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Abstract

Influence functions offer a principled way to trace model predictions back to1

training data, but their use in deep learning is hampered by the need to invert a2

large, ill-conditioned Hessian matrix. Approximations such as Generalised Gauss-3

Newton (GGN) and Kronecker-Factored Approximate Curvature (K-FAC) have4

been proposed to make influence computation tractable, yet it remains unclear how5

the departure from exactness impacts data attribution performance. Critically, given6

the restricted regime in which influence functions are derived, it’s not necessarily7

clear better Hessian approximations should even lead to better data attribution8

performance. In this paper, we investigate the effect of Hessian approximation9

quality on influence-function attributions in a controlled classification setting. Our10

experiments show that better Hessian approximations consistently yield better influ-11

ence score quality, offering justification for recent research efforts towards that end.12

We further decompose the approximation steps for recent Hessian approximation13

methods and evaluate each step’s influence on attribution accuracy. Notably, the14

mismatch between K-FAC eigenvalues and GGN/EK-FAC eigenvalues accounts15

for the majority of the error and influence loss. These findings highlight which16

approximations are most critical, guiding future efforts to balance computational17

tractability and attribution accuracy.18

1 Introduction19

When attempting to understand the behaviour of a machine learning model, a common question is:20

how did the training examples contribute to a given model output? Which examples contributed the21

most? This can also be framed counterfactually: how would the predictions change if certain training22

examples were removed and the model was retrained? The goal of training–data attribution (TDA)23

methods [1] is to answer this question in a principled way.24

Among these methods, influence functions [2–6] provide an efficient tool by exploiting the local25

structure of the loss landscape around the learned parameters. The efficiency of influence functions26

makes them attractive: given per-sample gradients and second-order curvature information, they27

approximate the effect of removing a training data point without retraining. Influence functions28

have been applied successfully in large–scale deep learning. For example, they have been used in 5029

billion parameter Large Language Models (LLMs) to study generalisation [3], and in scalable data30

attribution for diffusion models [7].31

A key practical challenge in influence function implemenetation is the Hessian bottleneck [2]. Exact32

computation of the inverse Hessian-vector product is intractable for modern models because the33

Hessian is often large and ill-conditioned [3, 8]. To address this, two broad approximation regimes34

are used. Iterative methods such as conjugate gradient [9] or LiSSA [10] approximate inverse35

Hessian–vector products by using an iterative solver. These methods are asymptotically exact, but36
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often require thousands of steps for decent performance [2]. Structured approximations, on the other37

hand, replace the Hessian with stable and light-weight alternatives: the Generalised Gauss–Newton38

(GGN) [11], block–diagonal forms [12], and Kronecker–factored variants such as Kronecker-Factored39

Approximate Curvature (K-FAC) [13], usually with a separate eigenvalue correction step (EK-FAC)40

[14] to improve spectral fidelity. However, some of the approximations K-FAC and EK-FAC make41

are quite specific to the optimisation setting, in which they have been shown to have other desirable42

properties that lead to good down-stream performance, beyond the original goal of being tractable43

[15, 16].44

Considerable effort in both the optimisation and data attribution communities has recently gone45

into developing more faithful curvature approximations [14, 17–20]. However, it is not obvious46

whether such efforts are beneficial for influence estimation: influence functions may be robust to47

some approximation errors, while they can be substantially sensitive to certain curvature information.48

Clarifying when and by how much better Hessian approximations improve influence function-based49

attribution would help determine whether the community should continue to invest in developing50

higher–fidelity curvature models, or whether the gains are marginal relative to their cost.51

Core contributions. This work first decomposes the three approximation layers of K-FAC and52

examines the literature on when each approximation holds exactly versus when it introduces error.53

We then design controlled experiments to empirically investigate three questions:54

1. Does higher-fidelity Hessian approximation improve influence scores?55

2. Which approximation layer contributes most to the error, and what causes it?56

3. Which approximation error is influence fidelity most sensitive to?57

2 Related work58

Fragility of influence functions. Basu et al. [21] show that influence estimates can misalign with59

leave-one-out retraining and are sensitive to model depth, regularisation, and query choice. However,60

Epifano et al. [22] attribute part of the effect to evaluation design and claim that regularisation alone61

is insufficient. Bae et al. [8] isolates warm starts, damping/proximity, non-convergence, linearisation,62

and solver terms, and argues that practical estimates often resemble a Proximal Bregman response63

function; solver-induced error remains underexplored. Group deletions show high rank correlation64

but possibly large absolute errors, clarifying when correlation is informative [23]. Ye et al. [24]65

propose an alternative influence function formulation that leverages flat validation minima to improve66

robustness. Recent work studies the LiSSA and EK-FAC approximation error with a focus on67

mislabel detection [25]. To our knowledge, the relationship between curvature-approximation error68

(Hessian→GGN, block-diagonal, K-FAC/EK-FAC) and attribution quality across training regimes,69

depths, and widths has not been quantified. We provide a systematic evaluation in this work.70

Hessian approximations for influence functions. Early implementations used iterative IHVP71

solvers, notably LiSSA [2, 10]. At larger scales, EK-FAC has been used to make influence estimates72

tractable [3, 14]. Two directions follow: faster and more stable iterative solvers, and higher-fidelity73

structured curvature (e.g., GGN/K-FAC variants). ASTRA [20] combines EK-FAC preconditioning74

with stochastic Neumann iterations to approximate damped-GGN iHVPs; relative to block-diagonal75

EK-FAC estimators it reduces iterations and improves attribution accuracy across architectures. These76

results motivate our controlled study of how GGN substitution, block-diagonality, and Kronecker77

factorisation trade off computational cost and attribution fidelity.78

3 Background79

We first establish the mathematical framework for influence functions and then detail the approxima-80

tion layers that make them computationally tractable.81

3.1 Data attribution with influence functions82

Consider a dataset D = {zi}Ni=1 where each zi = (xi, yi) represents an input–output pair in83

supervised learning; here, xi ∈ Rdx and yi ∈ Rdy . We fit parameters θ⋆ ∈ RD by minimising the84
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empirical risk:85

