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Abstract

Subgraphs of a complete graph are usually dis-
tributed across multiple devices and can only be
accessed locally because the raw data cannot be
directly shared. However, existing node-level fed-
erated graph learning suffers from at least one of
the following issues: 1) heavily relying on labeled
graph samples that are difficult to obtain in real-
world applications, and 2) partitioning a complete
graph into several subgraphs inevitably causes
missing links, leading to sub-optimal sample rep-
resentations. To solve these issues, we propose a
novel Federated Node-level Clustering Network
(FedNCN), which mends the destroyed cross-
subgraph links using clustering prior knowledge.
Specifically, within each client, we first design an
MLP-based projector to implicitly preserve key
clustering properties of a subgraph in a denoising
learning-like manner, and then upload the resul-
tant clustering signals that are hard to reconstruct
for subsequent cross-subgraph links restoration.
In the server, we maximize the potential affinity
between subgraphs stemming from clustering sig-
nals by graph similarity estimation and minimize
redundant links via the N-Cut criterion. More-
over, we employ a GNN-based generator to learn
consensus prototypes from this mended graph,
enabling the MLP-GNN joint-optimized learner
to enhance data privacy during data transmission
and further promote the local model for better
clustering. Extensive experiments demonstrate
the superiority of FedNCN.
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Figure 1. Research motivation for cross-subgraph link mending.
We visualize the encoded raw graph structure using heat maps.
The similarities of the destroyed and mended topologies relative to
the original topology are 44.74% and 78.45%, respectively.

1. Introduction
Graph machine learning (GML) is a well-established tech-
nique that harnesses the structure of graph data to facilitate
various learning tasks. A large amount of GML methods
have recently been developed and achieved satisfactory per-
formance (Liang et al., 2023). Commonly, almost all of
them assume that the graph data is centralized and avail-
able unconditionally. However, in numerous real-world sce-
narios, such as medical data analysis (Huang et al., 2024),
smart transportation (Chen et al., 2024), and social networks
(Chen et al., 2022), a complete graph is usually partitioned
into multiple subgraphs, with each one distributed to an
isolated client without directly exposing the raw data. In
this background, node-level federated graph learning (FGL)
has emerged as a promising solution and has attracted a lot
of research attention in recent years.

To be brief, node-level FGL is a machine learning paradigm
composed of multiple isolated clients and an independent
server (Baek et al., 2023; Zhu et al., 2024; Li et al., 2024)
to group the distributed subgraphs into categories while en-
suring private data is not directly shared. Typically, each
client trains local model parameters with its own label sig-
nals and sends them to the server, while the server integrates
the uploaded signals to compute a consensus one that is
subsequently sent back to all clients to update the local
models. Despite their encouraging successes, we find that
these studies have at least one non-negligible limitation: 1)
heavily relying on labeled graph samples that are difficult
to obtain in real-world applications (Zhang et al., 2021; Tan
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et al., 2024; Wan et al., 2024). Once reliable supervised
signals are unavailable, existing methods struggle to effec-
tively learn high-quality representations, which adversely
affects the quality of multi-source information negotiation
at the server; and 2) partitioning a complete graph into sev-
eral subgraphs of random sizes inevitably causes substantial
amounts of missing links between clients (Zhu et al., 2024;
Baek et al., 2023). As illustrated in Fig. 1, taking the results
on Citeseer as an example, more than 55% of the sample con-
nections are destroyed during the graph partitioning process.
As the number of clients increases, the disruption of links
between samples would become more severe. Consequently,
it is urgent to develop a novel unsupervised node-level FGL
framework to handle the aforementioned issues.

An intuitive solution involves leveraging clustering signals
to facilitate the restoration of missing links across subgraphs
on the server, where the mended graph is in turn utilized to
boost the performance of each client. To fulfill this, there
are two key challenges to be solved: 1) how to collect and
preserve key clustering properties from multiple unlabeled
subgraphs without directly sharing private information; and
2) how to establish correct topology relationships among
subgraphs with the aid of provided pseudo-supervised in-
formation. For the first challenge, inspired by the proto-
type learning (Liu et al., 2025; Wan et al., 2024), we first
select representative nodes from each cluster within the
client, and then design a clustering projector to generate
hard-to-reconstruct counterparts of the selected samples as
well as preserve the clustering characteristics from the local
model. For the second challenge, we attempt to construct the
potential affinity between cross-subgraphs stemming from
uploaded clustering signals via graph similarity estimation.

Based on the above observations, we propose a novel fed-
erated node-level clustering framework termed FedNCN.
The core idea of FedNCN is to mend the destroyed links
using clustering prior knowledge. Specifically, within each
client, we develop an MLP-based projector to implicitly pre-
serve the key clustering properties (i.e., prototypes) of each
subgraph through a denoising-like learning approach. Sub-
sequently, in the server, we maximize the potential affinity
of subgraphs derived from uploaded clustering signals that
are hard to reconstruct into the raw data via graph similarity
estimation. Meanwhile, we employ the improved N-Cut
operation to decrease the redundant sample connections
within the mended graph as much as possible. After that, a
GNN-based generator is designed to learn consensus pro-
totypes based on the mended graph, where the MLP-GNN
joint-optimized learner transmits the updated prototypes and
model parameters back to each client while protecting data
privacy during transmission. As shown in Fig. 1, with the
proposed cross-subgraph link mending scheme, our method
can effectively restore the missing links from 44.74% to
78.45% for better clustering performance (see Section 4.2).

Our main contributions can be summarized as follows:

• New research task. To the best of our knowledge,
we make the first attempt to tackle the issue of link
missing caused by graph partition in federated node-
level clustering.

• Novel FGL framework. A Federated Node-level
Clustering Network (FedNCN) is proposed. It not only
effectively mends cross-subgraph links, but also pro-
motes the great encoding capacity of the local model
for better clustering.

• Better clustering results. Extensive experiments on
five graph benchmark datasets demonstrate the effec-
tiveness and superiority of the proposed FedNCN com-
pared to its competitors.

2. Related Work
2.1. Federated Graph Learning

Federated Learning (FL) is a widely used distributed ma-
chine learning framework that enables multiple clients to
collaborate in training a global model through a central
server, while avoiding direct sharing of raw data (Wang
et al., 2021a;b; 2023a; 2024b;c;e; Meng et al., 2024; Wang
et al., 2023b; 2024a;d). Due to its ability to effectively lever-
age various technologies for application extension, FL has
been rapidly developed in recent years, particularly in graph
data analysis. For example, FedSage+ (Zhang et al., 2021)
utilizes node labels to design a missing neighbor generator,
addressing the issue of missing links in distributed subgraph
systems. Moreover, FedPUB (Baek et al., 2023) leverages
labeled data to generate a global random graph, which is
then fed back to clients to obtain multiple functional embed-
dings. These embeddings are used to compute similarities
for identifying different communities, thereby mitigating
multi-source heterogeneity. Similarly, FedTAD (Zhu et al.,
2024) assesses the reliability of node class knowledge in a
topology-aware manner, which is then uploaded to the server
to guide pseudo-graph generation for better classification.
Previous studies have demonstrated that the FGL frame-
work can be integrated with some advanced techniques and
achieve promising performance with the aid of data labels.
In contrast, to adapt to the unlabeled scenario, we design a
clustering projector that generates hard-to-reconstruct coun-
terparts while preserving the clustering properties of each
cluster for better clustering.

