two sizes of GPT2
models (Radford et al., 2019). Beside providing evidence

of (known) stereotyping behaviour, we see how CSV may
offer fine-grained information about where precisely the
probability mass moves, quantifying the probability that the
change of the sex of the subject flips the predictions from
e.g. ‘Lawyer’ to ‘Nurse‘ in the job case.

6. Conclusions
Related work in XAI. Other XAI dimensions which we
did not touch upon include: model-agnostic (Ribeiro et al.,
2016, inter alia) and model-specific (Simonyan et al., 2013) ,
post-hoc (Ribeiro et al., 2016) and by design (Alvarez Melis
& Jaakkola, 2018); distillation-based (Tan et al., 2018),
feature-based (Ribeiro et al., 2016), concept-based (Kim
et al., 2018), and example-based (Koh & Liang, 2017). See
(Guidotti et al., 2018; Arrieta et al., 2020; Gilpin et al.,
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2018) for surveys and detailed list of methods. Several
works (Štrumbelj & Kononenko, 2014; Lundberg & Lee,
2017; Sundararajan et al., 2017; Sundararajan & Najmi,
2020; Frye et al., 2020b) fall in the GT-XAI framework. The
framework has also been explored for generating explana-
tions in diverse contexts – other than for local explanations –
see e.g. Covert et al. (2020); Ghorbani & Zou (2019; 2020)
and Mosca et al. (2022) for a survey. A very recent work pro-
poses a technique to calibrate gradient based explanations
of multi-class classifiers following a contrastive view (Wang
& Wang, 2022). Jacovi et al. (2021) propose a method for
producing contrastive explanations (CEM) unrelated to the
GT-XAI framework, while Bowen & Ungar (2020) discuss
adaptations of SHAP to produce contrastive explanations by
formulating custom games. These formulations are linked
to our categorical values. However distributional values
offer a full probabilistic treatment and benefit from several
theoretical properties as we showed in Section 3.2. Finally,
in a study with human participants Fel et al. (2022) identi-
fied a major concern for XAI technquies in their inability to
reason about what the model is looking at. CSV may offer
answers to these types of questions due to their fine grain.

Related work in CGT. The Shapley value of simple games
(i.e. games with payoffs in {0, 1}) has a probabilistic in-
terpretation (Peleg & Sudhölter, 2007, pag. 168) however
simple games are not stochastic. An “and-or axiom” substi-
tutes the linear axiom in simple games (Weber, 1988), here
we extend to probabilistic combinations. Extensions on the
”domain” side, e.g. mulitlinear games (Owen, 1972), regard
games that are no longer defined on sets but on unit hyper-
cubes. In CGT, probabilistic games are typically intended
as multi-stage games where the transition between stages is
stochastic (Shapley, 1953b; Petrosjan, 2006) and not their
intrinsic payoffs. Static cooperative games with stochastic
payoffs have been considered from the perspective of coali-
tion formation and considering notions of players’ utility
(e.g. Suijs et al., 1999) or studying two stages setups – before
and after the realisation of the payoff (e.g. Granot, 1977),
and from an optimization perspective (Sun et al., 2022). To
the best of our knowledge, our settings and constructions
have not been studied before.

Limitations. In this work, we have not touched upon
several other (known) limitations of GT-XAI. Among these,
two major issues are the computational complexity and
the difficulty of defining meaningful behaviour for out-of-
coalition players. Regarding the first, we note that our
value operators, being more informative than the standard
counterparts, add (polynomial) computational cost, which is
anyway overshadowed by the exponential cost of traversing
coalitions. Integrating techniques for improved sampling
recently proposed by Mitchell et al. (2022) may prove invalu-
able for the estimation of distributional values. Regarding
out-of-coalition behaviour, we have used in experiments

a simple reference (or background) strategy, but note that
many other formulations (e.g. Frye et al., 2020a; Ren et al.,
2023) are possible. These are orthogonal dimensions to our
work.

Wrap up. We have presented a framework that generalises
the Shapley and related value operators for explaining more
closely models with probabilistic outputs. Going forward,
we believe that the same methodological approach – i.e.
reconsidering the way we formulate games and, by con-
sequence, how we compute marginal contributions – may
be applied also to other contexts such as explaining spaces
of functions or graphs (e.g. in causal discovery). Another
interesting direction of future research is to reconsider the
type of payoff dependency we studied in this paper. Finally,
from a CGT perspective, we established a strong link to
classic approaches and some other initial properties, such
as efficiency and symmetry. We plan to continue the study,
especially in the perspective of establishing contextually
meaningfully properties with direct bearing in XAI.

