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ABSTRACT

Missing values in measurements for carbon dioxide emissions on drained peat-
lands remains an open challenge for training forecasting techniques to achieve net
zero. Existing methods struggle to model CO2 emissions to fill gaps at the field
scale, especially in nighttime measurements. We propose novel Physics-Informed
Autoencoders (PIAEs) for stochastic differential equations (SDEs), which com-
bine the generative capabilities of Autoencoders with the reliability of physical
models of Net Ecosystem Exchange (NEE) that quantify CO5 exchanges between
the atmosphere and major carbon pools. Our method integrates an SDE describing
the changes in NEE and associated uncertainties to fill gaps in the NEE measure-
ments from eddy covariance (EC) flux towers. We define this SDE as a Wiener
process with a deterministic drift term based on day and night time NEE physics
models, and stochastic noise term. In the PIAE model, various sensor measure-
ments are encoded into the latent space, and a set of deterministic decoders ap-
proximate the SDE parameters, and a probabilistic decoder predicts noise term.
These are then used to predict the drift in NEE and thereby the optimal NEE fore-
cast at the next time instance using the SDE. Finally, we use a loss function as a
weighted sum of the Mean Squared Error (MSE) and Maximum Mean Discrep-
ancy (MMD) between the measurements and the reconstructed samples and the
associated noise and drift. PIAE outperforms the current state-of-the-art Random
Forest Robust on predicting nighttime NEE measurements on various distribution-
based and data-fitting metrics. We present a significant improvement in capturing
temporal trends in the NEE at daily, weekly, monthly and quarterly scales.

1 INTRODUCTION

Greenhouse gas (GHG) emissions and removals can be monitored at various local and country-wide
levels. At the local scale, flux towers using eddy covariance (EC) systems measure Net Ecosystem
Exchange (NEE), Latent Heat (LE), and Sensible Heat (H) among other atmospheric scalars |[Zhu
et al.| (2022). However, measurements often contain gaps due to power shortages, device malfunc-
tions, or other issues, ranging from half-hourly to several months. Gap-filling methods are employed
to enhance data quality for forecasting and analysis. Additional information can be obtained by in-
corporating complementary measures from other tools, such as satellite observations through remote
sensing.

Initial gap-filling strategies leveraged flux covariance with meteorological variables and temporal
auto-correlation, but they struggle with gaps longer than 12 days Reichstein et al.| (2005). A com-
prehensive study by Moffat et al.| (2007)) evaluated 15 techniques across different gap scenarios,
finding that Non-Linear Regression (NLR), Look-Up Table (LUT), Marginal Distribution Sampling
(MDS), and the Semi-Parametric Model (SPM) performed well overall, though challenges remain
for gaps up to one month.

To address longer gaps, the Random Forest Robust (RFR) method was introduced, improving R2
values for NEE by 30% compared to MDS and reducing uncertainty by 70% |Zhu et al. (2022).
While effective for longer gaps, RFR struggles with nighttime measurements.
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Table 1: List of variables from the flux data Cumming et al.[(2020)

Variable Units Description

NEE wmol C m~2s—1 Net ecosystem CO4 exchange flux density before data
gap-filling

H W. m 2 Sensible heat flux density

Tau kg. m .52 Momentum flux

RH % Relative humidity at 2m

VPD HPa Vapor pressure deficit

R, W.m > Global radiation

Ustar m. s T Friction velocity

Tsoill °C Soil temperature at depth of 0.05m

Tsoil2 °C Soil temperature at depth of 0.05m

Tair °C Air temperature at 2m

This research aims to build on gap duration agnostic approaches, improving performance and inter-
pretability in modeling NEE measurements based on physical laws. We propose Physics-Informed
Autoencoders (PIAE), which integrate NEE physics models for day and night with a stochastic
differential equation (SDE) to predict NEE values and fill data gaps. Our method also provides fore-
casting capabilities and enhances performance on NEE gap-filling by accurately learning the NEE
distribution and associated parameters.

In summary, PIAE combines empirical nighttime and daytime NEE models with a noise model
White & Luo| (2008) to improve robustness and accuracy in filling gaps and forecasting NEE. Our
key contributions include:

¢ Introducing a stochastic differential equation for NEE measurements combining daytime
and nighttime models with Gaussian noise.

* Introducing an interpretable PIAE model that accurately forecasts the NEE at next time
stamps as a combination of deterministic drift and noise terms, guided by an SDE.

