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ABSTRACT

The stochastic gradient descent (SGD) algorithm is the algorithm we use to train
neural networks. However, it remains poorly understood how the SGD navigates
the highly nonlinear and degenerate loss landscape of a neural network. In this
work, we prove that the minibatch noise of SGD regularizes the solution towards
a balanced solution whenever the loss function contains a rescaling symmetry.
Because the difference between a simple diffusion process and SGD dynamics
is the most significant when symmetries are present, our theory implies that the
loss function symmetries constitute an essential probe of how SGD works. We
then apply this result to derive the stationary distribution of stochastic gradient
flow for a diagonal linear network with arbitrary depth and width. The stationary
distribution exhibits complicated nonlinear phenomena such as phase transitions,
loss of ergodicity, and fluctuation inversion. These phenomena are shown to exist
uniquely in deep networks, implying a fundamental difference between deep and
shallow models.

1 INTRODUCTION

The stochastic gradient descent (SGD) algorithm is defined as

∆θt = −
η

S
∑
x∈B
∇θℓ(θ, x), (1)

where θ is the model parameter, ℓ(θ, x) is a per-sample loss whose expectation over x gives the
training loss: L(θ) = Ex[ℓ(θ, x)]. B is a randomly sampled minibatch of data points, each indepen-
dently sampled from the training set, and S is the minibatch size. Two aspects of the algorithm make
it difficult to understand this algorithm: (1) its dynamics is discrete in time, and (2) the randomness is
highly nonlinear and parameter-dependent. This work relies on the continuous-time approximation
and deals with the second aspect.

In natural and social sciences, the most important object of study of a stochastic system is its sta-
tionary distribution, which is often found to offer fundamental insights into understanding a given
stochastic process (Van Kampen, 1992; Rolski et al., 2009). Arguably, a great deal of insights into
SGD can be obtained if we have an analytical understanding of its stationary distribution, which
remains unknown until today. Existing works that study the dynamics and stationary properties of
SGD are often restricted to the case of a strongly convex loss function (Wu et al., 2018; Xie et al.,
2020; Liu et al., 2021; Zhu et al., 2018; Mori et al., 2022; Zou et al., 2021; Ma et al., 2018; Wood-
worth et al., 2020) or rely heavily on the local approximations of the stationary distribution of SGD
close to a local minimum, often with additional unrealistic assumptions about the noise. For exam-
ple, using a saddle point expansion and assuming that the noise is parameter-independent, a series
of recent works showed that the stationary distribution of SGD is exponential Mandt et al. (2017);
Xie et al. (2020); Liu et al. (2021). Taking partial parameter-dependence into account and near an
interpolation minimum, Mori et al. (2022) showed that the stationary distribution is power-law-like
and proportional to L(θ)−c0 for some constant c0. However, the stationary distribution of SGD is
unknown when the loss function is beyond quadratic and high-dimensional.

Since the stationary distribution of SGD is unknown, we will compare our results with the most
naive theory one can construct for SGD, a continuous-time Langevin equation with a constant noise
level:

θ̇(t) = −η∇θL(θ) +
√
2T0ϵ(t), (2)
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Figure 1: SGD converges to a balanced solution. Left: the quantity u2
− w2 is conserved for GD without

noise, is divergent for GD with an isotropic Gaussian noise, which simulates the simple Langevin model,
and decays to zero for SGD, making a sharp and dramatic contrast. Right: illustration of the three types of
dynamics. Gradient descent (GD) moves along the conservation line due to the conservation law: u2

(t) −
w2
(t) = u2

(0) −w2
(0). GD with an isotropic Gaussian noise expands and diverges along the flat direction of

the minimum valley. The actual SGD oscillates along a balanced solution.

where ϵ is a random time-dependent noise with zero mean and E[ϵ(t)ϵ(t′)T ] = ηδ(t − t′)I with
I being the identity operator. Here, the naive theory relies on the assumption that one can find a
constant scalar T0 such that Eq. (2) closely models (1), at least after some level of coarse-graining.
Let us examine some of the predictions of this model to understand when and why it goes wrong.

There are two important predictions of this model. The first is that the stationary distribution of
SGD is a Gibbs distribution with temperature T0: p(θ) ∝ exp[−L(θ)/T ]. This implies that the
maximum likelihood estimator of θ under SGD is the same as the global minimizer of the L(θ):
argmaxp(θ) = argminL(θ). This relation holds for the local minima as well: every local mini-
mum of L corresponds to a local maximum of p. These properties are often required in the popular
argument that SGD approximates Bayesian inference (Mandt et al., 2017; Mingard et al., 2021).
Another implication is ergodicity (Walters, 2000): any state with the same energy will have an equal
probability of being accessed. The second is the dynamical implication: SGD will diffuse. If there
is a degenerate direction in the loss function, SGD will diffuse along that direction.1

However, these predictions of the Langevin model are not difficult to reject. Let us consider a simple
two-layer network with the loss function: ℓ(u,w,x) = (uwx − y(x))2. Because of the rescaling
symmetry, a valley of degenerate solution exists at uw = const. Under the simple Langevin model,
SGD diverges to infinity due to diffusion. One can also see this from a static perspective. All points
on the line uw = c0 must have the same probability at stationarity, but such a distribution does not
exist because it is not normalizable. This means that the Langevin model of SGD diverges for this
loss function.

Does this agree with the empirical observation? Certainly not.2 See Fig. 1. We see that contrary
to the prediction of the Langevin model, ∣u2 − w2∣ converges to zero under SGD. Under GD, this
quantity is conserved during training (Du et al., 2018). Only the Gaussian GD obeys the prediction
of the Langevin model, which is expected. This sharp contrast shows that the SGD dynamics is quite
special, and a naive theoretical model can be very far from the truth in understanding its behavior.
There is one more lesson to be learned. The fact that the Langevin model disagrees the most with
the experiments when symmetry conditions are present suggests that the symmetry conditions are
crucial tools to probe and understand the nature of the SGD noise, which is the main topic of our
theory.

2 LAW OF BALANCE

Now, we consider the actual continuous-time limit of SGD (Latz, 2021; Li et al., 2019; 2021; Sirig-
nano & Spiliopoulos, 2020; Fontaine et al., 2021; Hu et al., 2017):

dθ = −∇θLdt +
√
TC(θ)dWt, (3)

where dWt is a stochastic process satisfying dWt ∼ N(0, Idt) and E[dWtdW
T
t′ ] = δ(t − t′)I ,

and T = η/S. Apparently, T gives the average noise level in the dynamics. Previous works have

1Note that this can also be seen as a dynamical interpretation of the ergodicity.
2In fact, had it been the case, no linear network or ReLU network can be trained with SGD.
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suggested that the ratio η/S ∶= T is the main factor determining the behavior of SGD, and a higher T
often leads to better generalization performance (Shirish Keskar et al., 2016; Liu et al., 2021; Ziyin
et al., 2022b). The crucial difference between Eq. (3) and (2) is that in (3), the noise covariance
C(θ) is parameter-dependent and, in general, low-rank when symmetries exist.

Due to standard architecture designs, a type of invariance – the rescaling symmetry – often appears in
the loss function and exists for all sampling of minibatches. The per-sample loss ℓ is said to have the
rescaling symmetry for all x if ℓ(u,w,x) = ℓ (λu,w/λ,x) for a scalar λ in an arbitrary neighborhood
of 1.3 This type of symmetry appears in many scenarios in deep learning. For example, it appears in
any neural network with the ReLU activation. It also appears in the self-attention of transformers,
often in the form of key and query matrices (Vaswani et al., 2017). When this symmetry exists
between u and w, one can prove the following result, which we refer to as the law of balance.
Theorem 1. (Law of balance.) Let u and w be vectors of arbitrary dimensions. Let ℓ(u,w,x)
satisfy ℓ(u,w,x) = ℓ(λu,w/λ,x) for arbitrary x and any λ in some neighborhood of 1. Then,

d

dt
(∣∣u∣∣2 − ∣∣w∣∣2) = −T (uTC1u −wTC2w), (4)

where C1 = E[ATA] − E[AT ]E[A], C2 = E[AAT ] − E[A]E[AT ] and Aki = ∂ℓ̃/∂(uiwk) with
ℓ̃(uiwk, x) ≡ ℓ(ui,wk, x).

