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Abstract

Transformer models can face practical limitations due to their high computational
requirements. At the same time, such models exhibit significant activation sparsity,
which can be leveraged to reduce the inference cost by converting parts of the
network into equivalent Mixture-of-Experts (MoE) layers. Despite the crucial role
played by activation sparsity, its impact on this process remains unexplored. We
demonstrate that the efficiency of the conversion can be significantly enhanced
by a proper regularization of the activation sparsity of the base model. Moreover,
motivated by the high variance of the number of activated neurons for different
inputs, we introduce a more effective dynamic-k expert selection rule that adjusts
the number of executed experts on a per-token basis. To achieve further savings,
we extend this approach to multi-head attention projections. Finally, we develop an
efficient implementation that translates these computational savings into actual wall-
clock speedup. The proposed method, Dense to Dynamic-k Mixture-of-Experts
(D2DMoE), outperforms existing approaches on common NLP and vision tasks,
reducing inference cost by up to 60% without significantly impacting performance.

1 Introduction

Transformers have become a predominant model architecture in various domains of deep learning
such as machine translation [47], language modeling [6, 31], and computer vision [7, 21]. The
widespread effectiveness of Transformer models in various applications is closely related to their
ability to scale efficiently with the number of model parameters [20], prompting researchers to train
progressively larger and larger models [45, 19]. However, the considerable computational demands
of these models often restrict their deployment in practical settings with limited resources.

At the same time, Transformer models exhibit considerable activation sparsity in their intermediate
representations [24], which suggests that most of their computations are redundant. Conditional
computation methods can reduce these unnecessary costs by using only a subset of the model
parameters for any given input [14]. In particular, Mixture-of-Experts (MoE) layers [38], consisting
of multiple experts that are sparsely executed for any input token, are an effective way to decouple
the number of parameters of the model from its computational cost [3]. As shown by [52], many
pre-trained dense Transformer models can be made more efficient by converting their FFN blocks
into MoE layers, a process they call MoEfication.
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Figure 1: Key components of D2DMoE: (a) We enhance the activation sparsity in the base model.
(b) We convert FFN layers in the model to MoE layers with routers that predict the contribution of
each expert. (c) We introduce dynamic-k routing that selects the experts for execution based on their
predicted contribution.

Contributions of this paper: We consider the following research question: what is the optimal
way to convert a generic Transformer model into an equivalent sparse variant? We identify a series
of weaknesses of the MoEfication process limiting the resulting accuracy-sparsity tradeoff, and
propose corresponding mitigations as follows. We call the resulting algorithm Dense to Dynamic-k
Mixture-of-Experts (D2DMoE) and outline it in Figure 1.

1. First, we analyze the relationship between the activation sparsity of the starting model and
the efficiency of the final MoE model. We show that computational savings are directly
related to sparsity levels, and we correspondingly enforce higher activation sparsity levels
before conversion through a lightweight fine-tuning process, which leads to a substantially
improved cost-to-performance trade-off.

2. We identify the router training scheme in the original MoEfication algorithm as a limitation
of the conversion process. We propose to frame the router training as a regression problem
instead, hence our routers directly predict the norm of the output of each expert.

3. We show that Transformer models exhibit significant variance of the number of activated
neurons, and standard top-k expert selection in the MoE layers is inefficient. We propose an
alternative dynamic-k expert selection scheme that adjusts the number of activated experts
on a per-token basis. This approach enables the model to efficiently allocate compute
between easy and hard inputs, increasing the overall efficiency.

4. We generalize the conversion method to any standalone linear layer including gated MLP
variants commonly found in modern LLMs [45, 42] and projections in Multi-Head Atten-
tion (MHA) layers (which often account for over 30% of total computations in Transformer
models [39]).
For MHA, we propose a replacement procedure in which every dense layer is substituted by
a two-layer MLP module trained to imitate the output of the original layer.

We evaluate D2DMoE across benchmarks in text classification, image classification, and language
modeling, demonstrating significant improvements in cost-performance trade-offs in all cases.
D2DMoE is particularly well-suited for contemporary hardware, as evidenced by our efficient
GPU implementation, which we contribute alongside our proposed method.

2 Motivation

MoE models have gained a lot of traction over the last years as an effective architecture to decouple
the parameter count from the computational cost of the models [56]. In a MoE layer, hard sparsity is
usually enforced explicitly by applying a top-k operation on the outputs of a trainable gating layer.
However, many recent works [53, 2, 30] have shown that most Transformers, when trained at scale,
build intrinsically sparse and modular representations. Zhang et al. [52] proposed to leverage this
naturally emerging modularity with MoEfication - a method that converts dense transformer models
into MoE models by grouping FFN weights into experts and subsequently learning small routers
that determine which experts to activate. Models converted with MoEfication are able to preserve
the performance of the original dense models while using only a fraction of their computational
cost. However, we believe that the MoEfication procedure is not optimal, and therefore aim to obtain
dense-to-sparse conversion schemes that obtain a better cost-performance trade-off.
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(a) Impact of sparsity on MoE conversion
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(b) Non-zero activations distribution (c) Top-k vs dynamic-k gating

Figure 2: (a) Cost-accuracy tradeoff for a MoEfied [27] GPT-2 model obtained starting from models
with different levels of activation sparsity. Sparsification correlates with the model performance.
(b) Distribution of non-zero activations in the FFN layers in GPT-2-base on OpenWebText, with and
without the sparsity enforcement phase. Both models exhibit significant variance, and the mean-to-
variance ratio increases in the sparsified model. (c) We propose to exploit the variation in activations
through a dynamic-k routing procedure that adapts the number of experts allocated to a sample.