* Demonstrating that PIAE improves gap-filling robustness compared to state-of-the-art
methods, handling gaps from months to years.

» Showing significant improvements in NEE distribution learning validated by better Maxi-
mum Mean Discrepancy (MMD), Wasserstein distance, and Kullback-Leibler (KL) diver-
gence.

* Accurately predicting SDE parameters, enhancing interpretability.

The following sections introduce the flux tower dataset, detail the NEE models and associated noise,
and demonstrate the robustness of the PIAE gap-filling method and its forecasting capabilities. Fi-
nally, we discuss limitations and potential improvements.

2 FLUX TOWER DATA

The measurements we use for this research are collected from the flux tower situated in East Anglia,
UK |Cumming et al.| (2020), pictured in Figure E} It collects several meteorological measurements
including different flux entities such as NEE, sensible heat flux density (H) and latent heat (L) along
with air and soil temperatures and radiation as well as timestamps. The subset of the data used in
this research was collected for 8 years between 2012 and the end of 2019 every 30 minutes. Table/I]
describes the variables in the data used in experimentation in this research. As the same instrument
measure NEE and latent heat (L), if a value is missing for NEE this might be missing for L, thus
we do not consider L in the experiments. In addition, we also include time-based attributes for each
data point in the experimentation including season, hour, day of week, month and day of year.
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3 NET ECOSYSTEM EXCHANGE DYNAMICS: NIGHTTIME AND DAYTIME
MODELS

Since we consider physical measurements, we need to consider two aspects: the drift of NEE (deter-
ministic part) and the noise of measurements (assumed to be Gaussian) White & Luo|(2008)). Thus,
we introduce the dynamics of NEE over time ¢, modeled as a Stochastic Differential Equation (SDE)
incorporating a Wiener process. Firstly, we define a simpler drift of the NEE model as a function
of time-based on the Arrhenius-type law for NEE |[Lasslop et al.| (2010) using the temperature and
radiation models. We then introduce the diffusion coefficient to represent the noise and complete
the SDE. Finally, the SDE is incorporated into the PIAE architecture (discussed in Section ). The
small number of parameters of these dynamics makes it easier to use in the architecture.

3.1 THE NET ECOSYSTEM EXCHANGE NIGHTTIME AND DAYTIME MODELS

The Net Ecosystem Exchange (NEE) represents the net exchanges of CO5 between the ecosys-
tem and the atmosphere [Lasslop et al.| (2010); |Keenan et al.| (2019). NEE accounts for ecosystem
respiration, the release of CO5 from biological activity, and photosynthesis, the uptake of CO4 to
produce energy for a plant. Thus, NEE is decomposed as the difference between ecosystem res-
piration (Rec ;) and the Gross Primary Product (GPP). GPP represents photosynthesis, following
the convention that negative fluxes indicate the removal of CO4 from the atmosphere [Lasslop et al.
(2010), for every time ¢,

NEE; = Reco,t — GPP; 1

where Rec, ; and GPP, are parameterized by temperature and radiation values over time ¢. Since,
the SDE models NEE dynamics over time, time derivatives of temperature and radiation become
key components. The individual models for temperature and radiation are provided in the Appendix

sections[A.2]and [A.3]

3.1.1 NIGHTTIME ESTIMATE BASED ON THE MEASUREMENTS

At night, GPP is assumed to be zero (when global radiation Ry < 20W.m’2). In this context, the
measured NEE is essentially R, ;, which follows the temperature dependence of the Arrhenius-type
Lloyd & Taylor| (1994) :

1 1
Reco,t = Tni xp| B - 2
t = Tnight €»LP< 0 <Tref Ty Tars = To)) ()

where 7,55¢, in umol C m~2s71, is the base respiration at the reference temperature 7.y = 15°C,
Ey, in °C, is the temperature sensitivity that is fixed for the whole year, Ty ; is the air temperature
and Ty is the temperature constant and fixed as —46.02°C'|Lasslop et al.|(2010). For consistency of
the model, 7,544 is generally updated every 5 days using estimations based on 15-day windows of
historical data Reichstein et al.| (2005).

