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Abstract

Foley synthesis is a task of wide interest that aims to001
synthesize high-quality audio which is both semantically002
and temporally aligned with video frames. To avoid the003
non-trivial task of training audio generative models from004
scratch, adapting pretrained audio generative models for005
video-synchronized foley synthesis presents an attractive006
direction. ControlNet, a method for adding fine-grained007
controls to pretrained generative models, has been applied008
to foley synthesis, but its use has been limited to hand-009
crafted human-readable temporal conditions. In contrast,010
from-scratch models achieved success by leveraging high-011
dimensional deep features extracted using pretrained video012
encoders. We have observed a performance gap between013
ControlNet-based and from-scratch foley models. To nar-014
row this gap, we propose SpecMaskFoley, a method that015
steers the pretrained SpecMaskGIT model toward video-016
synchronized foley synthesis via ControlNet. To unlock017
the potential of a single ControlNet branch, we resolve018
the discrepancy between the temporal video features and019
the time-frequency nature of the pretrained SpecMaskGIT020
via a frequency-aware temporal feature aligner, eliminating021
the need for complicated conditioning mechanisms widely022
used in prior arts. Evaluations on a common foley synthe-023
sis benchmark demonstrate that SpecMaskFoley could even024
outperform strong from-scratch baselines, substantially ad-025
vancing the development of ControlNet-based foley synthe-026
sis models. Demo samples are uploaded as supplementary027
files.028

1. Introduction029

Text-to-audio (TTA) synthesis targets at synthesizing real-030
istic sound events by natural language prompts [7, 9, 17,031
26, 36]. In spite of the success of TTA systems in terms032
of sound quality as well as the semantic alignment between033
audio and text, the use of such systems in foley synthesis is034
very limited. Foley synthesis aims to synthesize audio that035
is not only semantically but also temporally aligned with036
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Figure 1. Audio synthesis quality (FAD [22]) and audio-video
temporal alignment [5, 20] of different methods. The proposed
SpecMaskFoley achieves competitive performance.

video frames [5]. Automated foley synthesis has broad im- 037
pact to creative industries, thus has gained arising attention 038
in the research community. 039

Temporal alignment for foley synthesis can be learned 040
via the joint generative modeling of audio-visual pairs 041
([35, 43]), though the training can be expensive. Although 042
there have been attempts to achieve temporal control of au- 043
dio objects using text prompts [17], the mainstream is to 044
explicitly condition audio generative models with temporal 045
features that are synchronized with the video. To avoid the 046
non-trivial task of training an audio generative model from 047
scratch, steering pretrained audio generative models toward 048
foley synthesis presents an attractive direction. Adapting or 049
aligning pretrained audio and video latent spaces has been 050
investigated ([39, 42]), but the temporal alignment between 051
video and audio is poor [5]. 052

ControlNet ([44, 47]), proposed to add spatial controls to 053
pretrained image generative models, has been introduced to 054
foley synthesis to inject handcrafted human-readable tem- 055
poral conditions into pretrained TTA models ([21, 45]). At- 056
tempts have also been made to train foley synthesis models 057
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Figure 2. Overview of SpecMaskFoley. Ice icons: frozen modules. Fire icons: trainable modules. A CLAP embedding is treated as a
conditional mask C following [7] to condition the audio backbone with audio prompts during training and text prompts during inference.

from-scratch with high-dimensional deep features extracted058
using pretrained video encoders [5, 31, 38, 40]. With ad-059
vanced video encoders([18, 20, 32]), from-scratch models060
like Frieren [40] and MMAudio [5] brought foley synthesis061
to a new level.062

As shown in Fig. 1, a notable performance gap can063
be observed between from-scratch models and ControlNet064
models, indicating that the effective use of pretrained audio065
generative models in the foley synthesis task is yet to be ex-066
plored. To narrow this gap, we propose SpecMaskFoley, a067
method that steers the pretrained SpecMaskGIT model [7]068
toward video-synchronized foley synthesis via ControlNet.069
Our contributions lie in the following aspects. (1) Com-070
petitive foley synthesis performance as a ControlNet-071
based method. SpecMaskFoley outperforms not only prior072
ControlNet-based foley models [21, 45], but also strong073
from-scratch baselines, including Auto-Regressive model074
(AR) [38], MaskGIT model [31], and flow-matching model075
[40], in a widely used foley synthesis benchmark. (2) Sim-076
plicity in neural network architecture. Prior foley synthe-077
sis methods tend to combine multiple conditioning mech-078
anisms for better video-audio alignment, e.g., the combi-079
nation of cross-attentions adaptors and ControlNet [45].080
Nevertheless, SpecMaskFoley utilizes a single ControlNet081
branch with a Frequency-aware Temporal feature Aligner082
(FT-Aligner) to effectively adapt the temporal video fea-083
tures to our time-frequency ControlNet branch. The success084
of our simple design underscores the potential of Control-085
Net to process complex, high-dimensional features, paving086
the way to future extensions. Please find our review on087
related works in appendix.6.088

