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Abstract

Foley synthesis is a task of wide interest that aims to
synthesize high-quality audio which is both semantically
and temporally aligned with video frames. To avoid the
non-trivial task of training audio generative models from
scratch, adapting pretrained audio generative models for
video-synchronized foley synthesis presents an attractive
direction. ControlNet, a method for adding fine-grained
controls to pretrained generative models, has been applied
to foley synthesis, but its use has been limited to hand-
crafted human-readable temporal conditions. In contrast,
from-scratch models achieved success by leveraging high-
dimensional deep features extracted using pretrained video
encoders. We have observed a performance gap between
ControlNet-based and from-scratch foley models. To nar-
row this gap, we propose SpecMaskFoley, a method that
steers the pretrained SpecMaskGIT model toward video-
synchronized foley synthesis via ControlNet. To unlock
the potential of a single ControlNet branch, we resolve
the discrepancy between the temporal video features and
the time-frequency nature of the pretrained SpecMaskGIT
via a frequency-aware temporal feature aligner, eliminating
the need for complicated conditioning mechanisms widely
used in prior arts. Evaluations on a common foley synthe-
sis benchmark demonstrate that SpecMaskFoley could even
outperform strong from-scratch baselines, substantially ad-
vancing the development of ControlNet-based foley synthe-
sis models. Demo page: https://zzaudio.github.
io/SpecMaskFoley_Demo/.

1. Introduction
Text-to-audio (TTA) synthesis targets at synthesizing real-
istic sound events by natural language prompts [7, 9, 17,
26, 37]. In spite of the success of TTA systems in terms
of sound quality as well as the semantic alignment between
audio and text, the use of such systems in foley synthesis is
very limited. Foley synthesis aims to synthesize audio that
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Figure 1. Audio synthesis quality (FAD [22]) and audio-video
temporal alignment [5, 20] of different methods. The proposed
SpecMaskFoley achieves competitive performance.

is not only semantically but also temporally aligned with
video frames [5]. Automated foley synthesis has broad im-
pact to creative industries, thus has gained arising attention
in the research community.

Temporal alignment for foley synthesis can be learned
via the joint generative modeling of audio-visual pairs
([36, 45]), though the training can be expensive. Although
there have been attempts to achieve temporal control of au-
dio objects using text prompts [17], the mainstream is to
explicitly condition audio generative models with temporal
features that are synchronized with the video. To avoid the
non-trivial task of training an audio generative model from
scratch, steering pretrained audio generative models toward
foley synthesis presents an attractive direction. Adapting or
aligning pretrained audio and video latent spaces has been
investigated ([41, 44]), but the temporal alignment between
video and audio is poor [5].

ControlNet ([46, 49]), proposed to add spatial controls to
pretrained image generative models, has been introduced to
foley synthesis to inject handcrafted human-readable tem-
poral conditions into pretrained TTA models ([21, 47]). At-
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Figure 2. Overview of SpecMaskFoley. Ice icons: frozen modules. Fire icons: trainable modules. A CLAP embedding is treated as a
conditional mask C following [7] to condition the audio backbone with audio prompts during training and text prompts during inference.

tempts have also been made to train foley synthesis models
from-scratch with high-dimensional deep features extracted
using pretrained video encoders [5, 31, 40, 42]. With ad-
vanced video encoders([18, 20, 32]), from-scratch models
like Frieren [42] and MMAudio [5] brought foley synthesis
to a new level.

As shown in Fig. 1, a notable performance gap can
be observed between from-scratch models and ControlNet
models, indicating that the effective use of pretrained audio
generative models in the foley synthesis task is yet to be ex-
plored. To narrow this gap, we propose SpecMaskFoley, a
method that steers the pretrained SpecMaskGIT model [7]
toward video-synchronized foley synthesis via ControlNet.
Our contributions lie in the following aspects. (1) Com-
petitive foley synthesis performance as a ControlNet-
based method. SpecMaskFoley outperforms not only prior
ControlNet-based foley models [21, 47], but also strong
from-scratch baselines, including Auto-Regressive model
(AR) [40], MaskGIT model [31], and flow-matching model
[42], in a widely used foley synthesis benchmark. (2) Sim-
plicity in neural network architecture. Prior foley synthe-
sis methods tend to combine multiple conditioning mech-
anisms for better video-audio alignment, e.g., the combi-
nation of cross-attentions adaptors and ControlNet [47].
Nevertheless, SpecMaskFoley utilizes a single ControlNet
branch with a Frequency-aware Temporal feature Aligner
(FT-Aligner) to effectively adapt the temporal video fea-
tures to our time-frequency ControlNet branch. The success
of our simple design underscores the potential of Control-
Net to process complex, high-dimensional features, paving
the way to future extensions. Please find our review on
related works in appendix.6.