3.1.2 DAYTIME ESTIMATE INCLUDING TEMPERATURE SENSITIVITY RESPIRATION

During the day, GPP is assumed to be non-zero and therefore, the two components of NEE are
defined as:

1 1 OtﬁR t
eco,t = Tday exp( 0 <Tr8f —To  Ture —To ) ) 7 t Ry 5 ”

Plant respiration is approximately 25% higher during the day compared to the night Jones et al.
(2024)), and thus the base respiration value is computed separately for daytime as 744, which is up-
dated every 5 days using estimations based on 15-day windows of historical data. As soil respiration
is a very large component of R, ; and continue from night to day, the temperature sensitivity of the
respiration Ey might not change. Thus, Ej is estimated from the nighttime model and extrapolated to
the daytime ecosystem respiration model for consistency with the data. R ¢, in W.m ™2, is the global
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radiation. o, in umol C J™*, is the canopy light utilisation efficiency and 4'} in tmol C m~2s~1, is

the maximum CO5 uptake rate of the canopy at light saturation, updated over several weeks.

3.2 NET ECOSYSTEM EXCHANGE DYNAMICS AS A STOCHASTIC DIFFERENTIAL EQUATION

The NEE dynamics measured from flux tower are modeled as a Stochastic Differential Equation de-
scribed by a Wiener process|White & Luo|(2008));[Weng|(2011)), where the drift (deterministic part of
NEE dynamics) is determined by the NEE models (section [3.1)) and the diffusion coefficient (repre-
senting noise in NEE measurements) is calculated as the standard deviation of the distribution of the
error between the measurement data and the NEE models. This noise is proved to be Gaussian (see
Appendix [A.4). Equation [ describe the formulation of the SDE based on these two components.
NEE evolves over time, fluctuating around the drift 1, with a noise of the measurement distribution
o0:dW, (assumed to be Gaussian). The computation of the drift |, is derived from the decomposition
of NEE, equation [I] and is given by Equation [5| Further details on the drift computation and noise
assumption are provided in Appendix sections and

d NEE, = p.dt + o,dW, “4)
with the drift
dNEE,  d ATy, d R, ;
== - Reco Tair — — GPP(R :
M= =g = gy Reeot (Tane) =57 = Gp-GPP(Re0) =5,
d EO dTair t ATair t . t— tT z
7R T . — R L ] 2 mazx
AT, eco7t( alr,t) (Tair,t — T0)2 eco,ts dt m tday 51”( m tday )
d af?  dRgy _ REG dTur d
GPP R — g, — 5 1r, Rq,do’wn RO‘ *RQ )
ng t( g,t) (aRg,t I 5)2 ) dt Taih() dt + ( Sw + dsz) i~ mor m,t

(&)

The diffusion coefficient is constant and calculated separately for nighttime and daytime using the
flux data associated with both times.

For the notation of the PIAE, we will denote the SDE[]as
ft ((.L)) = M [Taint(w% Rg,t (w), kt (LLJ)], d NEEt = ft (CLJ) + Et (W), w € Q) (6)

where NEE; is the solution of SDE, k, refers to the parameters of the day and night time models
(Tnight/day> o, a and ), f; is the drift (also known as forcing term), €; the noise and w is a
realisation in the probability space of the experiments €.

4 PHYSICS INFORMED AUTOENCODER FOR NET ECOSYSTEM EXCHANGE
PREDICTION

We propose a Physics-Informed Auto-Encoder (PIAE) to address gaps in NEE measurements, uti-
lizing the SDE defined as a Wiener process (see equation Zhong & Meidani| (2023);|White & Luo
(2008). To fill these gaps, we estimate the NEE model parameters from measurements and then we
solve the forward problem to estimate NEE where gaps exist|White & Luo| (2008)) by integrating the
SDE defined in Section[3.2linto the PIAE architecture.

Our PIAE architecture, inspired by [Zhong & Meidani| (2023)), includes an Encoder module that
compresses input variables into a latent space, feeding the latent vector to six decoders to reconstruct
variables used as SDE components, NEE at the current time instance ¢ and the noise term. The
predicted variables and the noise term are fed to the SDE (N;) to compute the change in NEE (drift
term) %. This is then added to the reconstructed NEE to forecast the NEE for time instance ¢+ 1.

