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Abstract

Mobile devices such as smartphones, laptops, and tablets can often connect to
multiple access networks (e.g., Wi-Fi, LTE, and 5G) simultaneously. Recent ad-
vancements facilitate seamless integration of these connections below the trans-
port layer, enhancing the experience for apps that lack inherent multi-path sup-
port. This optimization hinges on dynamically determining the traffic distribu-
tion across networks for each device, a process referred to as multi-access traffic
splitting. This paper introduces NetworkGym, a high-fidelity network environ-
ment simulator that facilitates generating multiple network traffic flows and multi-
access traffic splitting. This simulator facilitates training and evaluating different
RL-based solutions for the multi-access traffic splitting problem. Our initial ex-
plorations demonstrate that the majority of existing state-of-the-art offline RL al-
gorithms (e.g. CQL) fail to outperform certain hand-crafted heuristic policies on
average. This illustrates the urgent need to evaluate offline RL algorithms against
a broader range of benchmarks, rather than relying solely on popular ones such
as D4RL. We also propose an extension to the TD3+BC algorithm, named Pes-
simistic TD3 (PTD3), and demonstrate that it outperforms many state-of-the-art
offline RL algorithms. PTD3’s behavioral constraint mechanism, which relies on
value-function pessimism, is theoretically motivated and relatively simple to im-
plement.

1 Introduction

There exists a general lack of standardized benchmarks for reinforcement learning (RL) in the do-
main of computer networking. Whereas RL has shown promise in addressing various challenges in
computer networking, such as congestion control, routing, and resource allocation, the field lacks
widely accepted benchmarks that would facilitate systematic evaluation and comparison of differ-
ent RL approaches. Hence, we propose NetworkGym, a high-fidelity, end-to-end, full-stack network
Simulation-as-a-Service framework that leverages open-source network simulation tools, such as ns-
3 Henderson et al. [2008]. Furthermore, NetworkGym offers a closed-loop machine learning (ML)
algorithm development and training pipeline via open-source gym-like APIs. The components of
NetworkGym achieve the following objectives:
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Figure 1: GMA Protocol. A UE interfaces with the GMA gateway over UDP. "APP" refers to the
application layer at the client or server level, "IP" refers to the Internet Protocol layer, facilitating the
addressing and routing of packets, and "PHY" refers to the physical layer in the network responsible
for the actual transmission of data over the network medium. The GMA gateway handles multi-
access traffic splitting at the edge.

• Open APIs for ML Training and Data Collection: The Agent is fully customizable and con-
trolled by the developer. The network simulation Environment is hosted in the cloud. By utilizing
the open-source NetworkGym Client and APIs, an Agent can interact with an Environment to
collect measurement data and take actions that allow training for the desired use case.

• Flexibility of Programming Language: The separation of Agent and Environment provides the
freedom to employ different programming languages for the ML algorithm and network simula-
tion. For instance, a Python-based Agent can smoothly interact with a C++ (ns-3) based simula-
tion Environment. This is a critical aspect of our framework, as previous networking frameworks
would have required modern ML algorithms to be coded in the same language(s) as the simulation
environment.

• Independent and Modular Deployment: Such separation also allows the Agent and Environ-
ment to be deployed on different machines or platforms, optimized for specific workloads. For
example, when training online on-policy algorithms, such as PPO Schulman et al. [2017] and SAC
Haarnoja et al. [2018a,b], it is often critical to parallelize environment instances to accelerate train-
ing and improve generalization capability Wijmans et al. [2019], Makoviychuk et al. [2021]. This
would be difficult to accomplish if the Agent and Environment were coupled. They can also be
developed and maintained by different entities. Access to the Environment is controlled through
NetworkGym APIs to hide the details of how a network function or feature is implemented from
developers.

Motivation from Computer Networking. As the mobile industry evolves toward 6G, it is becom-
ing clear that no single access technology will be able to meet the great variety of requirements
for human and machine communications. Multi-access traffic management for integrating multiple
heterogeneous wireless networks, e.g., Wi-Fi, cellular, satellite, etc., into a virtualized and unified
network becomes vital for addressing today’s ever-increasing performance requirements and future
applications. Recently, the Generic Multi-Access (GMA) protocol has been proposed in the Internet
Engineering Task Force (IETF) to address this need Zhu and Zhang [2024], and the 3rd Generation
Partnership Project (3GPP) has also developed the access traffic steering, switching, and splitting
(ATSSS) feature, which enables simultaneous use of one 3GPP and one non-3GPP connection to
deliver data flows ats [2018]. We defer more technical details of these protocols to Appendix A.

One effective method for managing multi-access traffic is through traffic splitting between different
network types. Specifically, for each user equipment (UE), traffic is allocated between a 3GPP
connection (e.g., LTE) and a non-3GPP connection (e.g., Wi-Fi), with the ratio adjusted at frequent
intervals, as in Figure 1. It is natural to consider using RL for learning adaptive and data-driven
decision policies on the traffic-splitting ratios.
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Applying RL, however, is notoriously hard. One may run online RL on real networks, but the initial
decisions made by the algorithms can be suboptimal, leading to poor network traffic splitting and
diminished user experience. Notably, in applications such as robotic control over networks, it is
critical to ensure high reliability and low packet-loss ratios to maintain operational effectiveness.
An alternative is to run offline RL on the logged data from real networks, but data coverage is a big
issue. Even if the learned policy from offline RL improves over the baseline, one cannot know for
sure until testing it online with real network traffic. Moreover, the networking environment is not
static and most challenging scenarios occur in the long tail of the data distribution.

NetworkGym is timely as it allows us to not only evaluate any learned RL policies, but also stress-
test them in challenging scenarios. One could also use NetworkGym to simulate the entire workflow
of offline RL for policy improvement before deploying the workflow on real networks.

Frictionless Reproducibility for ML Researchers interested in Computer Networking. The in-
tended use of NetworkGym is to allow machine learning (especially RL) researchers to evaluate
their algorithms on a faithfully simulated environment in computer networking without having to
understand the intricate networking protocols and their interactions in a multi-access traffic split-
ting system. To facilitate “frictionless reproducibility” Donoho [2024], we conduct preliminary
experiments on NetworkGym with popular offline RL algorithms and make the code to setup such
experiments available. Our results provide the following take-home messages:

• Offline RL for Policy Improvement. Offline RL algorithms can effectively improve the perfor-
mance in networking systems using data collected from three behavioral policies.

• Transferability of Scientific Advances. Methods that work well on standard OpenAI gym envi-
ronments may not work well on networking problems. Comparative advantages of State-of-the-
Art algorithms on D4RL Fu et al. [2020] do not transfer to NetworkGym.

• Details matter. Seemingly arbitrary choices in the parameterization and state/action representa-
tion (e.g., normalization) have more substantial impact than the choice of RL algorithms.

• Success of principles. “Pessimism” in offline RL works for networking problems. A more theory-
inspired pessimistic bonus is more effective than the popular Behavioral Cloning (BC).

