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Abstract
The past sexennium has witnessed rapid advancements of hyperbolic neural
networks. However, it is challenging to learn good hyperbolic representations
since common Euclidean neural operations, such as convolution, do not extend
to the hyperbolic space. Most hyperbolic neural networks omit the convolution
operation and cannot effectively extract local patterns. Others either only use
non-hyperbolic convolution, or miss essential properties such as equivariance
to permutation. We propose HKConv, a novel trainable hyperbolic convolution
which first correlates trainable local hyperbolic features with fixed kernel points
placed in the hyperbolic space, then aggregates the output features within a local
neighborhood. HKConv is a generic framework where any coordinate model
of the hyperbolic space can be flexibly used. We show that neural networks
with HKConv layers advance state-of-the-art in various tasks. The code of
our implementation is available at https://github.com/BruceZhangReve/
Hyperbolic-Kernel-Convolution

1 Introduction
In geometric deep learning, hyperbolic neural networks (HNNs) have achieved remarkable successes
thanks to the fact that hyperbolic spaces have large capacity and facilitate embedding of hierarchical
structures [1]. HNNs have found wide applications such as word embedding [2], knowledge graph
completion [3], and image segmentation [4].

The core neural operation in HNNs is the linear layers, known as fully-connected layers, used in
the seminal work of Ganea [5] and later works [6–8]. However, linear layers cannot embed strong
inductive bias such as local patterns. To better capture local patterns, convolution operations are often
used in the Euclidean domain, which played a crucial role in the early success of deep learning [9].
Convolutional layers extract local patterns from the input by measuring and aggregating correlations
between the filter and different regions of the input. Unfortunately, the convolution operation is largely
overlooked in HNNs. Some HNNs [4, 10–12] utilize standard convolutional layers, which operate in
the Euclidean space rather than the hyperbolic space. The only existing work that explicitly defines a
hyperbolic convolution is HNN++ [7], where convolution is done by first concatenating features in
the reception field and then applying a hyperbolic fully-connected layer. Although the convolution
in HNN++ effectively incorporates neighborhood information, it could only apply to ordered and
structured data (e.g., sequences or images). This is because it is not equivariant to permutation of
the order of input features. Simply switching the order of concatenation will completely change the
output. Moreover, it only applies to the case where each feature has the same number of neighbors
and does not work for heterogeneous relations between data points. Therefore, the convolution
in HNN++ does not generalize to, e.g., graph data. For graph data, many works [6, 13–16] have
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generalized graph convolutional network (GCN) to the hyperbolic space. The main idea is to use
message passing to extract local patterns defined by a graph. However, graph convolution relies only
on the topology of the underlying graph, neglecting the rich geometric structures in the hyperbolic
space itself.

One difficulty in designing hyperbolic convolution stems from the fact that the principles used
in designing CNN convolutions do not generalize to the hyperbolic space. First, the hyperbolic
space is typically used as the embedding space of features, not a domain where the features are
defined as functions. Second, the hyperbolic space lacks the structure of a regular grid and cannot
facilitate alignment of convolutional kernels and input features. To address the first issue, the
convolutional filter has to also be defined in the same hyperbolic space; to address the second issue,
the convolutional filter should not be required to swipe over the space. In view of these requirements,
we draw inspiration from point cloud analysis [17–19] and introduce fixed point kernels in hyperbolic
space to develop a hyperbolic convolutional layer, which we call the Hyperbolic Kernel Convolution
(HKConv). HKConv draws learnable transformations from relative positions of input features, whose
correlation with the point kernels are then processed to produce the output features. HKConv relies
on the intrinsic geometry of the hyperbolic space and can be defined for any coordinate model of the
hyperbolic space. We outline our contributions as follows.

• We formulate HKConv, a hyperbolic convolution method based on point kernels. To the best
of our knowledge, no previous work has constructed hyperbolic neural layers that focus on
extracting local hyperbolic patterns.

• HKConv is a generic framework that operates under any model of the hyperbolic space. We
provide concrete implementation for both the Lorentz model and the Poincaré ball model.

• HKConv is equivariant to permutation of ordering of the input hyperbolic features. It is also
invariant to parallel translation of a local neighborhood. Moreover, its expressivity is invariant
with respect to isometric transformation of the point kernels.

• We demonstrate the effectiveness of HKConv by showing its competitive performance in
hyperbolic neural networks.

2 Related Works

Hyperbolic Neural Networks. The earliest hyperbolic network was HNN [5], where linear layers
and recurrent layers were defined according to the Poincaré ball model. HNN was recently generalized
to HNN++ [7], which introduced concatenation, convolution, and attention mechanisms in the
Poincaré ball. Nickel and Kiela [20] pointed out the numerical instability of operations in the
Poincaré ball and promoted the use of the Lorentz model. More recently, Chen et al. [8] proposed to
perform operations directly in the hyperbolic space without relying on the tangent spaces and thus
derived the fully hyperbolic network. Fan et al. [21] took a similar approach, but constrained the
maps to be Lorentz transformations. It is also possible to use hybrid models. For instance, Gulcehre
et al. [22] established a hyperbolic attention using both the Lorentz and the Klein models. For a more
complete list of various hyperbolic networks with their underlying models, we refer to the recent
survey by Peng et al. [23].

Non-Euclidean Convolution. Recently, CNNs have been generalized to different manifolds. Geo-
metric convolutional models include the spherical CNN [24], the mesh CNN [25], and the icosahedral
CNN [26]. In these works, the input features are defined as a function on the space, not embedded in
the space, and thus their methods do not generalize to hyperbolic models as considered in our work.

Convolution has also been generalized to graph data, with a focus on effective processing of graph
topology. Specifically, GCN convolution is implemented by local message passing and aggregation
[27]. Due to the tree-like structure and power law distribution in many graph data, it is natural to use
the hyperbolic space to represent geometric information missing from graph topology [28]. Many
hyperbolic networks [6, 13–16] generalized GCN convolution. In these works, the input features are
transformed directly by various hyperbolic fully-connected layers and the aggregation inherits from
the graph edge weights. Unlike previous approaches, HKConv transforms relative features in each
neighborhood and therefore encodes more local geometric information when applied to graph data.

We remark that some HNNs [4, 10–12] employed standard convolutional layers. We also remark that
the title of a previous work [29] seems to suggest similar network construction. However, there is no
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direct relation between our works since in that work, “hyperbolic” describes the type of differential
equation and “convolution” refers to the regular operation for images.

3 Background
3.1 Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry with a constant negative curvature [30, 31]. In our
paper, we use Hm to denote an m-dimensional hyperbolic space. In order to define operations in the
hyperbolic space, it is convenient to work with an isometric Cartesian-like model (coordinate system)
such as the Lorentz model Lm, Poincaré ball Bm, and the Klein disk model Km. Our HKConv is a
generic framework that works with all these models. A detailed review for hyperbolic geometry is
introduced in Appendix A.1.

3.2 Hyperbolic Neural Operations

Linear Layers and Activation. Linear and activation layers are basic components of a deep
learning model, and the hyperbolic version of which is actually a simple mimic of the Euclidean
linear and activation layers.

Different linear transformation designs have been introduced to hyperbolic neural networks. A widely
used method is to use exponential and logarithmic maps to take linear transformations back to the
tangent space of the origin [6]. An advantage of such method is that it is compatible with every
hyperbolic model. HLinear(x) can be summarized as the following:

x′ = expHo (W logHo (x));

HLinear(x) = expHx′(PTo→x′ logHo (b)),
(1)

where b is a hyperbolic bias vector and W is an arbitrary matrix.

For Poincaré, the above operations can be represented via Mobiüs operations:

HLinear(x) = (W ⊗ x)⊕ expBo (b), (2)

where b is also a hyperbolic bias vector and c is the curvature. Following such regime, HAct can be
easily defined:

HAct(x) = expHo (σ logHo (x)), (3)
where σ is the activation function.

However, extensive use of exponential or logarithmic operations may lead to a numerical instabil-
ity [6] [8]. Therefore, by making use of ⟨x,y⟩L, the linear transformation on the Lorentz model can
be designed in a "fully hyperbolic" approach:

HLinear(x) =

[ √
∥Wx∥2 + 1

Wx

]
,where x ∈ Lm,W ∈ Rn×(m+1), and HLinear(x) ∈ Ln.

Another advantage of this method is that HLinear can be directly equipped with additional activation,
bias and normalization, which leads to a general expressive transformation summarized as the
following:

HLinear(x) =

[ √
∥h(x)∥2 + 1

h(x)

]
∈ Ln, where h(x) =

λσ(v⊤x+ b′)
∥Wτ(x) + b∥ (Wτ(x) + b). (4)

Specifically, v ∈ Rn+1 and W ∈ Rn×(m+1) are trainable weights, b ∈ Rn and b′ ∈ R are trainable
biases, σ is the sigmoid function, τ is the activation function, and the trainable parameter λ > 0
scales the range. We may also write h(x;W,b) to emphasize its dependence on W and b.

Additional Operations. Neural network operations in the hyperbolic space also involve other basic
components: embedding layers, centralization layers, and output layers. An embedding layer trans-
forms Euclidean feature vectors to hyperbolic vectors, whereas an output layer maps final hyperbolic
representations into Euclidean vectors. A centralization layer performs averaging/aggregation in the
hyperbolic space. A more detailed review for those neural operations is in Appendix A.2.
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4 Methodology
4.1 Hyperbolic Kernel Points

To construct an HKConv layer, the first step is to fix K kernel points {x̃k}Kk=1 in Hm, where m is the
dimension of the input features. The kernel points can be regarded as located in the neighborhood
of the hyperbolic origin o ∈ Hm, taken to be o = [1,0⊤

m]⊤ ∈ Lm in the Lorentz model or
o = 0m ∈ Bm in the Poincaré model, where 0m is the m-dimensional zero vector.