θ⋆ := argmin
θ∈RD

J(θ) = argmin
θ∈RD

1

N

N∑
i=1

L(zi, θ). (1)

We evaluate model behaviour at a query zq with a measurement m(zq, θ) (e.g., a loss or score). For a86

training point zm ∈ D, an attribution method τ(zq, zm,D) quantifies how zm affects m(zq, θ
⋆). To87

study this effect, introduce a scalar ϵ that up- or down-weights zm and define the response function88

r(ϵ) := arg min
θ∈RD

J(θ) + ϵ
N L(zm, θ), (2)

with θ⋆ := r(0) and H := ∇2
θJ(θ

⋆).89

The associated first-order stationarity condition along the path ϵ 7→ r(ϵ) is90

0 = ∇θJ(r(ϵ)) + ϵ
N ∇θL(zm, r(ϵ)). (3)

Differentiating this identity with respect to ϵ and evaluating at (θ⋆, 0) yields91

dr

dϵ

∣∣∣∣
ϵ=0

= −H−1 1

N
∇θL(zm, θ⋆), r(ϵ) ≈ θ⋆ − ϵH−1 1

N
∇θL(zm, θ⋆). (4)

Setting ϵ = −1 corresponds to removing zm from the objective and gives the first-order parameter92

change93

θ⋆(D \ {zm})− θ⋆ ≈ 1

N
H−1 ∇θL(zm, θ⋆). (5)

Applying the chain rule to the query metric then yields the classical influence function94

τIF(zq, zm,D) := ∇θm(zq, θ
⋆)⊤ H−1 ∇θL(zm, θ⋆). (6)

This provides a proxy for full retraining using only gradients at θ⋆ and inverse Hessian–vector95

products.96

3.2 Three approximation layers of K-FAC for influence estimation97

To make influence computation tractable at scale, K-FAC [13] and EK-FAC [14] are the key structured98

methods we use to approximate the Hessian that appears in Equation 6. This section states the99

equations we evaluate and decomposes the approximation into three layers: (i) Implicit model100

linearisation, (ii) block-diagonal approximation, and (iii) Pre-post activation approximation (with and101

without eigenvalue correction).102

3.2.1 Implicit model linearisation103

The first step uses the Generalised Gauss–Newton (GGN) matrix [11] as a positive-semidefinite104

curvature proxy for the full Hessian that removes (linearises) network curvature and only focuses on105

output-space curvature. The substitution avoids unstable second-derivative terms and aims to keep106

inversion operations well-conditioned.107

Formulation. Let ui(θ) = f(xi; θ) ∈ Rdy , Ji(θ) = ∇θui(θ), gi(θ) = ∇uϕ(ui(θ), yi), and108

H
(u)
i (θ) = ∇2

uϕ(ui(θ), yi). The empirical Hessian admits109

H(θ) =
1

N

N∑
i=1

J⊤
i H

(u)
i Ji +

1

N

N∑
i=1

dy∑
k=1

[gi]k ∇2
θui,k(θ) = G(θ) + R(θ),

where G is the GGN term and R is the residual collecting second-order parameter non-linearities.110

For exponential-family likelihoods, G coincides with the Fisher information matrix [11, 26].111

Near-optimal convergence. First, when parameters θ yield near-optimal predictions for all training112

examples, the gradient of the loss with respect to outputs vanishes: gi(θ) ≈ 0 for all i. In such113

cases, the residual R(θ) becomes negligible irrespective of the model’s intrinsic curvature, yielding114

H(θ) ≈ G(θ). This condition arises specifically even at local minima where ∇θJ (θ) = 0.115
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Piecewise-linear activations. Second, for networks with piecewise-linear activation functions116

(e.g., ReLU), the Hessians of individual output components ∇2
θui,k(θ) vanish almost everywhere in117

parameter space [27]. This occurs because second derivatives are zero in regions where activation118

patterns remain constant, causing R(θ) = 0 except on measure-zero sets where activation boundaries119

intersect. Consequently, G(θ) exactly equals H(θ) in open neighbourhoods where activation patterns120

are stable.121

Neural Tangent Kernel regime. Third, under the Neural Tangent Kernel (NTK) regime [28],122

where network widths are large relative to data complexity, the model output ui(θ) remains closely123

approximated by its first-order Taylor expansion around initial parameters θ0 throughout optimisation124

[29]. This local linearity implies ∇2
θui,k(θ) ≈ 0 along the optimisation trajectory, rendering R(θ)125

negligible and ensuring H(θ) ≈ G(θ) during training. This is subject to some assumptions in126

initialisation of parameters (unit Gaussian) and a sufficiently small learning rate.127

Remark. One important remark is that the residual R(θ) is not necessarily positive semi-definite128

and may contribute both positive and negative curvature to H(θ) [11]. Discarding R(θ) thus removes129

potentially useful curvature information beyond merely suppressing instability. The optimisation130

literature often prioritises G(θ) due to its numerical stability and since the curvature coming from131

output curvature Hi
(u)(θ) is more important than those coming from ∇2

θui,k in R(θ) over the training132

trajectory. This preference does not imply that R(θ) is universally irrelevant in contexts requiring133

full Hessian fidelity, such as in influence functions.134

3.2.2 Block-diagonal approximation135

This second approximation step masks cross-layer curvature and focuses on layer-wise (or group-wise)136

blocks so that inversion decouples across blocks, encouraging parallelism and memory efficiency.137

Formulation. Partition parameters as θ = (θ1, . . . , θL) and approximate138

G(θ) ≈ diag(G1, . . . ,GL), G(θ)−1 ≈ diag(G−1
1 , . . . ,G−1

L ).