We hope NetworkGym lowers the entry-barrier into computer networking research and enables new
collaboration in the emerging research area of machine learning for networking across academia and
industry.

2 Related Work

RL-based Network Optimization. RL has been used for network optimization in a variety of
contexts Yang et al. [2024], Mao et al. [2017], Jay et al. [2019], Jamil et al. [2022], Zhang et al.
[2023], Xia et al. [2022], Gilad et al. [2019], Boyan and Littman [1993], Wei et al. [2022], He et al.
[2017], Liang et al. [2019], Sadeghi et al. [2017]. For example, Yang et al. Yang et al. [2024]
use offline RL on a mixture of datasets from different behavior policies to maximize throughput
via radio resource management. Additionally, Mao et al. Mao et al. [2017] construct a system
that can generate adaptive bitrate algorithms to maximize user quality of experience by training
a deep RL model on client video player observations. Jay et al. Jay et al. [2019] employ deep
RL to solve the congestion control problem, whereas Jamil et al. Jamil et al. [2022] use deep RL
to dynamically determine the optimal number of TCP streams in parallel to maximize throughput
while avoiding network congestion. Despite the existing works, our use of offline RL for multi-
access traffic splitting is novel and the first of its kind.

RL Benchmarks. A wide variety of online and offline RL benchmarks have been proposed in
the research community in order to properly evaluate the performance and generalization of RL
algorithms. Popular online RL benchmarks include the OpenAI Gym Brockman et al. [2016], Atari
2600 games bel [2013], and Mujoco Todorov et al. [2012]. These sets of environments offer a
diverse selection of tasks to choose from, mostly involving classic control, continuous control of
multi-joint bodies, or video game playing with high-dimensional input spaces. Common offline
RL benchmarks include D4RL Fu et al. [2020] and RL Unplugged Gulcehre et al. [2020], which
provide similar environments to those in the referenced online RL benchmarks. Recent efforts have
been made to consolidate these offline RL benchmarks and have also reinforced the finding that
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the success of offline RL methods strongly depends on the training data distribution Kang et al.
[2023]. Additionally, Voloshin et al. Voloshin et al. [2019] introduce the COBS off-policy evaluation
benchmarking suite to comprise a much wider variety of environments than simply the Mujoco-
style or Atari-style ones. However, none of these benchmarks contains environments that focus on
computer networking applications.

Offline RL. Most approaches to offline RL involve some form of behavioral constraint or policy
regularization to ensure that the actions chosen by the policy don’t stray too far from the actions
in the dataset for corresponding states Levine et al. [2020], Kostrikov et al. [2021b], Kumar et al.
[2020], Kostrikov et al. [2021a], Yin and Wang [2021], Li et al. [2023]. This is used to mitigate
the distribution shift between training and testing states. Certain algorithms seek to avoid off-policy
evaluation (OPE) altogether, due to the inherent associated high variance which is compounded on
each training iteration Brandfonbrener et al. [2021]. Other algorithms use a form of divergence
constraint to control the resulting behavior policy. For example, Conservative Q-Learning (CQL)
modifies the actor-critic framework by selecting a policy whose expected value under a Q-function
lower-bounds its true value Kumar et al. [2020]. Implicit Q-Learning (IQL) seeks to avoid policy
evaluation on unseen actions and instead treats the state value function as a random variable; the
value of the best actions at a state can then be estimated by taking the upper expectile of the value
function conditioned on the state Kostrikov et al. [2021b].

Offline RL Using Online Algorithms. Other offline RL methods take advantage of the empirical
success of state-of-the-art online RL methods; we include a discussion of some of these algorithms
in Appendix B. Additionally, Fujimoto et al. Fujimoto and Gu [2021] propose a minimal extension
to the popular online RL algorithm TD3 by augmenting the policy improvement step with a simple
behavioral cloning term. We note that while behavioral cloning is one way to prevent learned policies
from excessively favoring out-of-distribution (OOD) actions, another possibility is to incorporate
some form of pessimism into the Q-value estimates for these OOD actions. In particular, our work
is inspired by that of Yin et al. Yin et al. [2023] in which the authors analyze the Pessimistic Fitted Q-
Learning (PFQL) algorithm and show that in the finite-horizon case, it is provably sample efficient
under certain assumptions. Their approach involves computing the Fisher information matrix on
the offline dataset with respect to the Q-function approximator and using that matrix to estimate the
uncertainty of any state-action pair. In this way, they are able to compute policies that maximize a
lower-bound estimate of the state-action value function, improving the performance of the algorithm
in the offline RL setting. In our work, we incorporate this idea of introducing pessimism into the
Q-value estimates of TD3 in a similar way that Fujimoto et al. introduce behavioral cloning to TD3.
Specifically, we adjust the policy improvement step to account for uncertainties present in the Q-
values of specific state-action pairs and produce a resulting algorithm we denote as Pessimistic TD3
(PTD3). We introduce PTD3 in Appendix C.

3 Problem Setup

Markov Decision processes. Let (S,A,R, p, γ) define a Markov decision process (MDP) where
S is the state space, A is the action space, R : S × A → R is the scalar reward function, p :
S × A → ∆S is the transition dynamics model where ∆S is a set of probability distributions over
S , and γ ∈ [0, 1] is the discount factor. S and A can both potentially be infinite or continuous.
Typically, an RL agent chooses actions via a deterministic policy µ : S → A or a stochastic policy
π : S → ∆A where ∆A is a set of probability distributions over A. The goal of an RL agent
is to find a policy that maximizes the expected discounted return Eπ [

∑∞
t=0 γ

trt|s0 = s] from the
starting state distribution. We denote the state-action value function with respect to policy π as
Qπ(s, a) = Eπ [

∑∞
t=0 γ

trt|s0 = s, a0 = a].

Offline RL. In the offline RL setting, we assume that the agent does not have the ability to interact
with the environment and instead has access to an offline dataset D = {(sk, ak, rk, s′k)}Kk=1 col-
lected by some unknown data-generating process (for example, a collection of different behavior
policies). This makes the offline RL setting more challenging than the online RL setting. An online
RL agent that overestimates the Q-values at specific state-action pairs can quickly adapt after being
punished for taking those actions in the environment, but an offline RL agent does not have the
ability to interact with the environment. This leads to the resulting problem of distribution shift in
offline RL, which occurs due to extrapolation error in the Q-function approximators on state-action
pairs that are poorly represented by those in the offline dataset.
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Multi-Access Traffic Splitting Environment. In the Multi-Access Traffic Splitting environment,
a predetermined number of UEs are randomly distributed on a 2-dimensional grid. When the en-
vironment is first instantiated, each UE is connected to a single LTE base station and the nearest
Wi-Fi access point. The location range of the UEs and the locations of the base station and access
points may be specified at environment initialization. If the RSSI-based handover is enabled in the
NetworkGym environment configuration, then the Wi-Fi access point for each UE will dynamically
change during the simulation to whichever has the highest received signal. Each time step in the
environment consists of a time interval of 0.1 seconds. During this time interval, traffic-related
measurements are taken, such as the one-way-delay and output traffic throughput. The goal of a
centralized traffic splitting agent is to strategically split traffic over the Wi-Fi and LTE links, aiming
to achieve high throughput and low latency. Within the NetworkGym environment configuration, it
is possible to specify parameters that control the nature of the UEs’ movement and whether or not
they follow a random or deterministic walk.