The locations of {x̃k}Kk=1 are determined according to the principle of Thomas et al. [18]: the
kernel points should be as far as possible from each other, but also not too distant from the origin.
Specifically, let dH denote the geodesic distance function. The kernel points are determined by
solving an optimization problem where the following loss function is minimized:

L({x̃k}Kk=1) =

K∑
k=1

∑
l ̸=k

1

dH(x̃l, x̃k)
+

K∑
k=1

dH(o, x̃k). (5)

In our context, the first term in (5) guarantees expressivity as it associates distinct features with each
kernel point. If the kernel points are too close to each other, the output from the kernel points will
be too similar. The second term ensures the solution does not diverge to infinity. Another reason
for having the second term is to prevent vanishing gradients. When the kernel points are too distant,
gradients may vanish easily because of the inverse hyperbolic trigonometric function used in dH
(shown in Appendix A). We further illustrate a case of gradient vanishment in Appendix C.

The kernel points are pre-determined since it would be numerically unstable to train them in the hy-
perbolic space together with other parameters. We further illustrate this situation in the ablation study
in Appendix E. This does not restrict the expressivity of HKConv, since learnable transformations are
still applied to the input features.

In general, it is difficult to determine an analytical solution to the minimization of (5). We use the
Riemannian gradient descent method [32] to approximate a proper value. Figure 1 shows examples
of 5 and 10 kernel points in L2 and B2. We observe that the kernel points are around the origin;
meanwhile, no pair of points are too close to each other. This agrees with our intuition in the
formulation of (5).

4.2 Hyperbolic Kernel Convolution

Analogous to convolution in the Euclidean space, HKConv applies the kernel points to local neigh-
borhoods of input hyperbolic features. It is flexible to choose the neighborhoods, such as nearest
neighbors according to geodesic distances or, when the hyperbolic features are an embedding of
graph features, 1-hop neighbors according to graph topology.

Let X ⊂ Hm denote the collection of input hyperbolic features. For each x ∈ X, we use N (x) ⊂
X− {x} to denote the neighbors of x. We describe the HKConv layer in the following three steps of
operations: first, transformation of relative input features; second, aggregation based on correlation
with kernels; third, final aggregation for the neighborhood. We describe the details as follows.

Step 1. To ensure the locality of the extracted information, we need to use relative features between
an input x and its neighbors. More specifically, we need to perform a hyperbolic “translation”. To this
end, we first transform each xi ∈ N (x) into the tangent space by applying the logarithmic map, then
move them towards o by applying the parallel transport from the tangent space at x to the tangent
space at o (denoted as PTx→o), and lastly bring them back to Hm by applying the exponential map.
For convenience, we extend the parallel transport PTx→y : TxHm → TyHm to Tx→y : Hm → Hm,
which can be regarded as a translation operator defined on the hyperbolic space. Specifically, given
x,y,u ∈ Hm,

Tx→y(u) := expy (PTx→y(logx(u))) . (6)
Also, to analogize to “translation by x”, we denote

u⊖ x := Tx→o(u). (7)
Clearly, x⊖ x = o. Moreover, because logarithmic and exponential maps are distance preserving,
(7) preserves the relative distance between x and its neighbors. That is,

dH(x,xi) = dH(o,xi ⊖ x), for all xi ∈ N (x).
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(e)

(b)

(c)(a)

(d) (f)

Figure 1: Illustration of kernel points in L2 and B2. Figs. (a) and (b) illustrate K = 5 points
in the Lorentz and Poincaré models, respectively; Figs. (c) and (d) apply a parallel transport to all
the points in (a) and (b); Figs. (e) and (f) show K = 10 points in the Lorentz and Poincaré models,
respectively. In each subfigure, we show the geodesics from one starting point to all the others. To
show different patterns, we take two different choices of starting points in the Lorentz and Poincaré
models, respectively.

We remark that (7) is similar to “adding bias” ⊕ in some designs of hyperbolic linear layers [5, 6],
but in general u⊖ x need not equal u⊕ (−x).

For each xi ∈ N (x), the translation xi ⊖ x gives the relative input feature of xi with respect to x.
The first step of HKConv is to extract information using a learnable hyperbolic linear layer for each
kernel point x̃k, k = 1, · · · ,K. We denote it by HLineark : Hm → Hn and extract

xik = HLineark(xi ⊖ x), k = 1, · · · ,K. (8)

Step 2. Similar to Euclidean convolution, we take the correlation between the input features and
the kernel points x̃k. However, unlike the Euclidean domain where the kernels are moved to the
neighborhood of the input, when we perform convolution, we move N (x) to the neighborhood of
o. On one hand, this approach prevents varying degrees of distortion of the kernel points across
different locations, while on the other hand, it ensures that the expressions for both the exponential
and logarithmic maps remain simple, regardless of the chosen hyperbolic model. A simple way of
achieving this is to move each neighbor xi ∈ N (x) via the translation xi ⊖ x, and then perform the
correlation with the kernel point x̃k by dH(xi ⊖ x, x̃k) or dH(xik, x̃k). While the former is simple
to implement and more flexible, the latter enjoys an expressivity property that we will illustrate in
Theorem 2.

Unlike Euclidean convolution, in our design, the above correlation is used as the weights for aggre-
gating the xik obtained in (8). In the hyperbolic space, one way of aggregating features is to find
their weighted mean (denoted as the “MEAN” operation), which is not well-defined: one can use the
hyperbolic centroid [33] or the Klein midpoint [22], both of whose output features remain in the same
hyperbolic space. Finally, aggregating the features yields an output feature for each neighbor of x:

x′
i = MEAN({xik}Kk=1, {dL(xi ⊖ x, x̃k)}Kk=1); (9)

or alternatively:
x′
i = MEAN({xik}Kk=1, {dH(xik, x̃k)}Kk=1). (10)

Both (9) and (10) endow xik with information of local geometry in the feature space. On the
contrary, other hyperbolic message passing [6, 13] or attention [22] methods only use graph structural
information, but do not take into account the geometry of the feature embedding space.
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Step 3. The last step in HKconv is to aggregate all the x′
i’s from the neighborhood. Many typical

graph neighborhood aggregation methods can be adapted to hyperbolic space. When there is no other
information, we simply apply equal weights to all the neighbors, but it it is also possible to apply the
attention regime so that the weights are learnable. That is,

x′ = MEAN({x′
i}Ni=1, {wi}Ni=1), (11)

where {wi}Ni=1 is either taken to be 1N or learned. In addition, more sophisticated neighbor aggre-
gation is also feasible. For instance, one can employ the aggregation introduced in [34] as follows:
MLPΦ

(
(1 + ϵ) ·MLPf

(
c(l)(v)

)
+
∑

u∈N(v) MLPf

(
c(l)(u)

))
, where ϵ is a trainable parameter.

However, since we have performed parallel transport to translate node v and its neighborhood to the
origin in Step 1, we can ignore the first term with the coefficient (1 + ϵ). Therefore, a hyperbolic
version of such aggregation can be reduced to the following:

x′ = MLPΦ

(
MEAN({MLPf (x

′
i)}Ni=1, {wi}Ni=1)

)
, (12)

where MLP is the linear layer defined under its respective hyperbolic model.

Altogether, for each input feature x ∈ Hm, our hyperbolic convolution produces a new hyperbolic
feature x′ ∈ Hn. For convenience, we call the chain of operations an HKConv layer, and denote
x′ = HKConv(x;N (x)). When N (x) is clear, we also directly denote x′ = HKConv(x). Figure 2
presents an illustration of HKConv.

x
<latexit sha1_base64="butjOCTCphwFmdoCmokPtPNKqoI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae0Y8lk0jY0kwxJRi1D/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJYs60cd1vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4OvPbD1RpJsWdmcTUj/BQsAEj2FjpvhdIHupJZK/0adovV9yqOwNaJl5OKpCj0S9/9UJJkogKQzjWuuu5sfFTrAwjnE5LvUTTGJMxHtKupQJHVPvpLPUUnVglRAOp7BEGzdTfGymOdBbNTkbYjPSil4n/ed3EDC79lIk4MVSQ+UODhCMjUVYBCpmixPCJJZgoZrMiMsIKE2OLKtkSvMUvL5NWreqdVWu355X6VV5HEY7gGE7Bgwuoww00oAkEFDzDK7w5j86L8+58zEcLTr5zCH/gfP4AVJqTDQ==</latexit>

xi
<latexit sha1_base64="o5te8LEnxAzkThpUsEYdahKzeao=">AAAB+XicbVC7TsMwFL3hWcorwMhiUSExVUlBgrGChbFI9CG1UeQ4TmvVcSLbqaii/gkLAwix8ids/A1OmwFajmT56Jx75eMTpJwp7Tjf1tr6xubWdmWnuru3f3BoHx13VJJJQtsk4YnsBVhRzgRta6Y57aWS4jjgtBuM7wq/O6FSsUQ86mlKvRgPBYsYwdpIvm0PgoSHahqbK3+a+cy3a07dmQOtErckNSjR8u2vQZiQLKZCE46V6rtOqr0cS80Ip7PqIFM0xWSMh7RvqMAxVV4+Tz5D50YJUZRIc4RGc/X3Ro5jVYQzkzHWI7XsFeJ/Xj/T0Y2XM5FmmgqyeCjKONIJKmpAIZOUaD41BBPJTFZERlhiok1ZVVOCu/zlVdJp1N3LeuPhqta8LeuowCmcwQW4cA1NuIcWtIHABJ7hFd6s3Hqx3q2PxeiaVe6cwB9Ynz9SD5Qa</latexit>