2. SpecMaskFoley

As shown in Fig.2, SpecMaskFoley consists of a pretrained
SpecMaskGIT [7] TTA model as the audio backbone, Con-
trolNet branch, and an FT-Aligner to adapt temporal deep

video features to our time-frequency ControlNet.

2.1. SpecMaskGIT
SpecMaskGIT features a distillation-free approach to effi-
cient high-quality TTA synthesis [7]. The efficiency, effec-
tiveness and flexibility of this method are based on: (1) A
highly compressed latent space created by a 2-D SpecVQ-
GAN [19]; (2) the light-weight ViT backbone trained with
the Mased Language Modeling task ([13, 45, 50]) upon the
latent space of SpecVQGAN; (3) the use of parallel iter-
ative synthesis, i.e., MaskGIT sampler, for fast inference
([1, 28]). We chose to use SpecMaskGIT as the backbone
of SpecMaskFoley for the following reasons. First, Spec-
MaskGIT has been reported [7] to be competitive in a TTA
benchmark – on par with AudioLDM [30], a TTA model
widely used in foley synthesis research ([21, 41, 44, 47]) –
while being more efficient in inference than prior arts. Sec-
ond, the lightweight and efficient nature of SpecMaskGIT
enables fast concept verification and iterative try-and-error
exploration with academic level of resources. Finally,
MaskGIT methods showed promising results in foley syn-
thesis ([31, 45]).

2.2. Deep Video Features
Instead of using handcrafted features as with prior Con-
trolNet methods ([21, 47]), we adopt the same deep video
features as in [5, 40] to our ControlNet branch: A 25 Hz
high-frame-rate video feature extracted using Synchformer
[20] and an 8 Hz semantic feature extracted using CLIP
[35]. Both features are 1-D sequences of high dimension-
ality. Although the 8 Hz CLIP features have been used in
MMAudio [5], we hypothesize that CLIP features present
more semantic rather than temporal synchronization infor-
mation, thus can be averaged across all frames to form a
global semantic condition. This global condition is directly
added to Synchformer features, resulting in a 1-D temporal
features of shape [t, d], where t is the number of temporal
frames of the deep feature, and d is the dimension.



2.3. ControlNet and FT-Aligner
As shown in Fig.2, we implement a Transformer version of
ControlNet similar to [4, 6, 16], which initializes the Con-
trolNet branch with the pretrained model weights and then
connects the ControlNet branch to the backbone via zero-
initialized linear layers. Although this design was presented
for continuous Diffusion Transformers [4, 6, 16], we found
it works well in our discrete model. Note that the only train-
ing loss in SpecMaskFoley is cross entropy loss, the stan-
dard training target for discrete models ([1, 7, 28, 45]).

A major challenge to control the pretrained Spec-
MaskGIT model with 1-D temporal features is the 2-D time-
frequency nature of SpecMaskGIT. SpecMaskGIT works in
a 2-D latent space, where each token represents a 16-by-16
time-frequency patch in the original Mel-spectrogram. To
achieve effective temporal alignment, it is essential to in-
ject the identical temporal feature to all tokens belonging to
the same time frame. To this end, we propose a Frequency-
aware Temporal feature Aligner (FT-Aligner) to address this
challenge. Assuming the audio token sequence sent into
SpecMaskGIT has a shape of [F , T , D], denoting the num-
ber of tokens along the frequency axis, number of tokens
along the temporal axis, and dimensionality for each token.
For 1-D temporal video features of shape [t, d] described in
Sec.2.2, we use a Projection Block containing a 1-D conv
layer followed by an adaptive average pooling to downsam-
ple the 1-D features to [1, T , D], then repeat the sequence
along the frequency axis, resulting 2-D feature embeddings
with the shape of [F , T , D] that preserves original 1-D tem-
poral information. We empirically found this FT-Aligner
facilitates the convergence in training. Without this careful
feature alignment, we would not be able to train the model.