2.2. Attributed Graph Clustering

Benefiting from the strong generalization ability of the GNN
in handling graph data, significant progress has been made
in node-level clustering tasks in recent years (Tu et al., 2021;
Li et al., 2022; Gong et al., 2022a;b; Pan & Kang, 2023;
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Guan et al., 2025). CCGC (Yang et al., 2023) constructs
two views of the complete graph and utilizes a siamese
encoder to guide the generation of positive and negative
sample pairs, thereby improving clustering performance.
Similarly, MAGC (Lin et al., 2021) mines complementary
information from multi-view data using weight factors to
learn consistency and discriminative relationships. Further-
more, AMGC (Tu et al., 2024a) designs a unified framework
that alternately optimizes clustering and attribute imputa-
tion processes on a single graph. Commonly, these methods
assume that the graph data is centralized. However, this
assumption is overly strict in real-world scenarios, as sub-
graphs of a complete graph are usually distributed across
multiple devices and are accessible only locally, which in-
evitably leads to missing links between subgraphs. To this
end, we construct cross-subgraph potential affinity relation-
ships based on prior clustering knowledge to restore the
destroyed links.

3. Methodology
Fig. 2 shows the architecture of the FedNCN. The core
idea is to mend the cross-subgraph missing links to enhance
the clustering performance of each client in an unlabeled
circumstance. This process mainly consists of three stages:
local model learning, cross-subgraph link mending, and
global knowledge sharing.

3.1. Notations

Denote by G = {V, E} a complete undirected graph with
O cluster centers, where V and E are the sets of nodes
and edges, respectively. Suppose the G is divided into M
subgraphs, which are assigned to M clients. For simplic-
ity, we take the local learning over a single subgraph Ḡ
as an example and consider other graphs similarly. Sup-
pose that Ḡ contains Ō cluster centers and N̄ nodes. Let
X̄ ∈ RN̄×d and Ā ∈ RN̄×N̄ denote the attribute and origi-
nal adjacency matrices, where d is the attribute dimension.
The corresponding degree matrix is D̄ ∈ RN̄×N̄ . With D̄,
the Ā is further normalized as Ã ∈ RN̄×N̄ by calculating
D̄− 1

2 (Ā + I)D̄− 1
2 , where I ∈ RN̄×N̄ indicates identity

matrix. All used notations are summarized in Appendix A.

3.2. Local Model Learning

This section introduces the local model learning for a single
subgraph, and the goal is to preserve the key information
of each cluster within each unlabeled subgraph. We first
employ a GNN model to capture the node embeddings of
the subgraph as follows:

Z(l) = σ(ÃZ(l−1)W̄(l)), (1)

where Z(l) ∈ RN̄×d′ denotes the node embeddings of the l-
th encoder layer, and Z(0) equals to X̄. W̄(l) is the learnable

weight matrix at the l-th layer, d′ is the dimension of the
latent representations, and σ(·) is the activation function.
The final layer generates embeddings Z̃ ∈ RN̄×d′ . We
then employ the K-means algorithm (Xu & Lange, 2019) to
generate multiple prototypes C̄ ∈ RŌ×d′ , thereby obtaining
representative samples from each cluster. Specifically, the
Euclidean distance (Mafakheri et al., 2018) between the
final embeddings of each node and the prototype of its
corresponding subspace is calculated as:

fd(z̃i, c̄j) = ∥z̃i − c̄j∥2, (2)

where z̃i ∈ Z̃ is the attribute vector of the i-th node, c̄j ∈ C̄
is the j-th prototype. In this way, for each prototype, we
select the top nk = kN̄ representative nodes approximated
to the prototype, where k is a hyperparameter that represents
the ratio of samples selected. Subsequently, we collect the
attribute matrix B ∈ RnkŌ×d of these selected nodes.

Next, to project directed signals with clustering properties
without directly sharing the raw data, we generate a masked
matrix R ∈ RnkŌ×d directly from Gaussian noise, which is
hard to be reconstructed into raw graph data. After that, we
utilize an MLP model (Liang et al., 2023; 2024; Liu et al.,
2021a) as a projector to extract the meaningful clustering
signal in a denoising-like manner, which makes R possibly
approximate to B:

R̂ = MLP(R; θ̄mlp), (3)

where R̂ ∈ RnkŌ×d is the reconstructed masked matrix,
θ̄mlp represents the parameters of the local MLP. The opti-
mization objective is as follows:

Lmlp =
1

nkŌ
||B− R̂||2. (4)

Finally, we upload R and the well-trained θ̄mlp to the server
in preparing for cross-subgraph link mending.

In summary, the proposed local model learning strategy
offers two major advantages: it 1) collects and uploads key
clustering signals that are hard to reconstruct into raw data,
and 2) preserves more trustworthy clustering properties of
each cluster within the client, serving as reliable signals for
subsequent information sharing between cross-subgraphs.

3.3. Cross-Subgraph Link Mending

Since a complete graph is divided into multiple subgraphs,
leading to missing links across subgraphs. Therefore, after
the server receives the clustering signals from each client,
we propose the cross-subgraph link mending strategy.

In the first step, to infer the global samples on the server,
we adopt R and θ̄mlp uploaded by each client, which en-
sures that these representative nodes are approximately to
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Figure 2. The framework of FedNCN is composed of three major components, i.e., the local model learning that collects and preserves
more trustworthy clustering signals for destroyed sample connection restoration, the cross-subgraph link mending that establishes correct
connections among subgraphs with the aid of prior learned clustering knowledge, and the global knowledge sharing that learns high-quality
consensus features based on the mended graph and ensures reliable feedback to each client. Three parts are seamlessly integrated into a
unified optimization framework. Notably, the cross-subgraph link mending is the core component that includes four steps, i.e., ① global
sample inferring; ② intra-cluster link mending; ③ inter-cluster link mending; and ④ global structure refining.

B. Specifically, the server first optimizes the MLP projec-
tor based on obtaining multiple masked matrices and MLP
model parameters. Then, we inference the global sample
matrix R̃ ∈ RnkŌ×d within the client by:

R̃ = fp(R; θ̄mlp), (5)

where fp(·) denotes the projector function.

In the second step, after inferring the R̃, we cannot di-
rectly obtain the intra-cluster links due to privacy constraints.
Therefore, we attempt to calculate the potential affinity be-
tween nodes within a cluster in a low-dimensional proximity
manner (Yang et al., 2024). Specifically, we first divide the
nodes belonging to the same cluster within each client into
a single space. Then, we calculate the node similarity:

Sim(r̃i, r̃j) =
r̃⊤i r̃j

||r̃i|| · ||r̃j ||
, (6)

where Sim(·, ·) is similarity function, r̃i ∈ R̃ and r̃j ∈ R̃
are attribute vector of i-th node and j-th node, respectively.
Subsequently, we construct the refined subgraph Gosub =
{Vosub, Eosub} with nk nodes from each cluster by Eq. (6).
Here, Eosub is the edge set represented by the adjacency
matrix Ao

sub ∈ Rnk×nk

:

aoij =

{
1, if (voi , v

o
j ) ∈ Vosub, and, voj ∈ T

0, otherwise
, (7)

where T is the target node set of the i-th node in the Gosub.

