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Abstract

Gabriel graph based models approach large margin classifiers by obtaining support
vectors from geometric properties. However, they have been limited to small and
medium-sized applications, mainly due to the cost of computing the graph. This
work presents an algorithm to compute the graph optimizing computational and
memory costs. For the former, we exploit a distance matrix computed in advance
and for the latter we use a bootstrap approach to construct the graph from batches of
the dataset, with upper bound convergence analysis. Our approach aims to enable
applications with large datasets for these models.

1 Introduction

Large margin classifiers have brought attention in the machine learning community to the idea
of maximizing the margin of separation between classes [24], rather than simply minimizing an
empirical cost in the training set. This has been approached in various ways such as Boosting
[17, 9], Gaussian mixture [18] and Support vector machines [3]. The latter achieves this by quadratic
programming in the norm of the weights of the support vectors (SV) following the principle of
structural risk minimization, or alternatively by solving a system of linear equations [19, 5].

Another way to consider SVs is from their geometric properties in a classification problem [2, 14, 25].
This relationship has already been used to find large margin classifiers in affine hulls [6, 15]. Chipclass
[20, 1, 22] is an example of this approach using the Gabriel Graph (GG) [10], a planar graph that
encodes the local spatial properties of the dataset from distance relations. The main advantage of
this method, in particular, is its potential for autonomous learning, as it requires minimal to no
adjustment of hyperparameters, making it well suited for applications such as the Internet of Things
(IoT) [12, 16] and edge computing [4, 7].

However, since the computational cost of computing the GG is very high, these studies have mostly
conducted experiments on small and medium-sized datasets. Therefore, this work proposes an
algorithm for constructing GG optimized in time and memory, allowing the use of these models for
large datasets. All code and experiments are available at our repository1.

2 Gabriel graph

Given a dataset of N samples represented as X = {xi}Ni=1, the Gabriel graph of X is represented
by the N × N adjacency matrix A = {aij} obtained by the application of the following graph
formation rule to all elements of the Euclidean distance matrix D = {dij}. Element aij = 1 if
d2ij ≤ [d2ik + d2jk] ∀ xk ϵ X, or, in other words, edge eij exists if and only if there is no other
sample xk inside the hypersphere that has samples xi and xj diametrically opposed, as represented
schematically in Figure 1 for a set with 5 samples.

1https://github.com/cljosegfer/gg-neurips24
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Figure 1: Schematic representation of a Gabriel
graph construction. The solid lines represent the
edges that are included in the graph. The dashed
circle is represented between samples x2 and x5 in
order to show that there is no other sample inside
the circle, so edge e25 exists.

An important property of the Gabriel graph is that it is planar, edges do not intercept each other
and, therefore, the structure of the graph preserves local spatial properties of the data, since only
the smallest edges will pass the triangle inequality rule. Also, intrinsic properties of the graph, like
centrality and dominance may unfold important properties of the data. Such graph representation has
enabled the construction of different classifiers, which are solely based on information extracted from
the graph [23, 21, 11].

3 Optimizing computational cost

In the construction of the Gabriel graph, the operation that compares d2ij with the sum of all pairs
of distances d2ik and d2jk in the dataset is computationally expensive and a bottleneck for graph
implementation. During graph construction, all elements aij are potential candidates to become edges,
so they are all tested for the triangle inequality until a sample violates the edge. The computational cost
of graph construction can be as high as O(N3), limiting the use of GG-based models in large-scale
applications.

However, since the comparisons are independent, they can be computed in parallel if we allocate
the distance matrix D in a GPU. This will improve the computational cost at the expense of the
memory. The bottleneck then becomes the computation of the distance matrix which should be be
given in advance, and since we are using PyTorch’s cdist implementation [13] the cost is O(N2).
The method for computing the GG in parallel is shown in Algorithm 1.

Algorithm 1 Pseudocode for the parallel implementation of Gabriel graph.