The loss term is comprised of a weighted sum of two cost functions. Mean Square Error (MSE)
is used to fit data point-wise to target NEE, , the reconstructed NEE; and the SDE components.
Maximum Mean Discrepancy (MMD) with Gaussian kernels {ker; } 2/, is used to fit the target distri-
bution and align the predicted noise term to the distribution of the target error distribution between

!vapor pressure deficit (VPD) limitation can also be taken into account [Lasslop et al.{(2010)
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measurements and the NEE model (from section [3.1). The encoder and decoders are fully con-
nected feed-forward neural network layers. The architecture is detailed in Figure[T|and Algorithm[I]
To streamline predictions, we use temperature and radiation measurements from flux data as ground
truth, bypassing the need to estimate individual components of the temperature and radiation models
(see Sections and[A.3]in the Appendix section).

d
ERg,t

4.1 DRIFT TERM f; AND ESTIMATING %Tair,t,
We describe our SDE as a stochastic process as drift term f; defined as:
dNEE,
. 7
7 @)

We calculate the ground-truth values for f; from the measurement data using the right-side first order
approximation of the derivative:

fy =

dNEE, _ NEE; — NEE,
dt At

(®)

Here, At is 30min since the flux data measurements were recorded at 30 minutes intervals. As
illustrated in Figure|l} we predict the values of the drift term f, based on the SDEE] of the predicted

NEEt as a function of the predicted parameters k:t and measurements for Ty ; and Ry ; as follows:

dNEE ~ ~
7 L = Ni(Tairt,Ra, ki) = £ 9)

The same method is applied to get ground-truth values of -2 7t Tairt and 4 7Ry ¢+ which are predicted by
the decoders in the architecture (discussed in Sectlon@

4.2 MODEL INPUTS AND TARGET VARIABLES

We define a set of input variables X; which contains the meteorological variables from table |1} We
also define a set of ground-truth variables to optimize the model outputs against. This is described
as Sy = {NEE, dTy, dRg, Ky, 1y, et }. To reiterate, k; is defined as the set of NEE model parameters
k = (Eo, Thight/day; @ 3) based on day or night time model of NEE being considered. Here ¢; is
the noise term based on the standard deviation of the error in NEE between the measurements and
the model. The use of the noise enables to consider the sensitivity regarding the initialization of the
SDE.

4.3 ENCODER

As described in the figure [T} the encoder £; maps the input variables in X; and estimated parameters
k; to the latent variable z, such that:

20D = £,(Xs (WD), k) (10)

where w/) represents the implicit realisation of the random event producing the measurements. This
compresses the meteorological measurements and associated parameters to a latent space.

4.4 DECODERS

e~

As seen in the ﬁgure six independent decoders denoted I%t79(z), I\TI:Z/Et’g(z), ﬁ)g(z), %Tair’tﬂg(z),

4 Re.t,0(2) and £ (z) have been implemented to approximate the components of the stochastic pro-
cess in S; respectively by constructing a mapping from the latent variable z to the input space.
Then, Inspired by the Physics-Informed Neural Networks for deterministic differential equations
Raissi et al.| (2017ajb), we incorporate the governing differential equation into the framework by
applying the differential operators in V; on the outputs of the decoders, to obtain an approximation
of the f in the governing SDE such that:

£.0(2) = Ni[Tarso(2), Rgra(2), o (2)] (11)
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The decoder for the noise term &;(z) predicts the mean and log variance of the noise, which are
then used to sample a noise value using the reparameterization trick as done in Variational Auto
Encoders. Differentiation in N; is done by the automatic differentiation technique [Paszke et al.
(2017), using the graph structure to compute gradients and allowing the PIAE model to learn during
training without manual gradient computation. These physics-informed estimates ftg(z) together

with the approximated response m( ), ﬁg\;/@( ) and the day and nighttime model parameters
kjw( ) constitute N reconstructed snapshots i.e. {S;(zU ))} 1, described in the equatlon. where

{NEE,(21)), K;(2(), du—t(Z(j)),Rg_’t( @)Y, £,(29)), &(20 )) N | are the reconstructed snapshots
associated to the decoders mentioned above.

