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ABSTRACT

Contrastive Language-Image Pre-training (CLIP) excels in global alignment with
language but exhibits limited sensitivity to spatial information, leading to strong
performance in zero-shot classification tasks but underperformance in tasks re-
quiring precise spatial understanding. Recent approaches have introduced Region-
Language Alignment (RLA) to enhance CLIP’s performance in dense multimodal
tasks by aligning regional visual representations with corresponding text inputs.
However, we find that CLIP ViTs fine-tuned with RLA suffer from notable loss in
spatial awareness, which is crucial for dense prediction tasks. To address this, we
propose the Spatial Correlation Distillation (SCD) framework, which preserves
CLIP’s inherent spatial structure and mitigates above degradation. To further en-
hance spatial correlations, we introduce a lightweight Refiner that extracts refined
correlations directly from CLIP before feeding them into SCD, based on an in-
triguing finding that CLIP naturally capture high-quality dense features. Together,
these components form a robust distillation framework that enables CLIP ViTs to
integrate both visual-language and visual-centric improvements, achieving state-of-
the-art results across various open-vocabulary dense prediction benchmarks.

1 INTRODUCTION

CLIP models (Radford et al., 2021; Sun et al., 2023) have significantly advanced vision-language
alignment, achieving notable zero-shot classification and cross-modal retrieval performance. These
models align image-level representations with text embeddings, enabling descriptions of wider
categories through language. This capability has driven the development of Open-Vocabulary (OV)
dense prediction, which aims to recognize a broad range of visual concepts beyond predefined
categories. Recent works (Liang et al., 2023; Xu et al., 2023a;b) have successfully extended CLIP’s
zero-shot abilities to OV dense prediction tasks using Vision Transformer (ViT) models (Dosovitskiy
et al., 2021). However, CLIP’s image-level pre-training limits its spatial precision in dense cross-
modal tasks (Minderer et al., 2022; Paiss et al., 2023). To address this, several approaches (Mukhoti
et al., 2023; Zhong et al., 2022; Wu et al., 2023c;b) enhance CLIP’s fine-grained cross-modal
perception by aligning region-level visual representations with language supervision, a technique
known as Region-Language Alignment (RLA), extending CLIP’s success to dense prediction tasks.

While acknowledging prior successes, we step back from RLA’s focus on language alignment to
critically re-examine it from a visual-centric perspective by removing supervision from text. In dense
prediction tasks, learning features with strong spatial awareness1 for localization and recognition is
essential (Caron et al., 2021; Oquab et al., 2023). Since OV dense prediction tasks extend their visual
counterparts, we argue that spatial awareness in CLIP’s image encoder is equally crucial. In Fig. 1(a),
we analyze the spatial structure of CLIP’s dense features using t-SNE (Van der Maaten & Hinton,
2008), and apply unsupervised segmentation with CAUSE (Kim et al., 2023d) as a quantitative
measure. Our preliminary findings indicate that RLA strategies, such as RegionCLIP (Zhong
et al., 2022) and CLIPSelf (Wu et al., 2023b), result in a notable degradation in the visual-centric
quality of dense features. We attribute it to the lack of spatial granularity in language supervision,
which compromises the model’s ability to rich visual-centric perception, rendering RLA methods
suboptimal for OV dense prediction tasks. Given these insights, our objective is to improve models

1It refers to the understanding of the spatial relationships between visual concepts within an image.
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Figure 1: (a) Evaluation of dense feature quality. We visualize the object-level dense features
of image encoder with t-SNE and present the unsupervised segmentation results. Existing Region-
Language Alignment methods lead to significant degradation of visual-centric feature quality. (b)
The framework of our fine-tuning structure. We design an additional visual-centric branch for
RLA to enhance model’s spatial awareness.

spatial awareness during the RLA process, enhancing OV dense prediction from both visual-centric
and vision-language perspectives.

In this paper, we propose a Spatial-Correlation-guided Region-Language Alignment (SC-RLA)
framework, designed to preserve the spatial awareness of CLIP ViTs during the RLA process. One key
challenge is domain conflict, as the RLA process projects dense visual embeddings into a text-oriented
domain, making them incompatible with visual-centric objectives. To address this, we extend the
correlation distillation mechanism (Li et al., 2020; Zhang & Ma, 2023), which focuses on preserving
the consistency of spatial relationships between visual concepts encoded by the dense features, to
the cross-modal domain, enabling the transfer of visual-centric spatial knowledge. Specifically, we
distill spatial correlations from the original CLIP ViT into the student model, enforcing consistency
in spatial correlations during fine-tuning and thereby preserving the model’s spatial awareness.

While our experiments validate the effectiveness of SC-RLA in preserving CLIP’s spatial awareness,
a significant limitation persists: CLIP’s native spatial awareness remains suboptimal (Wei et al., 2023),
which consequently constrains the full potential of SC-RLA. To mitigate this issue, we propose a self-
supervised refinement mechanism aimed at enhancing the spatial awareness of CLIP ViTs, thereby
improving the supervision quality of SC-RLA. This approach is motivated by a key observation:
CLIP ViTs exhibit strong inherent spatial awareness if irrelevant semantic contaminants of CLIP’s
feature map are filtered out. Building on this insight, we introduce a lightweight module, the Refiner,
which generates high-quality spatial refinements from the frozen CLIP ViTs. This process unlocks
the dense perception capabilities of the model in a visual-centric manner, without requiring external
supervision. By integrating the Refiner into the SC-RLA pipeline, we present R-SC-RLA, a robust
framework that enhances CLIP ViTs from both visual-centric and vision-language perspectives.

The effectiveness of our method is experimentally validated on the open-vocabulary dense prediction
tasks, including object detection and image segmentation. With only a few epochs of finetuning
on small datasets like COCO (Lin et al., 2014), our method achieves non-trivial performance
improvements when integrated with the recent RLA methods like CLIPSelf (Wu et al., 2023b) and
RegionCLIP (Zhong et al., 2022) for object detection tasks. For the segmentation benchmarks, our
method also improves the performance of the recent state-of-the-art model Cat-Seg (Cho et al., 2023).

2 RELATED WORK

Open-vocabulary Dense Prediction. A rich body of research has focused on refining and transfer-
ring the knowledge learned by CLIP (Radford et al., 2021) to downstream tasks. Our approach targets
two key areas within open-vocabulary dense prediction: object detection and image segmentation. In
object detection, two primary strategies are commonly used: i) designing additional network struc-
tures for object localization while utilizing the Vision-Language Model (VLM) encoder as a feature
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extractor for region-language alignment (Wu et al., 2023c; Minderer et al., 2022; Kuo et al., 2022),
and ii) extending conventional detection models by learning from VLM-provided region-language
alignment signals through distillation (Du et al., 2022; Ma et al., 2022; Wang et al., 2023; Pham et al.,
2024; Wu et al., 2023a; Gu et al., 2021). Segmentation, which requires finer-grained cross-modal
alignment, has advanced in parallel with object detection. Similar to detection strategies, segmen-
tation can be addressed by generating class-agnostic masks while leveraging VLM’s vision-to-text
matching capabilities (Xu et al., 2023a; 2022; Yu et al., 2024; Ding et al., 2022), or by distilling
cross-modal consistency knowledge into existing segmentation models (Chen et al., 2023a;b; Qin
et al., 2023). Despite the success of these methods, they remain tailored to specific tasks. To enable
broader applications, our approach focuses on fine-tuning the CLIP image encoder at the midstream
stage to improve generalizability.