Computational advantages. Block-diagonal curvature is widely used [13, 30] because the inverse139

of a block-diagonal matrix decomposes into the inverses of its blocks: if G = diag(G1, . . . ,GL)140

then G−1 = diag(G−1
1 , . . . ,G−1

L ). This structural property enables parallel computation of each141

block’s inverse, dramatically reducing computational cost from O(D3) to O(
∑

i d
3
i ) where di is the142

dimension of block i. In the optimisation literature, studies of block-diagonal methods demonstrate143

that simply ignoring off-block cross-terms can even yield superior convergence and generalisation144

compared to both full GGN and first-order optimisers, while requiring substantially less memory than145

full-matrix approaches [31].146

Cross-layer coupling interpretation. To make precise what is discarded when one retains only147

the diagonal blocks, partition parameters by groups (e.g., layers) θ = (θ1, . . . , θL) and write the148

output Jacobian as J = [J1 · · · JL ] with Ji := ∂u/∂θi ∈ Rdy×ni . For a convex-in-output loss with149

per-example output Hessian H(u), the GGN is G = 1
N

∑N
i=1 J

⊤H(u)J, which decomposes into a150

block matrix G =
[
Gij

]L
i,j=1

with cross–block couplings151

Gij =
1

N

N∑
k=1

Ji(xk)
⊤ H

(u)
k Jj(xk) (i ̸= j).

These off–diagonal terms quantify, in an H(u)–weighted inner product, how similarly two parameter152

blocks move the model’s outputs: under squared loss, H(u) = I and Gij reduces to the Gram overlap153

N−1
∑

k Ji(xk)
⊤Jj(xk), so cross–block magnitude is driven by the alignment of the two blocks’154

output–sensitivities.155

Justification for block-diagonality. Classical analyses of one–hidden–layer MLPs reuse the same156

result to justify the block-diagonal structure of Hessian: [32] derives explicit off–diagonal formulas157

and shows that with a cross–entropy (CE) loss the factors Pθ(y|x)
(
1 − Pθ(y|x)

)
multiply those158
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couplings, pushing them toward zero during training and yielding an (approximately) block–diagonal159

Hessian across units, and by contrast, with mean–squared error (MSE) the same cancellation need not160

occur, so off–diagonals generally persist [33]. More recently, a finite–sample–to–asymptotic theory at161

random initialisation proves that in linear models and in one–hidden–layer networks (under both MSE162

and CE) the ratio of off–diagonal to diagonal block norms vanishes as the number of outputs/classes163

C grows (with rates depending on the block), providing a justification for block–diagonal curvature164

when C is large, as in modern LLMs [34].165

Remark. These findings, however, are based solely on experiments with one-hidden-layer MLPs,166

their extension to deeper architectures requires further investigation. For deeper networks the167

block–diagonal assumption remains an approximation whose accuracy depends on how orthogonal168

(in the H(u)–metric) the per–block output Jacobians become in practice, a question we will probe169

empirically in the next chapter, particularly in the context of influence functions where curvature170

information might be important.171

3.2.3 Pre-post activation approximation172

The last approximation, K-FAC, uses a separable Kronecker structure to reduce matrix size and173

enable fast inversion for each curvature block.174

Formulation. For layer ℓ with bias-augmented inputs āℓ−1 ∈ RM+1 and pre-activation gradients175

Dsℓ ∈ RP , K-FAC assumes āℓ−1 and Dsℓ are independent and approximates the GGN/Fisher block176

as177

Gℓ ≈ Aℓ−1 ⊗ Sℓ, Aℓ−1 := E[āℓ−1ā
⊤
ℓ−1], Sℓ := E[DsℓDs⊤ℓ ],

with (Aℓ−1⊗Sℓ)
−1 = A−1

ℓ−1⊗S−1
ℓ .178

Remark. By assuming independence between āℓ−1 and Dsℓ, K-FAC loses the cross-covariance179

structure that couples activations and gradients on individual examples. As a result, it cannot represent180

effects such as parameters that rarely activate also rarely receiving large gradients, or input patterns181

that jointly induce high activations and large error signals. This missing information can be substantial182

in non-linear networks where the coupling between āℓ−1 and Dsℓ helps characterise local geometry.183

A spectral view makes the same point: the exact GGN block admits184

Gℓ = UΛU⊤, (7)

whereas K-FAC uses the Kronecker-factor surrogate185

Aℓ−1 ⊗ Sℓ = (UAΛAU
⊤
A)⊗ (USΛSU

⊤
S ) = (UA ⊗US) (ΛA ⊗ΛS) (UA ⊗US)

⊤. (8)

Although the update rotates into the Kronecker eigenbasis UA ⊗US , its rescaling uses only products186

of marginal spectra ΛA ⊗ΛS . These products λA
i λ

S
j are generally not the true variances of the full187

block along (UA⊗US)’s directions, leading to systematic curvature misestimation: marginal second188

moments are preserved, but cross-covariances are discarded, which distorts the spectrum of the true189

GGN block.190

3.2.4 Eigenvalue correction191

Instead, we can keep K-FAC’s Kronecker-factored eigenbasis while correcting the per-direction192

scaling to better match the empirical curvature.193

Formulation. Write Aℓ−1 = UAΛAU
⊤
A and Sℓ = USΛSU

⊤
S , and let U := UA ⊗ US . If gℓ194

denotes the (vectorised) per-layer gradient, EK-FAC sets195

s⋆k := E
[(
U⊤gℓ

)2
k

]
, S⋆ := diag(s⋆1, . . . , s

⋆
K), Gℓ ≈ US⋆ U⊤.