Observation Space. An observation at time t is s(t) = [s1(t), s2(t), ..., sNu
(t)] for

Nu users where sj(t) is a tuple of values for the j-th UE in the following form:
(lcLTE, lcWi-Fi, tpin, tpout, LTE, tpout, Wi-Fi, owdLTE, owdWi-Fi, owdmax, LTE, owdmax, Wi-Fi, idWi-Fi, srLTE,
srWi-Fi, x, y), lck is the UE’s link capacity for channel k, tpin is the UE’s input traffic throughput,
tpout, k is the UE’s output traffic throughput across channel k, owdk is the UE’s one-way-delay across
channel k, owdmax, k is the UE’s maximum one-way-delay across channel k, idWi-Fi is the UE’s cur-
rent Wi-Fi access point ID, srk is the UE’s splitting ratio for channel k, x is the x-location of the
user, and y is the y-location of the user.

Action Space. An action at time t takes the form a(t) = [a1(t), a2(t), ..., aNu
(t)] for Nu users

where aj(t) ∈
{

0
32 ,

1
32 , ...,

31
32 ,

32
32

}
is the desired Wi-Fi splitting ratio for the j-th UE during the

next time interval.

Reward Function. The immediate reward at time t is computed as in Equation 1 where tpi and
dyi are the output traffic throughput and one-way-delay across both channels for the i-th user dur-
ing the current time interval, respectively. Furthermore, tpi,max is the sum of link capacities across
both channels for the i-th user during this time interval and we take dymax to be 1000ms, after
which a packet is treated as lost. In this way, we normalize the reward function to be invariant to
unit-translation and incentivize a learning agent to maximize the average throughput while simulta-
neously minimizing the average delay across channels. Although this reward function is admittedly
somewhat arbitrary, a different reward function can be easily specified by the network administrators
in order to satisfy different QoS requirements.

r(t) = log

(
1

Nu

Nu∑
i=1

tpi
tpi,max

)
− log

(
1

Nu

Nu∑
i=1

dyi
dymax

)
(1)

4 Experiments

Experimental Setup. We test PTD3 and other state-of-the-art offline RL algorithms on a simplified
configuration of the NetworkGym multi-access traffic splitting environment. The relevant environ-
ment configuration file is included in Appendix D. At initialization of each environment, four UEs
are randomly stationed 1.5 meters above the x-axis between x = 0 and x = 80 meters. From there,
they begin to bounce back and forth in the x-direction at 1 m/s for the entire duration of an episode.
The Wi-Fi access points are stationed at (x, z) = (30m, 3m) and (x, z) = (50m, 3m), respectively
while the LTE base station lies at (x, z) = (40m, 3m). Figure 2 illustrates this environment setting.
Although this setup is deceptively simple and unrealistic due to the relative locations between UEs
and access points as well as the degenerate movement of the UEs, it provides a simple enough test-
ing ground for offline RL on the GMA traffic splitting protocol while still containing some amount
of dynamic behavior and resource competition between UEs.

Since the multi-access gateway is connected to all four UEs, the gateway can send traffic splitting
command messages to each of the UEs in a centralized manner via the GMA protocol while taking
into account network information across all UEs. Therefore, we represent the state as a 14×4 matrix
where we have 14 network measurement values for each user from the previous time interval and we
represent the action as a 1× 4 row-vector, where each element represents the desired traffic splitting
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Figure 2: Environment configuration for offline RL testing (not-to-scale). Here, we randomly initial-
ize four UE’s 1.5 meters above the x-axis and they move back and forth in the x-direction between
x = 0 meters and x = 80 meters. The Wi-Fi access point locations are (x, z) = (30m, 3m) and
(x, z) = (50m, 3m) while the LTE base station location is (x, z) = (40m, 3m).

ratio during the next time interval for a specific user. Although the traffic splitting ratio for each
user can only be one of 33 discrete values

(
0
0 ,

1
32 , ...,

32
32

)
, we treat each element in the action as a

continuous real number between 0 and 1 and map it to the closest corresponding discrete value.

Heuristic Policies. NetworkGym provides three heuristic policies for traffic splitting
and offline data collection, which we denote throughput_argmax, system_default, and
utility_logistic. All of these policies operate independently on each UE, without consider-
ing coupled interactions between them. For each user, throughput_argmax examines the pre-
vious Wi-Fi and LTE link capacities and chooses the traffic splitting ratio to completely favor
whichever channel previously had the highest link capacity. For the system_default algorithm,
if the UE-specific difference in delay among the Wi-Fi and LTE links exceeds a threshold, traf-
fic over the link with lower delay is gradually increased. If the delay difference among both
links is small but packet loss is detected, traffic over the link with a lower packet loss rate is in-
crementally increased. The final heuristic policy, utility_logistic, computes a Wi-Fi utility
ui,Wi-Fi = log (1 + tpi,Wi-Fi) − log (1 + dyi,Wi-Fi) and the corresponding LTE utility ui,LTE for each
user and then computes the desired traffic splitting ratio for said user as σ (ui,Wi-Fi − ui,LTE) where
σ(·) is the logistic function. In this way, the traffic splitting ratio favors channels that indicated
higher utility during the previous time interval.

Offline Datasets. For each heuristic policy, we collect an offline dataset over 64 episodes, each with
a different starting configuaration of UEs. Each episode consists of 10,000 steps. We evaluate the
offline dataset coverages for each algorithm by computing the minimum eigenvalue of the feature co-
variance matrix C = Es,a∼D

[
φ(s, a)φ(s, a)T

]
where φ(s, a) is the featurization of the state-action

pair Jin et al. [2020, 2021], Zanette et al. [2021], Yin et al. [2022], Nguyen-Tang et al. [2023]. We
featurize state-action pairs by simply concatenating the flattened state and action vectors together.

The minimum eigenvalue and condition number for each population covariance matrix are illustrated
in Table 1. The offline dataset coverage is highest for the utility_logistic algorithm and lowest
for the throughput_argmax algorithm. In practice, the throughput_argmax algorithm sends all
traffic through the Wi-Fi channel over 99% of the time for each user, with occasional bursts over
LTE while the utility_logistic algorithm thrashes back and forth for each user between sending
traffic over Wi-Fi and LTE, resulting in a dataset with much higher coverage. The results in Table
1 present a wide range of dataset coverage values, spanning multiple orders of magnitude. This
diverse set of benchmarks ensures that offline RL algorithms can be appropriately evaluated. For
instance, algorithms trained on datasets with low coverage are expected to adhere closely to the
behavior policy due to limited data variety, while those trained on high-coverage datasets have the
potential for greater improvement over the behavior policy due to more diverse experiences to learn
from.