Region-Language alignment. Inspired by the success of language-image alignment (Radford et al.,
2021; Kim et al., 2021; Li et al., 2022a), considerable attention has been directed toward facilitating
RLA at various training stages. At the upstream pre-training stage, some studies introduce region-text
alignment tasks using annotated visual grounding data (Li et al., 2022b; Liu et al., 2023), or generate
pseudo-region-level text annotations from image captions (Zhong et al., 2022). At the midstream stage,
to avoid large-scale pre-training from scratch, several works (Mukhoti et al., 2023; Wu et al., 2024;
Zhou et al., 2022a; Lin et al., 2023) refine image-level vision-language correspondence into a form
more suitable for dense-level tasks. This is achieved by training a lightweight RLA module (Mukhoti
et al., 2023), extracting training-free RLA signals (Zhou et al., 2022a), or fine-tuning the image
encoder (Lin et al., 2023; Wu et al., 2024). The recent advance of CLIPSelf (Wu et al., 2023b)
enhances RLA by directly aligning region representations with the text-oriented [CLS] token of the
image encoder, eliminating the need for text. Since recent OV dense prediction models combines
dense prediction with vision-text matching, improving the spatial awareness of the image encoder is
as critical as enhancing its alignment with language signals—an aspect seldom discussed in previous
RLA research and a key motivation for our work.

Correlation Distillation. Correlation distillation(Gao et al., 2022a; Li et al., 2020; Zhang & Ma,
2023; Peng et al., 2019; 2023; Yang et al., 2022) is commonly utilized to ensure consistency of
structural correlations within feature representations between target and source feature sets. This
approach typically employs a correlation matrix, either within the same feature map (Peng et al.,
2023; Yang et al., 2022) or across different instances (Gao et al., 2022a; Li et al., 2020; Peng et al.,
2019; Zhang & Ma, 2023), to capture these structural dependencies, which are then used to supervise
the distillation process. In our work, we harness the spatial awareness of CLIP by leveraging spatial
correlation to guide Region-Language Alignment. We demonstrate the feasibility and robustness of
correlation as an effective tool for bridging the cross-modal gap, enabling vision-language models
to benefit from a visual-centric perspective. Unlike conventional methods (Peng et al., 2023; Li
et al., 2020; Peng et al., 2019; Zhang & Ma, 2023), our approach is unique in its multi-modal focus,
utilizing spatial correlation to improve open-vocabulary dense prediction tasks.

3 METHODOLOGY

3.1 PRELIMINARY: REGION-LANGUAGE ALIGNMENT

Region-Language Alignment. Let CLIP’s image encoder be denoted as fI , with an input image X
and a set of region proposals {bi}Bi=1. Region-Language Alignment (RLA) methods fine-tune the
student model fs

I , initialized from fI , to align region representations with corresponding language
supervision. This alignment is achieved using the following loss function:

LRLA =
1

B

∑
i

LAlign(RoIPooling(fs
I (X), bi),Ti), (1)

where Ti denotes the language supervision corresponding to region bi, and LAlign represents an
alignment loss, such as InfoNCE (Oord et al., 2018) or cosine similarity. As depicted in the top left
of Fig. 2, we explore two key RLA mechanisms from RegionCLIP (Zhong et al., 2022) and CLIP-
Self (Wu et al., 2023b). RegionCLIP aligns region proposals with object nouns to generate pseudo
region-text pairs, which are processed by the text encoder to obtain Ti. We adapt RegionCLIP’s RLA
process for fine-tuning following the approach of (Wu et al., 2023b), which we term ’RegionText’.
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Figure 2: Overview of SC-RLA. The conventional RLA process (blue arrow) aligns the region
representations of the student model with the corresponding language supervision signals generated
by either CLIP’s text encoder or image encoder. We enhance this process by integrating Spatial
Correlation Distillation (red arrow) to preserve the structural relationships between visual tokens.

In contrast, CLIPSelf leverages the inherent consistency between image encoder’s [CLS] tokens and
text embeddings, using the [CLS] tokens of cropped images defined by bi as the corresponding Ti.

Limitation of RLA. As shown in Fig. 1(a), RLA compromises the visual-centric quality of dense
features for the alignment with the language domain (full results and technical details are provided
in Appendix A). However, we argue that OV dense prediction requires a dual capability: strong
consistency with language, and robust spatial awareness for dense prediction. Prioritizing only one
dimension, as RLA does, is suboptimal. To address this, we propose a visual-centric solution that
seamlessly integrates with RLA to effectively balance both aspects.

3.2 SPATIAL-CORRELATION-GUIDED RLA

To enhance spatial awareness, one might consider integrating dense-level visual pre-training tech-
niques (Wang et al., 2021; Zhou et al., 2022b) or aligning the dense features of the student and teacher
models. However, these approaches conflict with RLA’s goal, which projects visual-centric dense
features into the language domain. To reconcile this, we introduce Spatial Correlation Distillation
(SCD), inspired by correlation distillation methods (Li et al., 2020; Peng et al., 2019), as shown in
the bottom right of Fig. 2. To capture region-level semantics, we process the input image X through
both the student model fs

I and teacher model fI , extracting regional features Zs
i ,Z

t
i ∈ RL×D with

sampled proposals {bi}Bi=1 using RoIAlign (He et al., 2017), where L denotes the sequence length of
the flattened dense features. This process is formulated as:

Zs
i = RoIAlign(fs

I (X), bi), Z
t
i = RoIAlign(fI(X), bi). (2)

The spatial correlation matrices Cs
i ,C

t
i ∈ RL×L are then computed as:

Cs
i = Zs

i · (Zs
i )

T , Ct
i = Zt

i · (Zt
i )

T . (3)
We normalize these matrices using softmax to highlight regional structural relationships:

Ĉs
i (j, k; τs) =

exp(Cs
i (j, k)/τs)∑

k′ exp(Cs
i (j, k

′)/τs)
, Ĉt

i (j, k; τt) =
exp(Ct

i (j, k)/τt)∑
k′ exp(Ct

i (j, k
′)/τt)

, (4)

where τ is a temperature parameter, and Ci(j, k) is the element at coordinate (j, k). To preserve
spatial awareness of the student model, we minimize the cross-entropy loss between the student and
teacher correlation matrices:

LSCD =
1

B

∑
i

1

L

∑
j

H(Ĉs
i (j, :), Ĉ

t
i (j, :)). (5)

Since LSCD focuses solely on spatial correlations without requiring cross-domain consistency, it
integrates smoothly with RLA, guiding the fine-tuning process from a visual-centric perspective. This
leads to the SC-RLA objective:

LSC-RLA = LRLA + λLSCD, (6)
where λ is a hyperparameter that balances the two losses.

4
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Figure 3: A training-free illustration of refining CLIP. We compute the average features from a
frozen CLIP model across diverse contexts to mitigate semantic contamination. As the number of
aggregated images N increases, the model’s spatial awareness improves progressively.

Figure 4: CLIP refining pipeline. The proposed pipeline enhances CLIP’s dense representations
using a lightweight Refiner module. Initialized with the last K layers of CLIP’s image encoder,
this module aggregates corresponding tokens in a global-to-local dynamic, eliminating unnecessary
contextual distortion and focusing on high-quality local semantics.

3.3 REFINING SPATIAL AWARENESS OF CLIP

As demonstrated in Sec.4, the SC-RLA objective significantly improves the OV dense prediction.
However, CLIP’s inherent spatial awareness remains limited(Wei et al., 2023). To further enhance
the SCD process, we propose to explicitly refine CLIP’s spatial awareness.