Remark. However, EK-FAC does not correct the direction of the approximation: it retains K-196

FAC’s Kronecker-factored eigenbasis UA ⊗US . The update only corrects per-coordinate scaling197

by matching the Fisher’s diagonal in that basis, so any genuine coupling between coordinates, i.e.,198

curvature that appears as off-diagonal mass in Kronecker eigenbasis coordinates remains unmodelled.199

Thus, when the true block Gℓ has principal directions that are not well captured by a separable200

Kronecker structure, eigenvalue correction alone cannot recover those interactions as it rescales201

coordinates rather than also rotating them.202
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4 Investigating the approximation error & influence score relationship203

4.1 Experimental setup204

Objective. To understand how each approximation layer impacts influence quality, we need experi-205

mental settings where the approximation errors vary systematically. In Section 3.2 we identified that206

each approximation layer—GGN substitution, block-diagonalisation, and Kronecker factorisation—207

introduces different error types that depend on the model’s curvature properties. We therefore design208

experiments along three dimensions that naturally modulate these curvature characteristics: (i) train-209

ing duration, where early training exhibits large residual terms that diminish near convergence; (ii)210

network depth, which amplifies cross-layer coupling and non-linear interactions between parameters;211

and (iii) network width, which affects the conditioning and spectral properties of individual layer212

blocks. These controlled variations allow us to isolate when each approximation breaks down and213

quantify its impact on attribution fidelity.214

Dataset. We use the Digits dataset [35], which contains n = 1,797 greyscale images of handwritten215

digits (0–9). Each 8 × 8 image is converted into a 64-dimensional vector. We randomly split the216

data into ntrain = 1,617 training samples (90%) and ntest = 179 test samples, maintaining equal217

representation of all digit classes.218

Model architecture. Due to computational constraints, we restrict our experiments to multi-layer219

perceptrons (MLPs). The specific training settings are specified in the hyperparameter settings section220

below, and the limitations of this choice are discussed in the Section 5. We use Tanh activation221

functions throughout, which ensure non-convexity and that the residual term exists, allowing us to222

isolate the effects of training.223

Matrix inversion and numerical stability. As shown in Section 3.2, the Hessian is often ill-224

conditioned even for simple models. To address invertibility, one option is to add a Tikhonov damping225

term λ to the diagonal of each matrix. For this experiment, this approach biases curvature differences226

between methods, which makes the comparison unfair. We therefore adopt a second approach:227

pseudo-inverse computation. The conventional choice is the Moore–Penrose pseudo-inverse via SVD228

[36]. However, we instead use an eigendecomposition-based pseudo-inverse [37] for two reasons:229

(i) the decomposition exists for square symmetric matrices, which is the case for the Hessian; (ii)230

we often want to regularise the matrix to be positive definite, which is simpler with eigenvalue231

adjustments than with SVD.232

Formally, for a symmetric matrix H = QΛQ⊤, the pseudo-inverse is H† = QΛ†Q⊤ with diagonal233

entries [Λ†]ii = λ−1
i 1{|λi| > ϵ} and zero otherwise. We set ϵ = 10−4 and use no damping in this234

section. Sensitivity to ϵ is potential future work and may be relevant for interpreting the results; see235

Section 5.236

Evaluation metrics. We employ two complementary metrics to assess both the quality of influence237

attributions and the fidelity of Hessian approximations:238

• Linear cata-modelling score (LDS): Following the framework described in Appendix A, we239

use the expected leave-some-out evaluation with subset fraction α.240

• Approximation error: We cannot reliably use H−1 as a reference because H is typically singular241

or nearly singular in our setting; instead we assess whether HĤ−1v ≈ v. For a set of vectors242

{vi}Ni=1 (using training data gradients), we compute:243

Approximation Error =
1

N

N∑
i=1

∥H · Ĥ−1vi − vi∥2

∥vi∥2
(9)

4.2 Results244

We now present our empirical findings addressing the three core questions posed in the introduction,245

examining the relationship between approximation fidelity and attribution quality across our controlled246

experimental conditions.247

6



(1) Does a better Hessian approximation improve influence scores?248

Across all settings we find a consistent inverse relationship between curvature approximation error249

and influence fidelity: lower error corresponds to higher LDS, with the method ordering Hessian ≳250

GGN > Block-GGN > EK-FAC > K-FAC visible in the top (LDS) and bottom (error) panels of251

Figure 1–3. The slope of this association depends on training stage and architecture. Along training,252

moving from 10 to 100 to 1000 epochs tightens the cloud of method points in Figure 1: approximation253

error decreases while LDS increases and then saturates, and the methods cluster near convergence,254

indicating diminishing marginal LDS gains from additional curvature fidelity late in training. With255

architecture, increasing depth lowers LDS and raises approximation error for all methods (Figure 2),256

whereas width produces smaller movements with the same ordering (Figure 3).257

Two diagnostics account for the stage- and architecture-dependence: cross-layer coupling (off-258

block mass) decreases mildly over training and increases strongly with depth (Appendix Figure 6),259

so the LDS–error slope is flatter at late epochs (weaker cross-block terms) and steeper in deeper260

networks (stronger cross-block terms). In addition, Kronecker spectral fidelity improves with261

training and worsens with depth, with EK-FAC showing consistently higher eigenvalue overlap than262

K-FAC (Appendix Figure 7) while the two share the same Kronecker eigenbasis and both exhibit263

declining basis alignment with depth (Appendix Figure 8). These properties explain why EK-FAC264

sits consistently above K-FAC in LDS yet remains below unfactorised Block-GGN, and why depth265

amplifies between-method gaps whereas width does not.266
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Epoch = 10
Hessian → GGN 3.52 -71.59
GGN → B-GGN 6.70 -13.12
B-GGN → EK-FAC 29.58 2.29
EK-FAC → K-FAC 60.20 -17.58

Epoch = 100
Hessian → GGN 2.59 -19.35
GGN → B-GGN 12.55 -26.25
B-GGN → EK-FAC 26.80 -30.39
EK-FAC → K-FAC 58.06 -24.01

Epoch = 1,000
Hessian → GGN 0.04 -5.19
GGN → B-GGN 8.25 -46.95
B-GGN → EK-FAC 50.74 -8.67
EK-FAC → K-FAC 40.97 -39.19

Figure 1: Left: Attribution quality vs. Hessian approximation error - Training duration. LDS
and approximation error (Equation 9); for epoch {10, 100, 1,000}. Setting is fixed at depth = 8 and
width = 16; other hyperparameters follow Table 1. Right: Error decomposition table: incremental
shares along the curvature-approximation path. ∆ES% denotes Error Share in percentage in the
Hessian→K-FAC path and ∆LDS% denotes the total Hessian→K-FAC LDS percentage change
across steps. B-GGN denotes Block-Diagonal GGN.