In the third step, to restore the cross-subgraph missing links
as much as possible, we identify cross-subgraph relation-
ships by the graph kernel method and then mend the cross-
subgraph link in an approximately optimal manner (Borg-
wardt et al., 2020). Specifically, we first calculate the graph-
level affinity matrix S ∈ R

∑M
i=1 Ōi×

∑M
i=1 Ōi to measure

relationships between subgraphs generated from clusters:

sij = GK(Goi ,Goj ), (8)

where GK(·, ·) denotes graph kernel similarity function
(e.g., COS (Choromanski, 2023), WL (Ju et al., 2023) and
SP (Borgwardt et al., 2020)). See Appendix B for de-
tailed descriptions of graph kernels. sij ∈ S represents
the affinity between Goi and Goj . Then, we construct edges
between any two subgraph pairs to generate a global graph
Gϕ = {Vo, Eϕ}. Here, the total number of the Gϕ is
No =

∑M
i=1 kN̄iŌi, and the corresponding nodes set is

Vo = {vo1, vo2, . . . , voNo}, the edges set is Eϕ represented by
adjacency matrix Aϕ ∈ RNo×No

.

In the last step, we design an improved N-Cut method to
ensure that the Gϕ focuses on the links that preserve the key
structure, while eliminating redundant links. Specifically,
we calculate the contribution of all cross-subgraph edges in
the global graph as:

Con(aϕij) =
aϕij

fa(Vo1 ,Vo)
+

aϕij
fa(Vo2 ,Vo)

, (9)

where Con(·) is the contribution function, fa(Vo1 ,Vo) =
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Algorithm 1 Training Procedure of FedNCN
Input: Complete graph G. For each subgraph: attribute
matrix X̄; adjacency matrix Ā; server epoch Eserver;
client epoch Eclient.
Output: Clustering results Y at clients.
Initialize C̄(0), θ(0)mlp and θ

(0)
gnn of all clients.

for i = 1 to Eserver do
// Local model learning
for j = 1 to Eclient do

Generate Z̃ for each client by Eq. (1).
end for
Obtain C̄ from Z̃ by K-means for each client.
Obtain B with C̄ and Z̃ by Eq. (2).
Generate R with a shape similar to B using noise.
Train the MLP with R and B by Eqs. (3) and (4).
Upload R and θ̄mlp to the server.
// Cross-subgraph link mending
Infer R̃ with R and θ̄mlp by Eq. (5).
Generate the subgraph Gosub by Eqs. (6) and (7).
Generate global graph Gϕ by Eq. (8).
Refine the mended graph Gψ by Eq. (9).
// Global knowledge sharing
Train global GNN model by Eqs. (10)-(12).
Backpropagate the C̃ and θ̃gnn to each client.

end for
Obtain clustering results Y at clients by K-means.
return Y

∑
i∈Vo

1 ,j∈Vo a
ϕ
ij and fa(Vo2 ,Vo) =

∑
i∈Vo

2 ,j∈Vo a
ϕ
ij repre-

sent the association of the two subgraphs connected by edge
aϕij with the Gϕ, respectively. Vo1 and Vo2 correspond to the
node sets of two subgraphs within the Gϕ. In this way, we re-
tain the key edges based on their contribution, obtaining the
mended graph Gψ and its adjacency matrix Aψ ∈ RNo×No

.

The merits of the proposed cross-subgraph link mending
strategy can be summarized as: 1) it effectively leverages
the prior learned clustering knowledge to enable the model
to accurately conduct cross-subgraph link mending, and 2) a
topological refinement approach that maximizes trustworthy
connections while minimizing redundant ones improves the
topology between subgraphs for better clustering.

3.4. Global Knowledge Sharing

After achieving the cross-subgraph links mending, we aim
to learn the missing structure information from the Gψ =
{Vo, Eψ} with O cluster centers, where Eψ is the edges set,
Xψ ∈ RNo×d denotes the attribute matrix, Aψ ∈ RNo×No

is the adjacency matrix. Inspired by previous work (Liu
et al., 2025), the prototypes often retain the clustering prop-
erties. Consequently, we construct a GNN generator that
is consistent with the local model at the server to learn

consensus prototypes C̃ ∈ RO×d′ and well-trained GNN
parameters θ̃gnn, achieved by minimizing the reconstruction
loss LMSE and the clustering loss LKL as:

L = LMSE + LKL. (10)

Here, LMSE and LKL are calculated by:

LMSE =
1

No
∥X̂ψ −Xψ∥2, (11)

LKL = KL(P||Q) =
∑
i

∑
j

pij log
pij
qij

, (12)

where X̂ψ ∈ RNo×d is reconstructed node attributes matrix
of the Gψ by GNN decoder, the soft assignment distribution
Q ∈ RNo×O of latent representations is calculated by the
Student’s t-distribution (Gong et al., 2022a), while the target
distribution P ∈ RNo×O is obtained by sharpening Q.

In summary, the proposed global knowledge-sharing strat-
egy provides significant benefits: 1) with the aid of the
mended topology information, the global model is enabled
to learn consensus sample representations, which ensures
reliable feedback to each client to learn clustering-friendly
features; and 2) the distinct nature of the sub-model pa-
rameters, where the locally uploaded θ̄mlp and the globally
returned θ̃gnn are not identical, which further guarantees
privacy security during data transmission.

3.5. Client-Server Collaborative Learning

After the global model learns the Gψ on the server, each
client receives the updated C̃ and θ̃gnn. Subsequently, C̃ is
employed as the cluster center for the next round of local
model training, and θ̃gnn is utilized to initialize the parame-
ters of the GNN. In this way, the discriminative ability of
the local representations could be further enhanced. Finally,
client-server collaborative learning is achieved by minimiz-
ing the total loss function of the local GNN (Similar to Eqs.
(10)-(12)). Algorithm 1 provides a detailed description of
the FedNCN learning process. The Detailed algorithms for
the client and the server are provided in Appendix C.

4. Experiments
4.1. Experiment Setup

Benchmark Datasets Following the experimental setup
from FedTAD (Zhu et al., 2024), we construct distributed
subgraphs by dividing the dataset into 5 clients, 10 clients,
and 20 clients, respectively, where each client has a sub-
graph that is part of a complete graph. Specifically, we use
CiteSeer (Liu et al., 2023a), PubMed (Jiang et al., 2024),
Amazon-Computer, Amazon-Photo (Lin et al., 2021), and
Questions (Platonov et al., 2024) as our experimental bench-
mark datasets. For a detailed description of the datasets,
please see Appendix D.1.
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Table 1. Performance comparison across different federated node-level clustering methods. Notably, all compared methods are evaluated
under unsupervised settings on five benchmark datasets to ensure a fair comparison.

Methods
CiteSeer (5 Clients) CiteSeer (10 Clients) CiteSeer (20 Clients)

ACC NMI ARI F1 ACC NMI ARI F1 ACC NMI ARI F1

FedSage+∗ 16.13±1.74 2.69±0.40 0.18±0.59 11.41±0.75 17.18±2.56 5.43±0.32 -0.13±0.55 11.27±0.62 15.56±2.03 9.54±0.21 0.26±0.52 10.06±0.84
FedTAD∗ 17.59±3.33 1.21±1.43 0.60±1.00 7.13±2.55 19.12±1.57 4.01±2.63 1.57±1.27 9.89±2.69 17.77±1.54 3.42±3.60 1.08±1.37 6.77±2.40
FedPUB∗ 16.80±3.40 0.00±0.00 0.00±0.00 4.11±0.56 9.05±5.17 0.00±0.00 0.00±0.00 3.05±1.62 11.17±6.48 0.00±0.00 0.00±0.00 3.75±2.04
FedGTA∗ 24.05±0.80 5.68±1.06 3.54±0.70 19.95±1.05 26.34±0.61 8.36±1.60 4.74±1.95 19.67±0.71 28.05±1.62 12.35±2.08 4.32±2.08 17.13±2.21
FedIIH∗ 14.21±2.91 0.00±0.00 0.00±0.00 3.73±0.62 17.58±6.07 0.69±0.79 0.42±0.49 4.82±1.08 18.34±7.52 0.02±0.05 -0.07±0.13 5.28±1.93
FedNCN 54.98±1.78 13.27±2.45 19.67±3.71 24.78±1.42 58.99±2.96 17.53±1.31 15.74±4.01 27.12±2.92 57.47±1.55 19.69±1.92 17.96±1.72 32.82±1.09