In Table 3, we evaluate the performance of three heuristic policies, several offline RL algorithms
trained on different datasets, and two state-of-the-art online RL algorithms (PPO and SAC) in this
environment setting. The online RL algorithms establish a soft upper bound on the returns achiev-
able by offline RL algorithms in our NetworkGym environment setting. For each of the algorithms,
we evaluate its performance on 40 evaluation episodes, each of which is 3200 steps. The total return
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dataset-generating algorithm λmin(C) κ(C)

throughput_argmax 4.4 · 10−6 4,949,213
system_default 1.5 · 10−4 220,682
utility_logistic 4.8 · 10−4 34,827

Table 1: Offline Dataset Coverage Measurements among Heuristic Policies. λmin(C) and κ(C) are
the minimum eigenvalue and condition number of the feature covariance matrix, respectively.

per step across all episodes is then averaged and reported; the error bar indicates a 95% confidence
interval centered around the mean. The performance across different datasets is then averaged again
to produce an average performance across all datasets in the rightmost column. Finally, in Table
5, we examine the performance of the PTD3 algorithm across the different datasets and different
values of β where α = 1.0. We find that setting α = 1.0 results in the least variance in performance
across values of β.

thrpt_argmax system_default utility_logistic Average
baseline 0.747 ± 0.049 0.555 ± 0.052 0.949 ± 0.039 0.750 ± 0.047
BC (norm) 0.749 ± 0.047 0.825 ± 0.042 0.749 ± 0.047 0.774 ± 0.045
BC (no norm) 0.751 ± 0.049 0.433 ± 0.054 0.946 ± 0.039 0.710 ± 0.047
CQL (norm) 0.749 ± 0.047 0.749 ± 0.047 0.749 ± 0.047 0.749 ± 0.047
CQL (no norm) 0.998 ± 0.043 0.381 ± 0.082 0.957 ± 0.044 0.779 ± 0.056
IQL (norm) 0.770 ± 0.051 0.818 ± 0.042 0.748 ± 0.048 0.779 ± 0.047
IQL (no norm) 0.749 ± 0.049 0.846 ± 0.042 0.948 ± 0.036 0.848 ± 0.042
TD3+BC (norm) 0.749 ± 0.047 0.034 ± 0.046 0.749 ± 0.047 0.511 ± 0.047
TD3+BC (no norm) 0.778 ± 0.047 0.906 ± 0.049 0.863 ± 0.038 0.849 ± 0.045
EDAC 0.336 ± 0.285 -0.888 ± 0.034 0.913 ± 0.027 0.120 ± 0.115
LB-SAC 0.902 ± 0.046 -0.204 ± 0.072 1.150 ± 0.033 0.616 ± 0.050
SAC-N 0.838 ± 0.052 0.817 ± 0.035 0.699 ± 0.026 0.785 ± 0.038
PTD3 0.746 ± 0.050 1.013 ± 0.039 1.079 ± 0.040 0.946 ± 0.043
PPO ∼ ∼ ∼ 1.214 ± 0.037
SAC ∼ ∼ ∼ 1.104 ± 0.037

Table 2: Offline and Online RL Algorithm Performance Across Multiple Offline Datasets. Each of
the first three column headers indicates the baseline algorithm that collected the offline dataset where
"thrpt_argmax" is an alias for throughput_argmax. Each row header (except "baseline", "PPO", and
"SAC") is an offline RL algorithm trained on one of three offline datasets. "baseline" refers to the
performance of the original baseline heuristic policies without any offline data collection. "(norm)"
indicates that the algorithm implements state-normalization based on the offline dataset while "(no
norm)" indicates that the algorithm does not. If not specified, the algorithm does not implement state
normalization. We use α = 1.0 and β = 10.0 in our evaluation of PTD3.

5 Discussion

Offline RL Algorithm Performance. First, we note that of the 7 off-the-shelf offline RL algorithms
tested in our NetworkGym environment setting, only 2 of them were able to significantly outperform
the average performance of the heuristic baseline algorithms. Furthermore, in the case of both of
these algorithms, they were only able to do so when we disabled state normalization based on the
offline dataset, a feature that is included by default when training these offline algorithms. There-
fore, using the default hyperparameters for every tested off-the-shelf offline RL algorithm, none of
these algorithms could significantly outperform the heuristic baseline algorithms on average. Fur-
thermore, in the case of a few of these algorithms, such as EDAC and LB-SAC, the performance
across different datasets is erratic, resulting in a significantly lower average performance overall,
compared to the heuristic baseline algorithms. While these algorithms are known to exhibit state-of-
the-art performance on D4RL-like tasks, it has been noted that the performance of these algorithms
in practice is unstable across environments of varying characteristics Tarasov et al. [2024]. These
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thrpt_default delay_default utility_default Average
baseline 0.747 ± 0.049 0.555 ± 0.052 0.949 ± 0.039 0.750 ± 0.047
BC (norm) 0.749 ± 0.047 0.825 ± 0.042 0.749 ± 0.047 0.774 ± 0.045
BC (no norm) 0.751 ± 0.049 0.433 ± 0.054 0.946 ± 0.039 0.710 ± 0.047
CQL (norm) 0.749 ± 0.047 0.749 ± 0.047 0.749 ± 0.047 0.749 ± 0.047
CQL (no norm) 0.998 ± 0.043 0.381 ± 0.082 0.957 ± 0.044 0.779 ± 0.056
IQL (norm) 0.770 ± 0.051 0.818 ± 0.042 0.748 ± 0.048 0.779 ± 0.047
IQL (no norm) 0.749 ± 0.049 0.846 ± 0.042 0.948 ± 0.036 0.848 ± 0.042
TD3+BC (norm) 0.749 ± 0.047 0.034 ± 0.046 0.749 ± 0.047 0.511 ± 0.047
TD3+BC (no norm) 0.778 ± 0.047 0.906 ± 0.049 0.863 ± 0.038 0.849 ± 0.045
EDAC 0.336 ± 0.285 -0.888 ± 0.034 0.913 ± 0.027 0.120 ± 0.115
LB-SAC 0.902 ± 0.046 -0.204 ± 0.072 1.150 ± 0.033 0.616 ± 0.050
SAC-N 0.838 ± 0.052 0.817 ± 0.035 0.699 ± 0.026 0.785 ± 0.038
PTD3 0.746 ± 0.050 1.013 ± 0.039 1.079 ± 0.040 0.946 ± 0.043
PPO ∼ ∼ ∼ 1.214 ± 0.037
SAC ∼ ∼ ∼ 1.104 ± 0.037

Table 3: Offline and Online RL Algorithm Performance Across Multiple Offline Datasets. Each of
the first three column headers indicates the baseline algorithm that collected the offline dataset where
"thrpt_argmax" is an alias for throughput_argmax. Each row header (except "baseline", "PPO", and
"SAC") is an offline RL algorithm trained on one of three offline datasets. "baseline" refers to the
performance of the original baseline heuristic policies without any offline data collection. "(norm)"
indicates that the algorithm implements state-normalization based on the offline dataset while "(no
norm)" indicates that the algorithm does not. If not specified, the algorithm does not implement state
normalization. We use α = 1.0 and β = 10.0 in our evaluation of PTD3.