(2) Which approximation layer contributes most to the error, and what caused it?267

The dominant contributor to the total Hessian→K-FAC error gap is the within-block Kronecker268

factorisation. In the epoch sweep (Figure 1, right tables), the incremental EK-FAC→K-FAC step269

accounts for ∼60.2% of the gap at 10 epochs, ∼58.1% at 100 epochs, and ∼41.0% at 1000 epochs.270

Across depth (Figure 2, right), the same step remains the largest single share (∼64.8% at depth 1,271

∼ 52.0% at depth 4, ∼ 58.1% at depth 8). For width (Figure 3, right), a local exception occurs272

at 64 units where the Block-GGN→EK-FAC share (∼ 39.2%) slightly exceeds EK-FAC→K-FAC273

(∼ 35.4%), but taken together the two factorisation steps explain the majority of the gap at every274

width (about 70–78%).275

Further diagonstic plots also clarify the mechanism. EK-FAC and K-FAC operate in the same276

Kronecker eigenbasis (identical basis-overlap curves; Appendix Figure 8), so moving from EK-FAC277

to K-FAC primarily introduces spectral mis-scaling rather than basis error; correspondingly EK-FAC278
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achieves higher eigenvalue overlap than K-FAC (Appendix Figure 7) but cannot close the gap279

to unfactorised blocks because the basis itself diverges from the true block basis as depth grows280

(Appendix Figure 8). The block-diagonal step (GGN→Block-GGN) contributes a smaller but281

increasing share with depth (Figure 2, right), consistent with the rise of cross-layer mass in Appendix282

Figure 6. By contrast, the GGN substitution (Hessian→GGN) contributes little to the total error283

budget except early in training (Figure 1, right), which aligns with the visual compression of method284

differences near convergence in Figure 1.285

(3) Which approximation error is influence fidelity most sensitive to?286

Sensitivity of the relationship between approximation error and influence fidelity is also stage- and287

architecture-dependent. Early in training, influence fidelity is most sensitive to the Hessian→GGN288

substitution: at 10 epochs a small error share (≈3.5%) coincides with a large LDS drop (≈−71.6 pp;289

Figure 1, right), whereas by 100 and 1000 epochs both the share and the LDS impact are much290

smaller (Figure 1). With increasing depth, sensitivity shifts toward block-diagonality: removing291

cross-block terms yields larger LDS losses per unit of error as off-block mass increases (compare,292

e.g., GGN→Block-GGN at depth 1 vs. 8 in Figure 2, right; see also Appendix Figure 6). Within293

blocks, factorisation produces the largest absolute error shares but only moderate per-share LDS294

penalties: EK-FAC’s spectral correction improves LDS relative to K-FAC (Figure 1–3), yet both295

share the same eigenbasis and therefore cannot recover LDS lost to basis mismatch when depth is296

large (Appendix 8, with the associated eigenvalue trends in Appendix 7). Width manipulations induce297

comparatively small and smooth changes; at width 64 the Block-GGN→EK-FAC share slightly298

exceeds EK-FAC→K-FAC (3, right), but this does not alter the qualitative ordering.299
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LDS Scores and Approximation Errors vs. Network Depth (Digits)
Hessian
GGN

Block Hessian
Block GGN

EK-FAC
K-FAC

Depth 1 Depth 4 Depth 8
Network Depth

100

101

102

103

Ap
pro

xim
ati

on
 E

rro
r

Step (incremental) ∆ES% ∆LDS%

Depth = 1
Hessian → GGN 0.11 -11.70
GGN → B-GGN 6.57 -8.84
B-GGN → EK-FAC 28.53 -33.83
EK-FAC → K-FAC 64.79 -45.63

Depth = 4
Hessian → GGN 0.17 -39.73
GGN → B-GGN 9.23 -25.00
B-GGN → EK-FAC 38.59 -11.67
EK-FAC → K-FAC 52.01 -23.60

Depth = 8
Hessian → GGN 2.59 -19.35
GGN → B-GGN 12.55 -26.25
B-GGN → EK-FAC 26.80 -30.39
EK-FAC → K-FAC 58.06 -24.01

Figure 2: Left: Attribution quality vs. Hessian approximation error - Network depth. LDS and
approximation error (Equation 9); for depth {1, 4, 8}. Setting is fixed at epoch = 100 and width = 16;
other hyperparameters follow Table 1. Right: Error decomposition table: incremental shares along
the curvature-approximation path. ∆ES% denotes Error Share in percentage in the Hessian→K-FAC
path and ∆LDS% denotes the total Hessian→K-FAC LDS percentage change across steps. B-GGN
denotes Block-Diagonal GGN.