o
<latexit sha1_base64="V27ckanjdKIQFi+D1s+twnOGQSU=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2LJlMpg3NJEOSUcrQ/3DjQhG3/os7/8ZMOwttPRByOOdecnKChDNtXPfbWVldW9/YLG2Vt3d29/YrB4dtLVNFaItILlU3wJpyJmjLMMNpN1EUxwGnnWB8k/udR6o0k+LeTBLqx3goWMQINlZ66AeSh3oS2yuT00Gl6tbcGdAy8QpShQLNQeWrH0qSxlQYwrHWPc9NjJ9hZRjhdFrup5ommIzxkPYsFTim2s9mqafo1CohiqSyRxg0U39vZDjWeTQ7GWMz0oteLv7n9VITXfkZE0lqqCDzh6KUIyNRXgEKmaLE8IklmChmsyIywgoTY4sq2xK8xS8vk3a95p3X6ncX1cZ1UUcJjuEEzsCDS2jALTShBQQUPMMrvDlPzovz7nzMR1ecYucI/sD5/AFG7ZME</latexit>

xi  x
<latexit sha1_base64="hro0kK3DpesQxKnSwMLUb6dWl5g=">AAACDnicbVC7TsMwFHV4lvIKMLJYVJWYqqQgwVjBwlgk+pDaqHIcp7XqR2Q7iCrqF7DwKywMIMTKzMbf4LQZoOVIlo/OuVf33hMmjGrjed/Oyura+sZmaau8vbO7t+8eHLa1TBUmLSyZVN0QacKoIC1DDSPdRBHEQ0Y64fg69zv3RGkqxZ2ZJCTgaChoTDEyVhq41X4oWaQn3H7Zw3RA+5JTkeoF2a14NW8GuEz8glRAgebA/epHEqecCIMZ0rrne4kJMqQMxYxMy/1UkwThMRqSnqUCcaKDbHbOFFatEsFYKvuEgTP1d0eGuM5Xs5UcmZFe9HLxP6+XmvgyyKhIUkMEng+KUwaNhHk2MKKKYMMmliCsqN0V4hFSCBubYNmG4C+evEza9Zp/VqvfnlcaV0UcJXAMTsAp8MEFaIAb0AQtgMEjeAav4M15cl6cd+djXrriFD1H4A+czx/hnZ3m</latexit>

xi  x
<latexit sha1_base64="hro0kK3DpesQxKnSwMLUb6dWl5g=">AAACDnicbVC7TsMwFHV4lvIKMLJYVJWYqqQgwVjBwlgk+pDaqHIcp7XqR2Q7iCrqF7DwKywMIMTKzMbf4LQZoOVIlo/OuVf33hMmjGrjed/Oyura+sZmaau8vbO7t+8eHLa1TBUmLSyZVN0QacKoIC1DDSPdRBHEQ0Y64fg69zv3RGkqxZ2ZJCTgaChoTDEyVhq41X4oWaQn3H7Zw3RA+5JTkeoF2a14NW8GuEz8glRAgebA/epHEqecCIMZ0rrne4kJMqQMxYxMy/1UkwThMRqSnqUCcaKDbHbOFFatEsFYKvuEgTP1d0eGuM5Xs5UcmZFe9HLxP6+XmvgyyKhIUkMEng+KUwaNhHk2MKKKYMMmliCsqN0V4hFSCBubYNmG4C+evEza9Zp/VqvfnlcaV0UcJXAMTsAp8MEFaIAb0AQtgMEjeAav4M15cl6cd+djXrriFD1H4A+czx/hnZ3m</latexit>

x̃k
<latexit sha1_base64="537HcYoCm7N0fts/CyHOV6IS84s=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5JUQZdFNy4r2Ae0IUwmk3boZCbMTMQS4sZfceNCEbf+hTv/xkmbhbYeGOZwzr3ce0+QMKq043xbS8srq2vrlY3q5tb2zq69t99RIpWYtLFgQvYCpAijnLQ11Yz0EklQHDDSDcbXhd+9J1JRwe/0JCFejIacRhQjbSTfPhxoykKSDQLBQjWJzZc95Lk/9u2aU3emgIvELUkNlGj59tcgFDiNCdeYIaX6rpNoL0NSU8xIXh2kiiQIj9GQ9A3lKCbKy6YX5PDEKCGMhDSPazhVf3dkKFbFdqYyRnqk5r1C/M/rpzq69DLKk1QTjmeDopRBLWARBwypJFiziSEIS2p2hXiEJMLahFY1IbjzJy+STqPuntUbt+e15lUZRwUcgWNwClxwAZrgBrRAG2DwCJ7BK3iznqwX6936mJUuWWXPAfgD6/MH5kCX0g==</latexit>

(a) (b) (c) 

xik
<latexit sha1_base64="8guG+G332YYpD34i8fmqbVYpryo=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabRT0OPQi8cJ7gO2UtI03cLSpCSpWMr8V7x4UMSrf4g3/xvTrQfdfBDyeO/3Iy8vSBhV2nG+rcra+sbmVnW7trO7t39gHx71lEglJl0smJCDACnCKCddTTUjg0QSFAeM9IPpTeH3H4hUVPB7nSXEi9GY04hipI3k2/VRIFiosthc+ePMz+l05tsNp+nMAVeJW5IGKNHx7a9RKHAaE64xQ0oNXSfRXo6kppiRWW2UKpIgPEVjMjSUo5goL5+Hn8FTo4QwEtIcruFc/b2Ro1gV+cxkjPRELXuF+J83THV05eWUJ6kmHC8eilIGtYBFEzCkkmDNMkMQltRkhXiCJMLa9FUzJbjLX14lvVbTPW+27i4a7euyjio4BifgDLjgErTBLeiALsAgA8/gFbxZT9aL9W59LEYrVrlTB39gff4A8XaVmw==</latexit>

x0
i

<latexit sha1_base64="hxIJ5XfFuwhirE0crBLWAFNYRLY=">AAAB/HicbVA7T8MwGHR4lvIKdGSxqBBMVVKQYKxgYSwSfUhtFDmO21p17Mh2EFEU/goLAwix8kPY+Dc4bQZoOcny6e775PMFMaNKO863tbK6tr6xWdmqbu/s7u3bB4ddJRKJSQcLJmQ/QIowyklHU81IP5YERQEjvWB6U/i9ByIVFfxepzHxIjTmdEQx0kby7dowECxUaWSu7DH3M5qf+nbdaTgzwGXilqQOSrR9+2sYCpxEhGvMkFID14m1lyGpKWYkrw4TRWKEp2hMBoZyFBHlZbPwOTwxSghHQprDNZypvzcyFKkin5mMkJ6oRa8Q//MGiR5deRnlcaIJx/OHRgmDWsCiCRhSSbBmqSEIS2qyQjxBEmFt+qqaEtzFLy+TbrPhnjeadxf11nVZRwUcgWNwBlxwCVrgFrRBB2CQgmfwCt6sJ+vFerc+5qMrVrlTA39gff4AiniVVw==</latexit>

x0
i

<latexit sha1_base64="hxIJ5XfFuwhirE0crBLWAFNYRLY=">AAAB/HicbVA7T8MwGHR4lvIKdGSxqBBMVVKQYKxgYSwSfUhtFDmO21p17Mh2EFEU/goLAwix8kPY+Dc4bQZoOcny6e775PMFMaNKO863tbK6tr6xWdmqbu/s7u3bB4ddJRKJSQcLJmQ/QIowyklHU81IP5YERQEjvWB6U/i9ByIVFfxepzHxIjTmdEQx0kby7dowECxUaWSu7DH3M5qf+nbdaTgzwGXilqQOSrR9+2sYCpxEhGvMkFID14m1lyGpKWYkrw4TRWKEp2hMBoZyFBHlZbPwOTwxSghHQprDNZypvzcyFKkin5mMkJ6oRa8Q//MGiR5deRnlcaIJx/OHRgmDWsCiCRhSSbBmqSEIS2qyQjxBEmFt+qqaEtzFLy+TbrPhnjeadxf11nVZRwUcgWNwBlxwCVrgFrRBB2CQgmfwCt6sJ+vFerc+5qMrVrlTA39gff4AiniVVw==</latexit>

x0
<latexit sha1_base64="9V1gSDibT/VKqxQOLwnP614L8/o=">AAAB+HicbVA7T8MwGHR4lvBogJHFokIwVUkZYEFUsDAWiT6kNqocx2mtOnZkO4gS9ZewIAFCrPwJdhbEv8FpO0DLSZZPd98nny9IGFXadb+thcWl5ZXVwpq9vrG5VXS2dxpKpBKTOhZMyFaAFGGUk7qmmpFWIgmKA0aaweAy95u3RCoq+I0eJsSPUY/TiGKkjdR1ip1AsFANY3Nld6PDrlNyy+4YcJ54U1I6/7DPkqcvu9Z1PjuhwGlMuMYMKdX23ET7GZKaYkZGdidVJEF4gHqkbShHMVF+Ng4+ggdGCWEkpDlcw7H6eyNDscqzmckY6b6a9XLxP6+d6ujUzyhPUk04njwUpQxqAfMWYEglwZoNDUFYUpMV4j6SCGvTlW1K8Ga/PE8albJ3XK5ce6XqBZigAPbAPjgCHjgBVXAFaqAOMEjBA3gGL9a99Wi9Wm+T0QVrurML/sB6/wGSUpat</latexit>

(d) (e) 

Figure 2: Illustration of HKConv. This illustration shows four kernel points and an input feature x
with three neighbors in N (x). (a) The original positions of x (the diamond) and N (x) (the circle
points). (b) {x}∪N (x) have been moved to the origin by the parallel transport. (c) The kernel points
x̃k (the down-triangles) and the geodesics between xi ⊖ x and the kernel points; the correlations
are the lengths of the geodesics. (d) The HLinear layer transformed xik’s (the squares), whose
weighted centroid is x′

i; the thickness of the geodesic represents the weight. (e) x′ = HKConv(x),
the centroid of x′

i’s.