β
dataset-generating algorithm

throughput_argmax system_default utility_logistic
0.1 0.744± 0.056 0.878± 0.048 0.816± 0.045
0.3 0.744± 0.056 0.958± 0.041 1.044± 0.029
1.0 0.744± 0.056 0.974± 0.040 1.015± 0.045
3.0 0.744± 0.056 0.995± 0.044 1.022± 0.041

10.0 0.744± 0.057 1.017± 0.044 1.083± 0.047
30.0 0.744± 0.056 0.679± 0.044 1.209± 0.045

100.0 0.744± 0.056 0.213± 0.070 1.226± 0.049
300.0 0.744± 0.056 0.243± 0.059 1.252± 0.063

Table 4: PTD3 Performance where α = 1.0. For each of the algorithms, we evaluate its performance
on 32 evaluation episodes, each of which is 3200 steps. We avoid bolding the throughput_argmax
runs, as they all have roughly the same performance.

findings strongly suggest that it would be imprudent to deploy such algorithms trained on a similar
task into the real world, even if they were trained on datasets collected from real interactions.

Since our implementation of PTD3 is, on average, able to significantly outperform not only the
heuristic baseline policies, but also several existing state-of-the-art offline RL algorithms, this sug-
gests that the poor performance across existing algorithms is not due to a lack of coverage across
datasets, but rather the lack of diversity and breadth of testing environments for these algorithms.
While the D4RL benchmark has become a standard for assessing offline RL performance, it is es-
sential to recognize its limitations. Algorithms that are touted as state-of-the-art based on their
performance on D4RL may not generalize well to other, perhaps more complex or varied, scenarios.
We have shown that many advanced offline RL algorithms have the potential to fail catastrophically
when deployed in different contexts or faced with unfamiliar environments. Therefore, to ensure
robustness and reliability, it is crucial to test offline RL algorithms across a wider array of datasets
and environments. This broader testing approach helps to uncover potential weaknesses and pro-
vides a more comprehensive understanding of an algorithm’s capabilities and limitations. We hope
that by expanding the scope of testing beyond popular benchmarks like D4RL and RL Unplugged,
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β
dataset-generating algorithm

throughput_default delay_default utility_default
0.1 0.744± 0.056 0.878± 0.048 0.816± 0.045
0.3 0.744± 0.056 0.958± 0.041 1.044± 0.029
1.0 0.744± 0.056 0.974± 0.040 1.015± 0.045
3.0 0.744± 0.056 0.995± 0.044 1.022± 0.041

10.0 0.744± 0.057 1.017± 0.044 1.083± 0.047
30.0 0.744± 0.056 0.679± 0.044 1.209± 0.045

100.0 0.744± 0.056 0.213± 0.070 1.226± 0.049
300.0 0.744± 0.056 0.243± 0.059 1.252± 0.063

Table 5: PTD3 Performance where α = 1.0. For each of the algorithms, we evaluate its performance
on 32 evaluation episodes, each of which is 3200 steps. We avoid bolding the throughput_argmax
runs, as they all have roughly the same performance.

Offline Dataset BC (no norm) PTD3 (β = “∞”)
throughput_argmax 0.751± 0.055 0.770± 0.055

system_default 0.432± 0.063 0.547± 0.059
utility_logistic 0.948± 0.042 1.252 ± 0.079

Table 6: Comparison between Behavioral Cloning and Q-function pessimism. We evaluate each
offline RL algorithm across 32 evaluation episodes, each of which is 3200 steps. In this implemen-
tation of PTD3, we set α = 1.0, set β = 1.0, and manually remove the Q-value maximization term
from the policy-update step to simulate β =∞.

researchers and practitioners can better gauge the true potential and practicality of their offline RL
solutions.

Behavioral Cloning vs. State-Action Value Function Pessimism. In testing PTD3 (α = 1.0)
on all three offline datasets with varying values of β, we note that while the performance on the
system_default dataset improves up to a point as β increases then drops off, the performance on
the utility_logistic dataset improves substantially even up to values as high as β = 300.0. In
fact, for large enough β, the performance of PTD3 on the utility_logistic dataset is comparable
to that of the best performing online deep RL algorithm, PPO. This behavior leads us to question
whether or not Q-function pessimism as we’ve defined it in this work is always comparable to
behavioral cloning. To further test this, we compare the performance of behavioral cloning (without
offline dataset feature normalization) with PTD3 where the Q-value maximization term is removed
from the policy-update step. In other words, this implementation of PTD3 would be performing pure
minimization of the Q-value uncertainty estimates with respect to state-action pairs, without any
regard for how high those Q-values are. The results are illustrated in Table 6. Interestingly, we note
that the performance of this purely pessimistic PTD3 implementation is significantly higher than
that of behavioral cloning when both are trained on the utility_logistic offline dataset, while
the two implementations are comparable in the case of the other two datasets. This is reflective of
a fundamental difference between behavioral cloning and Q-value uncertainty minimzation: while
the objective of a behavioral cloning agent is to pointwise match the agent’s actions to those chosen
by the behavior policy, the objective of the uncertainty-minimizing agent is to choose actions that
minimize the uncertainty in the Q-function estimates by considering the associated variance in Q-
values.

Limitations. Several limitations exist in our current approach. First, the NetworkGym environment
simulation setup that we use in all experiments assumes a fixed number of UEs. Consequently, the
addition or removal of even a single UE necessitates retraining the online or offline algorithms from
scratch, given the current formulation of the MDP. Additionally, our simulation setting incorporates
unrealistic degenerate movement patterns for UEs, which may not accurately reflect real-world dy-
namics. Finally, one of the major limitations of PTD3 is the constraint on the parameter size of the
Q-networks: if the Q-networks each have d parameters, then d × d space is required to store F̃t

in memory. As a result, in order for gradient-related computations to fit on our 12 GB NVIDIA
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TITAN Xp, we were required to use MLP critics with two hidden layers of 64 neurons each instead
of hidden layers of 400 and 300 neurons as TD3+BC uses.

Future Work. In future work, we plan to explore methods to appropriately featurize multiple UEs
to allow for dynamic changes in their number without requiring retraining any algorithms. This will
involve rethinking the current MDP formulation to accommodate a variable number of UEs more
flexibly. We also aim to incorporate more complex movement patterns for UEs, such as random
walks, to gain a better understanding of how our tested algorithms generalize to these settings. In ad-
dition to the previously mentioned areas, potential opportunities exist to enhance the performance of
our PTD3 algorithm. The use of GPUs with larger memory capacities would enable us to use larger
critic network architectures for PTD3. Additionally, in this work, we primarily explore estimating
Ft using an exponentially-weighted moving sum with low variance (α = 1.0); this is because as β
changes, training with a high variance estimator of the Fisher information matrix across timesteps
makes it difficult to properly evaluate the effect of β.