2. SpecMaskFoley089

As shown in Fig.2, SpecMaskFoley consists of a pretrained090
SpecMaskGIT [7] TTA model as the audio backbone, Con-091
trolNet branch, and an FT-Aligner to adapt temporal deep092
video features to our time-frequency ControlNet.093

2.1. SpecMaskGIT 094

SpecMaskGIT features a distillation-free approach to effi- 095
cient high-quality TTA synthesis [7]. The efficiency, effec- 096
tiveness and flexibility of this method are based on: (1) A 097
highly compressed latent space created by a 2-D SpecVQ- 098
GAN [19]; (2) the light-weight ViT backbone trained with 099
the Mased Language Modelling task ([13, 43, 48]) upon the 100
latent space of SpecVQGAN; (3) the use of parallel iter- 101
ative synthesis, i.e., MaskGIT sampler, for fast inference 102
([1, 28]). We chose to use SpecMaskGIT as the backbone 103
of SpecMaskFoley for the following reasons. First, Spec- 104
MaskGIT has been reported [7] to be competitive in a TTA 105
benchmark – on par with AudioLDM [30], a TTA model 106
widely used in foley synthesis research ([21, 39, 42, 45]) – 107
while being more efficient in inference than prior arts. Sec- 108
ond, the lightweight and efficient nature of SpecMaskGIT 109
enables fast concept verification and iterative try-and-error 110
exploration with academic level of resources. Finally, 111
MaskGIT methods showed promising results in foley syn- 112
thesis ([31, 43]). 113

2.2. Deep Video Features 114

Instead of using handcrafted features as with prior Con- 115
trolNet methods ([21, 45]), we adopt the same deep video 116
features as in [5, 38] to our ControlNet branch: A 25 Hz 117
high-frame-rate video feature extracted using Synchformer 118
[20] and an 8 Hz semantic feature extracted using CLIP 119
[34]. Both features are 1-D sequences of high dimension- 120
ality. Although the 8 Hz CLIP features have been used in 121
MMAudio [5], we hypothesize that CLIP features present 122
more semantic rather than temporal synchronization infor- 123
mation, thus can be averaged across all frames to form a 124
global semantic condition. This global condition is directly 125
added to Synchformer features, resulting in a 1-D temporal 126
features of shape [t, d], where t is the number of temporal 127
frames of the deep feature, and d is the dimension. 128
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2.3. ControlNet and FT-Aligner129

As shown in Fig.2, we implement a Transformer version of130
ControlNet similar to [4, 6, 16], which initializes the Con-131
trolNet branch with the pretrained model weights and then132
connects the ControlNet branch to the backbone via zero-133
initialized linear layers. Although this design was presented134
for continuous Diffusion Transformers [4, 6, 16], we found135
it works well in our discrete model. Note that the only train-136
ing loss in SpecMaskFoley is cross entropy loss, the stan-137
dard training target for discrete models ([1, 7, 28, 43]).138

A major challenge to control the pretrained Spec-139
MaskGIT model with 1-D temporal features is the 2-D time-140
frequency nature of SpecMaskGIT. SpecMaskGIT works in141
a 2-D latent space, where each token represents a 16-by-16142
time-frequency patch in the original Mel-spectrogram. To143
achieve effective temporal alignment, it is essential to in-144
ject the identical temporal feature to all tokens belonging to145
the same time frame. To this end, we propose a Frequency-146
aware Temporal feature Aligner (FT-Aligner) to address this147
challenge. Assuming the audio token sequence sent into148
SpecMaskGIT has a shape of [F , T , D], denoting the num-149
ber of tokens along the frequency axis, number of tokens150
along the temporal axis, and dimensionality for each token.151
For 1-D temporal video features of shape [t, d] described in152
Sec.2.2, we use a Projection Block containing a 1-D conv153
layer followed by an adaptive average pooling to downsam-154
ple the 1-D features to [1, T , D], then repeat the sequence155
along the frequency axis, resulting 2-D feature embeddings156
with the shape of [F , T , D] that preserves original 1-D tem-157
poral information. We empirically found this FT-Aligner158
facilitates the convergence in training. Without this careful159
feature alignment, we would not be able to train the model.160