{SiUN I = {NEB, (z9), Ky (21), Tuir (219), Rg 1 (200), £ (21), &(20))} 2
Ky(29) = iy g (29), Tar (29)) = Tair0.0(29)), Ry (29)) = Ry .9(29), (12)
f,(z9)) = ftﬂ(z(ﬁ))?NEEt(Z( ) = I@t,g(z(j))
Consequentially, the forecast NEE,; is calculated within the PIAE as:
NEE, ;1 = NEE, ¢(2) + f,0(2) + £1,0(2) (13)

4.5 LOSS FUNCTION

The loss term is comprised of a weighted sum of two cost functions. Mean Square Error (MSE) is
used to fit data point-wise to target NEE; 1, the reconstructed variables NEE;, d Ty, dRg, k; and the
drift term f;. For explanation purposes, assume these variables form the ground-truth set D; and

prediction set D; as:
Dy (w) = {NEE;(w), dTyiri(w), dRg(w), k¢ (w), fr(w)}
Dy (2) = {NEE;(2), Turs(2), Re(2), K (2), T (2)}

Maximum Mean Discrepancy (MMD) with Gaussian kernels {ker; }, is used to fit the target distri-
bution of NEE,;; and align the predicted noise term to the distribution of the target error distribution.

Here, we can assume a ground-truth set D» and prediction set D, as:

Dy(w) = {NEE;11(w), £1(w)}, Da(2) = {NEE11(2), &(2)} (15)

(14)

The final cost function is computed using the weighted sum of MSE and MMD
loss terms between the measurements {D;(w(?)) évzl,{Dg(w(J))}jyzl and predicted samples

{Dl(z(f) . {Dg(z(J)) . Thus the given loss function is
— M —
Lossmse = MSE(D1 (2), D1(w)), LosSmma = »  MMDyer, Neg(D2(2), D2 (w))
i=1 (16)

MMD; (P, Q) =Ky o [S(x,x/)] +Ey [s(y,y')] - QE%y[s(:C,y)]
Loss = warsg LOSSmse + Warar D LOSSmmd

where for z, 2’ in a data space S with probability distribution P and y, 3’ in the output space S with
probability distribution ). And wj;sg, wasrpp the weights associated to the losses.

After training, the decoders l%tﬂ(z), I\ﬁw(z), ftﬂ(z), %Tair,w(z) and %Rg,w(z),st,g(z) are
equipped to approximate accurate values of the stochastic process components k;(w), NEE,;(w),
c(zjtler +(w) ,thg +(w), £¢(w). The loss terms on NEE, ; ensures that the forecasting operation in
Equation [[3]1s an explicit part of the PIAE architecture and thereby gradient calculations.

5 EXPERIMENTS

We run our experiments for the night time flux data and corresponding model of NEE, which are
incorporated into the PIAE architecture according to the Equations[5]and[6} The experiments on the
day-time data and model can be found in Appendix section
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Algorithm 1 PIAE for SDE algorithm [Zhong & Meidani| (2023)

Initialisation:

Set the number of training steps 7,

batch size N,

Adam hyperparameters «, 51, B2,

Initial parameters for the encoder and the decoder ¢, 6y, Ongg, 0 a1, and 6 aR,
ker; kernels of MMD estimators )

fori=1,--- ,n;do
Sample N snapshots {S(wl j 1
for j = , N do

L) = 5(S(o.)(3) k),
NEE( (a)) (Z(J)) a]r(z(j)),Rg(Z(J) (z(a ), & (Z(j))
= Iﬁ“e(z(j)),];(z(j));famt, (Z(j))7Rgt(Z(J))7ft(z( ), & (29))

)

= [Ko(2)),NEE(2)), (1)), Ry(21)), Tuir (21), 8(zD)],
end for
Loss -
= wyseMSE({S(wW I | {S(wW )
+wyvp Y25 MMDier, Nee({S (W@} {S(wW )
9, ¢ < Adam (VLOS'S? 07 ¢7 «, ﬂl? 62)
end for

Generated
Snapshots

Derivatives Generated
LT napsho Snapshots

(=)

B Toir (20)
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variables
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Figure 1: Architecture of the PIAE for SDE in order to fill the gaps in the NEE measured by the flux
tower.

We compare our PIAE approach to three other conventional methods from the literature: RFR (Ran-
dom Forest Robust) (current state of the art) Motfat et al.| (2007), XGBoost (based on the same
configuration as RFR) and a basic Autoencoder. The computational costs of PAIE, RFR and XG-
Boost were similar computational costs on our machine, a laptop. The Autoencoder (AE) model
comprises of an Encoder architecture similar to the Encoder in the PIAE model. There are two
Decoders predicting parameters in k (Ey, 7, v, #) and the NEE values at next timestamp, similar in
number of parameters and layers as in PIAE model. The loss function is kept as MSE to align recon-
structed k; and the forecasted NEEtH since the AE has no stochastic component. We also compare
a version of our PIAE model where the decoder for NEEt( ) is replaced by NEE; 1 (z) and where

the noise term &;(z) is added to this value to predict the forecast value directly. Here, f;(z) is not
directly used in the forecast and therefore the drift component \V; only acts as a regularization during
training. We will label this as PIAE-RegOnly in our experiments herewith.
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5.1 PARAMETER ESTIMATION Ey, "night/day, @ 3