4.3 Properties of HKConv

Since the aggregation defined above depends solely on the neighborhood, which remains unaffected
by any matrix representation, HKConv is equivariant to permutations in the order of data points.
This property is not guaranteed if the convolution is done by applying hyperbolic linear layers to
concatenated features, as done in HNN++, where the order of concatenation matters.

As to the hyperbolic features themselves, HKConv is also invariant under local translations in the
hyperbolic space. Specifically, given an HKConv layer, if we perform a parallel translation from an
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input point x along the geodesic in the hyperbolic space, the output HKConv(x) will not change.
This result holds locally, i.e., for a given x and its neighbors. We formulate it as follows.
Theorem 1 (Local translation invariance). Fix x ∈ X and its neighborhood N (x) ⊂ X. For any
y ∈ Ln in the geodesic from o to x,

HKConv(Tx→y(x); Tx→y(N (x))) = HKConv(x;N (x)). (13)

Theorem 1 indicates that HKConv is indeed an operation that depends on local geometry. Along the
geodesics, as long as the relative positions between x and its neighbors stay constant, the output of
HKConv will not change, regardless of the distance between x and the hyperbolic origin.

The next property concerns the choice of kernel points. Note that the solution to the optimization
problem (5) is not unique. Essentially, the loss function L in (5) is a function of distances between
all pairs of X̃ = {x̃k}Kk=1 ∪ {o}, not the points themselves, and thus L is invariant under isometric
transformations of X̃. It is important to guarantee that the search space of the parameters of HKConv
do not depend on a specific isometric version of X̃. In other words, the expressivity of HKConv
should not be affected by the specific choice of minimizer of (5). This is achieved if we choose to use
(10) in HKConv.

In our context, it is the easiest to understand isometries in the Lorentz model. Thanks to the inclusion
of o as a fixed point, isometries reduce to those that operate for the spatial component, which can be
regarded as a Euclidean domain, where isometries fixing the origin are necessarily linear. For linear
layers that perform Wx+ b in the tangent space, it is easy to absorb such linear isometries in W,
and the expressivity remains unchanged. For the hyperbolic linear layer in [8], we formulate this
result as the following theorem.
Theorem 2 (Expressivity). Let Wk ∈ Rn×(m+1),bk ∈ Rn be the weight matrices and bias vectors
in HLineark, k = 1, · · · ,K, of HKConv(0), a HKConv layer with kernel points {x̃k}Kk=1 ⊂ Ln.
Suppose χ : Ln → Ln is an isometry with o as a fixed point, i.e., χ(o) = o. Let z̃k = χ (x̃k),
k = 1, · · · ,K. Then there exist weight matrices Vk ∈ Rn×(m+1) and bias vectors ak ∈ Rn,
k = 1, · · · ,K, such that HKConv(1), the HKConv layer produced from HKConv(0) by replacing
{x̃k}Kk=1 with {z̃k}Kk=1, {Wk}Kk=1 with {Vk}Kk=1 and {bk}Kk=1 with {ak}Kk=1, satisfies

HKConv(1)(x) = HKConv(0)(x) (14)

for any x ∈ X.

4.4 Connection with Traditional Convolution

For traditional convolution [35], assume x represents the input features on a grid. A convolution
operator C(θ), where θ is a filter/kernel, could be defined as (Cx)t =

∑
l xt−lθl, which is taking a

weighted sum (aggregation) of the neighboring grids’ input features. When it is implemented, the
kernel is moved to specific region of the input to perform xt−lθl. For our HKConv, step 1 (i.e., (8))
has a step of tranlation, which is similar to moving the kernel (for our implementation, we move the
input instead of moving the kernel, but in the definition of convolution, it is equivalent whether which
one is moved).

Step 2 of HKConv (i.e., (9) and (10)) is related to feature transformation and multi-channel kernels.
Step 2 is similar to averaging hyperbolic transformations of one specific input but using all the
different kernel points. Therefore, the aggregation with kernel points in step 2 can be viewed as a
multi-channel variation of xt−lθl. The reason for making feature transformation dependent on kernel
points is that it provides richer geometric information about the local neighborhood.

Step 3 (i.e., (11) and (12)) is related to neighborhood aggregation
∑

l. It is also similar to the
aggregation step that is commonly used in message passing graph neural networks.

4.5 Hyperbolic Kernel Networks

An Hyperbolic Kernel Network (HKN) can be constructed by cascading a number of HKConv layers.
Depending on the data type, the first layer may be an embedding layer, where data points in the
original domain are represented in the hyperbolic space. The output of the final HKConv layer
may also need to go through further layers depending on the specific task. For instance, in graph
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classification where node features are embedded in the hyperbolic space, we apply a global pooling
by taking a global centroid so that one single hyperbolic feature is obtained for each graph. For
classification tasks, to represent the likelihood of the classes, the output needs to be either a scalar
or a Euclidean vector. To this end, we can either apply the hyperbolic distance layer [13] that maps
from Hn to Rℓ or simply take a logarithmic map to project the hyperbolic vector to ToHn. Details
can be found in Appendix A.2.

While HKN is a generic framework within which one can choose various hyperbolic operations, we
implement three variations of HKN in our experiment. Namely, we have SKN and LKN (“S” for
Spatial and “L” for Lorentz), built upon the Lorentz model, and BKN built upon the Poincaré ball
(“B” for Ball) model while using the Klein midpoint for aggregation. The difference between SKN
and LKN is that SKN adopts a linear layer operating in the spatial component from [8], while LKN
makes use of the tangent space ToHn to perform HLinear. In summary, we have two models: the
Lorentz model and the Poincaré model; and two approaches: the tangent space approach and the
spatial component approach.

5 Experiments
We evaluate the performance of HKNs (SKN, LKN, BKN) on node classification in §5.1. We also
perform graph classification in Appendix E and link prediction in Appendix F. For all above tasks,
each graph node has a hyperbolic representation. We present an additional experiment on a non-graph
dataset in Appendix G. All experiments were executed on a GPU server with NVIDIA GeForce RTX
3090 GPUs (24GB memory).

5.1 Node Classification

When a graph has a small Gromov hyperbolicity δ, it can be well embedded in the hyperbolic space.
In particular, a tree has δ = 0; also, with κ = −1, δ = tanh−1(1/

√
2) ≈ 0.88 for Ln [1]. We expect

hyperbolic models to work well for datasets where graphs have overall similar δ values. In node
classification, the goal is to classify nodes within a graph based on the labels of some known nodes.
The final output is a vector of distances for each node, representing the likelihood of all the classes.

Settings. We evaluate our HKNs on heterophilic graph datasets: the WebKB datasets [36] (Cornell,
Texas, Wisconsin), with nodes as web pages and edges as hyperlinks; the Wikipedia Network datasets
[37] (Chameleon, Squirrel), with nodes as Wikipedia pages linked by hyperlinks; and the Actor
Co-occurrence Network [38] (Actor), where nodes are actors connected by co-appearance on the
same Wikipedia page. The hyperbolicity δ is either 1 or 1.5, close to that of a hyperboloid. All
models (HKNs) operate in hyperbolic space with curvature κ = −1. We use Riemannian Adam [32]
as the optimizer; weight decay and dropout as regularizations; a learning rate scheduler that halves
the learning rate after every determined epochs. For all models, hyper-parameters are optimized
through a search on the validation set, considering the initial learning rate, weight decay, dropout,
number of layers, hidden dimensions, and the number of kernel points.

Baselines. We compare HKNs with the following baseline methods: (1) multi-layer perceptron
(MLP); (2) general graph neural networks including GCN [27], GAT [39], GraphSAGE [40], GCNII
[41]; (3) methods for heterophilous graphs including Geom-GCN [42], WRGAT [43], LINKX [44],
GloGNN and GloGNN++ [45]; (4) hyperbolic GCN methods: HGCN [6], H2H-GCN [15], HyboNet
[8]. We report in Table 1 the mean F1 score (%) and standard deviation from three independent runs.

Models. Two variations of HKNs are implemented, where point-correlation stands for adopting (9)
in Step 2 of HKConv, and self-correlation stands for adopting (10). While we implement all models
using aggregation (11) for simplicity, we do test an additional variant, BKN-isoAgg, that implements
(12) with a single layer MLP.