Identifying CLIP’s Dense-level Potential. Our approach is driven by a key observation: CLIP
inherently provides robust dense representations for vision-centric perception tasks. To substantiate
this, we conduct a training-free investigation, as illustrated in Fig. 3. Given a set of randomly
sampled images {Xi}Ni=1, we embed a predefined target image Xt into each Xi at random positions,
producing modified images XM

i with Xi serving as the context. These modified images are processed
through CLIP to extract the submap ZXt|Xi

corresponding to Xt. We then refine the target’s features
by averaging the submaps, yielding an aggregated feature map Z̄Xt

:

Z̄Xt
=

1

N

∑
i

ZXt|Xi
. (7)

In this setup, the target image Xt remains constant across all XM
i , with the only variation being

the context provided by the different Xi. Compared to the direct output from CLIP, the aggregated
feature map Z̄Xt

, especially for larger N , is more focused on fine-grained semantics. This finding
reveals a critical insight: CLIP’s dense features are subject to semantic contamination from con-
textual information. By aggregating features from different contexts, we can effectively mitigate
these distortions. Further analysis, detailed in Appendix B, demonstrates that the refined features
significantly enhance performance in dense prediction tasks.

Refining CLIP’s Dense-level Representation. The analysis indicates that enhancing CLIP’s spatial
awareness in a visual-centric manner is achievable. However, aggregating large numbers of images is
computationally expensive and impractical for inference. Therefore, to explicitly extract high-quality
dense features at once, we propose to train a lightweight Refiner module. It leverages the insight of
the above analysis, but performs aggregation within the same image, as depicted in Fig. 4. For the
frozen CLIP image encoder fI := fB

I ◦ fA
I , where fB

I (fA
I ) represent the final K(initial N −K)

residual blocks of fI , we initialize the Refiner fR by cloning fB
I . Given an input image X and a

selected region b, fR outputs the refined feature map as:

Ẑ = fR
(
RoIAlign(fA

I (X), b)
)
. (8)

Here, fR inherits the knowledge learned by fB
I and is fine-tuned to extract spatially aware refinements

from the output of the frozen fA
I . To train the Refiner, we diverge from the common local-to-global

5
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Table 1: Zero-shot evaluation of dense representation. We report Top1 and Top5 mean accuracy.

Backbone Method RPN Proposals Boxes Thing Masks Stuff Masks
Top1 Top5 Top1 Top5 Top1 Top5

ViT-B/16 EVA-CLIP - 18.2 33.2 20.6 36.5 18.4 43.5
ViT-B/16 CLIPSelf ✗ 72.1 91.3 74.4 91.8 46.8 80.2
ViT-B/16 R-SC-CLIPSelf ✗ 76.0 93.1 76.2 92.5 53.5 84.4
ViT-B/16 RegionText ✓ 71.1 90.7 73.7 91.4 34.2 68.6
ViT-B/16 R-SC-RegionText ✓ 72.0 91.3 74.3 91.6 41.6 73.3
ViT-B/16 CLIPSelf ✓ 74.0 92.6 76.3 92.8 36.8 75.0
ViT-B/16 R-SC-CLIPSelf ✓ 77.3 94.0 78.9 94.2 52.6 83.9

ViT-L/14 EVA-CLIP - 56.7 78.0 59.0 79.8 20.8 41.9
ViT-L/14 CLIPSelf ✗ 77.1 93.3 78.7 93.7 44.4 78.3
ViT-L/14 R-SC-CLIPSelf ✗ 82.9 96.0 82.8 95.6 57.8 86.5
ViT-L/14 CLIPSelf ✓ 77.8 94.0 80.4 94.5 34.0 71.8
ViT-L/14 R-SC-CLIPSelf ✓ 81.7 95.8 82.9 95.9 52.5 83.9

approach in self-supervised learning (Zhang et al., 2022; Caron et al., 2021) and instead design a
global-to-local alignment mechanism. This eliminates unnecessary contextual distortion outside a
local region, enabling the network to focus on high-quality, fine-grained semantics, similar to the
aggregation process in Eq. 7. Specifically, we randomly sample local region proposals {b′i}Ci=1 to
generate C local crops X ′

i from X . We then forward the global image X and the region b′i through
Eq. 8 to obtain refinements Ẑi ∈ RL×D, and pass the context-free local crops X ′

i through fI to
extract local feature maps Z ′

i ∈ RL×D. We align the corresponding tokens between Ẑi and Zi′,
defining the Refining loss as:

LRefiner =
1

C

∑
i

Lalign(Ẑi,Z
′
i), (9)

where Lalign denotes the alignment loss. In our implementation, we use InfoNCE (Oord et al., 2018)
for Lalign due to its robustness, treating other tokens within the same crop as negative samples. A
detailed analysis of the alignment loss is provided in Appendix C.2.

3.4 REFINED SPATIAL CORRELATION DISTILLATION

Overall Framework. To enhance CLIP’s spatial awareness using the trained Refiner, we modify
the target correlation matrix in Eq. 3 by replacing Zt

i with the refined features Ẑi. This allows us to
supervise the spatial correlations in the student model using the refined spatial structure. We refer to
this process as Refined Spatial Correlation Distillation (R-SCD), which forms the final R-SC-RLA
framework. Notably, the refined model does not participate in the RLA branch, thereby preserving
the integrity of the language supervision.

Visual-centric Application. The R-SCD process can also be applied independently to the student
model, focusing solely on enhancing spatial awareness without language supervision. We call this
approach Visual-centric R-SCD (R-SC-V).

4 EXPERIMENTAL RESULTS

4.1 IMPLEMENTATION DETAILS

Our full distillation consists of two stages: i) the refining of Refiner; and ii) CLIP fine-tuning stage.
Although the two stages can be jointly trained in an end-to-end manner (Sec. 4.5), we first train i) to
obtain a stable Refiner, then utlize the refinements to guide ii). Concretely, we use 8 RTX 3090 GPUs
for both stages with AdamW (Loshchilov & Hutter, 2017) optimizer. For the first stage, we set the
learning rate to 1e− 4 and train Refiner for 4 epochs with the batch size as 16. For the second stage,
we set the learning rate to 2e− 5 and perform CLIP fine-tuning for 6 epochs with the batch size as
4. The proposals for RLA process are generated by a trained RPN, identical to (Wu et al., 2023b).
Both stage are trained on COCO train2017 dataset (Lin et al., 2014). The experiments involves

6
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Table 2: Effects of Refiner. Comparison of distilled models with and without refining.

Backbone Method RPN Proposals Boxes Thing Masks Stuff Masks
Top1 Top5 Top1 Top5 Top1 Top5

ViT-B/16 CLIPSelf ✓ 74.0 92.6 76.3 92.8 36.8 75.0
ViT-B/16 SC-CLIPSelf ✓ 76.0 93.5 77.9 93.9 49.4 82.6
ViT-B/16 R-SC-CLIPSelf ✓ 77.3 94.0 78.9 94.2 52.5 83.9

22.6 

17.1 

21.3 

23.0 

16.2 

18.9 

22.2 

25.9 
mIoU

(b) Unsupervised Segmentation(a) Point-affinity Visualization

Input CLIP CLIPSelf +SC +R-SC

Figure 5: Visual-centric analysis. (a) We visualize the affinity map w.r.t a selected query token
embeddings (marked by the red dot) of the visual encoder. (b) Unsupervised segmentation evaluation
with CAUSE on Cityscapes, where the mIoU is reported.

two CLIP models: OpenAI CLIP (Radford et al., 2021) and EVA-CLIP (Sun et al., 2023). For our
design specifics, Refiner is initialized with the weights of the last 4 blocks of the visual encoder
for ViT-B and the last 6 blocks for ViT-L, with the early layers kept frozen. To train Refiner, we
randomly generate C = 4 crops from each image with the range of [0.3, 0.7]. During the stage of
spatial correlation distillation, we set the temperature τT = τS = 0.2, with λ = 0.2 for ViT-B and
λ = 0.4 for ViT-L. The structural details of Refiner is delayed to the Appendix. C.