Methods PubMed (5 Clients) PubMed (10 Clients) PubMed (20 Clients)

FedSage+∗ 49.53±6.33 8.67±3.77 4.83±4.72 33.75±4.49 40.71±7.84 2.22±4.47 0.03±0.00 26.16±6.01 43.77±8.32 1.96±1.74 -0.02±3.57 30.81±3.20
FedTAD∗ 34.06±4.71 1.16±0.99 0.84±0.44 26.88±3.47 37.33±4.63 0.39±0.51 0.54±0.89 20.24±3.87 36.51±5.23 0.44±0.69 0.72±1.19 18.18±1.64
FedPUB∗ 31.97±9.44 0.00±0.00 0.00±0.00 14.07±3.16 32.03±9.04 0.00±0.00 0.00±0.00 14.00±3.19 28.30±9.25 0.00±0.00 0.00±0.00 12.43±3.30
FedGTA∗ 46.22±2.50 6.15±1.93 6.33±1.90 39.60±2.77 46.87±1.66 2.08±0.83 1.79±1.19 33.27±1.92 48.75±1.70 2.52±0.73 2.63±0.83 32.24±0.97
FedIIH∗ 32.30±9.71 0.04±0.09 0.13±0.27 14.55±3.53 33.55±7.77 0.02±0.03 0.02±0.03 14.64±2.84 28.30±9.25 0.00±0.00 0.00±0.00 12.43±3.30
FedNCN 63.42±1.59 10.53±3.48 13.85±3.57 44.03±2.30 64.95±1.48 10.58±1.75 13.59±4.56 44.37±3.45 66.33±1.72 7.46±0.87 11.02±1.21 41.28±1.31

Methods Amazon-Computer (5 Clients) Amazon-Computer (10 Clients) Amazon-Computer (20 Clients)

FedSage+∗ 21.42±0.94 5.08±2.78 3.98±3.12 14.85±2.06 23.04±0.84 8.19±0.88 6.33±1.04 17.39±0.18 20.65±1.28 7.08±1.36 4.73±2.00 21.16±0.93
FedTAD∗ 9.82±4.38 3.19±1.73 3.34±1.64 3.26±1.47 12.84±12.41 3.68±2.03 4.71±2.59 3.39±1.93 17.79±11.26 5.08±1.34 3.99±0.38 3.82±1.44
FedPUB∗ 11.74±12.96 0.00±0.00 0.00±0.00 2.29±2.40 22.39±12.26 0.00±0.00 0.00±0.00 4.95±3.17 14.25±12.14 0.00±0.00 0.00±0.00 4.02±3.46
FedGTA∗ 21.40±1.76 12.07±3.95 8.38±3.27 8.96±1.01 20.96±1.46 6.46±1.22 3.71±1.03 6.92±0.52 22.08±1.25 7.25±0.96 3.46±0.76 6.30±0.28
FedIIH∗ 13.52±7.09 0.00±0.00 0.00±0.00 2.62±1.54 7.81±4.23 0.09±0.11 0.06±0.09 1.87±0.94 7.58±4.58 0.02±0.04 0.05±0.10 2.38±1.82
FedNCN 64.17±1.19 23.47±1.01 21.62±2.28 24.52±2.13 71.21±2.04 21.33±3.11 23.76±4.54 24.00±0.81 70.20±2.61 21.64±1.45 22.86±3.20 32.54±0.77

Methods Amazon-Photo (5 Clients) Amazon-Photo (10 Clients) Amazon-Photo (20 Clients)

FedSage+∗ 32.45±1.90 10.95±2.26 11.43±2.73 18.73±1.11 34.00±1.25 11.10±1.23 9.00±1.76 18.47±0.62 36.75±0.97 11.28±0.24 9.80±0.34 26.52±0.54
FedTAD∗ 13.50±4.99 4.11±6.80 4.03±6.80 3.67±2.53 13.07±3.59 5.42±2.22 5.48±2.50 4.02±1.66 11.78±4.96 8.34±1.04 8.63±1.21 4.25±1.35
FedPUB∗ 14.89±7.63 0.00±0.00 0.00±0.00 3.44±1.74 8.42±3.17 0.00±0.00 0.00±0.00 1.91±0.49 12.71±6.81 15.20±0.00 15.20±0.00 6.02±3.58
FedGTA∗ 35.54±1.96 14.30±4.04 11.88±4.09 11.99±1.15 32.68±1.12 11.84±0.76 9.59±1.13 10.83±0.59 29.40±1.17 10.82±0.75 7.84±0.87 9.60±0.34
FedIIH∗ 14.33±4.20 0.00±0.00 0.00±0.00 3.09±1.03 11.66±7.77 0.00±0.00 0.00±0.00 2.74±1.93 12.11±7.78 15.25±0.10 15.22±0.03 4.14±3.48
FedNCN 74.05±2.95 37.22±5.34 43.05±7.02 29.11±2.81 73.48±1.78 29.16±2.13 31.11±3.43 27.60±1.07 66.09±2.06 19.85±1.62 16.72±2.01 32.46±0.92

Methods Questions (5 Clients) Questions (10 Clients) Questions (20 Clients)

FedSage+∗ 78.08±2.10 0.96±1.51 1.31±1.51 39.24±0.80 76.31±1.50 0.84±1.70 0.82±2.18 38.29±1.24 76.00±0.63 0.64±0.72 0.57±0.96 36.25±0.76
FedTAD∗ 56.05±27.81 0.18±0.13 -0.83±0.78 35.82±12.35 66.30±31.30 0.10±0.06 -0.28±0.32 38.57±14.78 69.06±34.36 0.06±0.07 -0.32±0.41 38.74±12.99
FedPUB∗ 59.40±46.04 0.00±0.00 0.00±0.00 30.70±22.69 59.41±46.12 0.00±0.00 0.00±0.00 30.68±22.74 40.59±45.97 0.01±0.02 -0.04±0.07 21.45±22.66
FedGTA∗ 88.47±4.45 0.62±0.33 3.17±1.64 50.50±1.77 88.07±3.04 0.38±0.06 1.29±0.44 49.56±0.52 86.69±2.39 0.72±0.69 0.67±2.12 47.81±1.47
FedIIH∗ 77.40±6.22 0.00±0.00 0.00±0.00 30.70±22.69 78.26±3.44 0.00±0.00 0.00±0.00 30.68±22.74 80.06±2.77 0.38±0.73 0.63±1.33 41.63±2.85
FedNCN 94.64±2.04 1.88±0.86 6.44±2.93 52.89±1.73 91.27±4.69 1.64±0.82 4.62±2.34 51.41±2.15 93.03±5.14 1.08±0.81 2.93±3.28 50.80±2.29

∗ Note that these supervised node-level FGL methods are adapted to the unsupervised scenario.

Figure 3. Performance comparison of FedNCN with three advanced federated node-level classification methods on five graph datasets.