2.4. Multi Classifier-Free Guidance161

Classifier-Free Guidance (CFG [15]) has been used to im-162
prove TTA synthesis quality by balancing between diversity163
and audio-text alignment ([1, 2, 7]). Inspired by StemGen164
[33], we extend the original single-condition CFG formula165
to two conditions, effectively using both video and text con-166
ditional features when available:167

ℓfoley = ℓuncond + t[(ℓtext&video − ℓuncond) + (ℓvideo − ℓuncond)], (1)168

where ℓuncond denotes the logits gained from the audio169
backbone without the CLAP conditioning, ℓvideo denotes170
logits obtained from conditioning SpecMaskFoley with171
deep video features via ControlNet but without CLAP feau-172
tures in the backbone, ℓtext&video denotes logits earned by173
conditioning SpecMaskFoley with both CLAP text features174
and deep video features simultaneously, and t denotes the175
CFG scale. We do not use logits gained by conditioning the176
audio backbone with CLAP text features, and we also ran-177
domly replace the CLAP conditioning with an unconditonal178

mask (shown in Fig.2) for 90% of the training steps, as we 179
found text prompts alone are less important in Sec.??. 180

3. Experiments 181

3.1. Datasets 182

The pretraining of the TTA backbone in SpecMaskFoley 183
was conducted on the sum of the unbalanced and balanced 184
subset of AudioSet [10], a dataset that has been widely used 185
in general audio representation learning ([25, 48]) and gen- 186
erative modeling ([17, 30]) due to its massive amount of au- 187
dio clips as well as its diversity in sound sources and record- 188
ing environments. 189

The ControlNet branch of SpecMaskFoley is trained on 190
VGGSound [3], the only audio-visual dataset used in this 191
study, which contains around 500 hours sounding video 192
clips. On top of its synchronized audio-video pairs, video 193
clips in VGGSound come with tags from a 310-class taxon- 194
omy. We follow the data split and preprocessing pipeline 195
in MMAudio [5], in which the train set contains around 196
180K 10-second video clip. However, we do not truncate 197
the videos to 8s, as our audio backbone was pretrained with 198
10-second audio clips. 199

Following common practice in ReWaS[21], VATT[31], 200
FoleyCrafter[45], and MMAudio[5], we concatenate tags 201
of the test set as the text input to SpecMaskFoley during 202
evaluation. 203

3.2. Implementation Details 204

For the TTA backbone, we use the official checkpoint of 205
SpecMaskGIT [7], which was pretrained on the AudioSet. 206
More details of pretraining can be found in [7]. The 207
standard Mel-spectrogram transform from vocoders [23] is 208
used, which transforms 10-second audio clip at the sam- 209
pling rate 22.05kHz into 848 frames with 80 Mel bins. The 210
Mel-spectrogram is further tokenized using SpecVQGAN 211
with a 16-by-16 downsampling factor, resulting in a 2-D 212
token map of [F = 5, T = 53], while each token in the 213
map is represented by a 256-dimension embedding from a 214
10bit codebook. Each 10-second video clip is processed 215
by Synchformer [20] into 240 feature frames, and by CLIP 216
[34] into 80 feature frames respectively. These CLIP feature 217
frames are then globally averaged (Sec.2.2). 218

The audio backbone in SpecMaskFoley employs 24 219
Transformer blocks, in which the attention dimension is 220
D = 768 with 8 heads and the feedforward dimension is 221
3072, resulting in around 170M parameters. We copy the 222
first 12 Transformer blocks, i.e., half of the audio back- 223
bone, to initialize the ControlNet branch in SpecMaskFo- 224
ley. The total number of trainable parameters is around 225
126M. To align deep video features with the shape of the 2- 226
D audio token map, the proposed FT-Aligner first downsam- 227
ples the aforementioned deep features to [F = 1, T = 53, 228
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Table 1. Benchmarking on VGGSound test set. AR.: Auto-regressive. Mask.: MaskGIT. Diff: Diffusion and flow matching. Bold: best
score. Underline: the second and third best scores. Inference time is computed on a H100 GPU with batch size 1 for one 10-second clip.