Our result holds in a stronger version if we consider the effect of a finite step-size by using the mod-
ified loss function (See Appendix B.7) (Barrett & Dherin, 2020; Smith et al., 2021). For common
problems, C1 and C2 are positive definite, and this theorem implies that the norms of u and w will
be approximately balanced. To see this, one can identify its upper and lower bounds:

−T (λ1M ∣∣u∣∣2 − λ2m∣∣w∣∣2) ≤
d

dt
(∣∣u∣∣2 − ∣∣w∣∣2) ≤ −T (λ1m∣∣u∣∣2 − λ2M ∣∣w∣∣2), (5)

where λ1m(2m), λ1M(2M) represent the minimal and maximal eigenvalue of the matrix C1(2), re-
spectively. In the long-time limit, the value of ∣∣u∣∣2/∣∣w∣∣2 is restricted by

λ2m

λ1M
≤ ∣∣u∣∣

2

∣∣w∣∣2
≤ λ2M

λ1m
, (6)

which implies that the stationary dynamics of the parameters u,w is constrained in a bounded sub-
space of the unbounded degenerate local minimum valley. Conventional analysis shows that the
difference between SGD and GD is of order T 2 per unit time step, and it is thus often believed that
SGD can be understood perturbatively through GD (Hu et al., 2017). However, the law of balance
implies that the difference between GD and SGD is not perturbative. As long as there is any level
of noise, the difference between GD and SGD at stationarity is O(1). This theorem also implies the
loss of ergodicity, an important phenomenon in nonequilibrium physics (Palmer, 1982; Thirumalai
& Mountain, 1993; Mauro et al., 2007; Turner et al., 2018), because not all solutions with the same
training loss will be accessed by SGD with equal probability.4

The theorem greatly simplifies when both u and w are one-dimensional.

Corollary 1. If u,w ∈ R, then, d
dt
∣u2 −w2∣ = −TC0∣u2 −w2∣, where C0 = Var[ ∂ℓ

∂(uw) ].

Before we apply the theorem to study the stationary distributions, we stress the importance of this
balance condition. This relation is closely related to Noether’s theorem (Misawa, 1988; Baez &
Fong, 2013; Malinowska & Ammi, 2014). If there is no weight decay or stochasticity in training,
the quantity ∣∣u∣∣2 − ∣∣w∣∣2 will be a conserved quantity under gradient flow (Du et al., 2018; Kunin
et al., 2020), as is evident by taking the infinite S limit. The fact that it monotonically decays to zero
at a finite T may be a manifestation of some underlying fundamental mechanism. A more recent
result by Wang et al. (2022) showed that for a two-layer linear network, the norms of two layers
are within a distance of order O(η−1), suggesting that the norm of the two layers are balanced. Our

3Note that this is a weaker condition than the common definition of rescaling symmetry, where the condition
holds for an arbitrary positive λ.

4This could imply that SGD has a high efficacy at exploring a high-dimensional landscape because the
degenerate symmetry directions are essentially ignored during the exploration.
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result agrees with Wang et al. (2022) in this case, but our result is stronger because our result is
nonperturbative, only relies on the rescaling symmetry, and is independent of the loss function or
architecture of the model. It is useful to note that when L2 regularization with strength γ is present,
the rate of decay changes from TC0 to TC0 + γ. This gives us a nice interpretation that when
rescaling symmetry is present, the implicit bias of SGD is equivalent to weight decay.

Example: two-layer linear network. It is instructive to illustrate the application of the law to
a two-layer linear network, the simplest model that obeys the law. Let θ = (w,u) denote the set
of trainable parameters; the per-sample loss is ℓ(θ, x) = (∑d

i uiwix − y)2 + γ∣∣θ∣∣2. Here, d is the
width of the model, γ∣∣θ∣∣2 is the L2 regularization term with strength γ ≥ 0, and Ex denotes the
averaging over the training set, which could be a continuous distribution or a discrete sum of delta
distributions. It will be convenient for us also to define the shorthand: v ∶= ∑d

i uiwi. The distribution
of v is said to be the distribution of the “model.”

Applying the law of balance, we obtain that

d

dt
(u2

i −w2
i ) = −4[T (α1v

2 − 2α2v + α3) + γ](u2
i −w2

i ), (7)

where we have introduced the parameters
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α1 ∶= Var[x2],
α2 ∶= E[x3y] −E[x2]E[xy],
α3 ∶= Var[xy].

(8)

When α1α3−α2
2 or γ > 0, the time evolution of ∣u2−w2∣ can be upper-bounded by an exponentially

decreasing function in time: ∣u2
i − w2

i ∣(t) < ∣u2
i − w2

i ∣(0) exp (−4T (α1α3 − α2
2)t/α1 − 4γt) → 0.

Namely, the quantity (u2
i − w2

i ) decays to 0 with probability 1. We thus have u2
i = w2

i for all
i ∈ {1,⋯, d} at stationarity, in agreement with what we see in Figure 1.

3 STATIONARY DISTRIBUTION OF SGD

As an important application of the law of balance, we solve the stationary distribution of SGD for a
deep diagonal linear network. While linear networks are limited in expressivity, their loss landscape
and dynamics are highly nonlinear and is regarded as a minimal model of nonlinear neural networks
(Kawaguchi, 2016; Saxe et al., 2013; Ziyin et al., 2022a).

3.1 DEPTH-0 CASE

Let us first derive the stationary distribution of a one-dimensional linear regressor, which will be a
basis for comparison to help us understand what is unique about having a “depth” in deep learning.
The per-sample loss is ℓ(x, v) = (vx − y)2 + γv2, for which the SGD dynamics is dv = −2(β1v −
β2 + γv)dt +

√
TC(v)dW (t), where we have defined

{β1 ∶= E[x2],
β2 ∶= E[xy].

(9)

Note that the closed-form solution of linear regression gives the global minimizer of the loss
function: v∗ = β2/β1. The gradient variance is also not trivial: C(v) ∶= Var[∇vℓ(v, x)] =
4(α1v

2 − 2α2v + α3). Note that the loss landscape L only depends on β1 and β2, and the gra-
dient noise only depends on α1, α2 and, α3. These relations imply that C can be quite independent
of L, contrary to popular beliefs in the literature (Mori et al., 2022; Mandt et al., 2017). Here in-
dependence between C and L comes from the fact that the noise only depends on the variance of
the data x2 and xy while L only depends on the expectation of the data. It is also reasonable to
call β the landscape parameters and α the noise parameters. We will see that both β and α are
important parameters appearing in all stationary distributions we derive, implying that the stationary
distributions of SGD are strongly dependent on the data.

Another important quantity is ∆ ∶= minv C(v) ≥ 0, which is the minimal level of noise on the
landscape. For all the examples in this work,

∆ = Var[x2]Var[xy] − cov(x2, xy) = α1α3 − α2
2. (10)
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When is ∆ zero? It happens when, for all samples of (x, y), xy + c = kx2 for some constant k and
c. We focus on the case ∆ > 0 in the main text, which is most likely the case for practical situations.
The other cases are dealt with in Section B.

For ∆ > 0, the stationary distribution for linear regression is found to be

p(v) ∝ (α1v
2 − 2α2v + α3)−1−

β′1
2Tα1 exp [− 1

T

α2β
′
1 − α1β2

α1

√
∆

arctan(α1v − α2√
∆
)] , (11)

roughly in agreement with the result in Mori et al. (2022). Two notable features exist for this
distribution: (1) the power exponent for the tail of the distribution depends on the learning rate and
batch size, and (2) the integral of p(v) converges for an arbitrary learning rate. On the one hand, this
implies that increasing the learning rate alone cannot introduce new phases of learning to a linear
regression; on the other hand, it implies that the expected error is divergent as one increases the
learning rate (or the feature variation), which happens at T = β′1/α1. We will see that deeper models
differ from the single-layer model in these two crucial aspects.

3.2 DEEP DIAGONAL NETWORKS

Now, we consider a diagonal deep linear network, whose loss function can be written as

ℓ = [
d0

∑
i

(
D

∏
k=0

u
(k)
i )x − y]

2

, (12)

where D is the depth and d0 is the width. When the width d0 = 1, the law of balance is sufficient to
solve the model. When d0 > 1, we need to eliminate additional degrees of freedom. A lot of recent
works study the properties of a diagonal linear network, which has been found to well approximate
the dynamics of real networks (Pesme et al., 2021; Nacson et al., 2022; Berthier, 2023; Even et al.,
2023).

We introduce vi ∶= ∏D
k=0 u

(k)
i , and so v = ∑i vi, where we call vi a “subnetwork” and v the

“model.” The following proposition shows that the dynamics of this model can be reduced to a
one-dimensional form.
Theorem 2. For all i ≠ j, one (or more) of the following conditions holds for all trajectories at
stationarity:

1. vi = 0, or vj = 0, or L(θ) = 0;
2. sgn(vi) = sgn(vj). In addition, (a) if D = 1, for a constant c0, log ∣vi∣ − log ∣vj ∣ = c0; (b) if

D > 1, ∣vi∣2 − ∣vj ∣2 = 0.