Results. In all the datasets, at least one HKN variant achieves statistically significant improvement
over other methods. Compared with other hyperbolic methods, SKN consistently excels by a large
margin (example visualizations for embeddings are also provided in Appendix D), and BKN-isoAgg
(self-correlation) excels other hyperbolic methods by a large margin on four out of six benchmarks
(Cornell, Texas, Wisconsin, Actor). BKN and LKN have also shown satisfying performance on
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Table 1: Node classification results. Mean F1 scores (%) and standard deviations are reported. NaN
indicates a numerically unstable result. The best score in each column is in bold font.

Cornell Texas Wisconsin Chameleon Squirrel Actor

# of Nodes 183 183 251 2,277 5,201 7,600
# of Edges 280 295 466 31,421 198,493 26,752

# of Features 1,703 1,703 1,703 2,325 2,089 931
# of Classes 5 5 5 5 5 5

Hyperbolicity δ = 1 δ = 1 δ = 1 δ = 1.5 δ = 1.5 δ = 1.5

MLP 81.89±6.40 80.81±4.75 85.29±3.31 46.21±2.99 28.77±1.56 36.53±0.70

GCN [27] 60.54±5.30 55.14±5.16 51.76±3.06 64.82±2.24 53.43±2.01 27.32±1.10
GAT [39] 61.89±5.05 52.16±6.63 49.41±4.09 60.26±2.50 40.72±1.55 27.44±0.89

GraphSAGE [40] 75.95±5.01 82.43±6.14 81.18±5.56 58.73±1.68 41.61±0.74 34.23±0.99
GCNII [41] 77.86±3.79 77.57±3.83 80.39±3.40 63.86±3.04 38.47±1.58 37.44±1.30

Geom-GCN [42] 60.54±3.67 66.76±2.72 64.51±3.66 60.00±2.81 38.15±0.92 31.59±1.15
WRGAT [43] 81.62±3.90 83.62±5.50 86.98±3.78 65.24±0.87 48.85±0.78 36.53±0.77
LINKX [44] 77.84±5.81 74.60±8.37 75.49±5.72 68.42±1.38 61.81±1.80 36.10±1.55

GloGNN [45] 83.51±4.26 84.32±4.15 87.06±3.53 69.78±2.42 57.54±1.39 37.35±1.30
GloGNN++ [45] 85.95±5.10 84.05±4.90 88.04±3.22 71.21±1.84 57.88±1.76 37.70±1.40

HGCN [6] 79.43±0.47 70.13±0.32 83.26±0.51 NaN 62.31±0.57 36.58±0.79
H2H-GCN [15] 75.52±0.82 71.47±0.63 88.71±0.82 78.71±0.96 66.85±0.72 42.73±0.86

HyboNet [8] 77.27±0.71 72.23±0.94 86.52±0.51 74.91±0.58 69.07±0.64 45.74±0.82
WLHN [46] 77.29±4.66 75.41±5.98 78.62±3.44 - 55.76±0.92 36.42±1.42

Ours (self-correlation (10))
SKN 87.12±2.62 93.94±6.56 92.59±1.85 82.60±1.14 73.05±1.80 66.42±1.42
LKN 75.76±3.21 92.42±3.47 78.40±1.07 77.53±2.75 57.59±7.41 50.66±4.91
BKN 78.03±3.47 77.27±3.94 82.09±2.83 68.25±3.32 63.25±1.50 65.46±2.54

BKN-isoAgg 93.94±1.31 85.61±6.94 90.74±4.90 72.59±2.49 66.59±0.96 65.12±0.52

Ours (point-correlation (9))
SKN 86.36±2.62 92.42±7.31 91.36±2.14 83.33±0.73 72.44±1.70 66.12±1.92
LKN 76.52±3.47 93.18±3.93 77.78±3.20 77.66±2.71 64.61±1.65 44.45±3.75
BKN 63.64±2.27 63.64±2.27 61.11±5.55 56.41±10.43 53.02±1.93 45.51±3.67

BKN-isoAgg 76.52±1.31 83.33±4.73 74.07±1.85 64.90±2.21 63.78±0.56 62.21±1.60

certain tasks, respectively. To summarize, this shows the effectiveness of our general framework. We
also note that self-correlation models generally outperform point-correlation models.

Analysis. Although the Lorentz model and the Poincaré model are isometric, the performance of
corresponding HKNs can still be different due to numerical reasons. Comparing LKN and BKN, we
notice that one model never consistently outperforms the other, despite the better numerical stability
of the Lorentz model [6, 20]. We also notice that SKN consistently outperforms LKN, which is due
to the expressive and numerically stable transformations from [8]. Further analysis on the number of
kernel points is also discussed in Appendix D.

6 Conclusion and Limitation

We have introduced HKConv, a novel hyperbolic convolutional layer based on point kernels that
extract information from local geometric relations between input features. The corresponding
hyperbolic network, HKN, has achieved state-of-the-art performance in both node-level and graph-
level tasks for tree-like datasets. We have particularly demonstrated the advantage of the important
components in our convolution.

One possible limitation of this work is that the number of parameters in HKConv grows with the
number of kernels, which may lead to overfitting for small datasets when the number of kernels is
large. Additionally, it imposes a challenge for CUDA memory when performing on large graphs for
node classification tasks. To address this issue, a future working direction is to explore sampling
regimes when building the kernels for reducing model complexity.
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Appendix
The Appendix contain the following contents. §A reviews basic hyperbolic geometry and common
hyperbolic layers used in the paper, §B proves Theorems in the main text, §C conducts experiments
for kernel point generation, §D provides further analysis and visualizations for previous node
classification results, §E conducts experiments for graph classification tasks, §F conducts experiments
for link prediction tasks, §G conducts further experiments on non-graph tasks.

A Preliminaries
A.1 Hyperbolic Geometry

Definitions. A hyperbolic space Hn is an n-dimensional non-Euclidean manifold that has a constant
negative curvature κ. It can be explicitly constructed using a coordinate model, where each point in
the hyperbolic space is represented in a Euclidean fashion. In this paper we consider κ = −1, which
is a common choice in literature. For clarity, this assumption will be maintained throughout all the
formulas presented in this section. For the case of general curvature, we refer the reader to [5, 6, 8].

The Lorentz model Ln = (L, gL), known as the hyperboloid, is an n-dimensional manifold L embed-
ded in the Minkowski space with coordinates taken from Rn+1. Every point in Ln is represented by

x =

[
xt

xs

]
, where xt > 0 is the "time component" and xs ∈ Rn is the "spatial component." When the

curvature is −1, they satisfy ⟨x,x⟩L = −1, where ⟨·, ·⟩L is the Lorentz inner product induced by the
metric tensor gL = diag([−1, 1⊤n ]) (1n ∈ Rn is the n-dimensional vector whose entries are all 1’s):

⟨x,y⟩L := x⊤gLy = −xtyt + xs
⊤ys, x,y ∈ Ln.

The Poincaré ball model Bn = (B, gB) with curvature −1 is an n-dimensional manifold B rep-
resented using coordinates in {x ∈ Rn : ∥x∥ < 1} and equipped with a Riemannian metric
gBx = λ2

xg
E , where λx := 2

1−∥x∥2 , namely conformal factor, and gE := In being the Euclidean
metric tensor.

The Klein model Kn = (K, gK) is also an n-dimensional manifold K represented using coordinates
in {x ∈ Rn : ∥x∥ < 1}. All the above models are isometric under the following mappings:

πL→B(x0, x1, . . . , xn) =

(
x1

1 + x0
, . . . ,

xn

1 + x0

)
; πK→B(x

K) =
1

1 +
√

1− ∥xK∥2
xK.

πB→L(y1, . . . , yn) =

(
1 +

∑
i y

2
i , 2y1, . . . , 2yn

1−∑
i y

2
i

)
; πB→K(x

B) =
2

1 + ∥xB∥2x
B.

Geodesics. Shortest paths in the hyperbolic space are called geodesics. The (geodesic) distance
between two points in hyperbolic space is the length of the geodesic between them. For Lorentz and
Poincaré model, the distance between two points x and y is given by:

dL(x, y) = arcosh (−⟨x, y⟩L) ; dB(x, y) = arcosh

(
1 +

2∥x− y∥2
(1− ∥x∥2)(1− ∥y∥2)

)
.

Tangent Space. The tangent space at x ∈ Hn, denoted as TxHn, is the first order approximation of
the manifold around x. The canonical representation of the tangent space is given by TxLn = {y ∈
Rn+1 : ⟨y,x⟩L = 0}, and TxBn = TxKn = Rn.

Exponential and Logarithmic Maps. For x ∈ Hn, the exponential map expx : TxHn → Hn

projects a tangent vector into the hyperbolic space. Let γ be the geodesic satisfying γ(0) = x and
γ′(0) = v. Then expx(v) := γ(1).

For the Lorentz: expx(v) = cosh(∥v∥L)x+ ∥v∥−1
L sinh(∥v∥L)v,where ∥ · ∥L :=

√
⟨·, ·⟩L;

For the Poincaré ball: expx(v) = x⊕
(
tanh

(
λx∥v∥

2

)
v

∥v∥

)
,where ⊕ is the Möbius addition.
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In the above, Möbius operations are used for clarity. For Poincaré ball, given x and y in Bn, the
Möbius addition is expressed as:

x⊕ y =
(1 + 2⟨x,y⟩+ ∥y∥2)x+ (1− ∥x∥2)y

1 + 2⟨x,y⟩+ ∥x∥2∥y∥2 .