Baseline Methods To demonstrate the superiority of Fed-
NCN, we conduct comprehensive comparisons with two
groups of baseline methods. The first group consists of five
advanced FGL methods, namely FedSage+ (Zhang et al.,
2021), FedPUB (Baek et al., 2023), FedTAD (Zhu et al.,
2024), FedGTA (Li et al., 2024), and FedIIH (Yu et al.,

2025). The second group comprises three classical FL ag-
gregation strategies, including: FedAvg (McMahan et al.,
2017), FedProx (Li et al., 2020), and FedPer (Arivazhagan
et al., 2019), where the clients utilize our proposed local
model to ensure fair and consistent comparison. We provide
detailed descriptions of baseline methods in Appendix D.1.
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Table 2. The performance of different FL aggregation strategies in
federated node-level clustering.

Datasets Methods ACC NMI ARI F1 avg. ∆

CiteSeer
(10 Clients)

Local 44.1±1.7 8.6±1.2 4.1±2.1 23.5±0.5 -
FedAvg 55.9±2.8 4.2±0.5 0.4±0.8 16.5±0.7 -0.8
FedProx 45.0±3.0 8.1±0.9 3.3±1.3 23.7±0.7 -0.1
FedPer 48.7±1.0 7.8±2.3 4.7±3.0 22.8±1.0 +0.9

FedNCN 59.0±3.0 17.5±1.3 15.7±4.0 27.1±2.9 +9.7

PubMed
(10 Clients)

Local 54.4±1.5 8.0±1.9 7.1±1.9 37.0±1.0 -
FedAvg 63.7±2.9 5.2±1.7 4.8±0.7 23.9±6.9 -2.2
FedProx 56.5±0.9 2.1±0.6 3.2±0.6 35.3±0.7 -2.1
FedPer 55.5±1.9 7.5±1.0 6.7±1.6 36.8±1.2 0.0

FedNCN 65.0±1.5 10.6±1.8 13.6±4.6 44.4±3.5 +6.8

Amazon-Computer
(10 Clients)

Local 45.9±0.3 4.8±0.1 1.9±1.0 15.7±0.3 -
FedAvg 67.1±0.0 0.8±0.0 -0.2±0.0 13.5±0.0 +3.2
FedProx 43.1±3.0 2.8±0.3 0.7±0.7 15.9±0.4 -1.5
FedPer 50.2±1.1 2.5±0.7 1.1±1.0 15.7±0.5 +0.3

FedNCN 71.2±2.0 21.3±3.1 23.8±4.5 24.0±0.8 +18.0

Amazon-Photo
(10 Clients)

Local 48.2±0.8 5.7±0.5 2.4±0.9 15.8±0.5 -
FedAvg 63.5±1.3 3.1±0.8 1.6±0.3 15.0±0.6 +2.8
FedProx 49.7±1.8 5.3±0.1 4.2±1.2 16.9±0.3 +1.0
FedPer 57.0±1.4 5.3±0.8 4.7±1.0 17.7±0.7 +3.2

FedNCN 73.5±1.8 29.2±2.1 31.1±3.4 27.6±1.1 +22.4

Questions
(10 Clients)

Local 78.1±1.8 0.5±0.1 -0.7±0.7 45.8±0.2 -
FedAvg 87.6±0.8 0.0±0.0 0.0±0.0 46.2±0.0 +2.5
FedProx 84.4±1.3 0.3±0. 1.9±0.2 49.2±0.3 +3.0
FedPer 82.2±2.1 0.3±0.1 1.6±0.7 48.4±0.9 +2.1

FedNCN 91.3±4.7 1.6±0.8 4.6±2.3 51.4±2.2 +6.2

Implementation Details To ensure experimental fairness,
all methods are evaluated under identical hardware and set-
tings. We utilize a four-layer GNN on both the client and
the server to obtain node embeddings, with hidden layer
dimensions are 500-500-2000-10. Moreover, we use a one-
layer MLP to obtain the local clustering signals, which are
then uploaded to the server. During model optimization, we
adopt the Adam optimizer (Xiao et al., 2024) with a learning
rate of 1e-3. The client-server interaction is conducted 20
times, with the local model training 10 epochs during each
interaction. All methods are implemented using PyTorch
2.4.0 and a single NVIDIA GeForce RTX 4090 GPU.

Clustering Metrics To comprehensively evaluate the clus-
tering performance of all methods, we adopt four widely
used evaluation metrics, including Accuracy (ACC) (Liu
et al., 2022b; Wang et al., 2022b;a;c; Cai et al., 2022),
Normalized Mutual Information (NMI) (Liu et al., 2021b;
2022a; Wang et al., 2021c; Liang et al., 2023), Adjusted
Rand Index (ARI) (Yang et al., 2023; Tu et al., 2022), and
F1 Score (F1) (Liu et al., 2023b; Tu et al., 2024c;b; 2025a;b)
to test clustering results from multiple perspectives.

4.2. Experimental Results

Comparison in Unsupervised Learning Settings To vali-
date the effectiveness of the proposed FedNCN, which is the
first federated node-level clustering framework with cross-
subgraph link mending. We extend five advanced federated

Figure 4. Ablation studies for CLM strategy and GKS strategy in
federated node-level clustering scenarios.

Figure 5. Algorithm convergence on Computer and Photo datasets.

node-level classification methods into the corresponding
graph clustering versions to ensure a fair comparison. To
reduce randomness, each experiment is repeated five times,
and the mean and standard deviation of the four clustering
metrics are presented in Table 1. We can observe that, under
different client partitions, FedNCN consistently outperforms
the compared methods on five datasets. The reasons behind
this are two-fold: 1) these approaches such as FedSage+,
FedTAD, FedPUB, FedGTA, and FedIIH are specifically
designed to enhance the quality of local-global interactions
for better classification. As a result, their effectiveness is
limited when dealing with unlabeled graph data; and 2) on
the one hand, FedNCN is tailored for node-level clustering
scenarios. On the other hand, we design a cross-subgraph
link mending strategy that restores missing links on the
server while not directly sharing the raw data, enabling the
global model to generate clustering-friendly prototypes for
better clustering.

Comparison with Supervised FGL Methods To further
verify the effectiveness of FedNCN, we compare it with five
representative supervised FGL methods: FedSage+, Fed-
TAD, FedPUB, FedGTA, and FedIIH. Each method of these
methods is trained with 5% of the labeled data. As shown
in Fig. 3, the experimental results indicate that, under differ-
ent client partitions, FedNCN consistently maintains strong
competitiveness in clustering tasks, even when compared
to federated node-level classification tasks (i.e., FedSage+,
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FedTAD, and FedPUB) with limited labeled data, further
highlighting the effectiveness of FedNCN. The comparative
results of other methods can be found in Appendix D.2.

Comparison of FL Aggregation Strategies To verify the
effectiveness of the global aggregation strategy, we compare
FedNCN with the classical FL aggregation strategies. In
our setup, local models are utilized to generate clustering
signals, which are subsequently uploaded for global sharing
via FL aggregation strategies including FedAvg, FedProx,
and FedPer. We report the average of four clustering metrics
and their average gains compared to local model testing
in Table 2. As seen, compared to these FL aggregation
strategies, FedNCN achieves noticeable improvements in
clustering performance. For example, it achieves average
improvements of 9.7%, 6.8%, 18.0%, 22.4%, and 6.2% on
the CiteSeer, PubMed, Amazon-Computer, Amazon-Photo,
and Questions datasets, respectively. These findings indicate
that the integration of our global aggregation strategy signif-
icantly enhances its generalization ability across different
datasets. In addition, for the federated node-level clustering
tasks with 5 clients and 20 clients, the detailed experimental
results can be found in Appendix D.2.