5 Limitations300

Architecture and scale. The study uses a small MLP to keep the ELSO/LDS protocol tractable.301

This restricts depth, width, and dataset size, and narrows the curvature regimes observed. Results on302

absolute LDS levels and method ordering may not transfer to larger models. Very wide networks303

can operate closer to NTK-like regimes where the residual R(θ) between the Hessian and the GGN304

is smaller, potentially changing the relative benefits of linearisation, block-diagonalisation, and305

factorisation. In addition, the evaluation excludes CNNs and transformers, whose curvature structure306

differs due to weight sharing, attention, and embeddings. Replication at larger scales and on these307

architectures is required before drawing general conclusions.308
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LDS Scores and Approximation Errors vs. Network Width (Digits)
Hessian
GGN

Block Hessian
Block GGN
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K-FAC

Width 32 Width 64 Width 128
Network Width

101
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ati

on
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rro
r

Step (incremental) ∆ES% ∆LDS%

Width = 32
Hessian → GGN 1.32 11.77
GGN → B-GGN 19.88 47.29
B-GGN → EK-FAC 9.11 10.03
EK-FAC → K-FAC 69.69 30.91

Width = 64
Hessian → GGN 3.79 18.57
GGN → B-GGN 21.61 25.41
B-GGN → EK-FAC 39.23 20.80
EK-FAC → K-FAC 35.37 35.22

Width = 128
Hessian → GGN 9.23 14.47
GGN → B-GGN 19.85 42.82
B-GGN → EK-FAC 26.17 10.48
EK-FAC → K-FAC 44.75 32.23

Figure 3: Left: Attribution quality vs. Hessian approximation error - Network width. LDS
and approximation error (Equation 9); for widths {32, 64, 128}. Setting is fixed at epoch = 100 and
depth = 1; other hyperparameters follow Table 1. Right: Error decomposition table: incremental
shares along the curvature-approximation path. ∆ES% denotes Error Share in percentage in the
Hessian→K-FAC path and ∆LDS% denotes the total Hessian→K-FAC LDS percentage change
across steps. B-GGN denotes Block-Diagonal GGN.

Evaluation design and compute budget. For Digits we use α = 0.5, K = 100 groups, and309

R = 50 seeds (about 5,000 retrainings per setting; Table 1). This budget limits hyperparameter310

sweeps, the number of datasets, and repeated width–depth grids. Although ELSO reduces variance311

relative to leave-one-out, credible intervals remain non-negligible in early-epoch and deep settings.312

Larger-scale repetitions would improve precision.313

Numerical controls and regularisation comparability. In Section 4.2 we compute in-314

verse–Hessian–vector products using an eigendecomposition pseudo-inverse with a hard threshold315

ε = 10−4 and no damping (λ = 0; Equation 4.1). Truncation stabilises solves but introduces bias by316

discarding small-magnitude modes. We do not ablate ε, nor compare against pure Tikhonov damping317

(G+ λI)−1 without truncation, so sensitivity to these controls is unknown. A systematic ablation318

should sweep ε ∈ [10−8, 10−2] and λ ∈ [10−8, 10−1] on logarithmic grids, report LDS, and log319

solver pathologies (non-convergence, extreme IHVP norms). Two edge cases are also informative:320

using only damping with no truncation, and using no damping with an extremely small truncation321

threshold, to separate numerical effects from approximation quality.322

6 Conclusion323

Our study provides an empirical answer to the three questions posed in the introduction. We324

decomposed common approximations into implicit linearisation, block-diagonal structure, and325

Kronecker factorisation, and evaluated attribution fidelity under expected leave-some-out retraining.326

Across training stages and architectural choices, better curvature fidelity generally aligned with327

stronger attribution, while gains narrowed near convergence. The dominant source of degradation328

arose from Kronecker factorisation within blocks; eigenvalue-corrected variants reduced but did not329

remove this gap.330
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A Measuring Attribution Quality439

A.1 Linear Data-modelling Score440

The Linear Data-modelling Score (LDS) provides a metric for evaluating the fidelity of training data441

attribution methods by simply taking the rank correlation between the ground truth scores against the442

predicted attribution scores. To compute the LDS, draw m random subsets S1, . . . , Sm ∼ D and for443

each sample/subset Sj measure the true model outcome f(Sj) (e.g., loss or accuracy after training on444

Sj) and the influence prediction f̂(Sj) provided by the attribution method. The LDS is then defined445

as the Spearman rank correlation:446

LDSD(f̂) = ρ
(
{(f(Sj), f̂(Sj))}mj=1

)
, (10)

capturing how faithfully f̂ predicts true model behaviour across subsets drawn from D. A higher447

LDS thus indicates stronger predictive fidelity under the data distribution.448

A.2 Expected Leave-Some-Out Retraining449

The central framework being used in this work is proposed by [38] and has also been implemented in450

recent works [39, 20, 40]. It evaluate TDA methods by measuring their ability to predict the effect451

of removing groups of training examples rather than individual points, the ground truth thereof can452

be referred to as expected leave-some-out (ELSO) retraining. For a TDA method τ that assigns453

attribution scores to training examples, we leverage the additive nature of most attribution methods to454

compute group attributions. Given a subset S ⊂ D of the training data, the group attribution for a455

query point zq is:456

gτ (zq,S,D;λ) :=
∑
z∈S

τ(zq, z,D;λ), (11)

where λ represents the hyperparameters used for training. For influence functions, this additivity457

follows naturally from the linearity of the first-order Taylor approximation.458

Repeat for j = 1, . . . , K

D (training set)

Sample K groups {Sj}Kj=1

|Sj | = ⌊αN⌋α: Subset Fraction

Group Sj

Retrain on D \ Sj with R seeds
θs(D \Sj ;λ, ξr), r = 1, . . . , R

Eξ

[
m
(
zq, θ

s(D \Sj ;λ, ξ)
)]

Baseline: Eξ

[
m
(
zq, θ

s(D;λ, ξ)
)]

∆mj(zq) = Eξ

[
m(zq, θ

s(D\
Sj))

]
− Eξ

[
m(zq, θ

s(D))
]

gτ (zq,Sj) =
∑

z∈Sj

τ(zq, z,D;λ) Predicted influence
for group j

average over R seeds

Predicted path (additive group attribution)

R: seeds per group

Spearman ρ across j = 1 . . .K

ρ
(
{∆mj(zq)}, {gτ (zq,Sj)}

)

Aggregate over queries zq
⇒ LDSα(τ) + 95% bootstrap CI

Figure 4: Expected leave-some-out LDS evaluation. We sample K random subsets of the training
data, retrain the model R times per subset to average out randomness, and measure the resulting
change in the query metric relative to the full-data baseline. We predict each group’s effect by
summing per-example attributions, then report the Spearman rank correlation between observed and
predicted effects across groups, aggregated over queries with 95% bootstrap confidence intervals.