Method Params↓ Type Pretrained Backbone Video features Audio Synthesis AV Semantic AV Sync. Infer. Time (s)↓FD↓ FAD↓ KL↓ IB Similarity↑ DeSync (s)↓
Latent Adaptation & Alignment

Seeing & Hearing [42] 415M Diff. AudioLDM [30] ImageBind [11] 219 5.40 2.3 34.0 1.20 14.6
V2A Mapper [39] 230M Diff. AudioLDM [30] CLIP [34] & CLAP [41] 84.6 0.84 2.56 22.6 1.23 -

ControlNet + Handcrafted Features
ReWaS [21] 620M Diff. AudioLDM [30] Energy Curve 141 1.79 2.82 14.8 1.06 16.0

FoleyCrafter [45] 1.22B Diff. AudioLDM [30] Onset timestamps 140 2.51 2.23 25.7 1.23 1.7

From Scratch Training
VATT [31] - Mask - eva-CLIP [37] 132 2.77 1.41 25.0 1.20 -

V-AURA [38] 695M AR - Synchformer [20] 218 2.88 2.07 27.6 0.65 16.6
Frieren [40] 160M Diff. - CAVP [32] & MAViL [18] 106 1.34 2.86 22.8 0.85 -

MMAudio-16kHz [5] 160M Diff. - Synchformer [20] & CLIP [34] 70.2 0.79 1.59 29.1 0.48 1.23
ControlNet + Deep Features

SpecMaskFoley (ours) 300M Mask SpecMaskGIT [7] Synchformer [20] & CLIP [34] 109 1.03 1.76 26.4 0.65 0.47

D = 768] then repeats the features 5 times along the fre-229
quency axis.230

We trained the ControlNet branch for 140K steps on a231
single A6000 GPU. Other training details can be found in232
appendix.7233

3.3. Metrics234

We use the av-benchmark 1 to evaluate the quality of foley235
synthesis from the following aspects. Please find details in236
appendix.8.237

4. Results: VGGSound Benchmarking238

Benchmarking results on VGGSound are presented in Tab.239
1, in which the top-3 scores are highlighted.240

Several observations can be made. First, MMAudio [5]241
ranks in the top-3 among all metrics, which sets a high stan-242
dard for foley syntheis and indicates room of improvement243
for SpecMaskFoley. Second, the proposed SpecMaskFo-244
ley outperforms those latent adaptation methods in DeSync245
while maintaining competitive audio synthesis quality, indi-246
cating the effectiveness of using ControlNet to enhance the247
video-audio synchronization. Next, SpecMaskFoley out-248
performs previous ControlNet-based methods in audio syn-249
thesis quality, audio-video semantic matching, audio-video250
synchronization, and inference speed, pushing the bound-251
ary of ControlNet-based methods for foley synthesis. We252
believe the advantage of SpecMaskFoley comes from the253
well-trained SpecMaskGIT backbone, the use of deep video254
features and the effective use of these features with our Con-255
trolNet and FT-Aligner.256

Last but not least, SpecMaskFoley remains competitive257
even compared with strong from-scratch baselines. meth-258
ods. SpecMaskFoley substantially outperforms VATT [31],259
a from-scratch MaskGIT method, in most metrics in Tab.260
1. Compared with V-AURA [38], SpecMaskFoley presents261
superior audio synthesis quality and inference speed, while262

1https://github.com/hkchengrex/av-benchmark

maintaining the same level of audio-video synchronization. 263
Overall, SpecMaskFoley performed similarly to Frieren 264
[40], a from-scratch flow-matching method, but our method 265
is more advantageous in metrics such as FAD, KL, IB simi- 266
larity, and DeSync. Note that although SpecMaskFoley uses 267
more parameters than Frieren and MMAudio, the trainable 268
parameter amount is only 126M, enabling single GPU train- 269
ing, hence is friendly to low-resource researchers. 270

According to the above observation, we believe that 271
SpecMaskFoley has substantially narrowed the gap between 272
from-scratch and ControlNet-based methods in the field of 273
foley synthesis. 274