4.2 EVALUATION OF DENSE REPRESENTATION

Recognition Capability. We conduct dense-level zero-shot classification to evaluate model recogni-
tion capabilities, following the protocol in (Wu et al., 2023b). The region representations are extracted
with three strategies: i) Boxes, which applies RoIPooling to COCO dataset object bounding boxes, ii)
Thing Masks, and iii) Stuff Masks, both extracted via mask pooling (He et al., 2017) using COCO
Panoptic dataset masks (Kirillov et al., 2019). The results are shown in Tab. 1, where ’RegionText’
refers to RegionCLIP’s RLA process. Our method yields consistent and significant improvements
across all settings. As shown in Tab. 2, we further demonstrate the Refiner’s necessity. Notably,
R-SC-RLA achieves a 10%− 20% improvement on COCO-Stuff using RPN proposals, where many
objects are neglected by the RLA supervision. This indicates that SCD can still effectively transfer
language supervision to tokens, even when they are misaligned with the text.

Visual-centric Analysis. From a visual-centric perspective, we access the quality of the dense
features both qualitatively and quantitatively to analyze the causes of above improvements. The
visualization of point affinity maps is shown in Fig. 5, following the principle in (Bai et al., 2022)
(full results provided in Appendix. F), where we calculate the cosine similarity map between a
selected token and the feature map. Additionally, we use CAUSE for unsupervised segmentation on
Cityscapes (Cordts et al., 2016) as a quantitative indicator. Both results demonstrate a significant
improvement regarding to the quality of dense features, which is consistent with our motivation of
enhancing model’s spatial awareness.

4.3 OPEN-VOCABULARY DENSE PREDICTION

We evaluate the fine-tuned models via OV dense predction, including detection on OV-COCO and
OV-LVIS benchmarks following the protocol in (Wu et al., 2023b), and semantic segmentation
following Cat-Seg (Cho et al., 2023). The corresponding details are presented in the Appendix. D.
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Table 3: Results on open-vocabulary object detection. We report APnovel
50 of the novel classes

for OV-COCO and mAPr of the rare classes for OV-LVIS. ’SC-’ denotes employing SC-RLA, and
’R-SC-’ denotes the full distillation strategy wtih the Refiner.

(a) OV-COCO benchmark

Method Backbone APnovel
50

F-VLM (Kuo et al., 2022) RN50 28.0
BARON-KD (Wu et al., 2023a) RN50 34.0
LP-OVOD (Pham et al., 2024) RN50 40.5
ViLD (Gu et al., 2021) RN50 27.6
Detic (Zhou et al., 2022c) RN50 27.8
RegionCLIP (Zhong et al., 2022) RN50×4 39.3
CORA (Wu et al., 2023c) RN50×4 41.7
CORA+ (Wu et al., 2023c) RN50×4 43.1

PromptOVD (Song & Bang, 2023) ViT-B/16 30.6
RO-ViT (Kim et al., 2023b) ViT-L/16 33.0
CFM-ViT (Kim et al., 2023a) ViT-L/16 34.1
DITO (Kim et al., 2023c) ViT-L/16 46.1

RegionText ViT-B/16 34.4
SC-RegionText ViT-B/16 35.8
R-SC-RegionText ViT-B/16 37.0
CLIPSelf (Wu et al., 2023b) ViT-B/16 37.6
SC-CLIPSelf ViT-B/16 39.1
R-SC-CLIPSelf ViT-B/16 40.9
CLIPSelf (Wu et al., 2023b) ViT-L/14 44.3
SC-CLIPSelf ViT-L/14 46.5
R-SC-CLIPSelf ViT-L/14 48.1

(b) OV-LVIS benchmark

Method Backbone mAPr

BARON-KD (Wu et al., 2023a) RN50 22.6
OV-DETR (Zang et al., 2022) RN50 17.4
Detic (Zhou et al., 2022c) RN50 24.9
CORA+ (Wu et al., 2023c) RN50×4 28.1
F-VLM (Kuo et al., 2022) RN50×4 32.8

VLDet (Lin et al., 2022) SwinB 26.3
Detic (Zhou et al., 2022c) SwinB 33.8

PromptOVD (Song & Bang, 2023) ViT-B/16 23.1
RO-ViT (Kim et al., 2023b) ViT-B/16 28.4
RO-ViT (Kim et al., 2023b) ViT-L/16 32.4
CFM-ViT (Kim et al., 2023a) ViT-B/16 28.8
CFM-ViT (Kim et al., 2023a) ViT-L/16 33.9
DITO (Kim et al., 2023c) ViT-L/16 38.4
CoDet (Ma et al., 2023) ViT-L/14 37.0

RegionText ViT-B/16 21.2
R-SC-RegionText ViT-B/16 23.6
CLIPSelf (Wu et al., 2023b) ViT-B/16 25.3
R-SC-CLIPSelf ViT-B/16 27.5
CLIPSelf (Wu et al., 2023b) ViT-L/14 34.9
R-SC-CLIPSelf ViT-L/14 37.2

Table 4: Results on open-vocabulary segmentation. We report the mIoU performance. † denotes
the vanilla version of Cat-Seg.

Method VLM ADE-150 ADE-847 PASCAL Context
mIoU mACC mIoU mACC mIoU mACC

SAN (Xu et al., 2023b) CLIP ViT-B/16 27.5 45.6 10.1 21.1 53.8 73.0
SAN (Xu et al., 2023b) CLIP ViT-L/14 32.1 50.7 12.4 25.2 57.7 77.6
SILC (Naeem et al., 2023) SILC-C-B/16 37.0 - 13.5 - 61.2 -
SILC (Naeem et al., 2023) SILC-C-L/16 37.7 - 15.0 - 63.5 -

Cat-Seg† CLIP ViT-B/16 27.2 41.2 8.4 16.6 57.5 74.0
Cat-Seg†+CLIPSelf CLIP ViT-B/16 29.0 46.0 9.3 20.1 58.0 75.3
Cat-Seg†+R-SC-CLIPSelf CLIP ViT-B/16 29.9 47.2 9.8 21.2 58.3 75.9

Cat-Seg CLIP ViT-B/16 31.8 48.8 12.0 22.6 57.5 75.5
Cat-Seg+CLIPSelf CLIP ViT-B/16 30.8 48.4 11.9 21.9 56.3 75.0
Cat-Seg+R-SC-CLIPSelf CLIP ViT-B/16 32.0 48.9 12.2 22.0 57.2 75.3
Cat-Seg+R-SC-V CLIP ViT-B/16 32.7 49.7 12.3 22.6 58.0 76.0
Cat-Seg CLIP ViT-L/14 37.9 55.7 16.0 28.7 63.3 80.0
Cat-Seg+R-SC-V CLIP ViT-L/14 38.4 56.0 16.6 29.2 63.6 80.2

Open-vocabulary Object Detection. Following (Wu et al., 2023b), we utilize a two-stage detector,
F-ViT, which extracts multi-scale feature maps from the intermediate layers of the frozen EVA-CLIP
model. We report the AP50novel for novel classes on the OV-COCO dataset and mAPr for rare classes
on the OV-LVIS dataset, with results presented in Tab. 3. When combined with a RLA method, such
as CLIPSelf or RegionText, our SCD module consistently enhances performance, achieving a final
improvement of 2%− 4% across all benchmarks when further integrated with the Refiner.