Intuitively, a MoE converted from a sparser base model would be able to perform the original function
using a smaller number of experts. To validate this hypothesis, we perform MoEfication on different
variants of GPT2-base4 with varying activation sparsity levels and show the results in Figure 2a. As
expected, MoEfication performs better with sparser models. We further investigate the per-token
mean and the variance of non-zero neurons in the base and sparsified model, and show the results in
Figure 2b. Observe that different layers use a different number of neurons on average. Moreover,
the variance of the number of activated neurons is quite high and becomes even more significant
in the sparsified model. This means that static top-k gating as used in MoEfication is not optimal
for dense-to-MoE converted models, and a more flexible expert assignment rule that would be able
to handle the high per-token and per-layer variance could be beneficial to the efficiency of such
models, as illustrated at Figure 2c. Such dynamic-k gating requires routers that reliably predict the
contribution of each expert. We observe that routers obtained through MoEfication do not accurately
reflect this contribution. Moreover, their router training procedure depends on the strict sparsity
of the model guaranteed by the ReLU activation function. Therefore, we design a novel router
training scheme that directly predicts the contribution of each expert and generalizes to the broader
family of activation functions. We combine the proposed components (sparsity enforcement, expert
contribution routing, and dynamic-k gating) into a single method that we call Dense to Dynamic-k
Mixture-of-Experts (D2DMoE), which we describe in detail in the next Section.

3 Method

D2DMoE reduces the computational cost of the model by splitting every MLP module into a MoE
layer. In this section, we describe all of its components in detail. A high-level overview of the entire
procedure is presented in Figure 1. The conversion process can be optionally preceded by MHA
projection layer replacement (Sec. 3.5), which allows us to apply the same transformation pipeline
on all replacement modules.

3.1 Enforcing activation sparsity

We expect that enforcing higher levels of activation sparsity may allow for the execution of an
even smaller number of experts, resulting in overall computational savings. To this end, we induce
activation sparsity by fine-tuning the model with an additional loss term that induces activation
sparsity [11]. We apply the square Hoyer regularization [22, 17] on the activations of the model:

Ls(x) =
1

L

L∑
l=1

(
∑

i |ali|)2∑
i a

l
i
2 , (1)

4We provide the experimental details for this analysis in Section 4.3 and Appendix J.
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where al is the activation vector from the middle layer of the l-th MLP for input x, and L is the total
number of MLPs in the model. Overall, the model is trained with the following cost function:

L(x) = LCE(ŷ, y) + αLs(x) (2)

where LCE is cross-entropy loss, and α is the hyperparameter that controls the strength of sparsity
enforcement. We find that the pre-trained models recover the original performance with only a
fraction of the original training budget (eg. 1B tokens for GPT2-base or Gemma-2B, which is less
than 1% of the tokens used for pretraining).

3.2 Expert clustering

We split the two-layer MLP modules into experts using the parameter clustering method proposed by
Zhang et al. [52]. Assuming the MLP layers are composed of weights W1, W2 and corresponding
biases b1, b2, we treat the weights of each neuron from W1 as features and feed them into the
balanced k-means algorithm [26] that groups neurons with similar weights together. Then, we use
the resulting cluster indices to split the first linear layer W1, the first bias vector b1, and the second
linear layer W2 into n experts of the same size. The second bias b2 is not affected by this procedure.

MoEfication process was designed for standard two-layered MLPs [52]. Recent LLMs [45, 42] have
shifted towards gated FFNs, where the activation is realized through a Gated Linear Unit (GLU) [37],
which contains an additional weight matrix for the gate projections. To adapt the expert clustering
procedure described above to gated FFN layers, we cluster the weights of the gating matrix Wg

instead of W1, and use the obtained indices to divide the weights of the two other layers. We provide
more intuition and details on our method for gated FFNs in Appendix G.

3.3 Expert contribution routing

In a standard MoE-based model, the gating networks are trained in an end-to-end manner. Contrary
to this, we train each gating network independently. We propose to frame the problem of training
the router as a regression task and directly predict the ℓ2-norm of the output of each expert with the
router. Formally, given an input token z, we train D2DMoE router R to minimize the following loss:

Lr(z) =
1

n

n∑
i

(R(z)i − ∥Ei(z)∥)2 (3)

where Ei is the i-th expert. We use a small two-layer neural network as the router R and apply an
absolute value activation function to ensure non-negative output. This regression-based formulation is
still compatible with the commonly used top-k expert selection, but enables more precise attribution
of the contribution of each expert, as we show later in the experimental section.

Note that Zhang et al. [52] also trains each routing network independently, but their method constructs
artificial labels for each input, and then subsequently trains the router as a classifier. We discuss the
differences in detail in Appendix A.

3.4 Dynamic-k gating

Commonly used MoE layers always execute top-k experts for each token, where k is a predefined
hyperparameter. This means that, regardless of the difficulty of the input, the model spends the same
amount of compute on each batch [54] or token [38]. While this may be appropriate if the model is
trained with the same restriction, it is suboptimal for a model that was converted from a dense model,
as we show in Section 2.

Since our router directly predicts the ℓ2-norm of the output of each expert, we propose a dynamic-k
expert selection method that skips experts for whom the router predicts relatively small output norms.
Given a router output vector R(z), we select a hyperparameter τ ∈ [0, 1] and define the expert
selection rule G for the i-th element as:

G(z)i =

{
1 if R(z)i ≥ τ ·maxR(z)

0 if R(z)i < τ ·maxR(z)
(4)

Note that as τ increases, the number of executed experts and the overall computational cost decrease.
We emphasize that after model deployment τ can be adjusted without retraining.
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(a) ViT-B on ImageNet-1k
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(b) BERT-base on CARER
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Figure 4: FLOPs-performance tradeoff comparison of our method and MoEfication [52] on CV and
NLP benchmarks. We also include early-exit (ZTW, [49]) and token dropping baselines (A-ViT, [51])
for classification. Our method outperforms these baselines across multiple computational budgets.

3.5 Conversion of standalone dense layers

A significant amount of computing in deep neural networks is often spent on dense layers that are
not followed by any activation function. Dense-to-sparse-MoE conversion methods cannot reduce
the costs of such layers due to a lack of activation sparsity. This determines an upper bound on
the possible computational savings. To overcome it, we substitute dense layers with small MLPs
with approximately the same computational cost and number of parameters. Each MLP is trained to
imitate the output of the original dense layer given the same input by minimizing the mean squared
error between the two (akin to a distillation loss).

Figure 3: Multi-Head Attention projec-
tion conversion scheme.

In our case, for Transformer architectures, we substitute
projection matrices along with their biases in every MHA
layer, as depicted in Figure 3. This means that the final
model has four MoE layers in the MHA layer and one
MoE layer in the FFN layer (either plain or gated) for
each Transformer block. Note that we do not modify the
computation of the scaled dot-product attention itself and
this scheme can be applied to any standalone dense layer.