Suppose a matrix M ∈ Rm×n. Given x ∈ Bn, if Mx ̸= 0, the Möbius matrix-vector multiplication
is expressed as:

M⊗ x = tanh

(∥Mx∥
∥x∥ tanh−1(∥x∥)

)
Mx

∥Mx∥ .

The logarithmic map logx : Hn → TxHn projects hyperbolic vectors into the tangent space. It is the
inverse map of expx in the sense that logx(expx(v)) = v for any v ∈ Hn, and vice versa.

For the Lorentz: logx(u) = dL(x,u)
u+ ⟨x,u⟩Lx

∥u+ ⟨x,u⟩Lx∥L
;

For the Poincaré ball: logx(u) =
2

λx
artanh (∥ − x⊕ u∥) −x⊕ u

∥ − x⊕ u∥ .

Parallel Transport. For two points x,y ∈ Hn, the parallel transport, also called the parallel
translation, from x to y, PTx→y, is a map that “transports” or “translates” a tangent vector from
TxHn to TyHn along the geodesic from x to y.

For the Lorentz model:

PTx→y(v) =
⟨y,v⟩L

−1/κ− ⟨x,y⟩L
(x+ y);

For the Poincaré ball model, in this paper we only need the parallel transport from x to o, which
enjoys a simple form:

PTx→o(v) = logo (o⊕ expx(v)) =
λx

λo
v.

A.2 Hyperbolic Neural Operations

Wrapped Normal Distribution. The wrapped normal distribution [2] is a hyperbolic distribution
that resembles the normal distribution in Euclidean space. Although it was orinially designed for
Lorentz model, it can be easily generalize to other hyperbolic models as well. Given µ ∈ Hn and
Σ ∈ Rn×n, to sample z ∈ Hn from the wrapped normal distribution G(µ,Σ), one first samples a
vector from the Euclidean normal distribution N (0,Σ) and applies a hyperbolic embedding to obtain
x ∈ Ln. Then, one applies parallel transport and produces z = expµ(PTo→µ(logo(x))) ∈ Hn. The
wrapped normal distribution is mainly used for generating kernel points for proposed model.

Hyperbolic Embedding. The core idea of embedding a Euclidean vector to hyperbolic space is
to treat the Euclidean vector as the image of a hyperbolic vector’s projection. For Lorentz, we can
view the Euclidean vector as the image of hyperbolic vector’s projection onto the spacial domain
from the hyperboloid [2]. Suppose x ∈ Rn, then a simple embedding on the hyperboloid can be

expo(

[
0
x

]
) ∈ Ln, where 0 can be viewed as the padding element. For Poincaré, we can view the

Euclidean vector as the image of hyperbolic vector’s projection onto the tangent space of the origin
of Poincaré ball. A simple embedding on the Poincaré ball can be expo(x) ∈ Bn.

Hyperbolic Centralization. The centralization in Euclidean space often refers to the average oper-
ation, which is essentially the Euclidean centroid. We can smoothly extends the idea of centralization
to hyperbolic space by making use of hyperbolic centroid. In fact, the notion of a centroid is extended
to Ln by Law et al. [33], defined to be the point µ∗ that minimizes a weighted sum of squared
Lorentzian distance:

µ∗
L = arg min

µ∈Ln

N∑
i=1

νid
2
L(xi,µL),
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where {xi}Ni=1 is the set of points to aggregate, ν is the weight vector whose entries satisfy νi ≥
0,
∑

i νi > 0, i = 1, . . . , N . A closed form of the hyperboloid centroid is given by:

HCent({xi}Ni=1,ν) = µ∗
L =

∑N
i=1 νixi

|
∥∥∥∑N

i=1 νixi

∥∥∥
L
|
.

And a closed form of klein midpoint is given by:

KMid
(
{xi}Ni=1, {αi}Ni=1

)
= µ∗

K =

∑N
i=1 αiγxi

xi∑N
j=1 αjγxj

, where γx =
1√

1− ∥x∥2
.

Hyperbolic Output Layer. Two simple approaches can be used to output Euclidean features from
Hyperbolic embeddings. An intuitive way is to directly project hyperbolic vectors onto the tangent
space and use a simple Euclidean MLP to adjust output dimension,

MLPRn→Rm{logHo (y)},y ∈ Hn. (15)

However, a more sophisticated approach is to apply the hyperbolic distance layer [33], which is a
numerically stable method of outputting Euclidean features. It maps points from Ln to Rm. Given
an input x ∈ Hn, it first initializes m trainable centroids {ci}mi=1 ⊂ Hn, then produces a vector of
distances

y = HCDistn,m(x) = [dH(x, c1) · · · dH(x, cm)]⊤. (16)

B Proofs
B.1 Proof of Theorem 1

Proof. For any xi ∈ N (x), according to the definition in (8),

Tx→y(xi)⊖ Tx→y(x) = expy (PTx→y(logx(xi)))⊖ y

= Ty→o

(
expy (PTx→y(logx(xi)))

)
= expo

(
PTy→o

(
logy

(
expy (PTx→y(logx(xi)))

)))
= expo (PTy→o (PTx→y(logx(xi))))

= expo (PTx→o(logx(xi)))

= xi ⊖ x.

Consequently, the input of HLineark, k = 1, · · · ,K, in (8) is invariant under the operator Tx→y.
This implies that x′ in (11) is also invariant under Tx→y, since it only depends on {xi ⊖ x : xi ∈
N (x)} and the fixed kernel {x̃k}Kk=1. We have thus proven (13).

B.2 Proof of Theorem 2

Proof. We first identify the isometry χ. Since o is a fixed point of χ, it is necessary that dL(o,u) =
dL(o, χ(u)) for any u ∈ Ln. This is equivalent to

⟨o,u⟩L = ⟨o, χ(u)⟩L . (17)

Recall that o = [1,0⊤
n ]

⊤. Therefore, (17) simply reduces to ut = χ(u)t, where χ(u)t denotes the
time component of χ(u). Therefore, χ only acts as an isometry on the spatial component of the
hyperbolic space. However, since the spatial component of Ln can be identified as Rn, the spatial
component of χ is an Euclidean isometry which preserves 0n. Therefore, it has to be either a rotation
or reflection in Rn. Hence, χ is linear and has a matrix representation

χ(u) = Un+1u :=

[
1

Un

]
u,

where Un ∈ Rn×n is unitary.
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Next, for each k = 1, · · · ,K, define Vk = Un+1Wk and ak = Un+1bk. Clearly,

h( · ; Vk,ak) = Unh( · ; Wk,bk).

Consequently, denoting the HLinear layers of HKConv(ν) as HLinear(ν), ν = 0, 1, it holds that
HLinear

(1)
k (·) = Un+1HLinear

(0)
k (·). Hence, the distance between xik and x̃k in (9) is invariant.

Specifically, if xik = HLinear
(0)
k (xi ⊖x) and zik = HLinear

(1)
k (xi ⊖x), then zik = Un+1xik and

thus
dL(zik, z̃k) = dL(Un+1xik,Un+1x̃k) = dL(xik, x̃k).

This yields (14) since HKConv depends on x̃k only via dL(·, x̃k) in (9).

C Kernel Points Generation
We adopt the following experiment on hyperboloid to show this phenomenon. We uniformly sample
K = 8 points along the unit circle in L2, as illustrated in Figure 3a. Then, we translate them along
the geodesics from the origin, in the manner that all the points have the same distance to the origin.
For each distance value, we record the gradient norm of the first term of 5, i.e. the reciprocals of the
pairwise distances. The results are shown in Figure 3b. It is evident that the gradient norm decreases
exponentially with distance, illustrating a typical scenario where gradients vanish when the distance
between the kernel points and the origin is large.
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Figure 3: Illustration of gradient vanishment when the kernel points are too distance. (a) The sampled
points in the experiment; (b) Gradient norm decreases as points goes aways from the origin.

D More on Node Classification
The size of the model is mainly determined by three hyper-parameters: number of kernel points,
hidden dimensions, and layers. In Table 2, we provide a simple experiment and show how hidden
dimensions and layers of the model influence overall performance. Specifically, we run SKN model
on two benchmarks, and the result is given by Table 2. Nevertheless, We emphasize more on the
number of kernel points.

Analysis on Number of Kernels. For node classification, we record the performance of HKNs
using K = 2, 3, · · · , 9 kernel points while fixing the other hyper-parameters. The results are displayed
in Table 3 and plotted in Figures 4 and 5. In those figures, we only include the mean but not the
standard deviation for clarity. We notice that the best performance is achieved with a moderate K,
which accommodates the tradeoff between expressivity and overfitting. We conclude that the kernel
points in HKConv are effective in extracting hyperbolic features. We also notice that when learning
on hyperboloid, model performance is stable w.r.t different kernel size, while it is much more unstable
when learning on Poincaré. Additionally, CUDA memory can easily reach its limitation when the
kernel size is large. This can be a potential challenge when performing node classification on large
graphs.

However, it is worth to notice that the number of kernel points is not same as the meaning of kernel
size in traditional convolutions. For a traditional convolution, the receptive field is determined by
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Table 2: Model size effect.