Impact statement
Although this work is primarily concerned with the deriva-
tion and study of a novel class of value operators for cooper-
ative stochastic games, we believe application to XAI may
have generally a positive societal impact as they allow for
greater scrutiny of model behaviour. As distributional val-
ues are in effect a strict extension of traditional approaches
in game-theoretic XAI, we trust that their adoption may
bring several benefits over using standard techniques such
as SHAP and related (see also Appendix D.5 for a concrete
example). However, we also acknowledge that misuse of
explanatory techniques may potentially lead to miscalibra-
tion of stakeholders trust and the more complex technique
introduced in this work may carry higher risks. We therefore
wish to highlight that at this stage of development distribu-
tional values are not meant as a ready-made XAI solution
for the general public but should rather be applied and anal-
ysed by knowledgeable users. In this sense, we intend to
develop best practices for communication and visualization
of the distributional values as well as continue probing the
technique for failure cases and misinterpretations.
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A. On the dependency structure of the payoffs
In this work, for the reasons outlined in Section 3, we propose a simple and natural dependency structure between all the
payoffs of a game in that v(S) = v(S, ε), using a deterministic reparameterization and “noise sharing” of ε ∼ ρ(ε). The
stochasticity of the output is captured by ε while the difference due to the coalition on which v is computed is captured
through g. This dual treatment fits our typical context where (single) ML models underlie our structured games: different
inputs correspond to different coalitions, with their variation encoded by f . However, the model itself (e.g. the parameters
of a neural net) remains unchanged across evaluations of different inputs (i.e. coalitions). We encoded by the presence of a
shared source of randomness. From an operational standpoint, as we note in the first footnote of Section 3.1 we may also
interpret the ε ∼ ρ(ε) as the “random seed” that we use to compute the output of a model. Then, from this perspective,
sharing randomness corresponds to fixing a random seed for all evaluations.

Another justification has already been discussed in the main body, contrasting this choice with the possibility of assuming
(full) independence between the various payoffs: independence would lead to marginal contributions being non-zero (in the
probabilistic sense) even when the parameters of the probability distributions v(S ∪ i) and v(S) would be the same (e.g.
same success probability, in the Bernoulli case). However, given a latent variable representation of the marginal distribution
of interest there are other dependency assumptions we could explore that may also better capture underlying stochasticiy
in the model (e.g. Bayesian nets). Although we do not cover these cases in the current presentation, we offer next some
possible direction in this sense.

Exchangeability. A weaker assumption on the variables v(S) would be exchangeability: for any subset S1, . . . , Sk and any
permutation π(j), the joint distributions of (v(S1), . . . , v(Sk)) and (v(Sπ(1)), . . . , v(Sπ(k))) are the same. By de Finetti’s
theorem (Hewitt & Savage, 1955), there exists a shared random variable ε so that the v(S) become independent when we
condition on ε. This is weaker than our assumption of determinism given ε, since each v(S) can still have independent
randomness given ε. Studying games with random payoffs under a weaker exchangeability assumption is an interesting
topic for further research.

B. Derivation of the analytical expressions of the Categorical values
We provide a derivation of the expressions Q̃i,S(r, s) in Section 3.1, paragraph “Categorical values”. In this derivation, i
and S are fixed, and we write Prs for Q̃i,S(r, s). Let d ≥ 3 be an integer, [αj ] and [βj ] be sets of d real numbers. Above,
αj = θS∪i,j and βj = θS,j , but the derivation below does not make use of this. Also, let εj be d independent standard
Gumbel variables, each of which has distribution function and density

F (ε) = exp
(
e−ε

)
, p(ε) = F (ε)′ = exp

(
−ε− e−ε

)
= e−εF (ε).

Fix r, s ∈ {1, . . . , d}, r ̸= s. We would like to obtain an expression for the probability Prs of

argmax
j

(αj + εj) = r and argmax
j

(βj + εj) = s.

Define
αjr := αj − αr, βjs := βj − βs.

The argmax equalities above can also be written as a set of 2d inequalities (2 of which are trivial):

εj ≤ εr − αjr, εj ≤ εs − βjs, j = 1, . . . , d.

Then:
Prs = E

[∏
j
Ij

]
, Ij := 1εj≤min(εr−αjr,εs−βjs).

Two of them are simple:

Ir = 1εr≤εs−βrs
, Is = 1εs≤εr−αsr

, IrIs = 1αs−αr≤εr−εs≤βs−βr
.

Denote
γj := αjr − βjs = νj − (αr − βs), νj := αj − βj .
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Note that γj depends on r, s, but νj does not. If j ̸= r, s, then

Ij = 1εj≤εr−αjr1εr−εs≤γj + 1εj≤εs−βjs1εr−εs≥γj .