4 Experiments

To analyze the impact of our method, we evaluate its performance on language modeling, text
classification, and image classification. We obtain performance versus computational cost character-
istics for each method by evaluating the methods with different inference hyperparameters (either τ
described in Section 3.4 for D2DMoE or number of experts k for MoEfication; we mark them on
the plots with dot markers). We report the computational cost of each method in FLOPs, as it is a
device-independent metric that has been shown to correlate well with latency [27]. In addition, we
measure the wall-clock execution time of an efficient implementation of our method.

For MoEfication, we follow the procedure described by Zhang et al. [52] by converting the activation
functions of the pre-trained model to ReLU and then fine-tuning the model. In the case of D2DMoE,
we also replace activation functions with ReLU, except for Section 5.4, where we demonstrate that our
method performs well also with GELU. To provide a fair comparison, the total training data budget is
always the same between different methods. See Appendix J for a detailed description of our setup.
The source code for our experiments is available at: https://github.com/bartwojcik/D2DMoE.

4.1 Image classification

Vision Transfomer [7] is one of the most popular architectures in computer vision. Since our method
applies to any Transformer model, we evaluate it on the popular ImageNet-1k [35] dataset. We use a
pre-trained ViT-B checkpoint as the base model and compare D2DMoE with MoEfication in terms
of the computational cost versus accuracy trade-off. For broader comparison, we also evaluate the
state-of-the-art early-exit method Zero-time Waste (ZTW) [49], as well as our re-implementation
of A-ViT, an efficient token dropping method proposed by Yin et al. [51]. Our results, presented in
Figure 4a, demonstrate the significant gains from applying our method over MoEfication.

5

https://github.com/bartwojcik/D2DMoE


Table 1: Relative downstream performance of D2DMoE and MoEfication on BoolQ dataset. Our
method only starts to degrade at around 70% compute budget, while MoEfication gradually decreases.
Compute budget 100% 90% 80% 70% 60% 50% 25% 10%

MoEfication 100% 92.24% 92.19% 92.15% 88.79% 75.40% 86.70% 77.53%
D2DMoE 100% 99.68% 99.37% 98.69% 97.60% 94.34% 92.75% 90.89%

4.2 Text classification

We evaluate our method with BERT-base [6] on the CARER dataset [36] that contains text samples
categorized into 6 different emotion categories. We compare the accuracy versus FLOPs trade-off for
D2DMoE, MoEfication, and ZTW. We show the results in Figure 4b. The performance of MoEfication
gradually deteriorates and completely collapses when the number of executed experts approaches
zero. In comparison, D2DMoE maintains the original performance for a wide range of computational
budgets, and the performance drop starts at a significantly lower budget. While early-exiting performs
well for the lowest budgets, it obtains worse results than D2DMoE at medium budgets and suffers
from a gradual performance decline.

4.3 Language modeling

We evaluate our method on language modeling and compare it with MoEfication using GPT-2-
base [31] and Gemma-2B [42]. We initialize GPT-2 models from a publicly available OpenAI
checkpoint pre-trained on a closed-source WebText dataset and use OpenWebText [12] in all of our
experiments. For Gemma-2B, we also start from the publicly available pretrained model and evaluate
its language capabilities on the C4 dataset [32] after finetuning. For both models, we use around 1B
tokens for the finetuning phase (less than 1% of the cost of original pretraining) and 8-16M tokens
for router training. We report the results in this section without the MHA projection replacement, as
this task is highly sensitive to changes in attention layers, leading to noticeable loss degradation. For
more training details, see Appendix J.3

We present test losses for D2DMoE and MoEfication at different compute budgets for GPT-2-base
and Gemma-2B in Figures 4c and 4d respectively. Our method outperforms the baseline at every
computational budget. The loss of D2DMoE plateaus for higher budget levels, while the baseline
displays consistently worse results whenever we lower the computational budget. Notably, for the
larger Gemma-2B model our method performs well for most compute budgets, while the performance
of MoEfication collapses. The failure of MoEfication can be explained by the emergence of massive
activations in large models [40], which makes it unable to learn reliable routing, as we analyze in
more detail in Appendix E.

We also provide a downstream evaluation of our Gemma models on the BoolQ dataset. We take
the base model, which achieves 68.40% zero-shot evaluation accuracy, and convert it to MoE with
D2DMoE and MoEfication. In Table 1, we report the relative accuracy of the models at different
compute budgets. Our method largely retains the performance across multiple compute budgets, while
the performance of MoEfication decreases significantly. This shows that the loss-vs-FLOPs results
for D2DMoE and MoEfication directly translate to downstream performance on language tasks.

4.4 Execution latency
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Figure 5: Single D2DMoE layer
execution wall-clock time.

For any model acceleration method to be practically useful, it
must reduce end-to-end inference execution time on modern GPU
hardware. To achieve this, we implement the forward pass of
our MoE-layer in the Triton intermediate language [43], and em-
ploy several optimizations for our implementation, including an
efficient memory access pattern, kernel fusion, and configuration
auto-tuning. As suggested by Tan et al. [41], our implementation
also avoids unnecessary copies when grouping tokens.

We verify the performance of our implementation for a single
D2DMoE layer (24 experts with expert dimensionality 128) layer
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in isolation by comparing it with the corresponding MLP module (inner dimensionality 3072) on
an NVIDIA A100 GPU. We fill a tensor of size [256 × 197 × 768] (batch size, sequence length,
and hidden dimension, respectively) filled with Gaussian noise and use it as input to both modules.
The gating network of D2DMoE is included in measurements, but the decisions are overridden with
samples from a Bernoulli distribution, and we control how many experts are executed on average by
changing the Bernoulli probability. The results, presented in Figure 5, show that our implementation
scales linearly with the number of executed experts, and has negligible overhead. Our method
can be almost three times as fast as standard MLP while preserving 99% of the original accuracy.
In Appendix C we provide additional wall-clock measurement results along with a more detailed
description of our implementation.

4.5 Compatibility with model compression techniques
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Figure 6: D2DMoE applied to
models pruned with CoFi.
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Figure 7: D2DMoE applied to
quantized models.