This theorem contains many interesting aspects. First of all, the three situations in item 1 directly
tell us the distribution of v, which is the quantity we ultimately care about.5 This result implies that
if we want to understand the stationary distribution of SGD, we only need to solve the case of item
2. Once the parameters enter the condition of item 2, item 2 will continue to hold with probability 1
for the rest of the trajectory. The second aspect is that item 2 of the theorem implies that all the vi
of the model must be of the same sign for any network with D ≥ 1. Namely, no subnetwork of the
original network can learn an incorrect sign. This is dramatically different from the case of D = 0.
We will discuss this point in more detail below. The third interesting aspect of the theorem is that
it implies that the dynamics of SGD is qualitatively different for different depths of the model. In
particular, D = 1 and D > 1 have entirely different dynamics. For D = 1, the ratio between every
pair of vi and vj is a conserved quantity. In sharp contrast, for D > 1, the distance between different
vi is no longer conserved but decays to zero. Therefore, a new balancing condition emerges as we
increase the depth. Conceptually, this qualitative distinction also corroborates the discovery in Ziyin
et al. (2022a) and Ziyin & Ueda (2022), where D = 1 models are found to be qualitatively different
from models with D > 1.

With this theorem, we are now ready to solve for the stationary distribution. It suffices to condition
on the event that vi does not converge to zero. Let us suppose that there are d nonzero vi that obey
item 2 of Theorem 2 and d can be seen as an effective width of the model. We stress that the effective

5L→ 0 is only possible when ∆ = 0 and v = β2/β1.
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Figure 2: Stationary distributions of SGD for simple linear regression (D = 0), and a two-layer network
(D = 1) across different T = η/S: T = 0.05 (left) and T = 0.5 (Mid). We see that for D = 1, the stationary
distribution is strongly affected by the choice of the learning rate. In contrast, for D = 0, the stationary
distribution is also centered at the global minimizer of the loss function, and the choice of the learning rate only
affects the thickness of the tail. Right: the stationary distribution of a one-layer tanh-model, f(x) = tanh(vx)
(D = 0) and a two-layer tanh-model f(x) = w tanh(ux) (D = 1). For D = 1, we define v ∶= wu. The vertical
line shows the ground truth. The deeper model never learns the wrong sign of wu, whereas the shallow model
can learn the wrong one.

width d ≤ d0 depends on the initialization and can be arbitrary.6 Therefore, we condition on a fixed
value of d to solve for the stationary distribution of v (Appendix B):

p±(∣v∣) ∝
1

∣v∣3(1−1/(D+1))(α1∣v∣2 ∓ 2α2∣v∣ + α3)
exp(− 1

T
∫
∣v∣

0
d∣v∣ d1−2/(D+1)(β1∣v∣ ∓ β2)
(D + 1)∣v∣2D/(D+1)(α1∣v∣2 ∓ 2α2∣v∣ + α3)

) ,

(13)
where p− is the distribution of v on (−∞,0) and p+ is that on (0,∞). Next, we analyze this distri-
bution in detail. Since the result is symmetric in the sign of β2 = E[xy], we assume that E[xy] > 0
from now on.

3.2.1 DEPTH-1 NETS

We focus on the case γ = 0.7 The distribution of v is

p±(∣v∣) ∝
∣v∣±β2/2α3T−3/2

(α1∣v∣2 ∓ 2α2∣v∣ + α3)1±β2/4Tα3
exp(− 1

2T

α3β1 − α2β2

α3

√
∆

arctan
α1∣v∣ ∓ α2√

∆
) , (14)

This measure is worth a close examination. First, the exponential term is upper and lower bounded
and well-behaved in all situations. In contrast, the polynomial term becomes dominant both at
infinity and close to zero. When v < 0, the distribution is a delta function at zero: p(v) = δ(v). To
see this, note that the term v−β2/2α3T−3/2 integrates to give v−β2/2α3T−1/2 close to the origin, which
is infinite. Away from the origin, the integral is finite. This signals that the only possible stationary
distribution has a zero measure for v ≠ 0. The stationary distribution is thus a delta distribution,
meaning that if x and y are positively correlated, the learned subnets vi can never be negative, no
matter the initial configuration.

For v > 0, the distribution is nontrivial. Close to v = 0, the distribution is dominated by vβ2/2α3T−3/2,
which integrates to vβ2/2α3T−1/2. It is only finite below a critical Tc = β2/α3. This is a phase-
transition-like behavior. As T → (β2/α3)−, the integral diverges and tends to a delta distribution.
Namely, if T > Tc, we have ui = wi = 0 for all i with probability 1, and no learning can happen.
If T < Tc, the stationary distribution has a finite variance, and learning may happen. In the more
general setting, where weight decay is present, this critical T shifts to

Tc =
β2 − γ
α3

. (15)

When T = 0, the phase transition occurs at β2 = γ, in agreement with the threshold weight decay
identified in Ziyin & Ueda (2022). This critical learning rate also agrees with the discrete-time

6One can systematically initialize the parameters in a way that d takes any desired value between 1 and d0;
for example, one way to achieve this is to initialize on the stationary conditions specified by Theorem 2 at the
desired value of d.

7When weight decay is present, the stationary distribution is the same, except that one needs to replace β2

with β2 − γ. Other cases are also studied in detail in Appendix B and listed in Table. 1.
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Figure 3: Regimes of learning for SGD as a function of T = η/S and the noise in the dataset σ for the
noisy Gaussian dataset. According to (1) whether the sparse transition has happened, (2) whether a nontrivial
maximum probability estimator exists, and (3) whether the sparse solution is a maximum probability estimator,
the learning of SGD can be characterized into 5 regimes. Regime I is where SGD converges to a sparse solution
with zero variance. In regime II, the stationary distribution has a finite spread, and the probability density of the
sparse solution diverges. Hence, the probability of being close to the sparse solution is very high. In regime III,
the probability density of the sparse solution is zero, and therefore the model will learn without much problem.
In regime b, a local nontrivial probability maximum exists, and hence SGD has some probability of successful
learning. The only maximum probability estimator in regime a is the sparse solution.

analysis performed in Ziyin et al. (2021; 2023) and the approximate continuous-time analysis in
Chen et al. (2023). See Figure 2 for illustrations of the distribution across different values of T .
We also compare with the stationary distribution of a depth-0 model. Two characteristics of the
two-layer model appear rather striking: (1) the solution becomes a delta distribution at the sparse
solution u = w = 0 at a large learning rate; (2) the two-layer model never learns the incorrect sign (v
is always non-negative). See Figure 2.

Therefore, training with SGD on deeper models simultaneously has two advantages: (1) a general-
ization advantage such that a sparse solution is favored when the underlying data correlation is weak;
(2) an optimization advantage such that the training loss interpolates between that of the global min-
imizer and the sparse saddle and is well-bounded (whereas a depth-0 model can have arbitrarily bad
objective value at a large learning rate).

Another exotic phenomenon implied by the result is what we call the “fluctuation inversion.”
Naively, the variance of model parameters should increase as we increase T , which is the noise
level in SGD. However, for the distribution we derived, the variance of v and u both decrease to zero
as we increase T : injecting noise makes the model fluctuation vanish. We discuss more about this
“fluctuation inversion” in the next section.

Also, while there is no other phase-transition behavior below Tc, there is still an interesting and
practically relevant crossover behavior in the distribution of the parameters as we change the learning
rate. When we train a model, we often run SGD only once or a few times. When we do this, the
most likely parameter we obtain is given by the maximum likelihood estimator of the distribution,
v̂ ∶= argmaxp(v). Understanding how v̂(T ) changes as a function of T is crucial. This quantity
also exhibits nontrivial crossover behaviors at critical values of T .

When T < Tc, a nonzero maximizer for p(v) must satisfy

v∗ = −
β1 − 10α2T −

√
(β1 − 10α2T )2 + 28α1T (β2 − 3α3T )

14α1T
. (16)

The existence of this solution is nontrivial, which we analyze in Appendix B.5. When T → 0, a
solution always exists and is given by v = β2/β1, which does not depend on the learning rate or
noise C. Note that β2/β1 is also the minimum point of L(ui,wi). This means that SGD is only a
consistent estimator of the local minima in deep learning in the vanishing learning rate limit. How
biased is SGD at a finite learning rate? Two limits can be computed. For a small learning rate, the
leading order correction to the solution is v = β2

β1
+ ( 10α2β2

β2
1
− 7α1β

2
2

β3
1
− 3α3

β1
)T . This implies that the

common Bayesian analysis that relies on a Laplace expansion of the loss fluctuation around a local
minimum is improper. The fact that the stationary distribution of SGD is very far away from the
Bayesian posterior also implies that SGD is only a good Bayesian sampler at a small learning rate.
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Figure 4: SGD on deep networks leads to a well-controlled distribution and training loss. Left: Power law
of the tail of the parameter distribution of deep linear nets. The dashed lines show the upper (−7/2) and lower
(−5) bound of the exponent of the tail. The predicted power-law scaling agrees with the experiment, and the
exponent decreases as the theory predicts. Mid: training loss of a tanh network. D = 0 is the case where only
the input weight is trained, and D = 1 is the case where both input and output layers are trained. For D = 0,
the model norm increases as the model loses stability. For D = 1, a “fluctuation inversion” effect appears. The
fluctuation of the model vanishes before it loses stability. Right: performance of fully connected tanh nets on
MNIST. Scaling the learning rate as 1/D keeps the model performance relatively unchanged.