The LDS evaluation proceeds through the following systematic approach:459

1. Subset generation: We generate K random subsets {Sj}Kj=1 from the training dataset, each460

containing ⌊αN⌋ data points, where α ∈ (0, 1) is the data sampling ratio. This sampling461

ratio is crucial, too small and we lack signal, too large and we approach the computational462

cost of full retraining.463

2. Model retraining: For each training run with removed subset Sj , we train the model R464

times with different random seeds (controlling initialisation and batch ordering):465

{θs(Sj ;λ, ξr)}Rr=1, (12)
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where ξr represents the r-th random seed.466

3. Calculating correlation: For a query point zq , we compute the Spearman rank correlation467

between:468

• The predicted group attributions: {gτ (zq,Sj ,D;λ) : j ∈ [K]}469

• The actual measured effects:

{
1

R

R∑
r=1

m
(
zq, θ

s(Sj ;λ, ξr)
)
: j ∈ [K]

}
470

4. Aggregation: The final LDS is computed by averaging correlations across multiple query471

points:472

LDSα(zq, τ) = ρ
(
Eξ

[
m(zq, θ

s(Sj ;λ, ξ))
]
: j ∈ [K], {gτ (zq,Sj ,D;λ) : j ∈ [K]}

)
,

(13)
where ρ denotes the Spearman rank correlation.473

To ensure robust results, we report LDS scores with 95% bootstrap confidence intervals, accounting474

for the randomness in subset selection.475

B Hyperparameter Settings476

Table 1 summarises the training details for all experiments. We selected these hyperparameters477

through preliminary experiments to ensure models achieve reasonable convergence while maintaining478

computational tractability.479

Dataset Architecture Training ELSO Retrain

Digits
Train: 1,617
Query: 179

MLP
Depth: {1, 4, 8}
Width: {32, 64, 128}

SGD w/ Scheduler
Learning rate: 0.03
Weight decay: 0
Batch size: 32
Epochs: {10, 100, 1000}

Leave-Some-Out
α: 0.5
R: 50
K: 100
Total: 5,000 Models

Table 1: Summary of training details for Digits dataset.

For the experiments varying model architecture, we modify either the depth (1, 4, or 8 layers) or480

width (32, 64, or 128 hidden units per layer) while keeping other hyperparameters fixed. For the481

training duration experiments, we evaluate models at 10, 100, and 1000 epochs. We employ a Cosine482

scheduler to smoothly anneal the learning rate over training, which promotes more stable convergence.483

The settings for ELSO retraining follow those of Bae et al. [39].484

C Attributing the Approximation Error485

We now decompose the curvature matrices into the components that most influence the approximation486

error quantified in the previous section. Our aim is descriptive: to identify what changes across training487

time, depth, and width, and to relate these changes to the approximation path introduced earlier.488

Throughout, H denotes the exact Hessian, G the GGN, and BG is the exact block-diagonal GGN.489

For factored methods we write Ĝ ∈ {K-FAC,EK-FAC}. Figures 5–8 summarise the measurements490

over the three sweeps (epochs, depth, width), and we refer back to the previous subsection for the491

corresponding error–LDS co-movement.492

C.1 Residual Curvature493

In order to quantify how much of the Hessian’s norm is captured by the GGN, we use the residual494

magnitude and track it over training epochs, network depth, and width:495

rrel =
∥H−G∥F

∥H∥F
. (14)
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Figure 5 shows a pronounced decline in the residual magnitude over the training duration, followed496

by a plateau at late epochs. This indicates that, as optimisation proceeds, the GGN accounts for an497

increasingly large fraction of the Hessian’s norm. Across network depth, the residual ratio increases498

from shallow to deep models, yielding a clear monotone trend. By comparison, width manipulations499

induce small, non-monotone changes with a much smaller dynamic range than either training time or500

depth. These observations align with the linearisation perspective summarised in Section 3.2: near501

stationary points the Taylor remainder term that separates H from G becomes small, whereas deeper502

networks, by construction, sustain a larger residual even at comparable training loss. In the context of503

the results in Figure 1, this explains why the Hessian→GGN increment contributes little to the total504

approximation gap at late epochs.505

200 400 600 800 1000
Epoch

0.20

0.25

0.30

0.35

0.40

Re
sid

ua
l R

ati
o

Residual Ratio over Training

2 4 6 8
Depth

0.1

0.2

0.3

0.4

Re
sid

ua
l R

ati
o

Residual Ratio over Depth

20 40 60 80 100 120
Width

0.065

0.070

0.075

0.080

0.085

Re
sid

ua
l R

ati
o

Residual Ratio over Width

Figure 5: Residual Term Magnitude (Digits). Fractional size of the residual R relative to the
Hessian H across (left) training epochs, (right) network depth, and (bottom) network width. Lower
values means that G accounts for a larger share of H.