To accelerate inference D2DMoE leverages input-dependent ac-
tivation sparsity, a property inherent to almost every Transformer
model. However, interaction between D2DMoE and other popular
network acceleration techniques, such as pruning [16] or quanti-
zation [13, 28], is unclear. We evaluate D2DMoE in combination
with such techniques to demonstrate their complementarity.

First, we evaluate D2DMoE applied on top of networks pruned
with CoFi, a structured pruning technique introduced by Xia et al.
[50]. CoFi removes redundant neurons, attention heads, and sub-
layers to achieve the desired sparsity ratio, and then subsequently
fine-tunes the reduced network. We first prune the base model
with CoFi to the desired sparsity level, apply D2DMoE to it, and
then evaluate both models on QNLI [48]. In Figure 6, we show
that D2DMoE successfully accelerates inference even on networks
pruned to high sparsity levels.

In Figure 7, we also investigate the applicability of D2DMoE to
quantized models using dynamic post-training quantization from
PyTorch5 on BERT trained on the CARER dataset. Our method
is robust to 8- and 16-bit quantization and exhibits only slight
variations in performance after quantization. As FLOPs do not
take bit width into account, we show quantized models in the
same FLOPs range as the original model. In Appendix C, we also
present wall-clock time measurements for quantized D2DMoE.

5 Analysis

In this section, we present in detail additional experiments that provide insights into the performance
of our method. Additionally, in Appendix E we analyze the performance of MoEfication with Gemma,
in Appendix F we provide the results of router architecture analysis, in Appendix H we conduct
experiments corresponding to the ones in Section 5.5 with GELU function, and in Appendix I we
show additional visualizations for expert activation patterns.

5.1 Expert selection patterns

The dynamic-k rule introduces variability in the allocation of the computational budget along the
model depth. To explore its scale, we investigate the distribution of the number of executed experts,
with and without the activation sparsification phase. In Figure 8a, we show the histograms of the
number of activated experts for each FFN layer of the BERT-base model trained on the CARER
dataset (additional results are available in the appendix in Appendix I). As expected, the model with
enforced activation sparsity requires fewer experts for a given threshold. Both base and sparsified
models exhibit significant variance in the number of activated neurons across different layers, which
justifies the dynamic-k selection and indicates that computational adaptability mechanisms are crucial
for efficient inference in Transformer-based models.

5https://pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html
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(a) Compute along the model depth (b) Computational load maps for ImageNet-1k sample images

Figure 8: D2DMoE allows for a dynamical allocation of computation for each layer and each input
independently. a) Per-layer distribution of the number of executed experts on CARER dataset in
D2DMoE with τ = 0.01 for a standard model (top) and a sparsified model (bottom). Sparsification
leads to a significantly lower number of selected experts. b) Computational load maps of selected
ImageNet-1k samples for our converted ViT-B model with τ = 0.0025. D2DMoE allocates its
computational budget to semantically important regions of the input.

D2DMoE also allows the model to allocate different computational resources to various layers. We
expect the model to allocate more compute to tokens containing information relevant to the current
task. Since each token position in a ViT model corresponds to a separate and non-overlapping part of
the input image, we can easily plot a heatmap to indicate the regions of the image where the model
spends its computational budget. In Figure 8b we present such an analysis for our converted ViT-B
model. As expected, the dynamic-k routing enables the model to minimize the computational effort
spent on regions that contain insignificant information.

5.2 Ablation study

Since our method consists of several steps, the positive impact of each one of them may not be
evident. To show the significance of every component, we perform an ablation study by incrementally
adding each component to the baseline method. We take a BERT-base model and evaluate the ablated
variants in the same setting as described in Section 4.2. The results of this experiment are presented
in Figure 9a. As expected, each ablated version of the method improves upon the previous one.
The sparsity enforcement phase leads to enhanced performance compared to plain MoEfication.
Alternative router training objective and dynamic-k expert assignment further improve the results,
but – as the method only operates on the FFN layer – the computational cost cannot go below the
cost of the remaining part of the model. Extending D2DMoE to MHA projection layers allows our
method to reduce the computational cost further, and the resulting full method retains the accuracy of
the original model at around twice fewer FLOPs than MoEfication.

5.3 Base model activation sparsity

To justify our proposed activation sparsity phase, we investigate the impact of the activation sparsity
of the base dense model on the performance MoE obtained with our method. We conduct a study
similar to the one presented in Figure 2a: we train multiple base models with different activation
sparsity enforcement loss weights α and convert them to Mixture-of-Experts models with our method.

The results, shown in Figure 9b, highlight the positive correlation between the activation sparsity
and the performance of the converted MoE, as higher sparsity in the base model always translates to
better performance for D2DMoE. This is consistent with results previously observed for MoEfication.
However, our method achieves better results for every base model in all cases, proving that regression
routing and dynamic-k selection better utilize the induced sparsity.

5.4 Sparsification and reliance on the activation function

Activation sparsity works focus their analysis on networks with ReLU activation, as other functions
(such as GELU or SiLU) do not guarantee exact sparsity. When analyzing non-ReLU models, such
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Figure 9: Analysis experiments with D2DMoE. (a) Impact of different phases of our method. Each
phase improves upon the baseline. (b) Sparsification improves the cost-accuracy trade-off of the final
D2DMoE model. (c) Sparsification allows us to apply our method to GELU-based model without
significant drops in performance. (d) Smaller experts display favorable performance and allow for
larger computational savings.

works require fine-tuning with the activation function changed to ReLU (relufication) [52, 27], which
limits their practical applicability. We hypothesize that relufication is not necessary and the models
with many near-zero activations effectively function similarly to standard ReLU-based models. To
evaluate this hypothesis, we extend the sparsity enforcement scheme to the commonly used GELU
activation by penalizing the model for pre-activation values larger than a certain threshold. We first
transform the pre-activation values as z′ = max(0, z−d), where z is the pre-activation value and d is
a displacement hyperparameter. Then, we apply the loss from Equation (1) on z′. This transformation
penalizes only pre-activation values larger than d, and as a result, the model learns to produce values
that effectively become negligible post-activation. We empirically find that d = −10 works well with
GELU as the output below this value is near zero.