If we exchange sum and product, we obtain an expression of Prs as sum of 2d−2 terms. Each of these terms is an expectation
over εr, εs, with the argument being the product of d− 2 terms F (εr + aj) or F (εs + aj) and a box indicator for εr − εs.
In the sequel, we make this more concrete and show that at most d− 1 of these terms are nonzero.

With a bit of hindsight, we assume that ν1 ≥ ν2 ≥ · · · ≥ νd, which is obtained by reordering the categories. This implies
that [γj ] is nonincreasing for all (r, s). Also, define the function π(k) = k + 1r≤k + 1s−1≤k from {1, . . . , d− 2} to
{1, . . . , d} \ {r, s}. We will argue in terms of a recursive computation over k = 1, . . . , d− 2. Define

Mk(εr, εs) = E
[
IrIs

∏
1≤j≤k

Iπ(j)
∣∣ εr, εs] , k ≥ 0,

so that Prs = E[Md−2(εr, εs)]. Each Mk can be written as sum of 2k terms. Imagine a binary tree of depth d− 1, with
layers indexed by k = 0, 1, . . . , d−2. Each node in this tree is annotated by a box indicator for εr−εs and some information
detailed below. We are interested in the 2d−2 leaf nodes of this tree.

B.1. Box indicators. Which terms are needed?

We begin with a recursive computation of the box indicators, noting that we can eliminate all nodes where the box is empty.
Label the root node (at k = 0) by 1, its children (at k = 1) by 10 (left), 11 (right), and so on, and define the box indicators as
1l1≤εr−εs≤u1 , and (l10, u10), (l11, u11) respectively. Then, l1 = αs − αr, u1 = βs − βr defines the box for the root. Here,

l1 ≥ u1 ⇔ νs ≥ νr.

Since [νj ] is non-increasing, the root box is empty if s < r, so that Prs = 0 in this case. In the sequel, we assume that r < s
and νr > νs, so that l1 < u1.

If n is the label of a node at level k − 1 with box (ln, un), then

ln0 = ln, un0 = min(γπ(k), un), ln1 = max(γπ(k), ln), un1 = un.

Consider node 11 (right child of root). There are two cases. (1) γπ(1) < u1. Then, l11 ≥ γπ(1) ≥ γπ(k) for all k ≥ 1, so all
descendants must have the same l = l11. If ever we step to the left from here, u = min(γπ(k), u1) ≤ γπ(k) ≤ γπ(1) ≤ l11,
so the node is eliminated. This means from 11, we only step to the right: 111, 1111, . . . , with l = max(γπ(1), l1), u = u1,
so there is only one leaf node which is a descendant of 11. (2) γπ(1) ≥ u1. Then, l11 ≥ u11, so that 11 and all its descendants
are eliminated.

At node 10, we have l10 = l1. If γπ(1) ≤ l1, the node is eliminated, so assume γπ(1) > l1, and u10 = min(γπ(1), u1).
Consider its right child 101. We can repeat the argument above. There is at most one leaf node below 101, with
l = max(γπ(2), l1) and u = u10 = min(γπ(1), u1).

All in all, at most d − 1 leaf nodes are not eliminated, namely those with labels 10 . . . 01 . . . 1, and their boxes are
[max(γπ(1), l1), u1], [max(γπ(2), l1),min(γπ(1), u1)], . . . , [max(γπ(d−2), l1),min(γπ(d−3), u1)], [l1,min(γπ(d−2), u1)].

Recall that each node term is a product of d − 2 Gumbel CDFs times a box indicator. What are these products for our
d− 1 non-eliminated leaf nodes? The first is F (εs − βπ(1)s) · · ·F (εs − βπ(d−2)s), the second is F (εr − απ(1)r)F (εs −
βπ(2)s) · · ·F (εs − βπ(d−2)s), the third is F (εr − απ(1)r)F (εr − απ(2)r)F (εs − βπ(3)s) · · ·F (εs − βπ(d−2)s) and the last
one is F (εr − απ(1)r) · · ·F (εr − απ(d−2)r). Next, we derive expressions for the expectation of these terms.

B.2. Analytical expressions for expectations

Consider d− 2 scalars a1, . . . , ad−2 and 1 ≤ k ≤ d− 1. We would like to compute

A = E
[(∏

j<k
F (εr + aj)

)(∏
j≥k

F (εs + aj)
)
1l≤εr−εs≤u

]
. (12)

Denote
G(a1, . . . , at) := E[F (ε1 + a1) · · ·F (ε1 + at)].
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We start with showing that
G(a1, . . . , at) =

(
1 + e−a1 + · · ·+ e−at

)−1
.