Analysis of CLM Strategy and GKS Strategy In this
part, we evaluate the effectiveness of the proposed Cross-
subgraph Link Mending (CLM) strategy and GKS (Global
Knowledge Sharing) strategy. In our setup, “BS” denotes
the local model of FedNCN. “BS+GKS” denotes the Fed-
NCN variants with the CLM strategy being removed, and
“BS+GKS+CLM” denotes the FedNCN. As summarized in
Fig. 4, we can observe that 1) the four clustering metrics
of “BS+GKS+CLM” are consistently better than both the
“BS+GKS” and “BS”; 2) compared with the “BS”, the per-
formance of “BS+GKS” has a slight improvement. These
findings can be attributed to the following points. Firstly, the
cross-subgraph link mending strategy effectively restores
the destroyed links on the server, thus facilitating better in-
formation sharing across clients; Secondly, the updated pro-
totypes and model parameters obtained through the global
knowledge-sharing strategy guide each local model to gen-
erate a robust target distribution.

Convergence Analysis In Fig. 5, we plot the ACC metric
during the training iterations to monitor the model conver-
gence on five random experiments on the Amazon-Photo
and Amazon-Computer datasets to evaluate the robustness
of the model. Under different client settings, the ACC met-
ric consistently converged to a stable value within the 20
iterations, with only minor fluctuations. This further high-
lights the advantages of FedNCN in handling node-level
clustering tasks.

Analysis of Hyper-Parameter k FedNCN introduces a
hyper-parameter k, leveraged to determine the ratio of key
clustering samples uploaded to the server from each cluster.

Figure 6. The sensitivity of FedNCN with the variation of a hyper-
parameter k on CiteSeer, PubMed, Computer, and Photo datasets.

We conduct experiments on four datasets to analyze the im-
pact of this k by varying its value from 1% to 20%. From
the results in Fig. 6, we can observe that 1) the hyperparam-
eter k indeed plays a crucial role in FedNCN, suggesting
that searching k from a reasonable hyper-parameter region
could benefit clustering performance; 2) uploading a few
samples may result in sub-optimal performance, as it fails
to reconstruct a meaningful global graph structure, which
reduces the quality of the model collaborative learning; and
3) uploading too many samples may hinder clustering per-
formance due to excessive noise, leading to unreliable links
mending on the server.

5. Conclusion
In this paper, we explore a new research task, federated node-
level clustering with cross-subgraph link mending, which
is the first attempt to restore the destroyed links between
clients due to graph partition under unsupervised settings.
To tackle this task, we propose a novel unsupervised node-
level FGL framework, called FedNCN. In our method, the
proposed local model learning method, the cross-subgraph
link mending strategy, and the global knowledge-sharing
strategy collectively succeed in restoring missing links with-
out reliance on annotations, thereby facilitating the informa-
tion negotiation among multiple clients for better clustering.
Extensive experimental results across five graph datasets
demonstrate that FedNCN can effectively mend missing
links caused by sample partition in an unsupervised setting.
In future work, we plan to enhance the generalization capa-
bilities of FedNCN, extending its application to a broader
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range of FGL tasks, such as incomplete federated graph
clustering and federated multi-view clustering.
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A. Notations
In this section, we provide all notations of the proposed FedNCN are summarized in Table 3.

Table 3. Basic notations for the proposed FedNCN.
Notations Meaning Notations Meaning

X̄ ∈ RN̄×d Attribute matrix of each subgraph Ā ∈ RN̄×N̄ Original adjacency matrix of each subgraph

D̄ ∈ RN̄×N̄ Degree matrix of each subgraph Ã ∈ RN̄×N̄ Normalized adjacency matrix of each subgraph

I ∈ RN̄×N̄ Identity matrix of each subgraph Z ∈ RN̄×d′ Latent representations of each subgraph

Z̃ ∈ RN̄×d′ Final latent representations of each subgraph C̄ ∈ RŌ×d′ Prototypes of each subgraph

B ∈ Rn
kŌ×d Truth samples attribute matrix of each subgraph R ∈ Rn

kŌ×d Masked matrix of each subgraph

R̂ ∈ Rn
kŌ×d Reconstructed masked matrix of each subgraph R̃ ∈ Rn

kŌ×d Global samples attribute matrix of each subgraph

S ∈ R
∑M

i=1 Ōi×
∑M

i=1 Ōi Graph-level affinity matrix Q ∈ RN
o×O Soft assignment distribution of the mended graph

Xψ ∈ RN
o×d Attribute matrix of the mended graph P ∈ RN

o×O Target distribution of the mended graph

Aψ ∈ RN
o×No

Adjacency matrix of the mended graph C̃ ∈ RO×d′ Consensus prototypes

B. Different Graph Kernel Methods
In this section, we provide a detailed description of different graph kernel methods. Common graph kernel methods include
the cosine kernel, the weisfeiler-lehman kernel, the shortest path kernel, and the lovász-theta kernel. The specific descriptions
are as follows:

• The Cosine (COS) Kernel (Choromanski, 2023) calculates the similarity by compressing each graph as a feature
vector and then using cosine to measure the angle between these feature vectors. This method combines the graph
structure and the node attributes.

• The Weisfeiler-Lehman (WL) Kernel (Ju et al., 2023) calculates the similarity between the two graphs by re-marking
the nodes of the graph through iteration, thus generating the hierarchical structure representations.

• The Shortest Path (SP) Kernel (Borgwardt et al., 2020) calculates the similarity between the two graphs by evaluating
the distribution of shortest path lengths between corresponding nodes, which captures the global structure information
of the graphs.

• The Lovász-Theta (LT) Kernel (Johansson et al., 2014) calculates the similarity between the two graphs by solving
Lovász theta function, which reflects the size of the largest independent set in the graph.

C. Algorithms
In this section, we provide the algorithms for the local model learning method executed on the client, the cross-subgraph
link mending strategy, and the global knowledge-sharing strategy on the server in our proposed FedNCN. Specifically, the
process executed on the client is shown in Algorithm 2, while the process executed on the server is presented in Algorithm 3.

D. Experiments
In this section, we first provide a detailed description of the five benchmark datasets used in Subsection D.1. Then,
we elaborately introduce the baseline methods and our proposed FedNCN method. Finally, we further report detailed
information on the comparative experiments and ablation studies of the FedNCN method, as in Subsection D.2.

D.1. Experiment Setup

Datasets We report the detailed information of five benchmark datasets, as shown in Table 4.

CiteSeer and PubMed (Jiang et al., 2024) are both used for citation graphs. CiteSeer is a dataset containing academic papers
and their citation relationships, primarily used for analyzing citation networks and is especially suitable for node-level graph
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Algorithm 2 FedNCN for Client Algorithm
Input: Complete graph G; attribute matrix X̄; adjacency matrix Ā; GNN epoch Egnn; MLP epoch Emlp.
Initialize model parameters C̄(0), θ(0)mlp and θ

(0)
gnn from server.

Output: Masked matrix R and MLP parameters θ̄mlp.
for j = 1 to Egnn do

Generate Z̃ by Eq. (1).
end for
Obtain C̄ from Z̃ by K-means.
Obtain B with C̄ and Z̃ by Eq. (2).
Generate R with a shape similar to B using gaussian noise.
for j = 1 to Emlp do

Obtain R̂ from R by Eq. (3).
Optimize the local MLP model by minimizing Eq. (4).

end for
Upload R and θ̄mlp to the server.