Open-vocabulary Semantic Segmentation. Cat-Seg, a state-of-the-art model for open-vocabulary
semantic segmentation, leverages OpenAI’s CLIP ViTs as its vision-language backbone, followed by
a cost-aggregation module. We evaluate two variants: the original Cat-Seg with a frozen text encoder,
and an updated version with a fine-tuned text encoder. Trained on the ADE20K dataset (Zhou et al.,
2017) and evaluated on ADE-847, ADE-150, and Pascal Context (Mottaghi et al., 2014), our distilled
model—enhanced with R-SCD objective—consistently outperforms both Cat-Seg and CLIPSelf
in the vanilla setup, as shown in Tab. 4. Interestingly,fine-tuning the text encoder in the updated
Cat-Seg results in a performance decline for CLIPSelf. We attribute this to the fine-tuned text encoder
achieving more precise implicit region-language alignment, thus diminishing CLIPSelf’s advantage.
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Figure 6: Off-the-shelf segmen-
tation with MaskCLIP.

VLM Model PASCAL
Context

COCO
Stuff

OpenAI-CLIP 25.5 14.6
+CLIPSelf 26.4 16.1
+R-SC-CLIPSelf 27.9 17.5

DFN 29.4 18.6
+CLIPSelf 30.8 20.1
+R-SC-CLIPSelf 32.1 21.2

Meta-CLIP 30.3 20.0
+CLIPSelf 30.1 19.7
+R-SC-CLIPSelf 33.6 22.0

EVA-CLIP 22.8 15.6
+CLIPSelf 32.2 20.1
+R-SC-CLIPSelf 37.0 23.8

Figure 7: Visualization of segmentation results. We visualize
the segmentation results with MaskCLIP using different VLM
backbones. Best viewed in color and zoomed in.

Table 5: Unsupervised segmentation with
CAUSE. We report mIoU and mACC results.

Dataset Method mIoU mACC

Cityscapes DINO V2 29.9 89.8
+ R-SC-V 31.8 90.5

COCO-Stuff DINO V2 43.0 76.9
+ R-SC-V 44.1 77.4

Figure 8: Affinity map visualization of the
given red point on DINOv2 and DINOv2+R-
SCD. Lighter regions indicate higher affinity.

Furthermore, CLIPSelf’s limited spatial awareness contributes to this decline. To address these issues,
we employ the R-SC-V objective, described in Sec. 3.3, as a visual-centric fine-tuning strategy, which
leads to superior performance across all datasets.

Off-the-shelf Zero-shot Segmentation. We further apply our method to more CLIP’s variants,
including DFN (Fang et al., 2024) and Meta-CLIP (Xu et al., 2024). We adopt the off-the-shelf
segmentation protocol in MaskCLIP (Zhou et al., 2022a), which directly classifies each dense
feature output by the frozen image encoder using cosine similarity with the corresponding category
embedded by the text encoder. The mIoU results are reported in Tab. 6, showcasing the superiority
and generalizability of our method. Visualization is provided in Fig. 7, with more examples in Fig. 17.

4.4 VISUAL-CENTRIC APPLICATION: ENHANCING DINO V2

DINO V2 (Oquab et al., 2023) is a self-supervised foundational model designed for vision-centric
tasks. However, as highlighted by (Darcet et al., 2023), DINO V2 tends to produce dense feature
artifacts, which impair its ability to capture fine-grained details and result in abnormal representations
dominated by global context. To address these shortcomings, we integrate R-SC-V as a visual-centric
enhancement module to fine-tune DINO V2. This enhancement consistently improves performance
in unsupervised segmentation tasks, as evidenced by results on the Cityscapes (Cordts et al., 2016)
and COCO-Stuff (Caesar et al., 2018) datasets (see Tab. 5). Moreover, the failure cases observed in
DINO V2, visualized in Fig. 8, are notably reduced after R-SC-V fine-tuning.

4.5 ABLATION STUDY

We dissect our framework and study the impact of each component to reveal the strengths of our
designs. A more comprehensive investigation can be found in the Appendix. E.

Comparison with Correlation Distillation. We compare only the SCD method, excluding the
Refiner, against several established techniques in correlation distillation (Li et al., 2020; Peng et al.,
2019; 2023; Yang et al., 2022). To adjust the distillation objective, we replace the standard cross-
entropy loss with the Frobenius norm of the correlation matrix, following the approach in (Yang
et al., 2022; Li et al., 2020), which we denote as LF. In terms of correlation matrix construction, we
explore two alternatives: LInter, which emphasizes inter-instance correlations across various feature
maps (Peng et al., 2019); and LAttn, which focuses on attention values (Peng et al., 2023). Results in
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Table 6: Ablation on the design choices of R-SCD. We report Top1 for zero-shot dense prediction
and APnovel

50 for OV-COCO.
(a) Ablation on SCD

Method Boxes Top1 Stuff Top1 Thing Top1 OV-COCO

CLIPSelf 74.0 76.3 36.8 37.6

(Correlation distillation designs)
+LF 73.5 75.2 35.9 36.8
+LInter 73.4 75.4 37.2 37.2
+LAttn 74.3 76.2 36.6 37.9

(Different visual-centric constraints)
+LCL 65.1 67.6 29.6 27.4
+LMIM 73.6 75.9 36.3 37.5

+LSCD 76.0 77.9 49.4 39.1

(b) Ablation on Refiner

Method Boxes Top1 Thing Top1 Stuff Top1 OV-COCO

CLIPSelf 74.0 76.3 36.8 37.6
w/ R-SCD 76.0 77.9 49.4 39.1

(Designs of Refiner)
+Random 76.7 78.3 50.8 39.4
+Exogenous 76.8 78.2 51.4 39.9
+PACL 76.4 77.6 49.9 39.2

(Training strategies)
w/ R-SCD (E2E) 76.8 78.4 51.9 40.0
w/ R-SCD (L2G) 75.2 76.9 43.2 38.0

+Ours 77.3 78.9 52.5 40.9

Tab. 6(a) indicate that our method, which prioritizes structural relationships within the same scene, is
more effective at enhancing spatial awareness during RLA fine-tuning.

Comparison on Visual-centric Constraints. Previous work has utilized visual-centric self-
supervised learning techniques (He et al., 2022; Chen et al., 2020; Zhou et al., 2022b) to improve the
dense feature quality of CLIP (Dong et al., 2023; Li et al., 2023). However, these methods are limited
to image-language pre-training, where fine-grained language supervision is not a concern. This raises
the question of whether they are suitable for RLA fine-tuning, as discussed in Sec. 3.2. Following
MaskCLIP(Dong et al., 2023), we incorporate an additional EMA model, updated via momentum
from the student’s weights to provide visual supervision. We explore two types of constraints: (i)
LMIM, which adopt masked image modeling objective as iBOT (Zhou et al., 2022b); and (ii) LCL, with
dense-level contrastive loss in DenseCL (Wang et al., 2021). As shown in Tab. 6(a), these constraints
fail to improve the performance, supporting our claim that typical visual-centric constraints may
conflict with dense-level language supervision without non-trivial modifications.

Ablation on the Refiner’s Structure. We evaluate different architectural designs for the Refiner: (i)
Random Initialization, where no weights are inherited from the final K attention blocks of CLIP;
(ii) Exogenous, where a randomly initialized Refiner is applied on top of CLIP; and (iii) PACL,
which integrates a lightweight residual block (vision embedder) as proposed in PACL (Mukhoti et al.,
2023). Table Tab. 6(b) demonstrates that all Refiner variants improve performance, highlighting the
importance of the refinement process. Our approach, which leverages the weights from the last K
attention blocks of CLIP, achieves the best results, underscoring the benefit of inheriting pretrained
knowledge from CLIP for the Refiner module.

Global-to-Local Refining Dynamics. We further investigate the impact of the global-to-local
dynamics on training the Refiner. As illustrated in Table 6(b), a local-to-global (L2G) pipeline
reversing the process in Fig. 4 leads to significant performance degradation, compared to SC-CLIPSelf
without the Refiner. This confirms the necessity of our global-to-local design.