Recall that p(x) = F (x)′ = e−xF (x). If F̃ (x) =
∏t

j=1 F (x+ aj), then

F̃ (x)′ =
(∑t

j=1
e−aj

)
e−xF̃ (x).

Using integration by parts:

G(a1, . . . , at) =

∫
F̃ (x)p(x) dx = 1−

∫
F̃ (x)′F (x) dx = 1−

(∑t

j=1
e−aj

)
G(a1, . . . , at),

where we used that F (x) = exp(x).

Next, define
g1 = log

(
1 + e−a1 + · · ·+ e−ak−1

)
, g2 = log

(
1 + e−ak + · · ·+ e−ad−2

)
.

We show that A in (12) can be written in terms of (g1, g2, l, u) only. Assume that k > 1 for now. Fix εs and do the
expectation over εr. Note that 1l≤εr−εs≤u = 1εs+l≤εr≤εs+u. If F̃ (x) =

∏
j<k F (x+ aj), then

F̃ (x)′ =
(∑

j<k
e−aj

)
e−xF̃ (x).

Using integration by parts:

B(εs) =

∫ εs+u

εs+l

F̃ (x)p(x) dx =
[
F̃ (x)F (x)

]εs+u

εs+l
−B(εs)

∑
j<k

e−aj ,

so that
B(εs) = e−g1

[
F̃ (x)F (x)

]εs+u

εs+l

and
A = E

[
B(εs)

∏
j≥k

F (εs + aj)
]
= A1 −A2,

where

A1 = e−g1E
[(∏

j<k
F (εs + u+ aj)

)(∏
j≥k

F (εs + aj)
)
F (εs + u)

]
= e−g1G(a1 + u, a2 + u, . . . , ak−1 + u, ak, . . . , ad−2, u)

and
A2 = e−g1G(a1 + l, a2 + l, . . . , ak−1 + l, ak, . . . , ad−2, l).

Now,

− logA1 = g1 − logG(a1 + u, a2 + u, . . . , ak−1 + u, ak, . . . , ad−2, u)

= g1 + log
(
1 +

∑
j<k

e−aj−u +
∑

j≥k
e−aj + e−u

)
= g1 + log

(
eg2 + e−u+g1

)
= g1 + g2 + log

(
1 + eg1−g2−u

)
and

− logA2 = g1 + g2 + log
(
1 + eg1−g2−l

)
so that

A = A1 −A2 = e−(g1+g2) (σ(g2 − g1 + u)− σ(g2 − g1 + l)) , σ(x) :=
1

1 + e−x
. (13)

If k = 1, we can flip the roles of εr and εs by g1 ↔ g2, l → −u, u → −l, k → d− 1, which gives

e−(g1+g2) (σ(−(g2 − g1 + l))− σ(−(g2 − g1 + u))) = e−(g1+g2) (σ(g2 − g1 + u)− σ(g2 − g1 + l)) ,

using σ(−x) = 1− σ(x), so the expression holds in this case as well.
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B.3. Efficient computation for all pairs

Our d − 1 terms of interest can be indexed by k = 1, . . . , d− 1. We can use the analytical expression just given with
aj = −απ(j)r for 1 ≤ j < k and aj = −βπ(j)s for k ≤ j ≤ d− 2. Define

g1(k) = log
(
1 +

∑
1≤j<k

eαπ(j)−αr

)
, g2(k) = log

(
1 +

∑
k≤j≤d−2

eβπ(j)−βs

)
,

as well as
l(k) = max(γπ(k), l1), u(k) = min(γπ(k−1), u1),

where we define π(0) = 0, π(d− 1) = d+ 1, γ0 = +∞, and γd+1 = −∞. Note that

l(k) = max(νπ(k) − αr + βs, αs − αr) = βs − αr +max(νπ(k), νs),

u(k) = min(νπ(k−1) − αr + βs, βs − βr) = βs − αr +min(νπ(k−1), νr).
(14)

Prs is obtained as sum of A(g1(k), g2(k), l(k), u(k)) for k = 1, . . . , d− 1. In the sequel, we show how to compute these
terms efficiently, for all pairs r < s.

Recall that γj = νj − (αr − βs), u1 = βs − βr, l1 = αs − αr. Then:

l(k) < u(k) ⇔ νπ(k) < νπ(k−1) ∧ νπ(k) < νr ∧ νs < νπ(k−1).

Recall that π(k) = k + 1r≤k + 1s−1≤k. Define K1 = {1, . . . , r − 1}, K3 = {s, . . . , d− 1}, each of which can be empty.
For k ∈ K1, νπ(k) = νk ≥ νr, so l(k) ≥ u(k). For k ∈ K3, we have π(k − 1) = k + 1 > s, so that νs ≥ νπ(k−1) and
l(k) ≥ u(k). This means we only need to iterate over k ∈ K2 = {r, . . . , s− 2} with π(k) = k + 1 and k = s − 1 with
π(k) = s+ 1 (the latter only if s < d).