6 Conclusion

In this work, we present NetworkGym, a high-fidelity gym-like network environment simulator that
facilitates multi-access traffic splitting. NetworkGym seamlessly aids in training and evaluating
online and offline RL algorithms on the multi-access traffic splitting task in simulation. In our
simulated experiments, we demonstrate that existing state-of-the-art offline RL algorithms fail to
significantly outperform heuristic policies on this task. This highlights the critical need for a broader
range of benchmarks across multiple domains for offline RL algorithm evaluation. On the other
hand, our proposed PTD3 algorithm significantly outperforms not only heuristic policies, but also
many state-of-the-art offline RL algorithms trained on heuristic-generated datasets. These findings
pave the way for more effective offline RL algorithms and demonstrate the potential of PTD3 as a
strong contender among existing solutions. Future research should consider evaluating offline RL
algorithms on networking-specific tasks alongside other benchmarks to foster the development of
more robust and versatile solutions.
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Appendix

A Technical Details Concerning GMA Protocol

Both the GMA and ATSSS protocols provide mechanisms for flexible selection of network paths
and leverage network intelligence and policies to dynamically adapt traffic distribution across se-
lected paths under changing network/link conditions. Generally, a multi-access network protocol,
e.g. GMA, consists of the following two sublayers:

• Convergence sublayer: This layer performs multi-access specific tasks such as access (path)
selection, multi-link (path) aggregation, splitting/reordering, lossless switching, keep-alive,
and probing Kanugovi et al. [2020].

• Adaptation sublayer: This layer performs functions to handle tunneling, network layer
security, and network address translation (NAT). This design only operates at the physical
and routing layers in the network data plane and does not require any modifications to the
higher layer protocols, such as user datagram protocol (UDP), transport control protocol
(TCP), IP security (IPSec), etc.

On the other hand, maximizing the benefits of a multi-access system necessitates solving a decision
problem—intelligently distributing user data traffic across available access links to optimize user
experience while making the best use of available radio resources. To effectively manage traffic in a
multi-access network, it’s crucial to incorporate measurements that reflect the varying connectivity
conditions of different networks. For instance, end-to-end (e2e) packet delay measurements can
help determine which access network offers better latency performance. Similarly, for quality-of-
service (QoS) flows that demand high reliability, the packet drop ratio can indicate the necessity for
redundant transmission across multiple networks. Besides e2e packet statistics, Radio Access Net-
work (RAN) measurements, like reference signal received power (RSRP), reference signal received
quality (RSRQ), and received signal strength indicator (RSSI), can reveal any degradation in net-
work quality due to issues like deteriorating radio link quality or congestion in real-time. However,
integrating these diverse data sources—including e2e packet statistics and RAN measurements—to
formulate an optimal traffic management algorithm for multi-access networks remains a complex
challenge.

B Offline RL Using Online Algorithms

Many recent state-of-the-art offline RL methods make minor modifications to existing online RL
algorithms. For example, SAC-N modifies a popular online RL algorithm known as Soft Actor-
Critic (SAC) by simply increasing the number of Q-function approximators from 2 to N > 2 in
order to further mitigate the over-estimation of Q-values Haarnoja et al. [2018a], An et al. [2021].
Ensemble-Diversified Actor-Critic (EDAC) adds a regularization term that minimizes the pairwise
cosine similarity of the gradients across different Q-function approximators to incentivize the policy
network to choose actions at which the gradients of the Q-function networks have high alignment An
et al. [2021]. Nikulin et al. Nikulin et al. [2022] propose Large Batch SAC (LB-SAC), which avoids
the need to use a large ensemble of Q-function networks and instead scales the batch size used to
train these networks with the result of improving learning duration while maintaining performance.

C Pessimistic TD3

In this section, we introduce a new offline RL algorithm, which we denote as Pessimistic TD3
(PTD3). We highlight that the TD3+BC algorithm from Fujimoto et al. removes online access to
the environment and instead replaces the replay buffer B with an offline dataset D Fujimoto and Gu
[2021]. Additionally, TD3+BC adds a simple behavioral cloning term to the deterministic policy
gradient step with the goal of minimizing the square-difference between the actions in the dataset
and the corresponding actions output by the learned policy Fujimoto and Gu [2021]. In order to
instead incorporate pessimism into the TD3 algorithm to produce PTD3, we first compute a Fisher
information matrix of the offline dataset on one of the critics at each policy update step as in Equation
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2.

Ft =

K∑
k=1

∇Qθ1(t)(sk, ak)∇
TQθ1(t)(sk, ak) + λrId (2)

where λr is a hyperparameter and Id is the d× d identity matrix to ensure that Ft is invertible. The
gradient of the state-action value function is represented as a d-dimensional column vector where the
Q-network parameter vector θi ∈ Rd. From there, we can use Equation 3 to compute a statistically
motivated estimate of the uncertainty in the Q-values at state-action pairs where states are sampled
from the dataset and actions are chosen from the learned policy.

Γt = Es∼D

[
β
√
∇TQθ1(t)(s, πϕ(s))F

−1
t ∇Qθ1(t)(s, πϕ(s))

]
(3)

This allows us to compute a pessimistic estimate of the Q-values associated with the states sampled
from the dataset and actions taken from the learned policy as in Equation 4.

Q̄t = Es∼D
[
Qθ1(t)(s, πϕ(s))

]
− Γt (4)

Finally, we can use the deterministic policy gradient to update the policy parameters in the gradient
direction that maximizes this lower-bound estimate Q̄t.

In practice, computing Ft across the entire dataset on each iteration is quite computationally ex-
pensive, as it requires K = |D| per-sample-gradient calculations. One way we work around this
issue is by sampling a large batch (we use 214 samples) from the dataset and estimating Ft over
that batch instead. Additionally, computing the inverse of Ft has a time complexity of roughly
O(d3) , which constrains the dimension of the Q-networks from being too large. In order to better
combat these issues in practice, we instead initialize the estimator F̃0 = Id and update F̃t as an
exponentially-weighted moving sum over previous iterations via Equation 5.

F̃t = αF̃t−1 +∇Qθ1(t)(si, ai)∇
TQθ1(t)(si, ai) (5)

where α ∈ (0, 1] is a parameter that controls the bias-variance trade-off in the F̃t estimator and
(si, ai) ∼ D is a single tuple sampled from the dataset. In this way, Ft is analogous to a "full-batch
gradient descent" calculation while F̃t is analogous to a "stochastic gradient descent." As α → 0,
the resulting estimator has higher variance, but is less biased by previous values of F̃t. On the other
hand, as α→ 1, the variance of the F̃t estimator reduces, but the estimator retains information with
respect to older Q-network parameters, which are more likely to be obsolete.