Inputs: X {dataset}
Outputs: A {adjacency matrix}
N← length(X)
D← cdist(X,X)2

A← Boolean adjacency matrix for vertices, all false
for i = 0 to N − 1 do

S← F[i, :] + F[i+ 1, :] ▷ sum of all pairs of distances
m← argmin(S, axis = 1) ▷ we only need to verify for the closest point
s← A[arange(N),m] ▷ distance of the closest point
A[i, i+ 1 :]← s− F[i, i+ 1 :] > 0 ▷ the edge exists if the closest doesn’t violate the rule

A← A+AT ▷ we compute only the triangular half as the matrix is symmetric

4 Optimizing memory cost

Optimizing the computational cost was possible at the expense of memory. However, when the
computations are performed on a GPU with limited RAM, the algorithm is infeasible. We address
this problem by employing a bootstrap approach to incrementally construct the graph. It is possible to
detect edge violations in the main graph by subsampling the dataset and verifying the triplets (xi, xj ,
xk) in the corresponding sub-graphs. Once an edge is rejected in a sub-graph, it can also be safely
rejected in the main graph, since distance relations are preserved. This approach not only alleviates
the constraints on local memory constraints in GPU RAM during distance computations but also
facilitates the detection of edge violations using smaller datasets. Initially, all edges are assumed to
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exist, and if a point xk is found within the subset of xi and xj , contained within the corresponding
hypersphere, that specific edge is removed. Only a few points xk violate the graph rule, if they indeed
exist, so the graph can be incrementally constructed until the fortunate event occurs that some of
them fall within the same subset as the samples xi and xj takes place.

As an example of the bootstrap construction, Figure 2a shows a dataset sampled from a bivariate
normal distribution, which will be used to demonstrate the method. Initially all samples are connected,
since it is assumed that all edges exist, as shown in Figure 2b. Each iteration, therefore, serves to
possibly falsify the violating edges by monotonically converging, but slowing down, since with each
iteration it becomes rarer to find a point that falsifies a remaining violating edge. Figure 2c shows the
graph at iteration 5 and Figure 2d shows the final graph obtained after 19 iterations, which in this
example is 100% equivalent to the exact graph. It may happen that the final graph is not exact, since
its performance depends on the subset size and on the number of iterations. The algorithm is shown
in Algorithm 2. Ideally, the batch size should be as large as possible when computing the partial
distance matrix. The remaining challenge lies in establishing the number of epochs needed to achieve
confidence in the graph approximation.

(a) Dataset (b) Fully connected
graph.

(c) Graph at iteration 5. (d) Final graph

Figure 2: Example of graph formation as edges are falsified.

Algorithm 2 Pseudocode for bootstrap implementation of Gabriel graph.

Inputs: X {dataset}; b {relative batch size}; T {number of epochs}
Outputs: A {adjacency matrix}
A← Boolean adjacency matrix for vertices, all true ▷ now we initialize all edges to true
for i = 0 to T do

shuffle dataset to get random subsets
while loop for batches do ▷ [batch] means we are indexing the subset

Abatch ← gg(X[batch]) ▷ GG of the subset (b x b)
A[batch]← A[batch] ∗Abatch ▷ false is preserved

Upper bound of iterations. Assuming that the samples are selected according to a uniform distribu-
tion in order to generate the batches, the edge construction can be represented as a Bernoulli trial. In
the worst case, only one point xk contravene the edge (xi, xj). By characterizing the convergence
of this scenario, it becomes possible to establish an upper bound on the probability that this edge
is incorrect, which depends on the number of iterations. In the worst case scenario, the probability
that point xk is in the same subset as points xi and xj , or the likelihood of correctly evaluating the
edge (xi, xj) in this iteration, is simply the ratio b which is the relative batch size. Note that we
make no prior assumption about the data distribution, we only calculate the probability for the worst
case to provide an upper bound for any general distribution from a real dataset. Also note that when
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Figure 3: Convergence
curves with relative batch
sizes of 50% and 10%. The
blue curves represent the
fraction of incorrect edges
relative to the number of
iterations for each dataset.
The orange curve repre-
sents the upper bound de-
rived from Equation 1 and
the horizontal line indicates
the target tolerance of 1%.

partitioning the points into subsets, only this specific fraction of edges, b, is evaluated during each
iteration. In worst case there is only one sample xk that falsifies the edge, the probability that this
specific sample is in the present subset is b2. Consequently, the average proportion of incorrect edges
over the course of multiple epochs t can be described as the expectation in Equation 1, where ϵ is the
fraction of wrong edges at iteration t. We can also define a safe number of iterations T based on a
tolerance δ for the expected fraction of incorrect edges in the graph approximation.