End-to-end Training. In Table 6(b), we present results from end-to-end (E2E) training, where
both the Refiner and the student encoder are fine-tuned simultaneously. Although the performance
is slightly lower than that of the two-stage training approach, it still surpasses the CLIPSelf and
SC-CLIPSelf baselines, demonstrating the flexibility of our framework. Nevertheless, we recommend
the two-stage training method in practice for optimal performance.

5 CONCLUSION

In this paper, we introduced the Spatial Correlation Distillation framework to address the issue of
quality degradation in dense features when fine-tuning CLIP ViTs with Region-Language Alignment.
Our approach preserves the spatial structural knowledge of the model and incorporates the Refiner
module to further enhance CLIP’s spatial awareness, leading to notable performance gains on open-
vocabulary dense prediction benchmarks. Our work highlights the critical role of spatial awareness
in vision-language models from a visual-centric perspective, extending beyond mere linguistic
alignment. The experimental results demonstrate that our framework enables CLIP ViTs to integrate
both vision-language and visual-centric enhancements, providing a novel avenue for advancing
dense-level perception in CLIP-based models.
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APPENDIX CONTENTS

The appendix is structured as follows:

• Appendix A presents comprehensive experiments evaluating the dense features of various
fine-tuned CLIP ViTs.

• Appendix B provides an analysis of the dense features from the original CLIP ViTs, serving
as empirical evidence for our refining strategy.

• Appendix C details the design of the Refiner, supplemented with ablation studies and further
empirical study.

• Appendix D outlines the implementation details for the open-vocabulary dense prediction
tasks.

• Appendix E includes additional ablation studies for the overall framework.
• Appendix F provides the implementation details for point-affinity visualization, along with

further visual results.
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Figure 9: (a) point-affinity visualization with different number N of aggregated images. An increasing
N tends to rendering dense features with better spatial awareness. Best viewed in color and zoomed
in. (b) When the semantic contamination of dense features is effectively eliminated with a large N ,
unsupervised segmentation present significant performance improvement. ’Refiner’ denotes utilzing
the output of our trained Refiner for inference.

A VISUAL-CENTRIC EVALUATION OF DENSE FEATURES

A.1 UNSUPERVISED SEGMENTATION.

As Oquab et al. (2023) argue, a powerful pre-trained visual encoder can produce dense features that
are directly applicable to unsupervised segmentation, even surpassing the performance of fine-tuned
methods. Building on this insight, we perform unsupervised segmentation using the state-of-the-art
CAUSE (Kim et al., 2023d) as a numerical indicator to assess the quality of the dense features
generated by a frozen visual encoder.

A.2 T-SNE OF DENSE FEATURES.

t-SNE (Van der Maaten & Hinton, 2008) is a widely used technique for projecting high-dimensional
embeddings into a lower-dimensional space for visualization. In our experiments, we first extract
instance-level features by applying masked average pooling to the dense features generated by an
image encoder, using the ground-truth segmentation masks to define the pooling regions. We then
apply t-SNE to project the extracted object-level dense features into a 2D space for visualization. To
enhance clarity, we randomly sample 256 instances from each category and select 7 categories for
each visualization. The images and corresponding annotations are taken from the COCO train2017
dataset. More visualizations are provided in Fig. 15.

B ANALYSIS ON DENSE-LEVEL POTENTIAL OF CLIP

B.1 EXTRACTING HIGH-QUALITY DENSE FEATURES FROM FROZEN CLIP

As an experimental complement, we present more visualization results in Fig. 9(a), which presents a
clearer trend that when the number N of modified images XM in Fig. 3 increases, the dense features
tend to be more spatially aware and aligned with the object boundaries. For the qualitative evaluation,
a large N as 32 yields 2% mIoU improvement in the unsupervised segmentation without any training
process. This observation demonstrates the dense-level potential of the CLIP image encoder once we
eliminate the irrelevant distractions hindering dense feature quality, the aggregation operation acts as
an average filter to filter out the semantic contamination.
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Figure 10: Point-affinity visualization of dense features. From left to right: CLIP’s original feature
map, semantic contamination, aggregated dense features, and the output of the trained Refiner.

B.2 EFFECTS OF REFINER

If we consider the aggregated features Z̄Xt
in Eq. 7 as the target features, for each feature map Z

directly output by CLIP image encoder, we define the noise pattern ϵ := Z − Z̄Xt
as the deviation

from the target features. As in Fig. 10, the noise results in meaningless correlation, irrelevant to
the fine-grained visual concepts. For the effects of our desinged Refiner, Shown in Fig. 9(b), the
trained Refiner exhibits more effectiveness in unsupervised segmentation than both the original dense
features and the aggregated feature, demonstrating the necessity of Refiner.

C REFINER

C.1 DESIGN CHOICES

Figure 11: The architecture of the proposed Refiner. The framework consists of three components:
a Refiner head, an Intermediate processer, and a region-level [CLS] token generator.

The Refiner consists of three components: a Refiner head, an intermediate processor, and a region-
level [CLS] token generator. We here detail the design of the latter two components.

Region-level [CLS] generator. The [CLS] token of ViT contains the global information of the
image input. As the [CLS] is directly bonded with the full image, to integrate with region-level
features, the patch tokens in earlier layer output corresponding to region bounding box bi are fused
with RoI pooling and subsequently forwarded to a two-layer MLP with a hidden size of 4096, which
is derived as:

ẑ
[CLS]
i = FCCLS

[
RoIPool(fA

I (X), bi)
]
. (10)

Intermediate processer. To extract refined dense representations from earlier layers fA, instead of
solely processing its final outputs, we also utilize the output tokens from the l1, l2-th layer as the
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Table 8: OV-COCO detection results with
different loss. We report the APnovel

50 and
APbase

50 results.

Model Method OV-COCO
APnovel

50 APbase
50

ViT-B/16 CLIPSelf 37.6 54.9
ViT-B/16 SCD-Cos 34.5 50.1
ViT-B/16 SCD-NCE 40.9 54.7

Figure 12: Affinity map with different loss.
We present the affinity map obtained with Re-
finer for Cosine loss and InfoNCE loss.

intermediate auxiliary input, i.e.:

Ẑi = fR
(
RoIAlign(fA

I (X) +ZInter, bi)
)
,ZInter = FCInter [Concat (Zl1 ,Zl2)] , (11)

where the multi-scale processer FCInter : R2D → RD is a two-layer MLP with a hidden size of 4096.
For the visual encoder of ViT-B, we set l1 = 4 and l2 = 7, and for ViT-L, we set l1 = 9 and l2 = 14.

C.2 MORE ABLATION ON REFINER

Table 7: Ablation on different compo-
nents in Refiner. We report APnovel

50 on
OV-COCO.

FCInter FCCLS Late APnovel
50

40.1√
40.3√ √
40.9√ √ √
40.2

Designs of Refiner. We dissect the components of the
Refiner to investigate their contributions and present the
results in Tab. 7. Both the Intermediate processer and
the [CLS] generator contribute to the extraction of high-
quality refined spatial correlation, which is crucial for the
distillation process, thus yielding performance improve-
ment with both components enabled. Additionally, instead
of local regions defined by the proposals, we also explore
the ’Late’ setting where we perform RoIAlign on the out-
put of Refiner, i.e.:

Ẑi = RoIAlign
(
fR(f

A
I (X)), bi

)
. (12)

However, this setting leads to performance degradation, indicating the necessity to focus model’s
attention on the local regions.