2.4. Multi Classifier-Free Guidance
Classifier-Free Guidance (CFG [15]) has been used to im-
prove TTA synthesis quality by balancing between diversity
and audio-text alignment ([1, 2, 7]). Inspired by StemGen
[33], we extend the original single-condition CFG formula
to two conditions, effectively using both video and text con-
ditional features when available:

ℓfoley = ℓuncond + t[(ℓtext&video − ℓuncond) + (ℓvideo − ℓuncond)], (1)

where ℓuncond denotes the logits gained from the audio
backbone without the CLAP conditioning, ℓvideo denotes
logits obtained from conditioning SpecMaskFoley with
deep video features via ControlNet but without CLAP feau-
tures in the backbone, ℓtext&video denotes logits earned by
conditioning SpecMaskFoley with both CLAP text features
and deep video features simultaneously, and t denotes the
CFG scale. We do not use logits gained by conditioning the
audio backbone with CLAP text features, and we also ran-
domly replace the CLAP conditioning with an unconditonal

mask (shown in Fig.2) for 90% of the training steps, as we
found text prompts alone are less important in appendix.9.

3. Experiments
3.1. Datasets
The pretraining of the TTA backbone in SpecMaskFoley
was conducted on the sum of the unbalanced and balanced
subset of AudioSet [10], a dataset that has been widely used
in general audio representation learning ([25, 50]) and gen-
erative modeling ([17, 30]) due to its massive amount of au-
dio clips as well as its diversity in sound sources and record-
ing environments.

The ControlNet branch of SpecMaskFoley is trained on
VGGSound [3], the only audio-visual dataset used in this
study, which contains around 500 hours sounding video
clips. On top of its synchronized audio-video pairs, video
clips in VGGSound come with tags from a 310-class taxon-
omy. We follow the data split and preprocessing pipeline
in MMAudio [5], in which the train set contains around
180K 10-second video clip. However, we do not truncate
the videos to 8s, as our audio backbone was pretrained with
10-second audio clips.

Following common practice in ReWaS[21], VATT[31],
FoleyCrafter[47], and MMAudio[5], we concatenate tags
of the test set as the text input to SpecMaskFoley during
evaluation.

3.2. Implementation Details
For the TTA backbone, we use the official checkpoint of
SpecMaskGIT [7], which was pretrained on the AudioSet.
More details of pretraining can be found in [7]. The
standard Mel-spectrogram transform from vocoders [23] is
used, which transforms 10-second audio clip at the sam-
pling rate 22.05kHz into 848 frames with 80 Mel bins. The
Mel-spectrogram is further tokenized using SpecVQGAN
with a 16-by-16 downsampling factor, resulting in a 2-D
token map of [F = 5, T = 53], while each token in the
map is represented by a 256-dimension embedding from a
10bit codebook. Each 10-second video clip is processed
by Synchformer [20] into 240 feature frames, and by CLIP
[35] into 80 feature frames respectively. These CLIP feature
frames are then globally averaged (Sec.2.2).

The audio backbone in SpecMaskFoley employs 24
Transformer blocks, in which the attention dimension is
D = 768 with 8 heads and the feedforward dimension is
3072, resulting in around 170M parameters. We copy the
first 12 Transformer blocks, i.e., half of the audio back-
bone, to initialize the ControlNet branch in SpecMaskFo-
ley. The total number of trainable parameters is around
126M. To align deep video features with the shape of the 2-
D audio token map, the proposed FT-Aligner first downsam-
ples the aforementioned deep features to [F = 1, T = 53,



Table 1. Benchmarking on VGGSound test set. AR.: Auto-regressive. Mask.: MaskGIT. Diff: Diffusion and flow matching. Bold: best
score. Underline: the second and third best scores. Inference time is computed on a H100 GPU with batch size 1 for one 10-second clip.