E[ϵ] = (1− b2)t; T (δ, b) =
log δ

log 1− b2
(1)

Although it is not the main motivation, we can also use the Equation 1 to evaluate the computational
cost of the bootstrap approach compared to the parallel method. Since the cost of computing the
graph in parallel is O(N2), and the bootstrap is just a call of this computation on smaller sets, the
final cost can be computed as T ×O(bN)2, where b < 1. However, the upper bound on convergence
is very tight, in fact it is the worst case expectation, and the more we challenge this bound, the
more competitive the bootstrap becomes. In practice, one would sacrifice time for memory cost by
restrictively respecting this upper bound, but if the applicator has access to the specific convergence
of the dataset itself, which depends on the density of the data points, the number of iterations can
be significantly reduced. We tested this on 15 general-purpose datasets from the UCI repository [8]
varying the relative batch sizes (50% and 10%) as shown in Figure 3. Note that the approximation
exceeds the target tolerance in only one dataset, although it is very close, still less than 2%. This
phenomenon highlights another important characteristic: the deviation from the probability of the
upper bound. This characteristic is shown by the spread of the blue curves as the batch size varies,
the smaller the batch, the larger the deviation, as expected from the binomial distribution variance.
Therefore, it is not surprising that the exceptional experiment occurred with the smaller batch size.

5 Conclusion

The use of GG-based models has been limited in small and medium-sized datasets, mainly due to
the cost of computing the graph. To enable this application in large datasets, we have introduced
an algorithm to compute the graph while optimizing computational and memory costs. For time
complexity, we use a distance matrix that is computed in advance and loaded into the GPU to perform
all comparisons in parallel. However, with limited GPU RAM, when it’s infeasible to load the entire
distance matrix, we developed a bootstrap approach to incrementally construct the graph with subsets
and also compute the upper bound probability of iterations to safely trust the graph’s approximation.

For future work, we plan to apply GG-based models to large and unstructured datasets using the
learned representation of self-supervised learning techniques, since their embedding has semantic
information encoded in distance relations. We also plan to investigate smart indexing strategies for
the subsets to further speed up the computation of GG, especially in the final epochs when it is rarer
to find a point that falsifies a remaining violating edge. Promising ideas include sampling the batches
from the complete set of all triplets (edges and possible violating points), evaluating these triplets in
advance, and adding stopping criteria based on relationships between batches from different epochs
and the resulting edge update.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction mention the algorithm for computational cost
(Section 3) and memory cost (Section 4).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4 discusses the limitations of the algorithm in Section 3 but also poses
new challenges, namely the convergence and variance of the upper bound probability.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
Justification: The upper bound probability has only an informal proof, but it’s simple enough
and short-papers are not allowed to have any supplementary material.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Now in camera-ready stage, we provide the source code for all experiments.
The pseudocodes fairly describe the algorithms that are the main contribution. Although we
haven’t explicitly specified the datasets used in the convergence experiment, we believe that
any reasonable set of UCI datasets will reproduce the same results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Now in camera-ready stage, we provide the source code for all experiments.
The pseudocodes fairly describe the algorithms that are the main contribution. Although we
haven’t explicitly specified the datasets used in the convergence experiment, we believe that
any reasonable set of UCI datasets will reproduce the same results.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The hyperparameters for the convergence experiment are described. Since
there was no training, there were no data splits and optimizers.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The variance in the convergence experiment was weakly addressed with a
simple experiment. We considered it to be a minor problem since the upper bound limit is
already tight.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: All experiments were cheap enough for us to run on the Google Colab T4
GPU, so we considered the computational resources not significant enough to be mention.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not deal with human subjects or sensitive data, nor does it
have any copyright issues.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We can’t think in any direct societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We only use public data from UCI that has been referenced.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Only the pseudocode is described.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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