The flux tower data does not provide ground-truth values for the day and nighttime model parameters
Eo, Tnight /day, @, B introduced in the models section Therefore, we use REddyProc partitioning
algorithm to estimate from the flux tower measurements Wutzler et al.|(2018). REddyProc is a non-
linear regression method that estimates Eo, 7'ight /day, ¢, 8 based on the methodology of Reichstein
et al.| (2005) for the nighttime, and of [Lasslop et al.| (2010) for the daytime. In the work from
Lasslop et al., we have existing prior knowledge on the range of Ej the temperature sensitivity
(Ey € [50,400)), Tnight,/day the base respiration at reference temperature Ty.c ¢ (rday, Tnignt > 0), &
the canopy light utilisation efficiency (« € [0, 0.22)) and /3 the maximum CO5 uptake (5 € [0, 250))
Lasslop et al.| (2010).

We use two different methods for calculating the parameters for nighttime and daytime models. As
explained in Section the GPP value at night time is assumed to be zero. Therefore we can
assume NEE to be calculated directly from Re., (see Equation[2)). As such, for nighttime parameters
Eo and 759kt /day, We Tollow a method based on the flux partitioning described in [Reichstein et al.
(2005): we divide the nighttime data into groups of data points representing each night (for points
with radiation values greater than 10 W.m~2). For each group, we estimate values for Fy and
Tnight/day DY applying the Lloyd-and-Taylor model |Lloyd & Taylor (1994) by fitting to the scatter
of NEE and Ty ; using non-linear regression.

For the daytime model, because of the introduction of GPP in the equation of NEE (see Equations
and 3), we calculate Ey,, a, 3. We follow a method based on the flux partitioning defined by
Lasslop et. al |Lasslop et al.| (2010). Here, for each daytime data group, we use the same [
values estimated from the nighttime data of the respective day (previously calculated). We first
estimate values for o and 3 by fitting them to the scatter of GPP and R, using non-linear regression.
Consequentially, with the estimated values for Ey, o, 5 and NEE values for each daytime data group,
we use EquationE]to calculate 7,5t /4ay fOr each data point in the daytime data group.

5.2 TRAINING DATA CONFIGURATION

For both day and night time modes, we divide the flux measurements (and corresponding estimated
parameters) into training and testing datasets based on yearly data. The training dataset comprises
data from six years (2012 to 2017) with approximately 21000 data points while the testing dataset
comprises data from two years (2018, 2019) with approximately 5300 data points.

Table 2: Results for NEE prediction on Night time data and model experiments. The metrics MMD,
Wasstn (Wassertein Distance), KL (Kullback Leibler Divergence), and MAE (Mean Absolute Error)
are expressed as the lower the better. R2 (score) is expressed as higher the better.

Approach MMD Wasstn KL MAE R2

PIAE 0.025 £+ 0.003 0.140 + 0.018 0.069 = 0.012 0.851 +=0.01 0.73 + 0.002
PIAE-RegOnly 0.035 £+ 0.002 0.194 £ 0.01 0.110 £ 0.015 0.867 = 0.009 0.74 + 0.004
AE 0.047 £0.002 0.185 +0.008 0.210 £0.013 0.84 £0.001 0.74 + 0.001
RF 0.055 £0.001 0.237 £ 0.001 0.242 £ 0.006 0.901 +0.002 0.721 +£ 0.002
XGB 0.052+0 0.202 +£ 10717 0.214 £ 10717 0.988 + 10717 0.658 + 0

5.3 RESULTS

We evaluated the methods using three distribution-based metrics: Mean Maximum Discrepancy
(MMD), Wasserstein Distance, and Kullback-Leibler Divergence (KL), to assess how well each
technique captures the distribution of the target variables. Additionally, we measured performance
using mean absolute error (MAE) and R2 score to evaluate the fit to target variables.