Algorithm 3 FedNCN for Server Algorithm
Input: Masked matrix R; MLP parameters θ̄mlp; GNN epoch Egnn.
Output: Consensus prototype C̃ and well-trained GNN parameters θ̃gnn.
Infer R̃ with R and θ̄mlp by Eq. (5).
Generate the refined subgraph Gosub by Eqs. (6) and (7).
Calculate the graph-level similarity S by Eq. (8).
Generate the global graph Gϕ with S.
Generate the mended graph Gψ by Eq. (9).
for i = 1 to Egnn do

Calculate the global reconstruction loss LMSE by Eq. (11).
Calculate the global clustering loss LKL by Eq. (12).
Optimize the GNN model by minimizing Eq. (10).

end for
Obtain consensus prototype C̃ and well-trained GNN parameters θ̃gnn.
Share C̃ and θ̃gnn to each client.

learning tasks. Each node represents each paper, and the edges represent the citation relationships between papers. Similarly,
the PubMed dataset is an academic citation dataset sourced from the PubMed database, containing literature from the fields
of medicine. PubMed dataset is mainly suitable for training and evaluating large-scale node-level graph learning models.

Amazon-Computer and Amazon-Photo (Lin et al., 2021) datasets are part of the Amazon product graph. Amazon-Computer
dataset focuses on products related to computers and is part of the Amazon product review dataset. Each node represents a
product (related to computers), and the edges represent the correlation between products. Amazon-Photo dataset is another
subset of the Amazon product review dataset, focusing on products related to photos and cameras. Similar to the Computer
dataset, each node represents a product (related to photos and cameras), and the edges represent the correlation between
products. Both of these datasets are commonly used for node-level graph learning tasks.

Questions dataset (Platonov et al., 2024) is commonly used in the field of graph learning, especially in applications such as
question recommendation systems or question graph analysis. In these applications, questions are abstracted as nodes in the
graph, and the correlation between questions is represented by the edges in the graph.

Baselines and Our Model

• FedSage+: This method (Zhang et al., 2021) designs a missing neighbor generator based on FedSage to compensate
for the missing graph structure information. In this process, each client first receives the node representations from
the other clients and then computes the gradient of the distance between these representations and local node features.
Finally, the gradient is used to update the graph generator.
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Table 4. Dataset summary.

Dataset Nodes Edges Dimensions Clusters Type Domian

CiteSeer 3327 9104 3703 6 Graph Citation
PubMed 19717 88648 500 3 Graph Citation

Amazon-Computer 13752 491722 767 10 Graph Computer Product
Amazon-Photo 7650 238162 754 8 Graph Photo Product

Questions 48921 153540 301 2 Graph Q&A System

Figure 7. Performance comparison of FedNCN with two advanced federated node-level classification methods on five graph datasets.

• FedPUB: This method (Baek et al., 2023) proposes a novel personalized subgraph FL framework. In this approach, the
central server constructs a random graph under the guidance of real labels and distributes it to each client. Subsequently,
each client learns this random graph to obtain the functional embeddings, which are then uploaded to the server
for identifying the community consisting of a group of densely connected subgraphs. Moreover, FedPUB learns a
personalized sparse mask on each client to select only the relevant subset of the subgraph for parameter updates,
enhancing the aggregation performance.

• FedTAD: This method (Zhu et al., 2024) is a topology-aware subgraph federated learning framework that addresses
subgraph heterogeneity by enhancing the knowledge transfer from local models to the global model. Each client first
decouples node and structure variation, revealing their difference in structure homophily and label distribution. Then, a
knowledge distillation process is applied to transfer reliable local knowledge to the global model, which optimizes the
performance of the local model.

• FedGTA: This method (Li et al., 2024) is a novel optimization strategy for FGL, which is designed to address scalability
and performance issues in existing FGL methods when dealing with large-scale graph data. This method introduces a
topology-aware mechanism that uses a mixed aggregation of neighbor features to enhance the capacity of the local
model to capture graph structure information.

• FedIIH: This method (Yu et al., 2025) is a federated learning framework that addresses both inter- and intra-subgraph
heterogeneity. It uses a hierarchical variational model to capture inter-subgraph similarities and then disentangles
subgraphs into multiple latent factors to handle intra-heterogeneity, which improves the overall model robustness.

• FedNCN: This is our Federated Node-level Clustering Network with inter-client subgraph mending. On the client, an
MLP-based projector is designed to implicitly obtain clustering signals, which are then uploaded for subsequent inter-
client link mending. On the server, the cross-subgraph link mending strategy is proposed to maximize correlated links
through graph similarity estimation and minimize redundant links by using a method similar to N-Cut. Subsequently, a
GNN-based generator is developed to learn the consensus prototypes from this mended graph, which enhances the
clustering performance of each client.

• Local: This method is a non-FL approach, which is the proposed FedNCN local model.
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Table 5. The performance of different federated learning strategies in federated node-level clustering. Here, “Local” denotes the use of
only our local model, while in “FedAvg”, “FedProx”, and “FedPer”, different aggregation strategies are applied by the server, with the
client all using our local model.

Datasets Methods ACC NMI ARI F1 avg. ∆ Datasets Methods ACC NMI ARI F1 avg. ∆

CiteSeer
(5 Clients)

Local 43.5±2.8 6.5±2.2 5.1±4.2 21.1±1.8 -

CiteSeer
(20 Clients)

Local 45.5±0.6 10.8±0.8 4.0±1.0 28.0±1.0 -
FedAvg 53.3±2.2 3.9±1.2 1.9±1.7 16.6±1.6 -0.1 FedAvg 53.9±1.1 8.0±0.8 1.4±0.8 22.3±1.5 -0.7
FedProx 41.2±1.9 4.9±1.0 3.2±1.5 21.0±0.7 -1.5 FedProx 48.3±3.6 10.1±0.5 2.8±0.3 27.1±1.1 0
FedPer 53.1±1.8 7.3±2.2 8.6±2.5 21.6±1.2 +3.6 FedPer 47.8±1.3 11.0±0.8 4.3±0.9 28.0±1.5 +0.7

FedNCN 55.0±1.8 13.3±2.5 19.7±3.7 24.8±1.4 +9.2 FedNCN 57.5±1.6 19.7±1.9 18.0±1.7 32.8±1.1 +9.9

PubMed
(5 Clients)

Local 55.5±2.1 9.5±1.3 9.5±1.5 38.1±0.7 -

PubMed
(20 Clients)

Local 54.3±0.9 6.3±0.8 4.9±1.2 35.4±1.0 -
FedAvg 61.7±0.5 9.6±0.4 9.0±0.9 30.8±1.8 -0.4 FedAvg 64.2±3.2 4.6±2.3 5.1±1.5 20.0±3.8 -1.8
FedProx 60.5±1.7 10.3±4.2 11.0±3.6 39.8±2.0 +2.3 FedProx 60.8±1.4 6.1±1.3 7.4±1.3 36.7±0.8 +2.5
FedPer 56.1±1.7 8.7±0.7 10.6±2.0 38.7±2.3 +0.4 FedPer 53.3±0.4 6.2±0.8 4.5±0.8 35.2±0.5 -0.4