As k runs in K2, π(k) = r + 1, . . . , s− 1, and if s < d then π(s− 1) = s+ 1. Now

g1(k) = log
(
1 +

∑
1≤j<k

eαπ(j)−αr

)
= log

∑
1≤j≤k

eαj−αr ,

using that eαr−αr = 1. For g2(k), if k < s− 1, then {π(j) | k ≤ j ≤ d− 2} = {k + 1, . . . , d} \ {s}, and if k = s− 1, the
same holds true (the set is empty if s = d). Using eβs−βs = 1, we have

g2(k) = log
∑

k<j≤d
eβj−βs .

Define

ᾱk := log

k∑
j=1

eαj , β̄k := log

d∑
j=k+1

eβj , k = 1, . . . , d− 1.

Then:
g1(k) = ᾱk − αr, g2(k) = β̄k − βs, k = r, . . . , s− 1.

Finally, using g2(k)− g1(k) = β̄k − ᾱk + αr − βs and (14), we have

g2(k)− g1(k) + l(k) = β̄k − ᾱk +max(νπ(k), νs), , g2(k)− g1(k) + u(k) = β̄k − ᾱk +min(νπ(k−1), νr).

Some extra derivation, distinguishing between (a) r = s− 1, (b) r < s− 1∧ k ∈ K2, (c) r < s− 1∧ k = s− 1 shows that

max(νπ(k), νs) = νk+1, min(νπ(k−1), νr) = νk, k = r, . . . , s− 1.

Plugging this into (13):

A(k) = eαr+βsck, ck = e−β̄k−ᾱk
(
σ
(
β̄k − ᾱk + νk

)
− σ

(
β̄k − ᾱk + νk+1

))
.

and Prs =
∑s−1

k=r A(k). Importantly, ck does not depend on r, s. Therefore:

Prs = eαr+βs(Cs − Cr), Ct =

t−1∑
k=1

ck (r < s); Prs = 0 (r > s). (15)
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The sequences [ᾱk], [β̄k], [ck] , [Ck] can be computed in O(d).

Finally, we also determine Prr, which is defined by the inequalities εj ≤ ε1 −max(αjr, βjr). A derivation like above (but
simpler) gives:

Prr =

1 +
∑
j ̸=r

emax(αjr,βjr)

−1

.

Now, αjr ≥ βjr iff νj ≥ νr iff j < r, so that

Prr =

1 +
∑
j<r

eαj−αr +
∑
j>r

eβj−βr

−1

=
(
eᾱr−αr + eβ̄r−βr

)−1

= eβr−β̄rσ(β̄r − ᾱr + νr), (r < d),

Pdd = eαd−ᾱd .

C. Extended background and proof of Proposition 3.9
In this section we extend the background on cooperative game theory of Section 2 and then provide a proof for the Proposition
3.9.

Our definition of distributional values depend on the coalition structure {pi} = p for i = [n], where the pi are PMFs over
coalitions, one for each player. This formulation inherits from multiple generalisations of the Shapley value appearing
in CGT (Weber, 1988; Dubey et al., 1981), which comprises operators ϕ = (ϕi)

n
i=1 : Gn 7→ Rn that may be written as

expectations of marginal contributions v(S ∪ i)− v(S) as follows:

ϕi(v) =
∑

S∈2[n]\i

pi(S)[v(S ∪ i)− v(S)] = ES∼pi(S)[v(S ∪ i)− v(S)]. (16)

Probabilistic (group) values, semivalues, random-order group values (also known as asymmetric Shapley values (Frye et al.,
2020b)) and the Shaply value can be written in this way. Semivalues and random-order group values are probabilistic values
and the Shapley value is the only operator that is both a semivalue and a random-order group value. Furthermore, one can
think of random-order group values as originating from a single shared probability distribution over permutations (rather
than coalitions) of players ν : Πn 7→ [0, 1] as follows;

ϕi(v) =
∑
π∈Πn

ν(π)[v({j ≤ π(i)})− v({j < π(i)})] = Eπ∼ν(π)[v({j ≤ π(i)})− v({j < π(i)}],

where Πn is the set of all permutations of [n]. In this view, the Shapley value is the random order group value with uniform
probability over permutations; i.e. ν(π) = (n!)−1.

C.1. Axioms of the value operators

The four classes of value operators are traditionally derived, studied, and presented in relation to a number of axioms that
they satisfy. 6 We list the principal five axioms below in the context of standard real-valued games v : 2[n] 7→ R.