To validate our hypothesis, we follow the methodology from Section 4.3 and we train ReLU- and
GELU-based GPT-2 with and without sparsity enforcement loss. We show the results in Figure 9c.
D2DMoE with a sparsified GELU-based model performs similarly to a sparsified ReLU-based model,
while the performance of the non-sparsified GELU-based variant collapses. Within ReLU-based
models, the sparsification still enhances the performance of D2DMoE, but the improvements are less
drastic, and the behavior of our method does not significantly change as in the case of GELU. This
shows sufficient activation sparsity enforcement relieves the model from the dependence on ReLU.

5.5 Impact of expert granularity

A crucial hyperparameter in D2DMoE is the selection of expert size. Smaller experts may allow a
more granular selection of executed neurons, likely resulting in a lower computational cost. However,
decreasing the expert size increases the number of experts, which translates to a larger router,
potentially negating any computational gains. To study the impact of this hyperparameter on our
method, we evaluate D2DMoE on GPT-2 with different expert sizes, and show the results in Figure 9d.

We observe that our method generally performs better with smaller experts. Those results differ from
the ones presented in [52], where the expert size is significantly higher. The positive correlation
between granularity and performance can be explained by the increased levels of activation sparsity
in our model, which requires significantly fewer activated neurons (experts). As expected, the perfor-
mance decreases for the extreme choice of expert size equal to 1 due to significantly higher routing
costs. We include additional results for expert granularity with GELU activation in Appendix H.

6 Related Work

Mixture-of-Experts. MoE layers were introduced as an efficient way to further increase the
capacity of deep neural networks applied for NLP tasks, initially in LSTM models [38], and later
in Transformers [23]. Since then, they have also been applied to computer vision [33, 5]. MoE
layers have gained significant popularity primarily due to their excellent scaling properties [8, 3].
Nonetheless, training such models is challenging, primarily because gating decisions must be discrete
to ensure sparse expert selection. Various methods of training were proposed, some of which include
reinforcement learning [1], weighting the expert output by the probability to allow computation of the
gradient of the router [38], or using the Sinkhorn algorithm [3]. Some of those approaches also suffer

9



from the possibility of load imbalance and therefore require auxiliary losses or alternative expert
selection methods [9, 54]. Interestingly, in many cases fixed routing functions perform similarly to
trainable routers [34], which suggests that current solutions are largely suboptimal. MoE models
can also be derived from pre-trained dense models by splitting the model weights into experts and
independently training the routers for each layer [52, 57], which avoids most of the problems present
in end-to-end training.

Activation sparsity in Transformers. Li et al. [24] show that ReLU-based Transformer models
produce sparse activations in their intermediate representations, an effect that is prevalent across
architectures, layers, and modalities. They propose a simple rule for keeping only top-k activations
in each MLP layer, which results in a model with comparable performance. Similarly, Mirzadeh
et al. [27] demonstrate that ReLU activation function in LLMs encourages ensuing activation sparsity
that can be leveraged to skip redundant computations. Tuli and Jha [46] take a step further and
design a dedicated Transformer architecture accelerator that also exploits activation sparsity, while
Liu et al. [25] proposes to predict activation sparsity structure in LLMs and reduce the model
latency by skipping redundant computations. Jaszczur et al. [18] demonstrate that it is possible to
train Transformer models from scratch with a fixed level of activation sparsity and obtain similar
performance. Finally, a related line of works focuses on sparsity in the attention distributions instead
of intermediate representations [4]. None of the above-mentioned methods explore induced activation
sparsity as a way to increase computational gains, nor do they address variance of the number of
sparse activations on a per-token basis.

7 Conclusion

We introduce Dense to Dynamic-k Mixture-of-Experts (D2DMoE), a novel approach that induces
activation sparsity to improve the efficiency of Transformer-based models by converting their layers
to Mixture-of-Experts (MoE). We demonstrate the interplay between the activation sparsity of
dense models and the efficiency of converted MoEs. Moreover, we introduce regression-based
router training and dynamic-k routing, which enable our method to efficiently utilize the induced
sparsity. Finally, we show how dense-to-sparse-MoE conversion approaches can be extended to MHA
projections and gated MLPs. Our approach is compatible with the existing Transformer architectures
and significantly improves upon existing MoE conversion schemes. Our findings contribute to the
ongoing efforts to make Transformer models more efficient and accessible for a wider range of
applications, especially in resource-constrained environments.

Limitations and Broader Impact

While D2DMoE displays promising results in reducing the computational cost of inference in Trans-
former models, a few limitations should be acknowledged. Our proposed sparsity enforcement and
router training phases require additional training time. This overhead, while small, must be considered
when evaluating the benefits of our approach. Moreover, we demonstrate improved performance over
existing approaches on common NLP and CV tasks, but the scope of our experiments is restricted due
to limited access to computational resources. Further research is needed to explore its applicability to
extremely large models.

Our work focuses primarily on fundamental machine learning research and we do not see any specific
risks or ethical issues associated with our method. Nevertheless, we recognize the potential for misuse
of machine learning technology and advocate for responsible AI practices to mitigate such risks.
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A Difference between router training in D2DMoE and MoEfication

Our router training procedure is similar to the one proposed in MoEfication [52], but the source code
of the method provided by the authors6 contains a different routing objective than the one reported
in the paper. While the paper describes their router training objective as a prediction of the sum of
ReLU activation values in each expert, the source code uses prediction labels created from the sum
of the activations in the intermediate layer divided by the maximum value in the entire batch and
minimize the binary cross-entropy loss. Assuming that ak,j is the activation vector in the hidden
layer of expert j for sample k, the label generation for their router can be expressed as:

yk,j =

∑
i ak,j,i

maxl,m
∑

i al,m,i
(5)

In comparison to their approach, the router training procedure in D2DMoE differs in multiple aspects:

• Our router considers the output of each expert instead of looking at the activations in the
intermediate layers.

• Instead of using artificially created labels based on the sums of activation values, we predict
the ℓ2-norm of the output. This has the additional benefit that our router can work with
alternative activation functions.

• Our router is trained with the mean-squared error instead of the binary cross-entropy loss.
The output of our router is constrained to positive values, while the MoEfication router is
constrained to outputs in [0, 1].

We find that the above differences are responsible for the improved performance of our router (see
Figure 9a).