Method Params↓ Type Pretrained Backbone Video features Audio Synthesis AV Semantic AV Sync. Infer. Time (s)↓FD↓ FAD↓ KL↓ IB Similarity↑ DeSync (s)↓
Latent Adaptation & Alignment

Seeing & Hearing [44] 415M Diff. AudioLDM [30] ImageBind [11] 219 5.40 2.3 34.0 1.20 14.6
V2A Mapper [41] 230M Diff. AudioLDM [30] CLIP [35] & CLAP [43] 84.6 0.84 2.56 22.6 1.23 -

ControlNet + Handcrafted Features
ReWaS [21] 620M Diff. AudioLDM [30] Energy Curve 141 1.79 2.82 14.8 1.06 16.0

FoleyCrafter [47] 1.22B Diff. AudioLDM [30] Onset timestamps 140 2.51 2.23 25.7 1.23 1.7

From Scratch Training
VATT [31] - Mask - eva-CLIP [39] 132 2.77 1.41 25.0 1.20 -

V-AURA [40] 695M AR - Synchformer [20] 218 2.88 2.07 27.6 0.65 16.6
Frieren [42] 160M Diff. - CAVP [32] & MAViL [18] 106 1.34 2.86 22.8 0.85 -

MMAudio-16kHz [5] 160M Diff. - Synchformer [20] & CLIP [35] 70.2 0.79 1.59 29.1 0.48 1.23
ControlNet + Deep Features

SpecMaskFoley (ours) 300M Mask SpecMaskGIT [7] Synchformer [20] & CLIP [35] 109 1.03 1.76 26.4 0.65 0.47

D = 768] then repeats the features 5 times along the fre-
quency axis.

We trained the ControlNet branch for 140K steps on a
single A6000 GPU. Other training details can be found in
appendix.7

3.3. Metrics
We use the av-benchmark 1 to evaluate the quality of foley
synthesis from the following aspects. Please find details in
appendix.8.

4. Results: VGGSound Benchmarking
Benchmarking results on VGGSound are presented in Tab.
1, in which the top-3 scores are highlighted.

Several observations can be made. First, MMAudio [5]
ranks in the top-3 among all metrics, which sets a high stan-
dard for foley synthesis and indicates room of improvement
for SpecMaskFoley. Second, the proposed SpecMaskFo-
ley outperforms those latent adaptation methods in DeSync
while maintaining competitive audio synthesis quality, indi-
cating the effectiveness of using ControlNet to enhance the
video-audio synchronization. Next, SpecMaskFoley out-
performs previous ControlNet-based methods in audio syn-
thesis quality, audio-video semantic matching, audio-video
synchronization, and inference speed, pushing the bound-
ary of ControlNet-based methods for foley synthesis. We
believe the advantage of SpecMaskFoley comes from the
well-trained SpecMaskGIT backbone, the use of deep video
features and the effective use of these features with our Con-
trolNet and FT-Aligner.

Last but not least, SpecMaskFoley remains competitive
even compared with strong from-scratch baselines. meth-
ods. SpecMaskFoley substantially outperforms VATT [31],
a from-scratch MaskGIT method, in most metrics in Tab.
1. SpecMaskFoley shows advantages over other MaskGIT
methods in terms of FAD based the metrics reported in
[38] and [34]. Compared with V-AURA [40], SpecMaskFo-

1https://github.com/hkchengrex/av-benchmark

ley presents superior audio synthesis quality and inference
speed, while maintaining the same level of audio-video syn-
chronization. Overall, SpecMaskFoley performed similarly
to Frieren [42], a from-scratch flow-matching method, but
our method is more advantageous in metrics such as FAD,
KL, IB similarity, and DeSync. Note that although Spec-
MaskFoley uses more parameters than Frieren and MMAu-
dio, the trainable parameter amount is only 126M, enabling
single GPU training, hence is friendly to low-resource re-
searchers.

According to the above observation, we believe that
SpecMaskFoley has substantially narrowed the gap between
from-scratch and ControlNet-based methods in the field of
foley synthesis.