Dummy A player i is a dummy for v if for every S ̸= ∅, v(S ∪ i) = v(S) + v(i). A value operator ϕ satisfies the dummy
axiom if ϕi(v) = v(i) whenever a player i is dummy for a game v.

This axiom encompasses the null player axiom found e.g. in (Lundberg & Lee, 2017) which can be obtained as special case
when v(i) = 0. The dummy axiom essentially states that if a player has no strategic impact on the game, then it shall be
assigned exactly the payoff that it receives by playing alone.

Linearity Let v = w + u, meaning that v(S) = w(S) + u(S) for all coalitions, where v, w, u are all n−players games.
A value operator satisfies the linearity axiom if ϕ(v) = ϕ(w) + ϕ(u)

This axiom essentially requires ϕ be a linear operator between the two vector spaces Gn and Rn.

6In contrast, we adopt a constructive view in the main paper and speak about “properties”.
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Monotonicity. A game v is monotonic if for every S ⊆ T v(S) ≤ v(T ). A value operator satisfies the monotonicity
axiom if ϕi(v) ≥ 0 for all i ∈ [n] whenever v is a monotonic game.

This axiom requires that the values of players of monotonic games be positive and encodes the idea that for games that have
non-decreasing payoffs for increasing coalition sizes, there can be no harm in joining a coalition.

All the four classes of group values satisfy these three axioms. The following two axioms are instead only satisfied by
random-order group values (efficiency) and semivalues (symmetry), respectively. The Shapley value satisfies both of them
at the same time.

Efficiency. Let v(∅) = 0. A value operator is efficient if
∑

i ϕi(v) = v([n]).

If v(∅) ̸= 0 then one can still talk about efficiency by subtracting the offset v(∅) from the grand payoff. It can be shown
(Weber, 1988) that if the coalition distribution is such that

∑
i∈[n]

pi([n] \ i) = 1 and
∑
i∈S

pi(S \ i) =
∑
j ̸∈S

pj(S) (17)

than the associated value operator is efficient. We refer to coalition structure that satisfy Eq. (17) as efficient. Coalition
distribution deriving form random-order group values are efficient.

Symmetry A value operator is symmetric if for every permutation π of [n] ϕi(v) = ϕπ(i)(πv) where πv is the game
defined as πv({π(i) : i ∈ S}) = v(S).

In particular, simmetry entails that if i and j are indistinguishable players for a game v, i.e. v(S ∪ i) = v(S ∪ j) for all S,
then ϕi(v) = ϕj(v). If an operator is symmetric, then the coalition PMFs are shared among players and only depend on the
coalition dimension, i.e. there exist a PMF p̄ over [n− 1] such that

pi(S) = p̄(|S|) for all i ∈ [n], S ∈ 2[n]\i. (18)

As we did for the efficiency case, we refer to coalition structure with this property as symmetric. Distributions deriving from
semivalues are symmetric.

C.2. Proof of Proposition 3.9

Proof. (i) For each i, by direct computation and linearity of the expectation, we have that

ES,ε[ξi(v)] = ES∼pi(S)[Eε∼p(ε)[v(S ∪ i, ε)− v(S, ε)]

= ES∼pi(S)[v̄(S ∪ i)− v̄(S)] = {ϕi(v̄)}di=1,

where d is the dimension of the output space. Note that for the specific distributions we covered in Section 3.1, have
u(S) = πS for Bernoulli games, u(S) = µS for Gaussian games, and u(S) = Softmax(θS) for Categorical games.

(ii) This is a direct consequence of the reparameterization condition we introduced in Section 3.

(iii) For every z ∈ T , we have that

qi(z) = qi(z|v = v′)P(v = v′) + qi(z|v = v′′)P(v = v′′) = πq′i(z) + (1− π)q′′i (z)

where q′ and q′′ are probability distributions of the PSVs of v′ and v′′, respectively.
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(iv) Recall that if a coalition distribution is efficient, then its PMF follows the conditions Eq. (8). Then, we have

∑
i∈[n]

ES∼pi(S)[ξi(v)] =
∑
i∈[n]

∑
S⊆2[n]\i

pi(S)[v(S ∪ i, ε)− v(S, ε)]

=
∑

S∈2n\{[n],∅}

v(S, ε)

∑
j∈S

pj(S \ j)−
∑
j ̸∈S

pj(S)

 (19)

+ v([n], ε)
∑
i∈[n]

pi([n] \ i) (20)

+ v(∅, ε)
∑
i∈[n]

pi(∅) (21)

= v([n], ε)− v(∅, ε) = v([n])⊖ v(∅),

where, because of the efficiency hypothesis, the difference of sums of probabilities in line (19) are zero, and the
probabilities in line (20) and line (21) sum both to one. To see that the summation in Eq. (21) is one as a consequence
of (8), consider that for any k ∈ [n− 1]

∑
|S|=k

∑
i∈S

pi(S \ i) =
∑
|S|=k

∑
i ̸∈S

pi(S) =
∑
|S|=k

∑
i ̸∈S

pi((S ∪ i) \ i)

=
∑

|S|=k+1

∑
i∈S

pi(S \ i),

creating a chain of equalities and conclude by taking k = 1 and k′ = n− 1.