Dataset Embedding Dim Num Layers Num KPs Params F1 (%)

Actor 16 4 4 18501 59.41 ± 0.85
Actor 32 4 4 49659 65.92 ± 1.11
Actor 48 4 4 73893 66.52 ± 1.15

Actor 32 2 4 34413 65.03 ± 2.30
Actor 32 3 4 38769 65.87 ± 1.24
Actor 32 4 4 49659 65.92 ± 1.11

Squirrel 8 3 4 17425 71.39 ± 1.05
Squirrel 16 3 4 35857 72.25 ± 0.20
Squirrel 24 3 4 55313 71.71 ± 1.63

Squirrel 16 2 4 34701 68.53 ± 1.17
Squirrel 16 3 4 35857 72.25 ± 0.20
Squirrel 16 4 4 37013 74.55 ± 0.33

the size of the kernel, but for graph related tasks, the receptive field is determined by the number of
times (layers) the message propagates. The kernel in hkconv is only used for feature transformation
(discussed in Appendix 4.4), thus, its receptive field is not related to the number of kernel points, but
determined by the number of hkconv layers.

Table 3: Node classification results with different numbers of kernel points. The mean F1 score (%)
and standard deviation are reported. (OOM indicates out of memory)

SKN Cornell Texas Wisconsin Chameleon Squirrel Actor

2 84.85±4.73 92.42±4.73 90.12±4.66 80.77±0.63 70.94±2.21 65.83±1.69
3 86.36±3.94 90.91±6.01 89.51±4.66 82.54±1.30 72.33±0.95 65.53±1.60
4 86.36±3.94 89.39±8.60 92.59±1.85 82.17±1.39 72.25±0.20 65.92±1.11
5 86.36±3.94 93.94±6.56 90.12±7.01 82.42±1.28 72.73±1.36 66.28±0.63
6 86.36±3.94 87.88±10.25 92.59±5.56 81.69±0.63 73.05±1.80 66.42±1.42
7 87.12±2.62 88.64±8.19 91.98±6.50 82.30±0.94 72.86±1.00 65.76±1.92
8 87.12±2.62 92.42±3.47 88.27±5.66 82.60±1.14 73.00±0.79 OOM
9 86.36±3.94 90.91±6.01 92.59±5.56 82.42±0.37 OOM OOM

BKN Cornell Texas Wisconsin Chameleon Squirrel Actor

2 78.03±3.47 75.00±2.27 81.48±3.21 65.93±1.60 63.25±1.50 65.46±2.54
3 76.52±4.73 76.52±4.73 74.07±9.62 66.97±1.22 62.82±0.87 58.71±8.66
4 78.03±4.73 75.00±2.27 82.10±2.83 68.25±3.32 OOM OOM
5 77.27±3.94 74.24±5.72 74.07±11.11 62.76±10.28 OOM OOM
6 78.03±3.47 76.52±4.73 77.78±12.83 67.09±3.91 OOM OOM
7 76.52±4.73 77.27±3.94 69.75±5.95 60.38±10.11 OOM OOM
8 77.27±3.94 77.27±3.94 72.22±1.85 59.34±11.28 OOM OOM
9 77.27±3.94 75.76±5.25 80.25±2.83 59.89±10.34 OOM OOM
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Figure 4: Node classification results for SKN.
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Figure 5: Node classification results for BKN.

Embedding Visualizations. Figure 6 and Figure 7 show the embedding of GCN, HGCN (one
representative graph convolution, and one representative hyperbolic convolution) and SKN (ours) on
three representative node classification dataset: Chameleon and Squirrel [37]; Actor [38].
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Figure 6: Embeddings (t-SNE).
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Figure 7: Embeddings (UMAP).
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Table 4: Graph classification results with different numbers of kernel points. Mean accuracy (%) and
standard deviation are reported.

PTC ENZYMES PROTEIN IMDB-B IMDB-M

Data Statistics

# of graphs 344 600 1113 1000 1500
# of classes 2 6 2 2 3

Avg # of nodes 25.56 32.63 39.06 19.77 13
Avg # of edges 25.96 62.14 72.82 96.53 65.94

Hyperbolicity (δ) 0.725 1.15 1.095 0.2385 0.1157

Euclidean GNN
GCN [27] 63.87±2.65 66.39±6.91 74.54±0.45 73.32±0.39 50.27±0.38
GIN [34] 66.58±6.78 59.79±4.31 70.67±1.08 72.78±0.86 47.91±1.03
GMT [53] 65.89±2.16 67.52±4.28 75.09±0.59 73.48±0.76 50.66±0.82

Hyperbolic

HGCN [6] 55.17±3.21 53.63±5.12 68.41±2.15 61.71±0.97 50.12±0.71
H2H-GCN [15] 66.14±3.91 60.84±4.72 72.12±3.63 68.19±0.82 48.31±0.63

HyboNet [8] 65.56±4.19 56.82±5.39 65.36±2.81 71.26±1.28 54.35±0.98
WLHN [46] - 62.5±5.0 75.9±1.9 73.4±3.7 49.7±3.6

Ours(HKNs) SKN 73.69±4.81 82.46±5.62 83.22±5.19 79.92±1.31 56.53±1.02
BKN 63.33±8.82 53.67±6.66 58.52±0.64 61.33±1.53 49.83±3.69

Ablations
SKN-direct 66.42±3.13 58.31±4.81 64.78±3.51 67.65±0.89 46.31±0.61

SKN-random 61.24±8.32 67.41±8.62 68.85±7.81 68.97±4.38 52.14±3.83
SKN-train NaN NaN NaN NaN NaN

For Figure 6, we project hyperbolic embedding to ToHn and use t-SEN [47] with Euclidean metric
for dimensionality reduction. For Figure 7, we directly use hyperbolic distance metric and apply
UMAP [48] for dimensionality reduction.

E Graph Classification
In graph classification, one assigns class labels to full graphs. Unlike node classification, a global
pooling is taken after node embeddings.

Settings. We use the following graph datasets to evaluate our model: chemical graphs including
PTC [49], ENZYMES [50], PROTEIN [51]; social graphs including IMDB-B and IMDB-M [52]. In
particular, these datasets all have small hyperbolicity (the average δ over all graphs in each dataset
is reported in Table 4). The task is supervised and each dataset is partitioned into a training set, a
validation set and a test set.

To build the HKNs, we use the validation sets to determine the number of kernel points K from
{2, 3, 4, 5, 6, 7, 8, 9}. To avoid overfitting, dropout is applied to the input of each layer. In all experi-
ments, we use the Riemannian Adam [32] as the optimizer. We consider the standard hyperboloid
with curvature κ = −1 as our underlying hyperbolic space.

For this task, the HKN architecture contains an embedding layer where graph node features are
represented in the hyperbolic space; a cascading of HKConv layers where the number of layers is
validated from {2, 3, 4, 5, 6, 7}; a global pooling by taking the mean for all graph node features;
an output layer via (16) for SKN and (15) for BKN, whose output represents the likelihood of the
classes.

Baselines. We compare HKNs with graph neural networks including GCN [27], GIN [34], GMT
[53], and recent hyperbolic neural networks including HGCN [6], H2H-GCN [15], HyboNet [8],
WLHN [46]. For large-scale graph datasets, we compare SKN with the above methods for which
relevant results have been reported. We report the mean and the standard deviation from three
independent implementations. The results are reported in Table 4 and 5 respectively.

Results. SKN consistently achieves the best performance in all the datasets. Moreover, its advantage
over the second best is highly significant (approximately 8% in PTC, 15% in ENZYMES, 8% in
PROTEIN, 6% in IBDB-B and 2% in IBDB-M). Although BKN does not provide such impressive
performance, it is still competent with other hyperbolic models on certain tasks. We note that the
hyperbolic neural network baselines do not show a clear advantage over graph neural networks. This
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Table 5: Graph classification results for ogbg-molhiv and ogbg-molpcba datasets. Mean accuracy
(%) and standard deviation are reported under the standard metrics used in [54]

ogbg-molhiv ogbg-molpcba
ROC-AUC Avg. Precision

GCN [27] 76.06±0.97 20.20±0.24
GIN [34] 75.58±1.40 22.66±0.28
HGCN [6] 75.91±1.48 17.52±0.20
HyboNet [8] 76.83±0.52 20.17±0.31
WLHN [46] 78.41±0.31 22.90±0.25

SKN 79.75±0.47 27.87±0.32

indicates that these baselines do not extract effective geometric information other than the graph
structure. We believe the considerable improvement reflects that SKN has the capacity in extracting
useful patterns from local geometric embedding of features in full graphs.

Ablations. We further analyze the effect of the important components in HKConv, namely, the way
we perform translation in (8) and the fixed hyperbolic kernel points that minimize (5). We consider
the following three ablations (specifically, we use SKN for ablation since it has previously yielded
the best results):

• SKN-direct: we apply hyperbolic linear layers directly to each xi in (8) instead of xi⊖x, and use
dL(xi,PTo→x(x̃k)) to translate the kernels to the neighborhood of x instead of dL(xi ⊖ x, x̃k)
in (9).

• SKN-random: we randomly sample the kernel points {x̃k}Kk=1, independently from a wrapped
normal distribution [2] with unit standard deviation, instead of solving (5).

• SKN-train: we regard the positions of the kernel points as trainable parameters, which are
optimized together with other network parameters.

We apply these alternatives to the same graph classification tasks and present the results in the same
Table 4. Indeed, the performance deteriorates significantly if we perform translation by moving the
kernels to the neighborhood of input features. We believe that SKN-direct fails to capture critical
geometric information due to the varying distortion of the kernel across different locations. Similarly,
generating the kernel points randomly results in low accuracy. This result validates the formulation
of the loss function in (5). Moreover, if we consider the locations of the kernel points as learnable
parameters, the training process will be numerically unstable and produce NaN for all datasets. The
ablation studies have validated the necessity and competitiveness of the key components of HKConv.
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Figure 8: Graph classification results with differ-
ent numbers of kernel points for SKN.
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Figure 9: Graph classification results with differ-
ent numbers of kernel points for BKN.