It is instructive to consider an example of a structured dataset: y = kx + ϵ, where x ∼ N(0,1) and
the noise ϵ obeys ϵ ∼ N(0, σ2). We let γ = 0 for simplicity. If σ2 > 8

21
k2, there always exists

a transitional learning rate: T ∗ = 4k+√42σ
4(21σ2−8k2) . Obviously, Tc/3 < T ∗. One can characterize the

learning of SGD by comparing T with Tc and T ∗. For this simple example, SGD can be classified
into roughly 5 different regimes. See Figure 3.

3.3 POWER-LAW TAIL OF DEEPER MODELS

An interesting aspect of the depth-1 model is that its distribution is independent of the width d of
the model. This is not true for a deep model, as seen from Eq. (13). The d-dependent term vanishes
only if D = 1. Another intriguing aspect of the depth-1 distribution is that its tail is independent of
any hyperparameter of the problem, dramatically different from the linear regression case. This is
true for deeper models as well.

Since d only affects the non-polynomial part of the distribution, the stationary distribution scales
as p(v) ∝ 1

v3(1−1/(D+1))(α1v2−2α2v+α3) . Hence, when v → ∞, the scaling behaviour is v−5+3/(D+1).
The tail gets monotonically thinner as one increases the depth. For D = 1, the exponent is 7/2;
an infinite-depth network has an exponent of 5. Therefore, the tail of the model distribution only
depends on the depth and is independent of the data or details of training, unlike the depth-0 model.
In addition, due to the scaling v5−3/(D+1) for v → ∞, we can see that E[v2] will never diverge no
matter how large the T is. See Figure 4–mid.

One implication is that neural networks with at least one hidden layer will never have a divergent
training loss. This directly explains the puzzling observation of the edge-of-stability phenomenon
in deep learning: SGD training often gives a neural network a solution where a slight increment of
the learning rate will cause discrete-time instability and divergence Wu et al. (2018); Cohen et al.
(2021). These solutions, quite surprisingly, exhibit low training and testing loss values even when
the learning rate is right at the critical learning rate of instability. This observation contradicts naive
theoretical expectations. Let ηsta denote the largest stable learning rate. Close to a local minimum,
one can expand the loss function up to the second order to show that the value of the loss function
L is proportional to Tr[Σ]. However, Σ ∝ 1/(ηsta − η) should be a very large value (Yaida, 2018;
Ziyin et al., 2022b; Liu et al., 2021), and therefore L should diverge. Thus, the edge of stability
phenomenon is incompatible with the naive expectation up to the second order, as pointed out in
Damian et al. (2022). Our theory offers a direct explanation of why the divergence of loss does
not happen: for deeper models, the fluctuation of model parameters decreases as the gradient noise
level increases, reaching a minimal value before losing stability. Thus, SGD always has a finite loss
because of the power-law tail and fluctuation inversion.

3.4 ROLE OF WIDTH

As discussed, for D > 1, the model width d directly affects the stationary distribution of SGD.
However, the integral in the exponent of Eq. (13) cannot be analytically calculated for a generic D.
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Two cases exist where an analytical solution exists: D = 1 and D → ∞. We thus consider the case
D →∞ to study the effect of d.

As D tends to infinity, the distribution becomes

p(v) ∝ 1

v3+k1(α1v2 − 2α2v + α3)1−k1/2 exp(− d

DT
( β2

α3v
+ α2α3β1 − 2α2

2β2 + α1α3β2

α2
3

√
∆

arctan(α1v − α2√
∆
))) ,

(17)
where k1 = d(α3β1 − 2α2β2)/(TDα2

3). The first striking feature is that the architecture ratio d/D
always appears simultaneously with 1/T . This implies that for a sufficiently deep neural network,
the ratio D/d also becomes proportional to the strength of the noise. Since we know that T = η/S
determines the performance of SGD, our result thus shows an extended scaling law of training:
d
D

S
η
= const. For example, if we want to scale up the depth without changing the width, we can

increase the learning rate proportionally or decrease the batch size. This scaling law thus links all
the learning rates, the batch size, and the model width and depth. The architecture aspect of the
scaling law also agrees with an alternative analysis (Hanin, 2018; Hanin & Rolnick, 2018), where
the optimal architecture is found to have a constant ratio of d/D. See Figure 4.

Now, we fix T and understand the infinite depth limits, which is decided by the scaling of d as we
scale up D. There are three situations: (1) d = o(D), (2) d = c0D for a constant c0, (3) d = Ω(D).
If d = o(D), k1 → 0 and the distribution converges to p(v) ∝ v−3(α1v

2 − 2α2v + α3)−1, which is a
delta distribution at 0. Namely, if the width is far smaller than the depth, the model will collapse, and
no learning will happen under SGD. Therefore, we should increase the model width as we increase
the depth. In the second case, d/D is a constant and can thus be absorbed into the definition of T
and is the only limit where we obtain a nontrivial distribution with a finite spread. If d = Ω(D), one
can perform a saddle point approximation to see that the distribution becomes a delta distribution
at the global minimum of the loss landscape, p(v) = δ(v − β2/β1). Therefore, the learned model
locates deterministically at the global minimum.

4 DISCUSSION

Figure 5: Loss landscape and noise
covariance of a one-neuron linear net-
work with one hidden neuron and γ =
0.005. The orange curve shows the
noise covariance C(w,u) for w = u.
The shape of the gradient noise is,
in general, more complicated than the
landscape.

The first implication of our theory is that the behavior of
SGD cannot be understood through gradient flow or a sim-
ple Langevin approximation. Having a perturbative amount of
noise in SGD leads to an order-1 change in the stationary so-
lution. This suggests that one promising way to understand
SGD is to study its behavior on a landscape from the view-
point of symmetries. We showed that SGD systematically
moves towards a balanced solution when rescaling symmetry
exists. Likewise, it is not difficult to imagine that for other
symmetries, SGD will also have order-1 deviations from gra-
dient flow. An important future direction is thus to characterize
the SGD dynamics on a loss function with other symmetries.

Using the symmetry conditions, we have characterized the sta-
tionary distribution of SGD analytically. To the best of our
knowledge, this is the first analytical expression for a globally
nonconvex and highly nonlinear loss without the need for any approximation. With this solution, we
have discovered many phenomena of deep learning that were previously unknown. For example, we
showed the qualitative difference between networks with different depths, the fluctuation inversion
effect, the loss of ergodicity, and the incapability of learning a wrong sign for a deep model.

Lastly, let us return to the starting question: when is the Gibbs measure a bad model of SGD? When
the number of data points N ≫ S, a standard computation shows that the noise covariance of SGD
takes the following form:C(θ) = T (Ex[(∇θℓ)(∇θℓ)T ] − (∇θL)(∇θL)T ), which is nothing but the
covariance of the gradients of θ. A key feature of the noise is that it depends on the dynamical
variable θ in a highly nontrivial manner (For example, see Hodgkinson & Mahoney (2021)). Alter-
natively, one can also understand this problem from the modified loss perspective (Geiping et al.,
2021)). See Figure 5 for an illustration of the landscape against C. We see that the shape of C(θ)
generally changes faster than the loss landscape. For the Gibbs distribution to hold (at least locally),
we need C(θ) to change much slower than L(θ).
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Weak ergodicity breaking from quantum many-body scars. Nature Physics, 14(7):745–749, 2018.

Nicolaas Godfried Van Kampen. Stochastic processes in physics and chemistry, volume 1. Elsevier,
1992.

11



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Peter Walters. An introduction to ergodic theory, volume 79. Springer Science & Business Media,
2000.

Yuqing Wang, Minshuo Chen, Tuo Zhao, and Molei Tao. Large learning rate tames homogeneity:
Convergence and balancing effect, 2022.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020.

Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
dynamical stability perspective. Advances in Neural Information Processing Systems, 31, 2018.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. arXiv preprint arXiv:2002.03495,
2020.

Sho Yaida. Fluctuation-dissipation relations for stochastic gradient descent. arXiv preprint
arXiv:1810.00004, 2018.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochastic
gradient descent: Its behavior of escaping from sharp minima and regularization effects. arXiv
preprint arXiv:1803.00195, 2018.