As a result of estimating Ft in this way, we may use the Sherman-Morrison formula to compute its
inverse on each iteration and avoid the O(d3) complexity required to recompute the inverse from
scratch. This reduces the runtime of the algorithm by roughly a factor of 3:

F̃−1
t =

1

α
F̃−1

t−1 −
F̃−1

t−1∇Qθ1(t)(si, ai)∇TQθ1(t)(si, ai)F̃
−1
t−1

α2 + α∇TQθ1(t)(si, ai)F̃
−1
t−1∇Qθ1(t)(si, ai)

(6)

In practice, we add a small amount of Gaussian noise n ∼ N (0, εId) to the gradient vectors, before
incorporating them into the F̃t estimator.3 This ensures that F̃t remains invertible over a large
number of iterations if α is not close to 1. Additionally, due to cumulative numerical round-off
error from repeatedly applying the rank-1 update rule, we recompute F̃−1

t from scratch every 100
iterations to prevent it from diverging too far from its true value. We present the final version of
PTD3 in Algorithm 1 with the relevant modifications to TD3+BC highlighted.

3In our experiments, we use ϵ = 10−9.
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Algorithm 1 Pessimistic TD3 (PTD3) with Biased Ft Estimator
1: Initialize critic networks Qθ1 , Qθ2 , and actor network πϕ with random parameters θ1, θ2, φ
2: Initialize target networks θ′1 ← θ1, θ′2 ← θ2, φ′ ← φ

3: Initialize Fisher information matrix estimator F̃0 ← Id
4: Initialize offline dataset D = {(sk, ak, rk, s′k)}Kk=1
5: for t = 1 to T do
6: Sample mini-batch of N transitions (s, a, r, s′) from D
7: ã← πϕ′(s′) + ε, ε ∼ clip(N (0, σ̃),−c, c)
8: y ← r + γmini=1,2 Qθ′

i
(s′, ã)

9: Update critics θi ← argminθi N
−1
∑

(y −Qθi(s, a))
2

10: if t mod d then
11: Sample single transition (sj , aj , rj , s

′
j) from D

12: F̃t ← αF̃t−1 +∇Qθ1(t)(sj , aj)∇TQθ1(t)(sj , aj)

13: Compute F̃−1
t using rank-1 update rule (6)

14: Update φ by the deterministic policy gradient:

15: ∇ϕJ(φ) = N−1
∑
∇ϕ

[
Qθ1(s, πϕ(s)) −β

√
∇T

θ1
Qθ1(s, πϕ(s))F̃

−1
t ∇θ1Qθ1(s, πϕ(s))

]
16: Update target networks:
17: θ′i ← τθi + (1− τ)θ′i
18: φ′ ← τφ+ (1− τ)φ′

19: end if
20: end for

D NetworkGym Environment Configuration

We reproduce the relevant NetworkGym env_config associated with our experiments in Listing
1. We place asterisks (*) at the steps_per_episode and random_seed parameters, because we
modify these values across different experiments to support different purposes.

Listing 1: Environment configuration for NetworkGym.

{
"type": "env -start",
" subscribed_network_stats ": [ // environment will only

↪→ report subscribed measurements .
"wifi::dl:: max_rate ",
"wifi::ul:: max_rate ",
"wifi:: cell_id ",
"lte::dl:: max_rate ",
"lte:: cell_id ",
"lte:: slice_id ",
"lte::dl:: rb_usage ",
"lte::dl::cell:: max_rate ",
"lte::dl::cell:: rb_usage ",
"gma::x_loc",
"gma::y_loc",
"gma::dl:: missed_action ",
"gma::dl:: measurement_ok ",
"gma::dl:: tx_rate ",
"gma::dl:: delay_violation ",
"gma::dl:: delay_test_ 1 _violation ",
"gma::dl:: delay_test_ 2 _violation ",
"gma::dl::rate",
"gma::wifi::dl::rate",
"gma::lte::dl::rate",
"gma::dl:: qos_rate ",
"gma::wifi::dl:: qos_rate ",
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"gma::lte::dl:: qos_rate ",
"gma::dl::owd",
"gma::wifi::dl::owd",
"gma::lte::dl::owd",
"gma::dl:: max_owd ",
"gma::wifi::dl:: max_owd ",
"gma::lte::dl:: max_owd ",
"gma::wifi::dl:: priority ",
"gma::lte::dl:: priority ",
"gma::wifi::dl:: traffic_ratio ",
"gma::lte::dl:: traffic_ratio ",
"gma::wifi::dl:: split_ratio ",
"gma::lte::dl:: split_ratio ",
"gma::ul:: missed_action ",
"gma::ul:: measurement_ok ",
"gma::ul:: tx_rate ",
"gma::ul:: delay_violation ",
"gma::ul:: delay_test_ 1 _violation ",
"gma::ul:: delay_test_ 2 _violation ",
"gma::ul::rate",
"gma::wifi::ul::rate",
"gma::lte::ul::rate",
"gma::ul:: qos_rate ",
"gma::wifi::ul:: qos_rate ",
"gma::lte::ul:: qos_rate ",
"gma::ul::owd",
"gma::wifi::ul::owd",
"gma::lte::ul::owd",
"gma::ul:: max_owd ",
"gma::wifi::ul:: max_owd ",
"gma::lte::ul:: max_owd ",
"gma::wifi::ul:: priority ",
"gma::lte::ul:: priority ",
"gma::wifi::ul:: traffic_ratio ",
"gma::lte::ul:: traffic_ratio ",
"gma::wifi::ul:: split_ratio ",
"gma::lte::ul:: split_ratio "

],
" steps_per_episode ": *, // number of steps per each episode

↪→ - last step is given a truncated signal .
" episodes_per_session ": 1, // always set to 1 - every

↪→ episode is treated in the infinite - horizon setting .
" random_seed ": *, // random seed ONLY affects UE placement

↪→ and movement in environment .
" downlink_traffic ": true, // simulates downlink data flow
" max_wait_time_for_action_ms ": -1, // max time network gym

↪→ worker will wait for an action ( capped to 10 minutes )
↪→ .

" enb_locations ": { // x, y and z locations of singular base
↪→ station .

"x": 40,
"y": 0,
"z": 3

},
" ap_locations ": [ // x, y and z locations of Wi -Fi access

↪→ point(s).
{

"x": 30,
"y": 0,
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"z": 3
},
{

"x": 50,
"y": 0,
"z": 3

}
],
" num_users ": 4,
" user_random_walk ": { // in this model , each user begins

↪→ moving to the right at 1 m/s and bounces back and
↪→ forth for the entire duration .

" min_speed_m /s": 1,
" max_speed_m /s": 1,
" min_direction_gradients ": 0.0,
" max_direction_gradients ": 0.0,
" distance_m ": 1000000

},
" user_location_range ": { // initially , users will be

↪→ randomly deployed within this x, y range depending on
↪→ random_seed .

"min_x": 0,
"max_x": 80,
"min_y": 0,
"max_y": 0,
"z": 1.5

},
" measurement_start_time_ms ": 1000, // the first measurement

↪→ start time. The first measurement will be sent to
↪→ the agent between [ measurement_start_time_ms ,
↪→ measurement_start_time_ms + measurement_interval_ms ].