Table 2] summarizes the results. Our PIAE method outperforms state-of-the-art tree-based methods
(RF and XGB) on both distribution metrics and MAE/R2 scores for nighttime data. At best, the PIAE
reports 34.6% lower KL score than RF and 45% lower an MMD score. The vanilla Autoencoder
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32 PIAE: NEE Monthly Scale (2018-09-01 tl 2018-09-30)

32 PIAE: NEE Quarterly Scale (2018-09-01 til 2018-11-30)
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Figure 2: Night time model results on test data across different time scales for each approach in the
experimentation. Row 1 represents results based on the PIAE model, Row 2 represents results from
the AE model, Row 3 represents results from the RF model, and Row 4 represents results from the
XGB model respectively. The sequences illustrated in the graphs are randomly sampled from the
test dataset and are kept consistent for each approach for fair validation. The actual timestamps of
the sequences are mentioned at the top of each graph.

also surpasses tree-based methods on both data fit and distribution based metrics. The physics-based
decoder architecture and loss function in PIAE allow it to exceed the vanilla auto-encoder, especially
on the distribution-based scores, with the incorporation of the associated SDE.

Figure 2] illustrates results across five time scales—daily, weekly, monthly, and quarterly—on the
nighttime test dataset. Randomly sampled sequences, consistent across methods for fair validation,
show that PIAE consistently captures NEE trends better than all other methods, highlighting the
benefit of the incorporated SDE. The AE approach also performs well compared to RF and XGB,
though it lags behind PIAE.

Consistent with Moffat et al.| (2007), our experiments confirm that Random Forest performs better
for daytime NEE modeling. For the daytime test dataset, PIAE showed similar performance to AE,
RF, and XGB across all metrics and can be found in Table d]in the Appendix section [A7]

PIAE and AE models have an advantage over RF and XGB in predicting parameters of the stochas-
tic differential equation using dedicated decoders. Tables [5] and [6] in the appendix, compare the
predictions for parameters Eo, 7ight/day, @, 3 for nighttime and daytime. Both models achieve
similar accuracy for daytime parameters, with AE slightly better at modeling nighttime parameters.
It is important to note that these parameters were estimated based on a non-linear regression of the
scatter of NEE, T, ¢ and R, values and were intended to guide the learning of the next NEE in
the decoder. Thus, PIAE and AE give good results with a similar MAE and a similar high R2. To
sum up, PIAE and AE offers a close estimation of the parameters of NEE dynamics modeled as a
stochastic differential equation.

6 DISCUSSION AND CONCLUSION

In this study, we introduced a Physics-Informed Autoencoder (PIAE) to address the forward problem
of Net Ecosystem Exchange (NEE) gap-filling, utilizing a Stochastic Differential Equation (SDE)
to enhance the quality of CO2 measurements from flux towers at the agricultural field scale. This
approach not only improves the data quality for training Net Ecosystem Exchange forecasting meth-
ods but also integrates deterministic models for nighttime and daytime Net Ecosystem Exchange
alongside stochastic components, such as Gaussian noise.

In Section [3] we outlined the Net Ecosystem Exchange models that account for both determinis-
tic phenomena and stochastic uncertainties in the measurements. Section [4] detailed our Physics-
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Informed Autoencoder, which effectively addresses the forward problem by estimating model pa-
rameters. In Section [5] we demonstrated that Physics-Informed Autoencoder outperforms state-
of-the-art methods by approximately 22% in R2 score and 52% in MMD score for nighttime Net
Ecosystem Exchange gaps and captures trends across daily to quarterly scales more effectively.

Our method’s effectiveness is further validated by comparing it with a standard Autoencoder (AE),
particularly for nighttime data, where Physics-Informed Autoencoder significantly outperforms Au-
toencoder due to the integration of the Stochastic Differential Equation. Additionally, Physics-
Informed Autoencoder performs gap-filling in a duration-agnostic manner, similar to the Random
Forest Robust (RFR) method, but with the added advantage of incorporating physical laws through
Stochastic Differential Equation. Furthermore, Physics-Informed Autoencoder offers forecasting
capabilities by predicting Net Ecosystem Exchange at the next time instance enhancing its utility
beyond gap-filling.

In conclusion, the use of Physics-Informed Autoencoder for Net Ecosystem Exchange stochastic
dynamics has successfully filled gaps ranging from half-hourly to yearly in Net Ecosystem Exchange
measurements from the flux tower in East Anglia fields, with satisfactory uncertainty levels for both
day and night. This method is ready for deployment and will serve as a robust example for Digital
Twin projects, such as Al4NetZero, aimed at climate change monitoring.
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