(v) Assume p satisfies Eq. (9). We prove a the more general property of symmetry, let π ∈ Πn be a permutation of [n] and
define πv as above. Then

ξi(v) = v(S ∪ i)⊖ v(S) = πv(π(S ∪ i))⊖ πv(π(S)) for ε ∼ ρ(ε), S ∼ pi(S)

= ξπ(i)(πv)

where the second equality holds because the probabilities of S do not depend on the player i and where we denote
π(S) = {π(i) : i ∈ S}.

D. Further experimental details and results
We run all the experiments on a machine with 8 Intel(R) Xeon(R) Platinum 8259CL CPUs @ 2.50GHz and
one Nvidia(R) Tesla(R) V4 GPU. Python code is available at https://github.com/amazon-science/
explaining-probabilistic-models-with-distributinal-values.

D.1. Mnist

We report in Figure 3 additional plots concerning both the standard Shapley value (e.g. as computed with SHAP (Lundberg
& Lee, 2017)) and several transition probabilities that complement the one shown in the main paper. To compute both
the standard and Categorical SV, we use a simple permutation-based 1000-samples Monte Carlo estimator (Strumbelj &
Kononenko, 2010). For out-of-coalition pixels, we use a reference value of 0. We repeat the estimation 5 times and obtain a
mean pixel-wise standard deviation of 2.24 · 10−5 which indicates a negligible estimation noise.

As it can see in Figure 3, Categorical SV offer a much more fine-grained information w.r.t. standard SV (top two rows). For
instance, the single plot for the standard SV for the digit ‘8’ in the second row, is “expanded” into 18 plots of the entries of
the Categorical SV representing the probability masses qi(e8 − ej) and qi(ej − e8) for j ∈ {0, . . . 9} \ {8}. 7 We recall that
the precise relationship between the standard and Categorical SV is established in Proposition 3.9.(i).
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Figure 3. (Top two rows) We plot the standard (estimated) Shapley value for each of the digit explaining the output probabilities: red
gradations indicate positive contribution, blue negative. The values have been obtained as expectation of the Categorical SV, but could
have been obtained also with other techniques such as KernelSHAP (Lundberg & Lee, 2017). (Bottom five rows) We plot slices of the
Categorical SV. All plots except the last two show transition probabilities from and to the digit ‘8’ and complement Figure 2 in the main
paper. The last two plots show examples of transition probabilities that do not involve the digit ‘8’.
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Figure 4. Plots of several other transition probabilities for the cat example of the main paper. The right-most plot of the third row represents
the standard SV for the cat class.
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D.2. ImageNet

As for the Mnist case, all results reported for the ImageNet ResNet50 case study are obtained with a 1000-samples
permutation-based Monte Carlo estimator of the Categorical SV and a reference value of 0 (multi-channel) for pixels of
out-of-coalitions portions of the image. Here one player represents a 4 × 4 multi-channel square patch. We repeat the
estimation five times and obtain a mean player-wise standard deviation of 3.07 · 10−6, 2.93 · 10−6, and 3.29 · 10−6 for the
image of cat, confectionery and computer, respectively; once more indicating that the estimation noise is negligible. We
report in Figure 4 additional transition probabilities and the standard SV in the rightmost plot of the second row. Again,
the Categorical SVs offer much finer-grained information that is not possible to recover from the standard SV of the class
‘Egyptian cat’.

D.3. Contrastive power for vision models: a fidelity study

We present in Figure 5 a quantitative evaluation of the contrastive power of the Categorical Shapley value on the Mnist
image ‘8‘ (top) and on the misclassified ImageNet image of a desktop computer (bottom); see Figure 2 for reference images.
Let c1 and c2 be two classes. Starting from the original input image, we iteratively remove (i.e. set to black) pixels or group
of pixels following a descending order dictated by (A - solid lines in the plots) the transition probabilities from c2 to c1 (i.e.
the qi(ec1 , ec2)’s, see Eq. (7)) from the Categorical Shapley value (CSV); or (B - dashed lines) the standard Shapley value
for the class c1; or (C - dotted lines) the opposite of the Shapley value for class c2.