Liu Ziyin and Masahito Ueda. Exact phase transitions in deep learning. arXiv preprint
arXiv:2205.12510, 2022.

Liu Ziyin, Botao Li, James B Simon, and Masahito Ueda. Sgd can converge to local maxima. In
International Conference on Learning Representations, 2021.

Liu Ziyin, Botao Li, and Xiangming Meng. Exact solutions of a deep linear network. In Advances
in Neural Information Processing Systems, 2022a.

Liu Ziyin, Kangqiao Liu, Takashi Mori, and Masahito Ueda. Strength of minibatch noise in SGD. In
International Conference on Learning Representations, 2022b. URL https://openreview.
net/forum?id=uorVGbWV5sw.

Liu Ziyin, Botao Li, Tomer Galanti, and Masahito Ueda. The probabilistic stability of stochastic
gradient descent. arXiv preprint arXiv:2303.13093, 2023.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign overfitting
of constant-stepsize sgd for linear regression. In Conference on Learning Theory, pp. 4633–4635.
PMLR, 2021.

12

https://openreview.net/forum?id=uorVGbWV5sw
https://openreview.net/forum?id=uorVGbWV5sw


Figure 6: A two-layer ReLU network trained on full-rank dataset. Left: because of the rescaling
symmetry, the norm of the two layers are balanced approximately. Right: the first and second terms
in Eq. 4. We see that both terms converge to a stationary time-independent constant.

A ADDITIONAL EXPERIMENTS

A.1 LAW OF BALANCE

See Figure 6. We train a two-layer ReLU network with the number of neurons: 20→ 200→ 20. The
dataset is a synthetic data set, where x is drawn from a normal distribution, and the labels: y = x+ ϵ,
for an independent Gaussian noise ϵ with unit variance.
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B THEORETICAL CONSIDERATIONS

B.1 BACKGROUND

B.1.1 ITO’S LEMMA

Let us consider the following stochastic differential equation (SDE) for a Wiener process W (t):

dXt = µtdt + σtdW (t). (18)

We are interested in the dynamics of a generic function of Xt. Let Yt = f(t,Xt); Ito’s lemma states
that the SDE for the new variable is

df(t,Xt) = (
∂f

∂t
+ µt

∂f

∂Xt
+ σ2

t

2

∂2f

∂X2
t

)dt + σt
∂f

∂x
dW (t). (19)

Let us take the variable Yt =X2
t as an example. Then the SDE is

dYt = (2µtXt + σ2
t )dt + 2σtXtdW (t). (20)

Let us consider another example. Let two variables Xt and Yt follow

dXt = µtdt + σtdW (t),
dYt = λtdt + ϕtdW (t). (21)

The SDE of XtYt is given by

d(XtYt) = (µtYt + λtXt + σtϕt)dt + (σtYt + ϕtXt)dW (t). (22)

B.1.2 FOKKER PLANCK EQUATION

The general SDE of a 1d variable X is given by:

dX = −µ(X)dt +B(X)dW (t). (23)

The time evolution of the probability density P (x, t) is given by the Fokker-Planck equation:

∂P (X, t)
∂t

= − ∂

∂X
J(X, t), (24)

where J(X, t) = µ(X)P (X, t) + 1
2

∂
∂X
[B2(X)P (X, t)]. The stationary distribution satisfying

∂P (X, t)/∂t = 0 is

P (X) ∝ 1

B2(X)
exp [−∫ dX

2µ(X)
B2(X)

] ∶= P̃ (X), (25)

which gives a solution as a Boltzmann-type distribution if B is a constant. We will apply Eq. (25)
to determine the stationary distributions in the following sections.

B.2 PROOF OF THEOREM 1

Proof. By definition of the symmetry ℓ(u,w, x) = ℓ(λu,w/λ,x), we obtain its infinitesimal trans-
formation ℓ(u,w, x) = ℓ((1 + ϵ)u, (1 − ϵ)w/λ,x). Expanding this to first order in ϵ, we obtain

∑
i

ui
∂ℓ

∂ui
= ∑

j

wj
∂ℓ

∂wj
. (26)

The equations of motion are

dui

dt
= − ∂ℓ

∂ui
, (27)

dwj

dt
= − ∂ℓ

∂wj
. (28)
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Using Ito’s lemma, we can find the equations governing the evolutions of u2
i and w2

j :

du2
i

dt
= 2ui

dui

dt
+ (dui)2

dt
= −2ui

∂ℓ

∂ui
+ TCu

i ,

dw2
j

dt
= 2wj

dwj

dt
+
(dwj)2

dt
= −2wj

∂ℓ

∂wj
+ TCw

j , (29)

where Cu
i = Var[ ∂ℓ

∂ui
] and Cw

j = Var[ ∂ℓ
∂wj
]. With Eq. (26), we obtain

d

dt
(∣∣u∣∣2 − ∣∣w∣∣2) = −T (∑

j

Cw
j −∑

i

Cu
i ) = −T

⎛
⎝∑j

Var [ ∂ℓ

∂wj
] −∑

i

Var [ ∂ℓ
∂ui
]
⎞
⎠
. (30)

Due to the rescaling symmetry, the loss function can be considered as a function of the matrix uwT .
Here we define a new loss function as ℓ̃(uiwj) = ℓ(ui,wj). Hence, we have

∂ℓ

∂wj
= ∑

i

ui
∂ℓ̃

∂(uiwj)
,
∂ℓ

∂ui
= ∑

j

wj
∂ℓ̃

∂(uiwj)
. (31)

We can rewrite Eq. (30) into

d

dt
(∣∣u∣∣2 − ∣∣w∣∣2) = −T (uTC1u −wTC2w), , (32)

where

(C1)ij = E [∑
k

∂ℓ̃

∂(uiwk)
∂ℓ̃

∂(ujwk)
] −∑

k

E [ ∂ℓ̃

∂(uiwk)
]E [ ∂ℓ̃

∂(ujwk)
] ,

≡ E[ATA] −E[AT ]E[A] (33)

(C2)kl = E [∑
i

∂ℓ̃

∂(uiwk)
∂ℓ̃

∂(uiwl)
] −∑

i

E [ ∂ℓ̃

∂(uiwk)
]E [ ∂ℓ̃

∂(uiwl)
]

≡ E[AAT ] −E[A]E[AT ], (34)

where

(A)ik ≡
∂ℓ̃

∂(uiwk)
. (35)

The proof is thus complete.

B.3 PROOF OF THEOREM 2

Proof. This proof is based on the fact that if a certain condition is satisfied for all trajectories with
probability 1, this condition is satisfied by the stationary distribution of the dynamics with probabil-
ity 1.

Let us first consider the case of D > 1. We first show that any trajectory satisfies at least one of
the following five conditions: for any i, (i) vi → 0, (ii) L(θ) → 0, or (iii) for any k ≠ l, (u(k)i )

2 −
(u(l)i )

2 → 0.

The SDE for u(k)i is

du
(k)
i

dt
= −2 vi

u
(k)
i

(β1v − β2) + 2
vi

u
(k)
i

√
η(α1v2 − 2α2v + α3)

dW

dt
, (36)

where vi ∶= ∏D
k=1 u

(k)
i , and so v = ∑i vi. There exists rescaling symmetry between u

(k)
i and u

(l)
i for

k ≠ l. By the law of balance, we have

d

dt
[(u(k)i )

2 − (u(l)i )
2] = −T [(u(k)i )

2 − (u(l)i )
2]Var

⎡⎢⎢⎢⎢⎣

∂ℓ

∂(u(k)i u
(l)
i )

⎤⎥⎥⎥⎥⎦
, (37)
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where

Var

⎡⎢⎢⎢⎢⎣

∂ℓ

∂(u(k)i u
(l)
i )

⎤⎥⎥⎥⎥⎦
= ( vi

u
(k)
i u

(l)
i

)2(α1v
2 − 2α2v + α3) (38)

with vi/(u(k)i u
(l)
i ) = ∏s≠k,l u

(s)
i . In the long-time limit, (u(k)i )

2 converges to (u(l)i )
2 unless

Var [ ∂ℓ

∂(u(k)i u
(l)
i )
] = 0, which is equivalent to vi/(u(k)i u

(l)
i ) = 0 or α1v

2 − 2α2v + α3 = 0. These

two conditions correspond to conditions (i) and (ii). The latter is because α1v
2−2α2v+α3 = 0 takes

place if and only if v = α2/α1 and α2
2 − α1α3 = 0 together with L(θ) = 0. Therefore, at stationarity,

we must have conditions (i), (ii), or (iii).