C.2 Cross-Layer Curvature506

In order to measure cross-layer coupling within the GGN, we use the cross-layer curvature Frobenius507

norm and track it over training epochs, depth, and width:508

ρcross =

∥∥G−BG
∥∥
F

∥G∥F
. (15)

The cross-layer curvature in Figure 6 decreases slightly over training, indicating weaker cross-layer509

coupling as the model approaches its late-epoch operating point. In contrast, ρoff increases strongly510

with depth: deeper architectures exhibit substantially larger off-block mass in the GGN. This trend511

stands in contrast to the common heuristic discussed in Section 3.2.2 that classification heads induce512

near block-diagonality; here, the measured cross-layer curvature expands with additional hidden513

layers. Width has a smaller and smoother effect: ρoff rises gradually with width but remains well514

below the magnitude changes driven by depth. The stepwise results in Figure 2 are consistent with515

these measurements: the GGN→Block-GGN increment exhibits a non-negligible ∆LDS that tracks516

the level of off-block mass, particularly as depth increases.517

C.3 Eigen-Spectrum Alignment518

In order to assess the spectral fidelity of Kronecker-factorised approximations, we use an eigenvalue-519

overlap metric between Ĝ and the block-diagonal GGN (BG), tracked across epochs, depth, and520
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Figure 6: Cross-layer Curvature (Digits). Cross-layer mass of the GGN shown across (left) training
epochs, (right) depth, and (bottom) width. Higher values indicate stronger cross-block coupling.

width:521

EvalOverlap(Ĝ,BG) = 1 −
∥∥ sort(λ(Ĝ)

)
− sort

(
λ(BG)

)∥∥
2∥∥ sort(λ(BG)

)∥∥
2

. (16)

For combining Equation 16 across all blocks, we compute each quantity per block and aggregate via522

a parameter count weighted average:523

Agg =

L∑
l=1

wl Metricl, wl =
dl∑L

l′=1 dl′
, (17)

with dl the dimensionality of block L.524

Figure 7 reports the aggregated overlap of eigenvalues for K-FAC and EK-FAC relative to BG. Over525

training epochs, both methods improve, with EK-FAC consistently above K-FAC and reaching a526

higher plateau. With increasing depth, the overlap declines for both, and the gap between EK-FAC527

and K-FAC widens, indicating that eigenvalue misestimation becomes more severe for the stricter528

Kronecker factorisation as the network deepens. Changes with width are mild and positive on average.529

These spectral trends mirror the recovery reported in Figure 1–3: EK-FAC reduces a substantial530

portion of K-FAC’s deficit yet does not match the full block-diagonal GGN.531

C.4 Kronecker-Factored Eigenbasis Alignment532

In order to evaluate Kronecker eigenbasis alignment, we use an eigenbasis-overlap metric between533

the eigenspaces of Ĝ and BG, tracked across epochs, depth, and width:534

BasisOverlap(Ĝ,BG) =
1

k

∥∥Vk(BG)⊤ Uk(Ĝ)
∥∥2
F

=
1

k

k∑
i=1

cos2 θi, (18)

where Vk(·) and Uk(·) collect the k eigenvectors, and {θi} are principal angles between the corre-535

sponding subspaces. Also, Vk and Uk are chosen to be the eigenvectors in the order corresponding536

to the eigenvalues of each block. We choose k to be the top 20% of the sorted eigenvalues, which537

extends prior works [17]. Similar to Equation 17, we also use parameter count weighted average538

across blocks to provide a combined metric.539
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Figure 7: Eigen-spectrum Alignment (Digits). Aggregated eigenvalue overlap between each
approximation (K-FAC, EK-FAC) and the full block GGN across (left) training epochs, (right) depth,
and (bottom) width. Higher values indicate closer spectral agreement.

200 400 600 800 1000
Epoch

0.65

0.70

Ag
gre

ga
ted

 ei
ge

nb
asi

s o
ve

rla
p Eigenbasis Overlap (Aggregated) over Training

K-FAC EK-FAC

2 4 6 8
Depth

0.7

0.8

0.9

Ag
gre

ga
ted

 ei
ge

nb
asi

s o
ve

rla
p Eigenbasis Overlap (Aggregated) over Depth

K-FAC EK-FAC

20 40 60 80 100 120
Width

0.904

0.906

0.908

0.910

0.912

Ag
gre

ga
ted

 ei
ge

nb
asi

s o
ve

rla
p Eigenbasis Overlap (Aggregated) over Width

K-FAC EK-FAC

Figure 8: Eigenbasis Alignment (Digits). Aggregated overlap between the Kronecker-factored
eigenbasis and the true eigenvectors of the full block GGN for K-FAC and EK-FAC across (left)
training epochs, (right) depth, and (bottom) width. Higher values indicate closer basis alignment.
The two methods share the same basis, which explains the perfectly aligned plots.

Figure 8 shows analogous results for subspace alignment. Over training, the basis overlap increases540

and the two factorisations nearly coincide at late epochs. Increasing depth produces a marked decline541

in overlap, with K-FAC degrading more quickly than EK-FAC; this echoes the persistent dominance542

of the Block-GGN→K-FAC increment in the total error share. Width effects are comparatively small,543

with EK-FAC trending flat-to-slightly-up and K-FAC showing a shallow peak at mid width followed544

by a modest dip.545
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These plots are consistent with the fact that EK-FAC operates in the same Kronecker eigenbasis as546

K-FAC and changes only the per direction scaling in that basis by setting the diagonal to the second547

moment of the projected gradient, which is the Frobenius optimal diagonal for the chosen basis;548

therefore both approximations share eigenvectors and exhibit identical eigenbasis overlap with the549

block diagonal GGN while differing primarily in eigenvalue agreement. As training proceeds the550

Kronecker eigenbasis tends to decorrelate gradient coordinates relative to the parameter basis, so a551

diagonal model in that basis becomes effective and the diagonal correction explains the observed552

improvement without altering the basis itself. However, as we observe that the eigenbasis overlap553

with the block diagonal GGN decreases as depth increases, which indicates growing basis mismatch554

and persistent off diagonal mass that no method constrained to be diagonal in the Kronecker factored555

eigenbasis can remove; consequently the approximation quality of EK-FAC worsens with depth even556

though its diagonal remains optimal for that fixed basis.557
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