" transport_protocol ": "tcp",
" udp_poisson_arrival ": true, // only used for UDP.
" min_udp_rate_per_user_mbps ": 6, // only used for UDP.
" max_udp_rate_per_user_mbps ": 6, // only used for UDP.
" qos_requirement ": { // only used for qos_steer environment

↪→ .
" delay_bound_ms ": 1000,
" delay_test_ 1 _thresh_ms ": 2000,
" delay_test_ 2 _thresh_ms ": 4000

},
"GMA": {

" downlink_mode ": "split",
" uplink_mode ": "auto", // under "auto", TCP ACK will "

↪→ steer" and TCP data will "split ".
" enable_dynamic_flow_prioritization ": false , // because

↪→ we do not use UDP traffic with QoS requirement ,
↪→ we don ’t use DFP.

" measurement_interval_ms ": 100, // duration of a
↪→ measurement interval .

" measurement_guard_interval_ms ": 0 // no gap between
↪→ measurement intervals .

},
"Wi -Fi": {

" ap_share_same_band ": false , // APs use different
↪→ frequency bands.

" enable_rx_signal_based_handover ": true, // always
↪→ connect to Wi -Fi AP with strongest Rx signal (the
↪→ Rx signal is measured from BEACONS ).
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" measurement_interval_ms ": 100,
" measurement_guard_interval_ms ": 0

},
"LTE": {

" resource_block_num ": 50, // number of resouce blocks
↪→ for LTE: 25 for 5 MHZ, 50 for 10 MHZ, 75 for 15
↪→ MHZ and 100 for 20 MHZ.

" measurement_interval_ms ": 100,
" measurement_guard_interval_ms ": 0

}
}

We open-source our primary code and offline datasets at github.com/hmomin/networkgym. Each
section (except Section G) in this document references assets relative to the root directory of this
repository.

E Computational Resources

We make use of four internal 12 GB NVIDIA TITAN Xp GPUs to perform our experiments. With
these GPUS, to perform all experiments described in this document requires roughly 1 month of
compute, assuming each of 8 different CPU processes is used to perform an agent evaluation. Using
only a single process to perform agent evaluation would result in the compute increasing to roughly
3 months.

F Offline Data Collection

For each of three different heuristic policies (throughput_argmax, system_default, and
utility_logistic), we collect and store 64 episodes of offline data on our Network-
Gym Multi-Access Traffic Splitting environment (denoted nqos_split). Each episode
contains 10,000 steps worth of data. The associated configuration file (located at
network_gym_client/envs/nqos_split/config.json) for the episodes is chosen with the fol-
lowing constraints in mind:

• At initialization of each environment, four UEs are randomly stationed 1.5 meters above
the x-axis between x = 0 and x = 80 meters. From there, they begin to bounce back and
forth in the x-direction at 1 m/s for the entire duration of an episode.

• The Wi-Fi access points are stationed at (x, z) = (30m, 3m) and (x, z) = (50m, 3m),
respectively.

• The LTE base station lies at (x, z) = (40m, 3m).

• The only change in the configuration file between episodes is the random_seed parameter.
We use random seed values from 0 to 63, inclusive, for this parameter.

We store the resulting three offline datasets in the NetworkAgent/buffers directory. Each dataset
is a folder that contains 64 .pickle files, one for each episode. Each .pickle file contains a tuple
of four numpy arrays in the following order: (states, actions, rewards, next states) with shapes ([9999,
56], [9999, 4], [9999, 1], [9999, 56]), respectively.

We also provide a shell script (offline_collection.sh) to generate data for offline learning. The
heuristic policy that takes actions in the environments can be specified at the top of the script.

G Training Existing State-of-the-Art Offline RL Algorithms

To test several existing state-of-the-art offline reinforcement learning (RL) algorithms, we
make use of the Clean Offline RL library provided at github.com/tinkoff-ai/CORL,
which uses the Apache 2.0 license. More specifically, we modify their library at
github.com/hmomin/CORL-compare to be compatible with our offline dataset generated on the
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NetworkGym simulator. The modifications we make to the offline RL algorithm files (located at
algorithms/offline) only support the following purposes:

• We switch the algorithmic implementations from using D4RL-specific loading to using our
NetworkGym OfflineEnv class instead.

• We remove all resulting unused D4RL-specific environment/dataset loading and evaluation
code.

• We modify the env parameter in the TrainConfig class for each algorithm to use an
environment specified by one of our three offline datasets.

• We modify the normalize boolean parameter (where applicable) in the TrainConfig
class to toggle whether or not we would like the algorithm to perform feature normalization
based on the offline dataset.

Using these modifications, any of the algorithm scripts at algorithms/offline can be executed
directly to train these algorithms. We use the default hyperparameters for all algorithms, except
where we toggle the normalize parameter.

H Training PTD3

To train our implementation of Pessimistic TD3 (PTD3), we use the default hyperparameters in
TD3+BC, except for the following modifications:

• We train PTD3 for 10,000 steps, instead of 1,000,000 steps, which we do for TD3+BC.
• We test PTD3 across various values of α and β; we then report the corresponding experi-

mental results.

We provide the shell script train_offline_ptd3.sh to train PTD3 on any offline dataset gen-
erated by one of our heuristic algorithms. The desired values of offline dataset, α, and β can be
specified at the top of the script.

I Training Online Deep RL Algorithms

We use stable-baselines3 to train two different online deep RL algorithms, PPO and SAC. We
do so by initializing a random agent, then updating that agent through 8 successive phases. In
each phase, we parallelize environment instantiations across 8 different random seeds, where each
environment runs for 10,000 steps, resulting in a total of 64 different environment instantiations.
In this way, the online learning algorithm trains across the same number of steps available in each
of the offline datasets, to allow for proper comparison. Additionally, for our parallel environment
random seeds, we use 0-7, inclusive, followed by 8-15, 16-23, ..., 56-63. We provide the shell script,
train_online_parallel.sh, in order to perform this training process with PPO and SAC. We
use the default hyperparameters specified by stable-baselines3.

J Evaluating Trained Agents

Finally, to evaluate a trained agent (whether online or offline), we place the resulting model file
in the NetworkAgent/models directory. Then, the model filename (without extension) can be
specified as the agent parameter at the top of the test_agent.sh shell script and the script can be
executed to evaluate the agent on a single 3,200 step episode. In our experiments, we evaluate each
agent across 32 or 40 episodes (each with a different random_seed parameter), depending on the
experiment. Each episode is 3,200 steps and the random_seed parameter takes on values between
128-159, inclusive, for 32 evaluation episodes or 128-167, inclusive, for 40 evaluation episodes.
We otherwise use the same environment configuration details mentioned in Section Offline Data
Collection.

Checklist
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please see the Discussion Sec-
tion.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
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(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We include a
URL in the Abstract and several relevant details in the Supplementary Material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] This is included in the Supplementary Material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Every table with experimental results is fully populated
with estimates that include 95% confidence interval error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] This is included in the Supple-
mentary Material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use CORL to

evaluate many state-of-the-art offline RL algorithms. This is discussed in the Supple-
mentary Material.

(b) Did you mention the license of the assets? [Yes] This is included in the Supplementary
Material.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We include links to our source code and offline datasets in both the Abstract and the
Supplementary Material.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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