Now, we prove that when (iii) holds, the condition 2-(b) in the theorem statement must hold: for
D = 1, (log ∣vi∣ − log ∣vj ∣) = c0 with sgn(vi) = sgn(vj). When (iii) holds, there are two situations.
First, if vi = 0, we have u

(
ik) = 0 for all k, and vi will stay 0 for the rest of the trajectory, which

corresponds to condition (i).

If vi ≠ 0, we have u
(k)
i ≠ 0 for all k. Therefore, the dynamics of vi is

dvi
dt
= −2∑

k

⎛
⎝

vi

u
(k)
i

⎞
⎠

2

(β1v−β2)+2∑
k

⎛
⎝

vi

u
(k)
i

⎞
⎠

2√
η(α1v2 − 2α2v + α3)

dW

dt
+4∑

k,l

⎛
⎝

v3i

(u(k)i u
(l)
i )2

⎞
⎠
η(α1v

2−2α2v+α3).

(39)
Comparing the dynamics of vi and vj for i ≠ j, we obtain

dvi/dt
∑k(vi/u

(k)
i )2

−
dvj/dt

∑k(vj/u
(k)
j )2

= 4
⎛
⎝
∑m,l v

3
i /(u

(m)
i u

(l)
i )

2

∑k(vi/u
(k)
i )2

−
∑m,l v

3
j /(u

(m)
j u

(l)
j )

2

∑k(vj/u
(k)
j )2

⎞
⎠
η(α1v

2 − 2α2v + α3)

= 4
⎛
⎝
vi
∑m,l v

2
i /(u

(m)
i u

(l)
i )

2

∑k(vi/u
(k)
i )2

− vj
∑m,l v

2
j /(u

(m)
j u

(l)
j )

2

∑k(vj/u
(k)
j )2

⎞
⎠
η(α1v

2 − 2α2v + α3).

(40)

By condition (iii), we have ∣u(0)i ∣ = ⋯ = ∣u
(D)
i ∣, i.e., (vi/u(k)i )

2 = (v2i )D/(D+1) and (vi/u(m)i u
(l)
i )

2 =
(v2i )(D−1)/(D+1).8 Therefore, we obtain

dvi/dt
(D + 1)(v2i )D/(D+1)

−
dvj/dt

(D + 1)(v2j )D/(D+1)
=
⎛
⎝
vi
D(v2i )(D−1)/(D+1)

2(v2i )D/(D+1)
− vj

D(v2j )(D−1)/(D+1)

2(v2j )D/(D+1)
⎞
⎠
η(α1v

2−2α2v+α3).

(41)
We first consider the case where vi and vj initially share the same sign (both positive or both nega-
tive). When D > 1, the left-hand side of Eq. (41) can be written as

1

1 −D
dv

2/(D+1)−1
i

dt
+4Dv

1−2/(D+1)
i η(α1v

2−2α2v+α3)−
1

1 −D
dv

2/(D+1)−1
j

dt
−4Dv

1−2/(D+1)
j η(α1v

2−2α2v+α3),
(42)

which follows from Ito’s lemma:

dv
2/(D+1)−1
i

dt
= ( 2

D + 1
− 1) v2/(D+1)−2i

dvi
dt
+ 2( 2

D + 1
− 1)( 2

D + 1
− 2)v2/(D+1)−3i

⎛
⎝∑k
( vi

u
(k)
i

)2
√
η(α1v2 − 2α2v + α3)

⎞
⎠

2

= ( 2

D + 1
− 1)v2/(D+1)−2i

dvi
dt
+ 4D(D − 1)v1−2/(D+1)i η(α1v

2 − 2α2v + α3). (43)

Substitute in Eq. (41), we obtain Eq. (42).

Now, we consider the right-hand side of Eq. (41), which is given by

2Dv
1−2/(D+1)
i η(α1v

2 − 2α2v + α3) − 2Dv
1−2/(D+1)
j η(α1v

2 − 2α2v + α3). (44)

8Here, we only consider the root on the positive real axis.
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Combining Eq. (42) and Eq. (44), we obtain

1

1 −D
dv

2/(D+1)−1
i

dt
− 1

1 −D
dv

2/(D+1)−1
j

dt
= −2D(v1−2/(D+1)i − v1−2/(D+1)j )η(α1v

2 − 2α2v + α3).
(45)

By defining zi = v2/(D+1)−1i , we can further simplify the dynamics:

d(zi − zj)
dt

= 2D(D − 1)( 1
zi
− 1

zj
)η(α1v

2 − 2α2v + α3)

= −2D(D − 1)
zi − zj
zizj

η(α1v
2 − 2α2v + α3). (46)

Hence,

zi(t) − zj(t) = exp [−∫ dt
2D(D − 1)

zizj
η(α1v

2 − 2α2v + α3)] . (47)

Therefore, if vi and vj initially have the same sign, they will decay to the same value in the long-
time limit t→∞, which gives condition 2-(b). When vi and vj initially have different signs, we can
write Eq. (41) as

d∣vi∣/dt
(D + 1)(∣vi∣2)D/(D+1)

+
d∣vj ∣/dt

(D + 1)(∣vj ∣2)D/(D+1)
=(∣vi∣

D(∣vi∣2)(D−1)/(D+1)

2(∣vi∣2)D/(D+1)
+ ∣vj ∣

D(∣vj ∣2)(D−1)/(D+1)

2(∣vj ∣2)D/(D+1)
)

× η(α1v
2 − 2α2v + α3). (48)

Hence, when D > 1, we simplify the equation with a similar procedure as

1

1 −D
d∣vi∣2/(D+1)−1

dt
+ 1

1 −D
d∣vj ∣2/(D+1)−1

dt
= −2D(∣vi∣1−2/(D+1)+∣vj ∣1−2/(D+1))η(α1v

2−2α2v+α3).
(49)

Defining zi = ∣vi∣2/(D+1)−1, we obtain

d(zi + zj)
dt

= 2D(D − 1)( 1
zi
+ 1

zj
)η(α1v

2 − 2α2v + α3)

= 2D(D − 1)
zi + zj
zizj

η(α1v
2 − 2α2v + α3), (50)

which implies

zi(t) + zj(t) = exp [∫ dt
2D(D − 1)

zizj
η(α1v

2 − 2α2v + α3)] . (51)

From this equation, we reach the conclusion that if vi and vj have different signs initially, one of
them converges to 0 in the long-time limit t → ∞, corresponding to condition 1 in the theorem
statement. Hence, for D > 1, at least one of the conditions is always satisfied at t→∞.

Now, we prove the theorem for D = 1, which is similar to the proof above. The law of balance gives

d

dt
[(u(1)i )

2 − (u(2)i )
2] = −T [(u(1)i )

2 − (u(2)i )
2]Var

⎡⎢⎢⎢⎢⎣

∂ℓ

∂(u(1)i u
(2)
i )

⎤⎥⎥⎥⎥⎦
. (52)

We can see that ∣u(1)i ∣ → ∣u
(2)
i ∣ takes place unless Var [ ∂ℓ

∂(u(1)i u
(2)
i )] = 0, which is equivalent to

L(θ) = 0. This corresponds to condition (ii). Hence, if condition (ii) is violated, we need to prove
condition (iii). In this sense, ∣u(1)i ∣ → ∣u

(2)
i ∣ occurs and Eq. (41) can be rewritten as

dvi/dt
∣vi∣

−
dvj/dt
∣vj ∣

= (sign(vi) − sign(vj))η(α1v
2 − 2α2v + α3). (53)

When vi and vj are both positive, we have

dvi/dt
vi

−
dvj/dt
vj

= 0. (54)
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With Ito’s lemma, we have

d log(vi)
dt

= dvi
vidt

− 2η(α1v
2 − 2α2v + α3). (55)

Therefore, Eq. (54) can be simplified to

d(log(vi) − log(vj))
dt

= 0, (56)

which indicates that all vi with the same sign will decay at the same rate. This differs from the case
of D > 2 where all vi decay to the same value. Similarly, we can prove the case where vi and vj are
both negative.

Now, we consider the case where vi is positive while vj is negative and rewrite Eq. (53) as

dvi/dt
vi

+
d(∣vj ∣)/dt
∣vj ∣

= 2η(α1v
2 − 2α2v + α3). (57)

Furthermore, we can derive the dynamics of vj with Ito’s lemma:

d log(∣vj ∣)
dt

= dvi
vidt

− 2η(α1v
2 − 2α2v + α3). (58)

Therefore, Eq. (57) takes the form of

d(log(vi) + log(∣vj ∣))
dt

= −2η(α1v
2 − 2α2v + α3). (59)

In the long-time limit, we can see log(vi∣vj ∣) decays to −∞, indicating that either vi or vj will decay
to 0. This corresponds to condition 1 in the theorem statement. Combining Eq. (56) and Eq. (59),
we conclude that all vi have the same sign as t → ∞, which indicates condition 2-(a) if conditions
in item 1 are all violated. The proof is thus complete.