FedNCN 63.4±1.6 10.5±3.5 13.9±3.6 44.0±2.3 +4.8 FedNCN 66.3±1.7 7.5±0.9 11.0±1.2 41.3±1.3 +6.3

Amazon-Computer
(5 Clients)

Local 37.7±1.7 2.9±0.2 1.0±1.3 13.2±0.7 -

Amazon-Computer
(20 Clients)

Local 48.1±0.5 3.3±0.1 0.0±0.5 18.2±0.3 -
FedAvg 59.6±0.3 0.9±0.2 0.1±0.1 11.4±0.4 -4.3 FedAvg 64.2±2.0 1.7±0.2 -0.4±0.1 17.9±0.2 +3.5
FedProx 39.2±3.9 2.2±0.3 0.5±1.4 13.1±0.7 -0.1 FedProx 50.2±1.6 3.1±0.2 1.7±0.4 19.9±0.4 +1.3
FedPer 45.7±1.8 2.1±0.2 0.7±0.8 13.3±1.0 +1.8 FedPer 52.9±1.5 3.6±0.1 2.4±0.8 20.2±0.6 +2.4

FedNCN 63.4±2.3 17.0±9.0 15.3±8.7 21.4±5.9 +15.6 FedNCN 70.2±2.6 21.6±1.5 22.9±3.2 32.5±0.8 +19.4

Amazon-Photo
(5 Clients)

Local 47.0±0.6 4.7±0.3 3.8±0.9 16.3±0.5 -

Amazon-Photo
(20 Clients)

Local 55.1±0.9 9.7±0.2 8.6±0.3 25.5±0.5 -
FedAvg 63.4±0.5 0.9±0.3 0.0±0.3 12.3±0.6 +1.2 FedAvg 65.5±2.2 6.4±2.9 5.0±2.5 23.2±4.9 +0.3
FedProx 49.1±1.2 5.2±1.0 7.7±1.4 17.1±0.7 +1.8 FedProx 58.0±2.1 10.2±0.4 8.4±0.7 26.7±0.6 +1.1
FedPer 55.2±1.6 5.5±1.1 7.1±1.6 16.4±0.9 +3.1 FedPer 63.4±0.8 12.2±0.9 11.7±1.3 27.9±0.8 +4.1

FedNCN 74.1±3.0 37.2±5.3 43.1±7.0 29.1±2.8 +27.9 FedNCN 66.1±2.1 19.9±1.6 16.7±2.0 32.5±0.9 +9.1

Questions
(5 Clients)

Local 75.1±2.4 0.4±0.3 -0.7±0.5 44.7±1.0 -

Questions
(20 Clients)

Local 80.7±1.6 0.7±0.2 -0.4±0.5 46.5±0.4 -
FedAvg 87.4±0.8 0.0±0.0 0.0±0.0 46.2±0.0 +3.5 FedAvg 88.2±1.5 0.0±0.0 -0.1±0.0 46.2±0.0 +1.7
FedProx 85.3±4.1 0.3±0.1 1.6±1.1 48.8±1.5 +4.1 FedProx 81.7±0.8 0.6±0.2 -0.1±1.2 47.0±0.5 +0.4
FedPer 84.1±2.0 0.3±0.1 1.1±0.9 48.4±0.8 +3.6 FedPer 81.3±0.5 0.5±0.2 -0.2±0.8 46.9±0.6 +0.3

FedNCN 94.6±2.0 1.9±0.9 6.4±2.9 52.9±1.7 +9.1 FedNCN 93.0±5.1 1.1±0.8 2.9±3.3 50.8±2.3 +5.1

D.2. Experiment Results

Comparison with Supervised FGL Methods In the main text, we compare the proposed FedNCN with FedSage+, FedPUB,
and FedTAD, demonstrating the superiority of our method. Here, we compare FedNCN with FedGTA and FedIIH to further
validate the competitiveness of FedNCN in clustering tasks. The experimental setup remains consistent with that in the main
text, where each supervised federated node-level classification method is trained using 5% of labeled graph data from the
dataset. As shown in Fig. 7, the experimental results indicate that, under different client partitions, FedNCN consistently
outperforms federated node-level classification tasks (i.e., FedGTA and FedIIH) with limited labeled data.

Comparison of FL Aggregation Strategies In the main text, we demonstrate that the proposed FedNCN method significantly
outperforms three classical FL aggregation strategies (including FedAvg, FedProx, and FedPer) in 10 clients. Here, as
shown in Table 5, we report the performance of FedNCN in 5 clients and 20 clients across multiple clustering metrics on five
unlabeled benchmark graph datasets. As seen, we can observe these findings: 1) in the 5 clients, FedNCN achieves average
improvements of 9.2%, 4.8%, 15.6%, 27.9%, and 9.1% on the CiteSeer, PubMed, Amazon-Computer, Amazon-Photo, and
Question datasets, respectively; 2) in the 20 clients, the average improvements are 9.9%, 6.3%, 19.4%, 9.1%, and 5.1%
on the same datasets, respectively. These findings indicate that under different client partitions, our method significantly
enhances the clustering performance on all datasets compared to other aggregation strategies with our local model. These
improvements could be attributed to the following points. Firstly, the cross-subgraph link mending strategy restores links as
much as possible, facilitating better information communication. This allows the model to learn consistent prototypes and
model parameters from the mended graph, thereby eliminating the constraints caused by the destroyed structural information
and enabling each local model to generate a clustering-friendly target distribution.

Graph Kernel Ablation Analysis In this part, we evaluate the effectiveness of different graph kernels in FedNCN. In
our setup, “COS” denotes the integration of the COS graph kernel with FedNCN, while “WL,” “SP,” and “LT” denote
the combinations of the WL, SP, and LT graph kernels with FedNCN, respectively. As shown in Fig. 8, we observe
that 1) the ACC remains consistently above 50% across all experiments on different datasets; 2) under different datasets
and client partitions, the choice of graph kernels has little impact on clustering performance. These findings may be
attributed to the fact that different graph kernels focus on different paradigms and the inherent patterns of graph structures.
However, in our method, which benefits from the effective recovery of intra-cluster links, these graph kernels can always
identify representative features of refined subgraph structures to accurately measure the affinity between these subgraphs. In
summary, each graph kernel method has its own strengths, but the overall performance differences are minimal. Therefore,
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Figure 8. The performance of different graph kernel ablation studies on five benchmark datasets (CiteSeer, PubMed, Computer, Photo,
Questions). Here, each row represents different client settings (5 clients, 10 clients, 20 clients).

Figure 9. The performance of module ablation in FedNCN under the federated node-level clustering scenario.
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in our approach, we choose the computationally simpler “COS” graph kernel for ease of extension and application.

Module Ablation Study In this section, we evaluate the effectiveness of the proposed modules in FedNCN. In our setup,
“Base” denotes the local model of FedNCN. “FedNCN v1”, “FedNCN v2”, and “FedNCN v3” denote three FedNCN
variants with the intra-cluster link mending strategy, the inter-cluster link mending strategy, and the improved N-Cut method
being removed, respectively. As summarized in Fig. 9, we can observe that 1) the clustering metrics of the FedNCN
method are consistently better than the other methods; 2) Compared to the “Base”, “FedNCN v1”, “FedNCN v2”, and
“FedNCN v3” exhibit better clustering performance in most cases. These findings can be attributed to the following points.
Firstly, FedNCN can effectively restore the missing links between clients, facilitating better knowledge sharing to enhance
each local model for better clustering. Secondly, each module of FedNCN plays an effective role in restoring the missing
links between clients on the server.
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