Cosine vs. InfoNCE. Our original Refiner objective with the InfoNCE loss is derived as:

LNCE =
1

C ′

∑
i

− 1

L

L∑
j=1

log
exp(Ẑi[j] ·Z ′

i[j])∑
k exp(Ẑi[j] ·Z ′

i[k])
, (13)

To demonstrate the necessity of InfoNCE for training the Refiner, we conduct an additional experiment
by replacing Eq. 9 with the cosine loss:

LCos =
1

C ′

∑
i

− 1

L

L∑
j=1

cos(Ẑi[j],Z
′
i[j]). (14)

We visualize the affinity map calculated with the dense features output by the Refiner in Fig. 12,
where the selected token can be entangled with its irrelevant surroundings. This phenomenon harms
the Refiner for extracting high-quality refinements, leading to performance drop as presented in Tab. 8.
In contrast, the intra-feature-map contrast in Eq. 13 further filters out interference from irrelevant
neighboring tokens, effectively tackling this issue.

C.3 SEMANTIC COUPLING IN CLIP

To further assess whether the Refiner’s effects align with its design objectives, we conduct a quantita-
tive analysis to evaluate the tendency of CLIP’s dense features to become entangled with irrelevant
context, referred to as semantic coupling, as illustrated in Fig. 13. Specifically, we concatenate two
independently sampled images XA and XB side by side, denoted as XAB , which introduces context
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Figure 13: Measuring pipeline of semantic coupling. We concatenate two independently sampled
images XA and XB to analyze the semantic contamination between them. The defined coupling
ratio reflects the significance of semantic coupling.

disturbance from XB to XA. We forward XAB ,XA,XB to the image encoder to obtain regional
feature map ZA|AB ,ZB|AB ,ZA,ZB . Finally, the coupling ratio is computed as:

CR = Ei

[
cos(ZA|AB [i],ZB|AB [j])

cos(ZA[i],ZB [j])

]
, j = argmax

k
cos(ZA|AB [i],ZB|AB [k]), (15)

where we identify the most similar token j in ZB|AB to the token i in ZA|AB , and analyze whether
this similarity arises from the entanglement of irrelevant semantics introduced by the concatenation
operation. Ideally, the CR value is expected to be close to 1, as XA and XB possess independent
semantics. By calculating the average CR value across COCO val2017, we report the measured CR
value in Tab. 9. The results indicate that both the original and CLIPSelf-finetuned CLIP models are
significantly affected by semantic coupling. In contrast, our proposed Refiner effectively addresses
this issue, demonstrating high consistency with its intended design goals of eliminating semantic
contamination.

Table 9: CR value of different models. We report the CR values with different finetuning strategies
using EVA-CLIP.

Method EVA-CLIP w/ CLIPSelf EVA-CLIP-Refiner w/ R-SC-CLIPSelf

CR ↓ 2.32 1.86 0.95 0.97

D IMPLEMENTATION DETAILS OF OPEN-VOCABULARY DENSE PREDICTION

D.1 OPEN-VOCABULARY OBJECT DETECTION.

We adopt F-ViT (Wu et al., 2023b) as the open-vocabulary object detector, which replaces the simple
Feature Pyramid Network (FPN) of ViTDet (Li et al., 2022c) detector with a standard FPN and
utilizes the feature maps from multiple intermediate layers of the ViT. The entire visual encoder is
keep frozen during the training process. The F-ViT model is trained for 3 epochs for the OV-COCO
benchmark and 48 epochs for the OV-LVIS benchmark. Following the common practice, the box AP
with IoU threshold of 0.5 on the novel classes is reported for OV-COCO, and the mean mask AP is
reported for OV-LVIS.

D.2 OPEN-VOCABULARY SEMANTIC SEGMENTATION.

We utilize two version of Cat-Seg (Cho et al., 2023) for the open-vocabulary semantic segmentation
task. Both the vanilla and updated versions of Cat-Seg fine-tune the attention weights of the vision
encoder and the additional cost aggregation module. The main difference at the level of VLM is
that the vanilla version freezes the text encoder of CLIP, while the updated version fine-tunes the
text encoder to implicitly align the vision and text representations. The model is trained on the
ADE20K (Zhou et al., 2017) dataset. We evaluate the model on three benchmarks: A-150 and A-847,
which contain 150 and 847 classes respectively, and Pascal Context (Mottaghi et al., 2014) dataset
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Table 10: Full comparison on OV-COCO benchmark.

Method Backbone APnovel
50 AP base

50 AP50

OV-RCNN (Zareian et al., 2021) RN50 17.5 41.0 34.9
RegionCLIP (Zhong et al., 2022) RN50 26.8 54.8 47.5
RegionCLIP (Zhong et al., 2022) Rn50 31.4 57.1 50.4
RegionCLIP (Zhong et al., 2022) RN50x4 39.3 61.6 55.7
ViLD (Gu et al., 2021) RN50 27.6 59.5 51.2
OV-DETR (Zang et al., 2022) RN50 29.4 61.0 52.7
PB-OVD (Gao et al., 2022b) RN50 30.8 46.1 42.1
Detic (Zhou et al., 2022c) RN50 27.8 51.1 45.0
OC-OVD (Bangalath et al., 2022) RN50 36.6 54.0 49.4
VLDet (Lin et al., 2022) RN50 32.0 50.6 45.8
F-VLM (Kuo et al., 2022) RN50 28.0 - 39.6
BARON-Cap (Wu et al., 2023a) RN50 33.1 54.8 49.1
BARON-KD (Wu et al., 2023a) RN50 34.0 60.4 53.5
BARON-Cap&KD (Wu et al., 2023a) RN50 42.7 54.9 51.7
OADP (Wang et al., 2023) RN50 35.6 55.8 50.5
CORA (Wu et al., 2023c) RN50 35.1 35.5 35.4
CORA (Wu et al., 2023c) RN50x4 41.7 44.5 43.8
CORA+ (Wu et al., 2023c) RN50x4 43.1 60.9 56.2
RO-ViT (Kim et al., 2023b) ViT-B/16 30.2 - 41.5
RO-ViT (Kim et al., 2023b) ViT-L/16 33.0 - 47.7
CFM-ViT (Kim et al., 2023a) ViT-L/16 34.1 - 46.0
DITO (Kim et al., 2023c) ViT-L/16 40.8 - 50.3

CLIPSelf (Wu et al., 2023b) ViT-B/16 37.6 54.9 50.4
R-SC-CLIPSelf ViT-B/16 40.9 54.7 51.1
CLIPSelf (Wu et al., 2023b) ViT-L/14 44.3 64.1 59.0
R-SC-CLIPSelf ViT-L/14 48.1 65.4 60.8

(a) OV-COCO open-vocabulary object detection (b) Unsupervised segmentation on Cityscapes

Figure 14: Ablation on spatial correlation distillation. We control the loss ratio of SCD and report
APnovel

50 on OV-COCO detection and mIoU on Cityscapes segmentation.

with the PC-59 benchmark. The baseline of Cat-Seg is conducted by rerun the training process with
the official released code.

E FURTHER ABLATION STUDIES

SCD Ratio λ. We conduct an ablation study with various SCD ratios λ to investigate the effects
of the spatial correlation distillation. We evaluate the performance of the distilled model on two
levels: i) the open-vocabulary object detection on OV-COCO and ii) the unsupervised segmentation
on Cityscapes (Cordts et al., 2016) with CAUSE (Kim et al., 2023d). All the models are fine-tuned
on COCO train2017 dataset for 6 epochs following the setting of CLIPSelf with proposals, except
for ’R-SC-V’ that focuses on the visual-centric fine-tuning. As the OVOD task weights more on the
vision-to-text alignment capability, we additionally involve the unsupervised segmentation task to
evaluate the quality of the dense representations. As depicted in Fig. 14(b), the alignment between
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Table 11: Full comparison on OV-LVIS benchmark.