B Comparison of FLOPs between standard FFN layer and dynamic-k MoE

To compare the efficiency of our method with a standard MLP layer in Transformer, we estimate
FLOPs in both modules. We assume the layer is composed of two linear transformations, with input
and output size dm and hidden dimension edm, where e is the expansion factor, which is usually
equal to 4 in standard Transformer models. We skip the negligible cost of the biases and activation
functions for simplicity.

One can estimate the cost of the MLP layer in FLOPs, CMLP, as:

CFFN = dm · edm + edm · dm = dm
2 · 2e. (6)

For dynamic-k expert selection with n total experts and k experts selected for a given input, the cost
of the forward pass is composed of the cost of a forward pass through k experts and the cost of the
2-layer router with input dimension dm, hidden dimension dh and output dimension n. The cost of
the single expert pass can be expressed as:

CE = (dm · edm
n

+
edm
n

· dm) = dm
2 · 2e

n
, (7)

and the routing cost can be estimated as:
CR = dm · dh + dh · n. (8)

Therefore, the full cost of dynamic-k Cdynk can be estimated as:

Cdynk = k · CE + CR = dm
2 · 2ek

n
+ dh(dm + n), (9)

and the cost of our method compared to the cost of standard MLP can be expressed as:

Cdynk

CMLP
=

dm
2 · 2ek

n + dh(dm + n)

dm
2 · 2e

(10)

=
k

n
+

dh(1 +
n
dm

)

dm · 2e
. (11)

6MoEfication source code for router training is publicly available at: https://github.com/thunlp/
MoEfication/blob/c50bb850307a36f8a0add6123f56ba309a156d13/moefication/utils.py#
L188-L260
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Figure 10: FLOPs ratio between dynamic-k expert layer and standard two-layer MLP for different
values of the total number of experts n and number of selected experts k. We assume the hidden
dimension of router dh is based on model dimension dm, and set standard expansion factor e = 4.
For different sizes of router, dynamic-k uses fewer FLOPs than standard MLP as long as the total
number of experts is sufficiently large and the number of selected experts is not equal to the total
number of experts. For the clarity of presentation, we plot discrete values of k and n as continuous.

As long as the number of selected experts k does not approach the total number of experts n and
the hidden dimension of the router does not approach the size of hidden dimension dm, the ratio is
significantly below one.

Assuming the worst case for second term (n = edm), we can estimate the cost ratio as:
k

n
+

dh
dm

· 1 + e

2e
, (12)

which shows that dynamic-k expert selection only exceeds the FLOPs cost of the standard network
when the dynamic-k rule selects almost all experts or the number of experts becomes very high. For
an even more detailed analysis, we refer to Figure 10 where the cost ratio between our method and
standard MLP is shown, assuming different router sizes and e = 4 as standard for most Transformer
models. In practice, we use dh = 128, so in all our experiments dm = 6dh.

C Efficient implementation of D2DMoE
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Figure 11: Wall-clock time mea-
surements of the ViT-B model
and its corresponding D2DMoE
model.

In Listing 1 we present the pseudocode for our efficient imple-
mentation of the forward pass of the D2DMoE module. We skip
the pseudocode of the kernel of the second layer as it is similar,
but provide the full source code in our code repository. Note
that our implementation has multiple points where it could be im-
proved for further performance gains: 1) metadata that is required
for the kernels could also be computed with a dedicated kernel
to reduce overhead; 2) atomic operations are currently used in
the second layer to merge the results from different experts, an
alternative implementation that does not use atomic operations
could be faster; 3) it could be rewritten in CUDA to make use
of dynamic parallelism. We leave those improvements for future
work.

In the main paper, we have presented wall-clock time measure-
ments of a single D2DMoE layer. Below, we also ensure that our implementation works and performs
well when used for the ViT-B model in which each FFN is replaced with a D2DMoE module. In
Figure 11, we measure the averaged processing time and the accuracy of our model. We perform
the experiments on an NVIDIA A100 GPU using a batch size of 256. Each point on the x-axis
corresponds to a single τ threshold and shows the wall-clock time of processing a single input
averaged over the entire ImageNet-1k test set. Dynamic inference with D2DMoE offers up to 30%
reduction in processing time without affecting the accuracy.

To show that D2DMoE also reduces the execution latency of quantized models, we modify our
kernels to handle float16 and int8 data types. In Table 2 we perform a similar experiment to the
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one from Figure 5. We sample gating decisions from the Bernoulli distribution with probability p and
measure the execution time of our experts for the three data type variants.

Table 2: Wall-clock time measurements (µs) of execution of our D2DMoE layer when using different
data types and GPUs.

GPU p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

RTX 4090
float32 5 9 13 18 23 28 33 38 42 47 52
float16 4 5 7 9 11 14 16 18 21 24 27
int8 4 4 5 7 8 9 10 11 12 13 14

A100
float32 6 9 12 15 19 22 25 28 31 35 38
float16 6 7 8 10 11 13 14 16 17 19 21
int8 7 8 9 10 11 12 14 15 16 17 19

The results show that both the higher activation sparsity (lower p) of our method and lower-precision
data types are complementary in terms of wall-clock time reduction. While we see a smaller
improvement from using int8 over float16 on A100, we attribute this to differences between GPU
architectures and software support for low-precision arithmetic.

D Compatibility with knowledge distillation
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Figure 12: Performance of
D2DMoE applied on a ViT-S
distilled from the larger ViT-B
model.

In Section 4.5 we have demonstrated that our method is compat-
ible with two popular model compression methods: quantization
and pruning. A natural question is whether our method can be
effectively applied to models compressed via knowledge distil-
lation. Since distilled models also exhibit activation sparsity that
our method relies on, D2DMoE should be applicable to such mod-
els. In Figure 12 we demonstrate the results of D2DMoE when
applied on a ViT-S model, which has been trained via knowledge
distillation [15] with the torchvision ViT-B being used as the
teacher model. We see that D2DMoE is also able to reduce the
cost of this smaller model.

E Routing analysis for large models

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
TFLOPs

3

4

5

6

7

8

9

10

Lo
ss

MoEfication
MoEfication+RR
Baseline

Figure 13: Comparision of perfor-
mance on Gemma-2B for MoEfi-
cation with vanilla routing and
with our regression routing.