Ablation studies can be found in appendix.9

5. Conclusion
We addressed the challenging task of foley synthesis
in this work. To avoid the non-trivial task of training
audio generative models from scratch, it is attractive to
use pretrained TTA models. Many previous ControlNet-
based foley synthesis methods have limited themselves
to handcrafted human-readable temporal conditions. On
the other hand, from-scratch models achieved success by
leveraging high-dimensional deep features extracted from
pretrained video encoders. To narrow the performance gap
between ControlNet-based and from-scratch foley models,
we proposed SpecMaskFoley. Our method steers the pre-
trained SpecMaskGIT model toward video-synchronized
foley synthesis by directly processing deep video features
with ControlNet. A frequency-aware temporal feature
aligner was introduced to resolve the discrepancy be-
tween the temporal video features and the time-frequency
nature of the pretrained SpecMaskGIT, simplifying the
conditioning mechanism in SpecMaskFoley. Evaluations
on a common foley synthesis benchmark demonstrate
that SpecMaskFoley could even outperform strong from-
scratch baselines. Future work includes transplanting our
methodology to 1-D audio MaskGIT models, and extend-
ing the scope of audio ControlNet toward spatial audio.

https://github.com/hkchengrex/av-benchmark
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6. Appendix: Related Works

While significant progress has been made in TTA synthesis
[7, 9, 17, 26, 37], it is still difficult to achieve fine-grained
temporal control using natural language prompts [17]. The
joint generative modeling of synchronized visual and audio
data leads to an aligned latent space, such as in MMDif-
fusion [36] and VisualEchoes [45]. However, jointly mod-
eling multiple modalities from scratch is non-trivial. The
adaptation or alignment of pretrained audio and video latent
spaces has been explored to mitigate the burden of from-
scratch training ([41, 44]), but resulted in poor temporal
alignment between video and audio [5].

ControlNet ([46, 49]), originally designed to add spatial
controls to pretrained image generative models, has been in-
troduced to foley synthesis to explicitly inject handcrafted
human-readable temporal conditions into pretrained audio
generative models. Typical handcrafted features include the
energy curves ([12, 21]), onset timestamps [47], and bina-
rized CLIP stamps [48]. FoleyCrafter [47] further combines
ControlNet with parallel cross-attention adaptors to make
use of CLIP [35] visual features.

Parallel to the investigation of ControlNet-based mod-
els, attempts have been made to train foley synthesis mod-
els from scratch. From-scratch models often take the ad-
vantage of various high-dimensional deep features extracted
using pretrained visual encoders. For example, VATT [31]
trains a MaskGIT ([1, 7]) model controlled by eva-CLIP
[39] visual features. V-AURA trains an AR Transformer
([26, 29]) with the deep features extracted by Synchformer
[20]. Both VATT and V-AURA are trained upon a discrete
latent space created by 1-D VQ-GANs ([8, 27]). Similar
to VATT, there have been other MaskGIT methods such as
[38] and [34]. Frieren [42] trains a flow-matching model
upon the latent space created by a 1D-VAE-GAN ([17])
conditioned by deep features from both contrastive learning
([32]) and masked Transformer models ([18]). MMAudio
[5] brought the foley synthesis task to a new level. Similar
to Frieren, MMAudio is a flow-matching model built upon
a 1D-VAE-GAN, while taking the advantage of the Synch-
former features ([20, 40]) and CLIP visual features [35].

A method that more effectively leverages pretrained au-
dio generative models is likely to narrow the notable perfor-
mance gap observed between from-scratch and ControlNet-
based models.

7. Appendix: Implementation Details

We trained the ControlNet branch for 140K steps on a sin-
gle A6000 GPU. Following common practice ([25, 50]), we
employ a linear warmup for the first 2.8 K steps then a co-
sine annealing of the learning rate (LR) for the remaining
training. The batch size is set to 64, the base LR is set to
1e-3. The LR equates to the base LR times the batch size
divided by 256 ([7, 28]).

Unless denoted, we use the multi-CFG described in
Sec.2.4 with the CFG scale linearly increasing from 0 to 3
across the 12 inference steps with the Gumbel temperature
([7]) set to 9.0 during evaluation.

8. Appendix: Metrics

We use the av-benchmark 2 to evaluate the quality of fo-
ley synthesis from the following aspects: Audio synthesis
quality. Following common practice ([5, 7, 17, 26, 37]), we
compute the Frechet Distance (FD) and Kullback–Leibler
(KL) distance on the basis of PaSST [25], a 32 kHz audio
classifier. The 16 kHz VGGish classifier [14] is also used
for FD (denoted as “FAD”). Note that we exclude PANN
[24] from the metric computation, as it has been reported
as not being robust in some scenarios 3. Audio-video se-
mantic matching. The semantic similarity between the in-
put video and the generated foley audio is evaluated by the
cosine similarity between ImageBind [11] video and audio
features, denoted as “IB similarity”. Audio-video synchro-
nization. The synchronization between input video and
generated audio is measured by DeSync ([5, 20]) in sec-
onds.