Ablation studies can be found in appendix.9 275

5. Conclusion 276

We addressed the challenging task of foley synthesis 277
in this work. To avoid the non-trivial task of training 278
audio generative models from scratch, it is attractive to 279
use pretrained TTA models. Many previous ControlNet- 280
based foley synthesis methods have limited themselves 281
to handcrafted human-readable temporal conditions. On 282
the other hand, from-scratch models achieved success by 283
leveraging high-dimensional deep features extracted from 284
pretrained video encoders. To narrow the performance gap 285
between ControlNet-based and from-scratch foley models, 286
we proposed SpecMaskFoley. Our method steers the pre- 287
trained SpecMaskGIT model toward video-synchronized 288
foley synthesis by directly processing deep video features 289
with ControlNet. A frequency-aware temporal feature 290
aligner was introduced to resolve the discrepancy be- 291
tween the temporal video features and the time-frequency 292
nature of the pretrained SpecMaskGIT, simplifying the 293
conditioning mechanism in SpecMaskFoley. Evaluations 294
on a common foley synthesis benchmark demonstrate 295
that SpecMaskFoley could even outperform strong from- 296
scratch baselines. Future work includes transplanting our 297
methodology to 1-D audio MaskGIT models, and extend- 298
ing the scope of audio ControlNet toward spatial audio. 299

300
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6. Appendix: Related Works500

While significant progress has been made in TTA synthesis501
[7, 9, 17, 26, 36], it is still difficult to achieve fine-grained502
temporal control using natural language prompts [17]. The503
joint generative modeling of synchronized visual and audio504
data leads to an aligned latent space, such as in MMDif-505
fusion [35] and VisualEchoes [43]. However, jointly mod-506
eling multiple modalities from scratch is non-trivial. The507
adaptation or alignment of pretrained audio and video latent508
spaces has been explored to mitigate the burden of from-509
scratch training ([39, 42]), but resulted in poor temporal510
alignment between video and audio [5].511

ControlNet ([44, 47]), originally designed to add spatial512
controls to pretrained image generative models, has been in-513
troduced to foley synthesis to explicitly inject handcrafted514
human-readable temporal conditions into pretrained audio515
generative models. Typical handcrafted features include the516
energy curves ([12, 21]), onset timestamps [45], and bina-517
rized CLIP stamps [46]. FoleyCrafter [45] further combines518
ControlNet with parallel cross-attention adaptors to make519
use of CLIP [34] visual features.520

Parallel to the investigation of ControlNet-based mod-521
els, attempts have been made to train foley synthesis models522
from scratch. From-scratch models often take the advantage523
of various high-dimensional deep features extracted using524
pretrained visual encoders. For example, VATT [31] trains525
a MaskGIT ([1, 7]) model controlled by eva-CLIP [37] vi-526
sual features. V-AURA trains an AR Transformer ([26, 29])527
with the deep features extracted by Synchformer [20]. Both528
VATT and V-AURA are trained upon a discrete latent space529
created by 1-D VQ-GANs ([8, 27]). Frieren [40] trains a530
flow-matching model upon the latent space created by a 1D-531
VAE-GAN ([17]) conditioned by deep features from both532
contrastive learning ([32]) and masked Transformer models533
([18]). MMAudio [5] brought the foley synthesis task to a534
new level. Similar to Frieren, MMAudio is a flow-matching535
model built upon a 1D-VAE-GAN, while taking the advan-536
tage of the Synchformer features ([20, 38]) and CLIP visual537
features [34].538

A method that more effectively leverages pretrained au-539
dio generative models is likely to narrow the notable perfor-540
mance gap observed between from-scratch and ControlNet-541
based models.542

7. Appendix: Implementation Details 543

We trained the ControlNet branch for 140K steps on a sin- 544
gle A6000 GPU. Following common practice ([25, 48]), we 545
employ a linear warmup for the first 2.8 K steps then a co- 546
sine annealing of the learning rate (LR) for the remaining 547
training. The batch size is set to 64, the base LR is set to 548
1e-3. The LR equates to the base LR times the batch size 549
divided by 256 ([7, 28]). 550

Unless denoted, we use the multi-CFG described in 551
Sec.2.4 with the CFG scale linearly increasing from 0 to 3 552
across the 12 inference steps with the Gumbel temperature 553
([7]) set to 9.0 during evaluation. 554

8. Appendix: Metrics 555

We use the av-benchmark 2 to evaluate the quality of fo- 556
ley synthesis from the following aspects: Audio synthesis 557
quality. Following common practice ([5, 7, 17, 26, 36]), we 558
compute the Frechet Distance (FD) and Kullback–Leibler 559
(KL) distance on the basis of PaSST [25], a 32 kHz audio 560
classifier. The 16 kHz VGGish classifier [14] is also used 561
for FD (denoted as “FAD”). Note that we exclude PANN 562
[24] from the metric computation, as it has been reported 563
as not being robust in some scenarios 3. Audio-video se- 564
mantic matching. The semantic similarity between the in- 565
put video and the generated foley audio is evaluated by the 566
cosine similarity between ImageBind [11] video and audio 567
features, denoted as “IB similarity”. Audio-video synchro- 568
nization. The synchronization between input video and 569
generated audio is measured by DeSync ([5, 20]) in sec- 570
onds. 571