B.4 STATIONARY DISTRIBUTION IN EQ. (13)

Following Eq. (39), we substitute u
(k)
i with v

1/D
i for arbitrary k and obtain

dvi
dt
= − 2(D + 1)∣vi∣2D/(D+1)(β1v − β2) + 2(D + 1)∣vi∣2D/(D+1)

√
η(α1v2 − 2α2v + α3)

dW

dt

+ 2(D + 1)Dv3i ∣vi∣−4/(D+1)η(α1v
2 − 2α2v + α3). (60)

With Eq. (47), we can see that for arbitrary i and j, vi will converge to vj in the long-time limit. In
this case, we have v = dvi for each i. Then, the SDE for v can be written as
dv

dt
= − 2(D + 1)d2/(D+1)−1∣v∣2D/(D+1)(β1v − β2) + 2(D + 1)d2/(D+1)−1∣v∣2D/(D+1)

√
η(α1v2 − 2α2v + α3)

dW

dt

+ 2(D + 1)Dd4/(D+1)−2v3∣v∣−4/(D+1)η(α1v
2 − 2α2v + α3). (61)

If v > 0, Eq. (61) becomes

dv

dt
= − 2(D + 1)d2/(D+1)−1v2D/(D+1)(β1v − β2) + 2(D + 1)d2/(D+1)−1v2D/(D+1)

√
η(α1v2 − 2α2v + α3)

dW

dt

+ 2(D + 1)Dd4/(D+1)−2v3−4/(D+1)η(α1v
2 − 2α2v + α3). (62)

Therefore, the stationary distribution of a general deep diagonal network is given by

p(v) ∝ 1

v3(1−1/(D+1))(α1v2 − 2α2v + α3)
exp(− 1

T
∫ dv

d1−2/(D+1)(β1v − β2)
(D + 1)v2D/(D+1)(α1v2 − 2α2v + α3)

) .

(63)

If v < 0, Eq. (61) becomes

d∣v∣
dt
= − 2(D + 1)d2/(D+1)−1∣v∣2D/(D+1)(β1∣v∣ + β2) − 2(D + 1)d2/(D+1)−1∣v∣2D/(D+1)

√
η(α1∣v∣2 + 2α2∣v∣ + α3)

dW

dt

+ 2(D + 1)Dd4/(D+1)−2∣v∣3−4/(D+1)η(α1∣v∣2 + 2α2∣v∣ + α3). (64)
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The stationary distribution of ∣v∣ is given by

p(∣v∣) ∝ 1

∣v∣3(1−1/(D+1))(α1∣v∣2 + 2α2∣v∣ + α3)
exp(− 1

T
∫ d∣v∣ d1−2/(D+1)(β1∣v∣ + β2)

(D + 1)∣v∣2D/(D+1)(α1∣v∣2 + 2α2∣v∣ + α3)
) .

(65)
Thus, we have obtained

p±(∣v∣) ∝
1

∣v∣3(1−1/(D+1))(α1∣v∣2 ∓ 2α2∣v∣ + α3)
exp(− 1

T
∫ d∣v∣ d1−2/(D+1)(β1∣v∣ ∓ β2)

(D + 1)∣v∣2D/(D+1)(α1∣v∣2 ∓ 2α2∣v∣ + α3)
) .

(66)
Especially when D = 1, the distribution function can be simplified as

p±(∣v∣) ∝
∣v∣±β2/2α3T−3/2

(α1∣v∣2 ∓ 2α2∣v∣ + α3)1±β2/4Tα3
exp(− 1

2T

α3β1 − α2β2

α3

√
∆

arctan
α1∣v∣ ∓ α2√

∆
) , (67)

where we have used the integral

∫ dv
β1v ∓ β2

α1v2 − 2α2v + α3
= α3β1 − α2β2

α3

√
∆

arctan
α1∣v∣ ∓ α2√

∆
±β2

α3
log(v)± β2

2α3
log(α1v

2−2α2v+α3).

(68)

B.5 ANALYSIS OF THE MAXIMUM PROBABILITY POINT

To investigate the existence of the maximum point given in Eq. (16), we treat T as a variable and
study whether (β1−10α2T )2+28α1T (β2−3α3T ) ∶= A in the square root is always positive or not.
When T < β2

3α3
= Tc/3, A is positive for arbitrary data. When T > β2

3α3
, we divide the discussion into

several cases. First, when α1α3 > 25
21
α2
2, there always exists a root for the expression A. Hence, we

find that

T =
−5α2β1 + 7α1β2 +

√
7
√
3α1α3β2

1 − 10α1α2β1β2 + 7α2
1β

2
2

2(21α1α3 − 25α2
2)

∶= T ∗ (69)

is a critical point. When Tc/3 < T < T ∗, there exists a solution to the maximum condition. When
T > T ∗, there is no solution to the maximum condition.

The second case is α2
2 < α1α3 < 25

21
α2
2. In this case, we need to further compare the value between

5α2β1 and 7α1β2. If 5α2β1 < 7α1β2, we have A > 0, which indicates that the maximum point
exists. If 5α2β1 > 7α1β2, we need to further check the value of minimum of A, which takes the
form of

minTA(T ) =
(25α2

2 − 21α1α3)β2
1 − (7α1β2 − 5α2β1)2

25α2
2 − 21α1α3

. (70)

If 7α1

5α2
< β1

β2
<

5α2+
√

25α2
2−21α1α3

3α3
, the minimum of A is always positive and the maximum

exists. However, if β1

β2
≥

5α2+
√

25α2
2−21α1α3

3α3
, there is always a critical learning rate T ∗. If

β1

β2
=

5α2+
√

25α2
2−21α1α3

3α3
, there is only one critical learning rate as Tc = 5α2β1−7α1β2

2(25α2
2−21α1α3) . When

Tc/3 < T < T ∗, there is a solution to the maximum condition, while there is no solution when

T > T ∗. If β1

β2
>

5α2+
√

25α2
2−21α1α3

3α3
, there are two critical points:

T1,2 =
−5α2β1 + 7α1β2 ∓

√
7
√
3α1α3β2

1 − 10α1α2β1β2 + 7α2
1β

2
2

2(21α1α3 − 25α2
2)

. (71)

For T < T1 and T > T2, there exists a solution to the maximum condition. For T1 < T < T2, there
is no solution to the maximum condition. The last case is α2

2 = α1α3 < 25
21
α2
2. In this sense, the

expression of A is simplified as β2
1 + 28α1β2T − 20α2β1T . Hence, when β1

β2
< 7α1

5α2
, there is no

critical learning rate and the maximum always exists. Nevertheless, when β1

β2
> 7α1

5α2
, there is always

a critical learning rate as T ∗ = β2
1

20α2β1−28α1β2
. When T < T ∗, there is a solution to the maximum

condition, while there is no solution when T > T ∗.
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without weight decay with weight decay

single layer (α1v
2 − 2α2v + α3)−1−

β1
2Tα1 α1(v − k)−2−

(β1+γ)
Tα1

non-interpolation vβ2/2α3T−3/2

(α1v2−2α2v+α3)1+β2/4Tα3

vS(β2−γ)/2α3λ−3/2

(α1v2−2α2v+α3)1+(β2−γ)/4Tα3

interpolation y = kx v−3/2+β1/2Tα1k

(v−k)2+β1/2Tα1k
v
−3/2+ 1

2Tα1k
(β1− γ

k
)

(v−k)2+
1

2Tα1k
(β1− γ

k
) exp(−

βγ
2Tα1

1
k(k−v))

Table 1: Summary of distributions p(v) in a depth-1 neural network. Here, we show the distribution
in the nontrivial subspace when the data x and y are positively correlated. The Θ(1) factors are
neglected for concision.

B.6 OTHER CASES FOR D = 1

The other cases are worth studying. For the interpolation case where the data is linear (y = kx for
some k), the stationary distribution is different and simpler. There exists a nontrivial fixed point for
∑i(u2

i −w2
i ): ∑j ujwj = α2

α1
, which is the global minimizer of L and also has a vanishing noise. It

is helpful to note the following relationships for the data distribution when it is linear:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = Var[x2],
α2 = kVar[x2] = kα1,

α3 = k2α1,

β1 = E[x2],
β2 = kE[x2] = kβ1.