9. Appendix: Ablation Studies

Effectiveness of the ControlNet branch. SpecMaskFoley
is competitive as shown in Tab.1, but it is still unclear that
to what extent the ControlNet branch has contributed to this
success. Therefore, we prompt SpecMaskGIT, the audio
backbone without ControlNet, to see the behavior change
before and after adding the ControlNet branch.

As shown in Tab.2, SpecMaskGIT largely deviates from
the desired foley synthesis when prompted with the con-
catenated audio tags of the test set, which might have been
caused by the limited capability of the text encoder in CLAP
[43]. Results prompted by the CLAP audio features of the

2https://github.com/hkchengrex/av-benchmark
3https://github.com/haoheliu/audioldm_eval

https://github.com/hkchengrex/av-benchmark
https://github.com/haoheliu/audioldm_eval


Table 2. Comparison of pretrained backbone, inference steps, and CFG settings. Bold: best score. Underline: second and third best score.

Method Audio Synthesis AV Semantic AV Sync. Infer. Time (s)↓FD↓ FAD↓ KL↓ IB Similarity↑ DeSync (s)↓
SpecMaskGIT-16-step

w/ text prompt 223 4.97 2.77 10.2 1.28 0.32
w/ audio prompt 99.8 0.91 0.95 22.7 1.22 0.32

SpecMaskGIT-12-step
w/ text prompt 226 5.07 2.75 9.9 1.26 0.27
w/ audio prompt 108 1.01 0.96 22.7 1.22 0.27

SpecMaskFoley-12-step (ours) 109 1.03 1.76 26.4 0.65 0.47
CFG w/o ℓtext&video 125 1.15 1.96 24.2 0.79 0.32
CFG w/o ℓvideo 125 1.33 1.82 22.8 0.75 0.32
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Figure 3. Left: FAD vs. Number of iterations. Right: DeSync vs. Number of iterations. Scores saturate after 12 iterations.

audio data in the test set present the upper bound of Spec-
MaskGIT in terms of audio synthesis, resulting in a compet-
itive FAD score (0.91), as well as the best KL score (0.95)
and fast inference speed (0.32s for 16 steps, 0.27s for 12
steps). Nevertheless, the audio-video semantic matching
and temporal alignment remain weak as there is no video
feature injected to SpecMaskGIT. As shown in Tab.2, our
ControlNet branch effectively improved the audio-video se-
mantic matching and temporal synchronization of the back-
bone, without significantly degrading the audio synthesis
quality.

Impact of Multi-CFG. It is revealed in Tab.2 that Multi-
CFG improves all metrics compared with standard CFG,
with only a slightly increased, while still affordable infer-
ence cost.

Impact of inference steps is illustrated in Fig.3. While
in the original SpecMaskGIT paper [7], the optimal number
of inference steps was 16, with SpecMaskFoley, we found
FAD and DeSync scores saturate after 12 steps. It is worth
noting that, using as few as 4 steps, SpecMaskFoley outper-
forms VATT and FoleyCrafter in terms of FAD and DeSync;
Using 6 steps, the FAD score becomes close to that of Re-
WaS. Fig.3 reveals SpecMaskFoley’s few-step synthesis ca-

pability without any distillation.
Discussion: 2-D vs. 1-D VAE. As illustrated in Fig.2

and discussed in Sec.3.3, due to the use of a 2-D VAE in
SpecMaskFoley, there are only 53 temporal frames in the
latent space presenting a 10-second clip. However, the 1-
D VAE used in Frieren and MMAudio presents a 10-second
clip with more than 300 frames [17], preserving higher tem-
poral resolution. According to the DeSync scores in Tab.1,
this low temporal resolution has not been a bottleneck for
SpecMaskFoley in the VGGSound benchmark, but may
limit the potential of 2-D methods in the future. We leave
the task of transplanting SpecMaskGIT and SpecMaskFo-
ley to 1-D as our future work.
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