As presented in Figure 4d, in comparison to other considered
benchmarks MoEfication visibly underperforms on language
modeling with Gemma-2B. We attribute this to the emergence
of massive activations in LLMs that reach a specific scale [40].
Massive activations are outliers along certain feature dimensions
whose magnitudes are thousands of times larger than the magni-
tudes of other activations. The training objective of MoEfication
described in Equation (5) uses maximum activation over the en-
tire batch to normalize the target label for each expert. Upon
encountering large outlier values, those labels become effectively
meaningless, as the values for most of the experts become very
close to zero. In this case, the router effectively learns to output
zero labels for most of the experts aside from the ones correspond-
ing to the outlier values.

In comparison to MoEfication, our router training scheme does not make use of such normalization,
and should therefore be robust to the emergence of massive activations. To validate this, we apply
MoEfication on Gemma-2B, but with our regression routing instead of the original router training
strategy. We compare the resulting model with vanilla MoEfication in Figure 13 and notice that
replacing the routing scheme is enough for the model to learn effective expert assignment, as even
though the expert choice is static and the base model is not sparsified, the cost-loss trade-off has

17



4 6 8 10 12
GFLOPs

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y
Router depth=1
Router depth=2, hidden_dim=32
Router depth=2, hidden_dim=64
Router depth=2, hidden_dim=128
Router depth=2, hidden_dim=256
Router depth=2, hidden_dim=512
Baseline

(a) Router architecture ablation for BERT

90 100 110 120 130 140 150 160
GFLOPs

3

4

5

6

7

Lo
ss

Router depth=1
Router depth=2, hidden_dim=32
Router depth=2, hidden_dim=64
Router depth=2, hidden_dim=128
Router depth=2, hidden_dim=256
Router depth=2, hidden_dim=512
Baseline

(b) Router architecture ablation for GPT2

100 120 140 160 180
GFLOPs

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

Lo
ss

Expert size=1
Expert size=2
Expert size=4
Expert size=6
Expert size=12
Expert size=24
Expert size=48
Expert size=96

(c) Expert granularity with the GELU.

Figure 14: Additional ablations with router architecture and expert granularity.

significantly improved. This simple experiment shows that our regression routing objective is more
robust than MoEfication when scaling to larger models.

F Router architecture

In comparison to standard linear routers used in MoE models trained from scratch, routers in
MoEfication are 2-layer MLPs. To obtain the best performance with D2DMoE, we compare the
linear design with MLPs with different hidden sizes for BERT-base and GPT-2-base on Figures 14a
and 14b respectively. Linear routers do not perform well with our method, and overall a 2-layer
MLP with a hidden dimension of 128 results in the best performance for both models. Note how for
BERT-base, the accuracy curve for a model with the hidden dimension of 128 is slightly worse than
for smaller routers, but for harder task with GPT-2 a more complex router is required. Following
this analysis, we use 2-layer MLP with a hidden dimension of 128 for most of our experiments in
the paper, with the only exception being the larger Gemma-2B model where we scale the hidden
dimension accordingly to 512 to match the increase in model dimensionality.

G D2DMoE extension to GLU-based layers Standard FFN

Gated FFN

Cluster

Cluster

Figure 15: D2DMoE exten-
sion to Gated MLP.

To provide better intuition behind the extension of our method to
GLU-based gated MLPs mentioned in Section 3.2, we visualize the
differences between standard FFN and Gated FFN and the applica-
tion of our method in Figure 15. Standard Transformer MLP realizes
the following function:

y(x) = W1A(W2x), (13)

where W1, W2 are the weights for the upscale and downscale
projections7 and A stands for the activation function. In comparison,
gated MLP can be written down as:

y(x) = W1(A(Wgx) ◦W2x), (14)

where Wg is the weight for the added gate projection.

The intuition behind MoEfication, which our method also follows for
standard FFNs, is that the sparsity of the intermediate, post-activation
representations determines the sparsity of the output representation.
Therefore, the expert split is performed based on the weights of the upscale projection, as zeroed
neurons in the upscale activations will also result in zeroed outputs of the downscale projection.
When extending D2DMoE to Gated MLPs, our intuition is that the gating projections determine
the sparsity of all the later representations, as both upscale and downscale are multiplied with the
gating values. Therefore, we propose to build the experts through clustering performed on the gating
weights Wg and use the indices obtained through expert split on gating weights to construct experts
from W1 and W2. Following similar reasoning, for GLU-based models, we also perform activation
sparsity enforcement on the gating projections instead of upscale projections as described originally
in Section 3.1.

7We omit biases for simplicity.
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H Additional results with expert size and GELU

In addition to experiments in Section 5.5, we present the results of similar ablation carried on the
sparsified GPT-2 model with GELU activation. The results, presented in Figure 14c, follow the same
pattern as before, which supports our claim that the sparsification enables the GELU-based models to
function similarly to ReLU-based ones.

I Expert activation patterns for attention projection layers

Following the analysis for MoE-converted FFN layers in Section 5.1, we present full results for
FFN in Figure 16, and investigate the activation patterns in MHA projections modified with our
method in Figures 17 to 20. The projection modules display lower levels of sparsity than FFNs,
which is to be expected as our projection layers have lower intermediate dimensionality. Expert
selection distribution patterns in Q and K show significant similarity, and the patterns in V and
output projections are also similar to a lesser degree. The variance of the number of selected experts
in MHA projections is higher than in FFN layers, but it still exists and the distribution in some of the
layers seems to be bimodal, which provides further justification for the dynamic-k selection rule.

J Training and hardware details

In this Section, we describe the technical details used in the D2DMoE conversion procedure. For
full reproducibility, we share the source code that we used for conducting the experiments. All
experiments were performed using the PyTorch library [29] on the NVIDIA A100 and V100 GPUs
on internal clusters. We utilize the fvcore library to count model FLOPs8.