Analysis on Number of Kernels. For graph classification, we also study how the performance
of HKNs changes with different numbers of kernels. We record the performance using SKN and
BKN with K = {2, 3, 4, 5, 6, 7, 8, 9} kernel points. To focus on the number of kernels, the other
hyper-parameters are fixed according to the main task. The results are reported in Table 6 and plotted
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Table 6: Graph classification results with different numbers of kernel points. The mean accuracy (%)
and standard deviation are reported.

SKN PTC ENZYMES PROTEIN IMDB-B IMDB-M

2 66.73±4.21 56.05±5.22 63.60±4.00 66.83±1.29 53.36±0.95
3 60.12±4.24 59.78±5.60 66.83±3.82 70.02±1.53 54.48±0.97
4 60.50±4.63 82.46±5.62 83.22±5.19 79.92±1.31 55.51±0.99
5 60.58±4.22 80.92±5.21 80.12±3.82 76.67±1.40 53.77±0.84
6 73.69±4.81 76.25±5.27 74.15±4.10 69.37±1.40 55.13±1.53
7 62.74±4.34 80.12±5.65 68.61±3.89 77.46±1.55 56.53±1.02
8 62.86±4.30 80.42±5.81 66.50±4.55 65.15±1.13 51.87±1.17
9 67.28±4.35 82.27±5.31 66.44±3.89 79.13±1.22 54.33±0.93

BKN PTC ENZYMES PROTEIN IMDB-B IMDB-M

2 58.89±5.09 53.33±4.51 56.67±2.94 56.67±6.66 48.83±3.51
3 63.33±8.82 51.67±5.03 50.74±10.68 53.67±11.85 46.33±2.93
4 54.44±1.92 53.33±2.08 58.52±0.64 61.33±1.53 49.83±3.68
5 54.44±6.93 50.33±7.09 47.04±7.40 53.67±6.35 47.17±4.01
6 54.44±11.71 53.00±6.92 42.59±1.70 57.00±6.08 46.83±2.02
7 50.00±3.33 56.50±2.12 55.19±10.26 57.00±6.08 47.33±3.82
8 50.00±12.01 54.00±11.31 47.78±8.01 55.33±8.96 45.67±3.33
9 53.33±12.01 57.50±0.71 55.93±5.59 60.00±1.00 36.67±6.25

in Figure 8 and Figure 9. The results reveal that indeed, a moderate number of kernel points leads to
the best performance. In particular, for SKN, we observe that when the number of kernels is K =
2, the performance is on par with the baseline methods. This suggests that utilizing only a limited
number of kernels is insufficient to fully capture the hyperbolic pattern. Conversely, further increasing
the number of kernel points does not lead to continuous performance improvement. With a large
number of kernel points, the neural network becomes complex and may overfit the data. The results
for BKN are also consistent with what we found in SKN, although the overall performance on all
datasets is worse than SKN.

F Link Prediction
We further conducted experiments for link prediction (LP), where one predicts missing edges within
a graph. We also provide some more node classification (NC) results since these tasks are mutually
related. Due to its superior performance compared to other models within the HKN framework,
experiments are conducted exclusively using SKN.

Settings. Following many previous works in hyperbolic neural networks, we take three datasets
preprocessed by Chami et al. [6]: Disease, Airport, and PubMed [55]. The first two datasets are
created by Chami et al. [6], whereas the last dataset is well known citation networks.

Baselines. We compare SKN with the benchmark results compiled in Chen et al. [8]: GCN [27],
GAT [39], SAGE [40], SGC [56], HGCN [6], LGCN [16], HyboNet [8], H2H-GCN [15] and NHGCN
[21].

Results. We test SKN and HyboNet on our machine and show the other results using numbers in
respective papers. The results are reported in Table 7.

Our model performs the best in Airport, on both LP and NC tasks. It better supports that SKN can
make good use of local geometry, especially noting that the hyperbolicity of Airport (1) is closest
to the hyperboloid (0.88). In the remaining datasets, SKN is still comparable with other hyperbolic
methods.

G Non-Graph Task
In addition to the previously introduced graph-based tasks, we also consider a non-graph task
involving language data that exhibits hierarchical structures. Machine translation translates one
language to another and is a sequence-to-sequence modeling task. Dependency tree probing then
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Table 7: Link prediction (LP) and node classification (NC) results. Mean and standard deviation are
reported: area under the ROC curve (%) for LP and F1 score (%) for NC.

Disease Airport PubMed

# of nodes 1,044 3,188 19,717
# of edges 1,043 18,631 44,327

Hyperbolicity δ 0 1 3.5

LP NC LP NC LP NC

GCN 64.7±0.5 69.7±0.4 89.3±0.4 81.4±0.6 91.1±0.5 78.1±0.2
GAT 69.8±0.3 70.4±0.4 90.5±0.3 81.5±0.3 91.2±0.1 79.0±0.3

SAGE 65.9±0.3 69.1±0.6 90.4±0.5 82.1±0.5 86.2±1.0 77.4±2.2
SGC 65.1±0.2 69.5±0.2 89.8±0.3 80.6±0.1 94.1±0.0 78.9±0.0

HGCN 90.8±0.3 74.5±0.9 96.4±0.1 90.6±0.2 96.3±0.0 80.3±0.3
LGCN 96.6±0.6 84.4±0.8 - - 96.6±0.1 78.6±0.7

H2H-GCN 97.0±0.3 88.6±1.7 96.4±0.1 89.3±0.5 96.9±0.0 79.9±0.5
NHGCN 92.8±0.2 91.7±0.7 97.2±0.3 92.4±0.7 96.9±0.1 80.5±0.0
HyboNet 96.5±0.4 90.4±0.9 95.2±0.4 90.4±0.5 94.3±0.2 78.6±0.2

SKN (Ours) 86.9±0.3 85.4±0.2 97.3±0.3 95.8±0.3 94.4±0.1 78.6±0.2

analyzes the obtained model. Similar as the link prediction experiments F, experiments are conducted
exclusively using SKN.

Settings. For a fair comparison, we adopt the network architecture of the hyperbolic transformer
model used by Chen et al. [8], with the modification that HKConv is applied for aggregation as
follows. Given the query set Q = {q1, . . . ,q|Q|}, the key set K = {k1, . . . ,k|K|}, and the value set
V = {v1, . . . ,v|V|}, where |K| = |V|, We implement HKConv for each i = 1, · · · , |V| as follows:

vijk = HLineark(vj ⊖ vi), k = 1, · · · ,K;

v′
ij = HCent({vijk}Kk=1, {dL(vj ⊖ vi, x̃k)}Kk=1);

µi = HCent({v′
ij}|V|

j=1, {wij}|V|
j=1)),

where for j = 1, · · · , |V|,

wij =
exp

(
−d2

L(qi,kj)√
n

)
∑|K|

k=1 exp
(

−d2
L(qi,kk)√

n

) .
Here, the first two equations are exactly (8) and (9), presented for clear notation. The last equation is
(11) where the weights are determined by the query set and the key set. Overall, HKConv performs a
further transformation of vi that utilizes the local geometric embedding.

Following Chen et al. [8], we take two machine translation datasets: IWSLT’14 and WMT’143

English-German. Dependency tree probing is tested on the former.

Baselines. We compare with ConvSeq2Seq [57], Transformer [58], DynamicConv [59], BiBERT
[60]; as well as hyperbolic methods including HNN++ [7], HATT [22] and HyboNet [8]. Notably,
HNN++ employs its hyperbolic convolution, which, although unsuitable for graph classification
tasks due to the heterogeneous graph structures, is well-suited for this task. We report the results in
Table 8, where we compare our method with DynamicConv and BiBERT. The benchmark results
for ConvSeq2Seq, Transformer, HNN++, HATT and HyboNet are taken from Shimizu et al. [7] and
Chen et al. [8].

Results. SKN consistently outperforms all baseline methods across both tasks and metrics. Notably,
since we intentionally maintain the same attention mechanism as HyboNet but replace the aggregation
with HKConv, the improved performance is not attributed to attention. We believe the encouraging
results are due to the better expressivity of HKConv as well as the capability of learning local
information to countervail the global attention in the transformer.

3We have corrected the typo of the year number in the reference.
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Table 8: Machine translation and dependency tree probing results. The BLEU (BiLingual Evaluation
Understudy) scores on the test set are reported for machine translation. UUAS, Dspr., Root%, Nspr.
are reported for dependency tree probing.

Machine Translation Dependency Tree Probing

IWSLT’ 14 WMT’ 14 Distance Depth

d=64 d=64 d=128 d=256 UUAS Dspr. Root% Nspr.

ConvSeq2Seq [57] 23.6 14.9 20.0 21.8 - - - -
Transformer [58] 23.0 17.0 21.7 25.1 0.36 0.3 12 0.88

DynamicConv [59] 24.1 15.2 20.4 22.1 - - - -
BiBERT [60] 23.8 18.7 22.5 27.8 - - - -

HNN++ [7] 22.0 17.0 19.4 21.8 - - - -
HATT [22] 23.7 18.8 22.5 25.5 0.5 0.64 49 0.88

HyboNet [8] 25.9 19.7 23.3 26.2 0.59 0.7 64 0.92
SKN (Ours) 27.3 20.1 25.6 29.1 0.62 0.74 72 0.94
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