9. Appendix: Ablation Studies 572

Effectiveness of the ControlNet branch. SpecMaskFoley 573
is competitive as shown in Tab.1, but it is still unclear that 574
to what extent the ControlNet branch has contributed to this 575
success. Therefore, we prompt SpecMaskGIT, the audio 576
backbone without ControlNet, to see the behavior change 577
before and after adding the ControlNet branch. 578

As shown in Tab.2, SpecMaskGIT largely deviates from 579
the desired foley synthesis when prompted with the con- 580
catenated audio tags of the test set, which might have been 581
caused by the limited capability of the text encoder in CLAP 582
[41]. Results prompted by the CLAP audio features of the 583

2https://github.com/hkchengrex/av-benchmark
3https://github.com/haoheliu/audioldm_eval
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Table 2. Comparison of pretrained backbone, inference steps, and CFG settings. Bold: best score. Underline: second and third best score.

Method Audio Synthesis AV Semantic AV Sync. Infer. Time (s)↓FD↓ FAD↓ KL↓ IB Similarity↑ DeSync (s)↓
SpecMaskGIT-16-step

w/ text prompt 223 4.97 2.77 10.2 1.28 0.32
w/ audio prompt 99.8 0.91 0.95 22.7 1.22 0.32

SpecMaskGIT-12-step
w/ text prompt 226 5.07 2.75 9.9 1.26 0.27
w/ audio prompt 108 1.01 0.96 22.7 1.22 0.27

SpecMaskFoley-12-step (ours) 109 1.03 1.76 26.4 0.65 0.47
CFG w/o ℓtext&video 125 1.15 1.96 24.2 0.79 0.32
CFG w/o ℓvideo 125 1.33 1.82 22.8 0.75 0.32
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Figure 3. Left: FAD vs. Number of iterations. Right: DeSync vs. Number of iterations. Scores saturate after 12 iterations.

audio data in the test set present the upper bound of Spec-584
MaskGIT in terms of audio synthesis, resulting in a compet-585
itive FAD score (0.91), as well as the best KL score (0.95)586
and fast inference speed (0.32s for 16 steps, 0.27s for 12587
steps). Nevertheless, the audio-video semantic matching588
and temporal alignment remain weak as there is no video589
feature injected to SpecMaskGIT. As shown in Tab.2, our590
ControlNet branch effectively improved the audio-video se-591
mantic matching and temporal synchronization of the back-592
bone, without significantly degrading the audio synthesis593
quality.594

Impact of Multi-CFG. It is revealed in Tab.2 that Multi-595
CFG improves all metrics compared with standard CFG,596
with only a slightly increased, while still affordable infer-597
ence cost.598

Impact of inference steps is illustrated in Fig.3. While599
in the original SpecMaskGIT paper [7], the optimal number600
of inference steps was 16, with SpecMaskFoley, we found601
FAD and DeSync scores saturate after 12 steps. It is worth602
noting that, using as few as 4 steps, SpecMaskFoley outper-603
forms VATT and FoleyCrafter in terms of FAD and DeSync;604
Using 6 steps, the FAD score becomes close to that of Re-605
WaS. Fig.3 reveals SpecMaskFoley’s few-step synthesis ca-606

pability without any distillation. 607
Discussion: 2-D vs. 1-D VAE. As illustrated in Fig.2 608

and discussed in Sec.3.3, due to the use of a 2-D VAE in 609
SpecMaskFoley, there are only 53 temporal frames in the 610
latent space presenting a 10-second clip. However, the 1- 611
D VAE used in Frieren and MMAudio presents a 10-second 612
clip with more than 300 frames [17], preserving higher tem- 613
poral resolution. According to the DeSync scores in Tab.1, 614
this low temporal resolution has not been a bottleneck for 615
SpecMaskFoley in the VGGSound benchmark, but may 616
limit the potential of 2-D methods in the future. We leave 617
the task of transplanting SpecMaskGIT and SpecMaskFo- 618
ley to 1-D as our future work. 619
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