(72)

Since the analysis of the Fokker-Planck equation is the same, we directly begin with the distribution
function in Eq. (14) for ui = −wi which is given by P (∣v∣) ∝ δ(∣v∣). Namely, the only possible
weights are ui = wi = 0, the same as the non-interpolation case. This is because the corresponding
stationary distribution is

P (∣v∣) ∝ 1

∣v∣2(∣v∣ + k)2
exp(− 1

2T
∫ d∣v∣

β1(∣v∣ + k) + α1
1
T
(∣v∣ + k)2

α1∣v∣(∣v∣ + k)2
)

∝ ∣v∣−
3
2−

β1
2Tα1k (∣v∣ + k)−2+

β1
2Tα1k . (73)

The integral of Eq. (73) with respect to ∣v∣ diverges at the origin due to the factor ∣v∣
3
2+

β1
2Tα1k .

For the case ui = wi, the stationary distribution is given from Eq. (14) as

P (v) ∝ 1

v2(v − k)2
exp(− 1

2T
∫ dv

β1(v − k) + α1T (v − k)2

α1v(v − k)2
)

∝ v
− 3

2+
β1

2Tα1k (v − k)−2−
β1

2Tα1k . (74)

Now, we consider the case of γ ≠ 0. In the non-interpolation regime, when ui = −wi, the stationary
distribution is still p(v) = δ(v). For the case of ui = wi, the stationary distribution is the same as
in Eq. (14) after replacing β with β′2 = β2 − γ. It still has a phase transition. The weight decay
has the effect of shifting β2 by −γ. In the interpolation regime, the stationary distribution is still
p(v) = δ(v) when ui = −wi. However, when ui = wi, the phase transition still exists since the
stationary distribution is

p(v) ∝ v−
3
2+θ2

(v − k)2+θ2
exp(− β1γ

2Tα1

1

k(k − v)
) , (75)

where θ2 = 1
2Tα1k

(β1 − γ
k
). The phase transition point is θ2 = 1/2, which is the same as the non-

interpolation one.

The last situation is rather special, which happens when ∆ = 0 but y ≠ kx: y = kx − c/x for some
c ≠ 0. In this case, the parameters α and β are the same as those given in Eq. (72) except for β2:

β2 = kE[x2] − kc = kβ1 − kc. (76)
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The corresponding stationary distribution is

P (∣v∣) ∝ ∣v∣− 3
2−ϕ2

(∣v∣ + k)2−ϕ2
exp( c

2Tα1

1

k(k + ∣v∣)
) , (77)

where ϕ2 = 1
2Tα1k

(β1 − c). Here, we see that the behavior of stationary distribution P (∣v∣) is

influenced by the sign of c. When c < 0, the integral of P (∣v∣) diverges due to the factor ∣v∣− 3
2−ϕ2 <

∣v∣−3/2 and Eq. (77) becomes δ(∣v∣) again. However, when c > 0, the integral of ∣v∣ may not diverge.
The critical point is 3

2
+ ϕ2 = 1 or equivalently: c = β1 + Tα1k. This is because when c < 0, the data

points are all distributed above the line y = kx. Hence, ui = −wi can only give a trivial solution.
However, if c > 0, there is the possibility to learn the negative slope k. When 0 < c < β1 + Tα1k,
the integral of P (∣v∣) still diverges and the distribution is equivalent to δ(∣v∣). Now, we consider the
case of ui = wi. The stationary distribution is

P (∣v∣) ∝ ∣v∣− 3
2+ϕ2

(∣v∣ − k)2+ϕ2
exp(− c

2Tα1

1

k − ∣v∣
) . (78)

It also contains a critical point: − 3
2
+ ϕ2 = −1, or equivalently, c = β1 − α1kT . There are two cases.

When c < 0, the probability density only has support for ∣v∣ > k since the gradient always pulls the
parameter ∣v∣ to the region ∣v∣ > k. Hence, the divergence at ∣v∣ = 0 is of no effect. When c > 0,
the probability density has support on 0 < ∣v∣ < k for the same reason. Therefore, if β1 > α1kT ,
there exists a critical point c = β1 − α1kT . When c > β1 − α1kT , the distribution function P (∣v∣)
becomes δ(∣v∣). When c < β1−α1kT , the integral of the distribution function is finite for 0 < ∣v∣ < k,
indicating the learning of the neural network. If β1 ≤ α1kT , there will be no criticality and P (∣v∣)
is always equivalent to δ(∣v∣). The effect of having weight decay can be similarly analyzed, and
the result can be systematically obtained if we replace β1 with β1 + γ/k for the case ui = −wi or
replacing β1 with β1 − γ/k for the case ui = wi.

B.7 SECOND-ORDER LAW OF BALANCE

Considering the modified loss function:

ℓtot = ℓ +
1

4
T ∣∣∇L∣∣2. (79)

In this case, the Langevin equations become

dwj = −
∂ℓ

∂wj
dt − 1

4
T
∂∣∣∇L∣∣2

∂wj
, (80)

dui = − −
∂ℓ

∂ui
dt − 1

4
T
∂∣∣∇L∣∣2

∂ui
. (81)

Hence, the modified SDEs of u2
i and w2

j can be rewritten as

du2
i

dt
= 2ui

dui

dt
+ (dui)2

dt
= −2ui

∂ℓ

∂ui
+ +TCu

i −
1

2
Tui∇ui ∣∇L∣2, (82)

dw2
j

dt
= 2wj

dwj

dt
+
(dwj)2

dt
= −2wj

∂ℓ

∂wj
+ TCw

j −
1

2
Twj∇wj ∣∇L∣2. (83)

In this section, we consider the effects brought by the last term in Eqs. (82) and (83). From the
infinitesimal transformation of the rescaling symmetry:

∑
j

wj
∂ℓ

∂wj
= ∑

i

ui
∂ℓ

∂ui
, (84)

we take the derivative of both sides of the equation and obtain

∂L

∂ui
+∑

j

uj
∂2L

∂ui∂uj
= ∑

j

wj
∂2L

∂ui∂wj
, (85)

∑
j

uj
∂2L

∂wi∂uj
= ∂L

∂wi
+∑

j

wj
∂2L

∂wi∂wj
, (86)
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where we take the expectation to ℓ at the same time. By substituting these equations into Eqs. (82)
and (83), we obtain

d∣∣u∣∣2

dt
− d∣∣w∣∣∣2

dt
= T∑

i

(Cu
i + (∇uiL)2) − T∑

j

(Cw
j + (∇wjL)2). (87)

Then following the procedure in Appendix. B.2, we can rewrite Eq. (87) as

d∣∣u∣∣2

dt
− d∣∣w∣∣2

dt
= −T (uTC1u + uTD1u −wTC2w −wTD2w)

= −T (uTE1u −wTE2w), (88)

where

(D1)ij = ∑
k

E [ ∂ℓ

∂(uiwk)
]E [ ∂ℓ

∂(ujwk)
] , (89)

(D2)kl = ∑
i

E [ ∂ℓ

∂(uiwk)
]E [ ∂ℓ

∂(uiwl)
] , (90)

(E1)ij = E [∑
k

∂ℓ

∂(uiwk)
∂ℓ

∂(ujwk)
] , (91)

(E2)kl = E [∑
i

∂ℓ

∂(uiwk)
∂ℓ

∂(uiwl)
] . (92)

For one-dimensional parameters u,w, Eq. (88) is reduced to

d

dt
(u2 −w2) = −E

⎡⎢⎢⎢⎢⎣
( ∂ℓ

∂(uw)
)
2⎤⎥⎥⎥⎥⎦
(u2 −w2). (93)

Therefore, we can see this loss modification increases the speed of convergence. Now, we move
to the stationary distribution of the parameter v. At the stationarity, if ui = −wi, we also have the
distribution P (v) = δ(v) like before. However, when ui = wi, we have

dv

dt
= −4v(β1v−β2)+4Tv(α1v

2−2α2v+α3)−4β2
1Tv(β1v−β2)(3β1v−β2)+4v

√
T (α1v2 − 2α2v + α3)

dW

dt
.

(94)
Hence, the stationary distribution becomes

P (v) ∝ vβ2/2α3T−3/2−β2
2/2α3

(α1v2 − 2α2v + α3)1+β2/4Tα3+K1
exp(−( 1

2T

α3β1 − α2β2

α3

√
∆

+K2)arctan
α1v − α2√

∆
) ,

(95)
where

K1 =
3α3β

2
1 − α1β

2
2

4α1α3
,

K2 =
3α2α3β

2
1 − 4α1α3β1β2 + α1α2β

2
2

2α1α3

√
∆

. (96)

From the expression above we can see K1 ≪ 1 + β2/4Tα3 and K2 ≪ (α3β1 − α2β2)/2Tα3

√
∆.

Hence, the effect of modification can only be seen in the term proportional to v. The phase transition
point is modified as

Tc =
β2

α3 + β2
2

. (97)

Compared with the previous result Tc = β2

α3
, we can see the effect of the loss modification is α3 →

α3 + β2
2 , or equivalently, Var[xy] → E[x2y2]. This effect can be seen from E1 and E2.
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