Method Backbone mAPr mAPc mAPf mAP

RegionCLIP (Zhong et al., 2022) RN50 17.1 27.4 34.0 28.2
RegionCLIP (Zhong et al., 2022) RN50x4 22.0 32.1 36.9 32.3
Detic (Zhou et al., 2022c) RN50 24.9 - - 32.4
Detic (Zhou et al., 2022c) SwinB 33.8 - - 47.0
VLDet (Lin et al., 2022) RN50 21.7 29.8 34.3 30.1
VLDet (Lin et al., 2022) SwinB 26.3 39.4 41.9 38.1
ViLD (Gu et al., 2021) RN50 16.6 24.6 30.3 25.5
OV-DETR (Zang et al., 2022) RN50 17.4 25.0 32.5 26.6
DetPro (Du et al., 2022) RN50 19.8 25.6 28.9 25.9
BARON-KD (Wu et al., 2023a) RN50 22.6 27.6 29.8 27.6
OADP (Wang et al., 2023) RN50 21.7 26.3 29.0 26.6
OC-OVD (Bangalath et al., 2022) RN50 21.1 25.0 29.1 25.9
F-VLM (Kuo et al., 2022) RN50 18.6 - - 24.2
F-VLM (Kuo et al., 2022) RN50x4 26.3 - - 28.5
F-VLM (Kuo et al., 2022) RN50x16 30.4 - - 32.1
F-VLM (Kuo et al., 2022) RN50x64 32.8 - - 34.9
CORA (Wu et al., 2023c) RN50x4 22.2 - - -
CORA+ (Wu et al., 2023c) RN50x4 28.1 - - -
OWL-ViT (Kim et al., 2023b) ViT-L/14 25.6 - - 34.7
RO-ViT (Kim et al., 2023b) ViT-B/16 28.0 - - 30.2
RO-ViT (Kim et al., 2023b) ViT-L/16 32.1 - - 34.0
RO-ViT (Kim et al., 2023b) ViT-H/16 34.1 - - 35.1
CFM-ViT (Kim et al., 2023a) ViT-L/16 33.9 - - 36.6
DITO (Kim et al., 2023c) ViT-L/16 38.4 - - 37.7
CoDet (Ma et al., 2023) ViT-L/14 37.0 - - -

CLIPSelf (Wu et al., 2023b) ViT-B/16 25.3 21.8 29.1 25.2
R-SC-CLIPSelf ViT-B/16 27.5 22.7 29.8 26.3
CLIPSelf (Wu et al., 2023b) ViT-L/14 34.9 34.6 35.6 35.1
R-SC-CLIPSelf ViT-L/14 37.2 37.2 37.1 37.2

the visual and [CLS] token presented by CLIPSelf causes the degradation of the segmentation
performance. With the SCD loss that extracts and maintains the spatial correlation, the performance
degradation is mitigated, achieving the balance between the vision-to-text alignment and the dense-
level understanding. Moreover, when applying the R-SC-V loss, the performance is further improved
with a non-trivial margin. In addition, as observed in Fig. 14(a), SCD loss significantly boosts
the performance on OV-COCO, even for the R-SC-V model without a RLA branch, indicating the
importance of the refined spatial awareness holds for the OVOD task.

Depth of the Refiner. We investigate the impact of the depth of the Refiner on the performance of
the distilled model. The depth will affect the distillation process from two aspects: i) the balance
between the capacity of refining and preserving the original visual knowledge learned by the visual
encoder, and ii) the computational efficiency of the training process. We conduct experiments with
different depths of the Refiner. A deeper Refiner will increase the parameter size and the complexity
of the fine-tuned model, but more difficult to perserve learned knowledge of the pre-trained model.
As shown in Tab. 12, the model with a 4-layer Refiner achieves the best performance, obtaining
balance between the refining capacity and the knowledge preservation.

Temperature of Spatial Correlation Distillation. We conduct an ablation study on the temperature
of the spatial correlation distillation as shown in Tab. 13. The temperature τs and τt of the student
and teacher logits respectively control the softness of the spatial correlation distillation. Generally,
a sharpening process with τs > τt typically leads to higher performance than the distillation with
τs < τt. But we find an equal temperature setting of τs = τt = 0.2 achieves the best performance,
which indicates that the denoised spatial correlation stems from the intra-scene contrast loss is already
sharp enough.
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Table 12: Ablation on the depth of the Refiner. We report the APnovel
50 on OV-COCO and the Top1

performance of zero-shot classification on COCO

Depth K
OV-COCO Boxes Thing Masks Stuff Masks

APnovel
50 Top1 Acc. Top1 Acc. Top1 Acc.

2 40.3 76.3 78.0 50.7
3 40.7 77.0 78.5 52.5
4 40.9 77.3 78.9 52.5
5 40.5 76.9 78.1 51.6

Table 13: Ablation on the temperature of the spatial correlation distillation. We report the
APnovel

50 on OV-COCO

τs τt
OV-COCO

APnovel
50 APbase

50 AP50

0.1 0.1 39.2 54.0 50.2
0.15 0.15 39.6 53.5 49.9
0.2 0.15 39.2 53.3 49.6
0.2 0.2 40.9 54.7 51.1
0.2 0.3 38.5 54.5 50.4

0.25 0.25 39.8 53.9 50.2

Local vs. Global Distillation. For spatial correlation distillation, we utilize B sampled bounding
box to define the region for distillation. Here we investigate another setting that directly distills the
spatial correlation of the entire image to the student model, i.e. defining the region bounding box as
the whole image area. The results are presented in Tab. 14. Though still effective with performance
improvement, global distillation significantly underperforms local distillation, which aligns with our
intuition to facilitate the model to focus on the local.

Table 14: Comparison of local and global distillation strategy. We report the APnovel
50 on OV-

COCO and the Top1 performance of zero-shot classification on COCO

Strategy OV-COCO Boxes Thing Masks Stuff Masks
APnovel

50 Top1 Acc. Top1 Acc. Top1 Acc.

CLIPSelf 37.6 74.0 76.3 36.8
Local 40.9 77.3 78.9 52.5
Global 39.7 75.6 77.8 50.2

Training on larger-scale dataset. We further fine-tune the Refiner and train EVA-CLIP with R-
SC-CLIPSelf on CC3M (Sharma et al., 2018) for one epoch, evaluating the performance using
MaskCLIP. As presented in Tab. 15, our model benefits from the larger-scale dataset, achieving
improved multi-modal dense prediction performance.

F VISUALIZATION

F.1 AFFINITY MAP

As presented in Fig. 16, the query token is marked with a red dot, and the cosine similarity between
the query token and the feature map is calculated for the visualization. We visualize the vanilla CLIP,
CLIPSelf, R-SC-CLIPSelf, RegionText, and R-SC-RegionText respectively.

F.2 MASKCLIP SEGMENTATION

As presented in Fig. 17, we adopt off-the-shelf zero-shot segmentation with MaskCLIP (Zhou et al.,
2022a) and present the results of visualization with EVA-CLIP and Meta-CLIP backbones.
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Table 15: Off-the-shelf segmentation with MaskCLIP.

Method Dataset PASCAL
Context

COCO
Stuff

R-SC-CLIPSelf COCO 37.0 23.8
R-SC-CLIPSelf CC3M 38.2 25.0

Figure 15: Visualization of t-SNE. In each row, we visualize the dense features with the same set of
categories. We respectively present the results of vanilla CLIP, CLIPSelf, and R-SC-CLIPSelf.
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Figure 16: Visualization of affinity map. We present the affinity map obtained with the vanilla
CLIP, CLIPSelf, R-SC-CLIPSelf, RegionText, and R-SC-RegionText respectively. The query token
is marked with a red dot.
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Figure 17: Visualization of segmentation results with MaskCLIP. We present the visualization
results of MaskCLIP segmentation with EVA-CLIP and Meta-CLIP. Best viewed with color and
zoomed in.
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