We report the class probabilities of c1 (blue) and c2 (orange) as a function of the number of pixel removed. This type of
numerical analysis is often referred to fidelity study in XAI and is used as a measure for assessing quality of explanations.
Intuitively, the quicker the model prediction moves as a result of the intervention the better the explanation. Following the
CSV-induced order results in changes in the output probabilities that make increase the probability of c2 whilst decreasing
the probability of c1. In contrast, following either schemes (B) or (C) leads, in general, to slower or one-directional-only
changes.

Figure 5. Fidelity studies for Mnist (top row) and ImageNet (bottom row) cases.

7We map the digit ‘0’ to the first vector of the canonical base u0 = (1, 0, . . . , 0) and so on.
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D.4. Text generation with LLMs

In this section, we formalise the game-theoretical setup of the third batch of experiments on language modelling. In this set
of experiments, for each of the test cases, we create a small dataset of prompts starting from a sentence where the subject is
either the word ‘She’ or ‘He’. For instance sf1 = “She works as a”. Suppose the subject of the original sentence is female.
We prompt ChatGPT with the sentence sf0 and a request of rephrasing the sentence n− 1 times, obtaining Df containing
the original sentence and the rephrases. Then, we prompt ChatGPT to rephrase these sentences changing the gender of the
subject, constructing in this way Dm. Next, we let player 0 represent the gender ‘female‘ and introduce n additional players,
each representing each sentence of the dataset (deprived of the gender attribute). For a continuation c (this could be one
or more tokens), let f(c|s) ∈ R be the log-probability that the LLM associates to the sentence [s, c]. For a vocabulary of
continuations C = {ci}i∈[d], we define a Categorical game as follows:

v(S) =

{
Cat(Softmax({f(ci|Df

S)}i∈[d])) if 0 ∈ S
Cat(Softmax({f(ci|Dm

S )}i∈[d])) if 0 ̸∈ S,
(22)

where Dm
S denotes the restriction of the dataset to sentences indexed by S. Now we define a coalition distribution for player

0 (representing the female gender) over 2[n] as follows: p0(S) = 1/|Df | if |S| = 1 and 0 otherwise. With such distribution
we can define a Categorical value. 8 This is given by the following:

ξ0(v) = v(S ∪ 1)⊖ v(S) S ∼ p0(S)

= v(j ∪ 1)⊖ v(j) j ∼ U{1, |Df |},

where U is the discrete uniform distribution. The PMF of ξ0(v) is the average Categorical difference (see Section 3.1)
between continuations given sentences with female vs male subject. For creating the vocabulary of continuations, we
employ a mix of ChatGPT-generated short continuation, as well as K most probable continuations for the standard GPT2
model. Finally, we filter such set of continuations to remove common tokens such as articles, propositions and common
adjectives, which would otherwise skew the LLMs output distribution. Table 1 in the main paper reports some statistics for
the distributional value ξ0(v) so constructed.

D.5. A case study on the Adult dataset.

Figure 6. Results for the Adult case study. The output of a random forest classifier is interpreted as the success parameter of a Bernoulli
RV. Labels on the left of the plot indicate the attribute name, the value of the attribute for the test subject and, separated by |, the value of
the chosen counterfactual subject. The computed Bernoulli SV is represented through the mean (colored bars and red dot) and variance
(black lines). In contrast, computing only the standard SV would yield only the mean values – any (endogenous) uncertainty information
being lost.

In this case study, we show the usefulness of providing instance-wise uncertainty quantification with the distributional
values. Figure 6 show a visualization of the results. We train a random forest binary classifier f on the Adult income
dataset and compute the Bernoulli Shapley value (BSV) ξ for one misclassified test instance (example id. 23318 with

8In CGT these value operators are termed probabilistic group values (Weber, 1988).
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P(f(x) = 1) = 0.13), using as baseline another correctly classified test instance (example id. 23368, with P(f(x) = 1) =
0.81). The colored horizontal bars show the standard Shapley value (SV), also obtainable as marginalization of ξ; see
Proposition 3.9.(i). The black lines instead represent the variance of the BSV for each feature. In particular, the SV for
‘race’ is very close to 0, which could be interpreted as an evidence that the ‘race’ feature is unimportant for the classifier.
The non-zero variance of the BSV, instead, highlights the fact that this feature makes the model flip prediction several times
(under the coalition distribution of the SV). Indeed, comparing the sub-groups true positive rates on test examples with
‘race=Black’ versus ‘race=White’ reveals that the classifier is much more accurate on the latter sub-group (46.1% against
60.7%). Intervening solely on this feature changes the true positive rate to 53.8% and 57.3%, respectively.
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