J.1 Image classification

All methods start with the same pre-trained ViT-B from the torchvision 9 library and are trained on
ImageNet-1k using the augmentation proposed by Touvron et al. [44]. We use mixup (0.8), cutmix,
label smoothing (0.1), gradient clipping (1.0) and the Adam optimizer with a cosine learning rate
schedule without warm-up. For D2DMoE, we replace the MHA projections and train the replacements
for 3 epochs with the initial learning rate 0.001 and batch size 128, and then finetune the model
for 90 epochs with sparsity enforcement weight α = 0.2, initial learning rate 2 · 10−5 and batch
size 512. We then convert the modules into MoE layers, and train the gating networks for 7 epochs
with the initial learning rate set to 0.001 and batch size 128. We train ZTW for 100 epochs in total,
allocating 5 epochs for ensemble training, while keeping the rest of the original hyperparameters
unchanged. For MoEfication, we first convert the pre-trained model to ReLU-based one and finetune
for 90 epochs with an initial learning rate of 0.0001 and batch size 256. We then split the weights
and train the routers for 10 epochs with the initial learning rate 0.001 and batch size 256.

J.2 Text classification

All experiments start from the same pre-trained BERT-base checkpoint. For methods requir-
ing ReLU activation function, we replaced GELU with ReLU and continue model pretrain-
ing on concatenated wikipedia [10] and books [55] corpora for 5000 steps on 8 GPUs using
main setup from https://github.com/huggingface/transformers/blob/main/examples/
pytorch/language-modeling/run_mlm.py, per device batch size 96 and learning rate 5 · 10−4.
For MHA projections replacement we use the same corpus and train replaced MLP modules on a
single GPU with batch size 128 and learning rate 0.001 for 3000 steps. We finetuned base dense
models on CARER dataset for 5 epochs with 2 · 10−5 learning rate. For sparsity enforcement in
D2DMoE we use α linearly increasing from zero to 0.0001 over training. For both MoEfication
and D2DMoE we train routers with batch size 64 and initial learning rate 0.001 for 5 epochs. In all
experiments, we use Adam optimizer with linear learning rate decay. For MoEfication we use expert
size 32, for D2DMoE we use more granular expert size equals 6. For ZTW we trained ICs for 5
epochs with batch size 32 and learning rate 0.01.

8https://github.com/facebookresearch/fvcore
9https://pytorch.org/vision/stable/models.html
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J.3 Language modeling

We base our code and hyperparameters for GPT2-base on the nanoGPT repository provided at https:
//github.com/karpathy/nanoGPT. We initialize the model from https://huggingface.co/
openai-community/gpt2. In all pretraining experiments, we initialize models from a publicly
available OpenAI checkpoint pre-trained on a closed-source WebText dataset and finetune for the
fixed number of 1000 steps with the effective batch size equal to the value in the repository through
gradient accumulation. The alpha values for sparsity enforcement can be found at Figure 9b. We
train the routers for D2DMoE and MoEfication for 2000 steps using one GPU and tuning the learning
rates for a given expert size from the range between 0.002− 0.005. For router training, we use Adam
optimizer and cosine warmup scheduler.

For Gemma-2B, we start from the checkpoint at https://huggingface.co/google/gemma-2b.
We also finetune the model for 1k steps with an effective batch size of 1024, sequence length of 1024
and Adam optimizer with a learning rate of 1e-4. As Gemma’s hidden dimension is much larger
than the other considered models, we change the hidden dimensionality of the routers to 512 for
both our method and MoEfication, but keep the other hyperparameters the same as in the rest of the
experiments. For MoEfication, Gemma, we use 512 experts to obtain an expert size comparable to the
one in their paper. For our method, we use 2048 experts. In D2DMoE, we set sparsity enforcement
weight to 0.00003. We train the routers for 500 steps with Adam and effective batch size of 16 and
use a learning rate of 0.001.

We report the results for language modeling without the MHA projection replacement step, as we
find that it is especially sensitive to changes in the attention layers, which always result in visible loss
degradation.

K Contributions

Filip integrated the codebase and ran the experiments for GPT-2 and Gemma, performed the activation
sparsity analysis, and all the analyses on language modeling models. He contributed to the design of
dynamic-k gating and played a primary role in designing the experiments and writing the article.

Bartosz set the research direction of the project and proposed the alternative routing scheme, dynamic-
k expert selection, the additional activation sparsity enforcement phase for ReLU and GELU, and the
replacement of MHA projection layers. He wrote the shared codebase for the experiments, carried
out the ViT-B experiments, implemented the custom Triton kernels for the efficient implementation
of the method, and also played a primary role in the writing and editing of the article.

Mikołaj made this paper possible by performing all of the experiments at the initial stages of the
project and implementing MoEfication and numerous variants of our method. He carried out the BERT
experiments, performed weight sparsity compatibility analysis, the ablation study, and contributed to
the crafting of the paper.

Simone significantly improved the paper’s readability and provided invaluable advice for revising it.
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1 def forward_triton_atomic(self , x, routing_tensor):
2 # compute the necessary metadata
3 # split the batch into two groups: executed by that expert or not
4 # (for each expert independently)
5 sort_indices = routing_tensor.argsort(dim=0, descending=True)
6 # get the number of samples executed by each expert
7 expert_bincounts = routing_tensor.sum(dim=0)
8 # actual forward pass
9 intermediate_acts = MoeFirstLayerImplementation.apply (...)

10 final_out = MoeSecondLayerAtomicImplementation.apply (...)
11 return final_out
12
13 class MoeFirstLayerImplementation(torch.autograd.Function):
14 @staticmethod
15 def forward(input , weight , bias , sort_indices , expert_bincounts):
16 ...
17 # a grid of kernel instances which divide the computational work
18 # in multiple dimensions: batch dimension (sample_dim),
19 # output dimension (expert_dim) and number of experts dimension (num_experts)
20 grid = (cdiv(sample_dim , BLOCK_SIZE_BD) *
21 cdiv(expert_dim , BLOCK_SIZE_ED), num_experts)
22 moe_first_kernel[grid ](...)
23 ...
24
25 @triton.jit
26 def moe_first_kernel(x_ptr , ...
27 weight_ptr , ...
28 bias_ptr , ...
29 output_ptr , ...
30 sort_indices_ptr , ...
31 expert_bincounts_ptr ,
32 ...,
33 ):
34 # based on tl.program_id(axis =0), compute the tile indices
35 # for the batch and output dimensions
36 # (grouped , column major or row major ordering)
37 pid_bd , pid_ed = ...
38 # kernel instances and experts have a many -to-one relationship
39 expert_index = tl.program_id(axis =1)
40 # load the total number of tokens assigned to this expert
41 expert_samples_count = tl.load(expert_bincounts_ptr + expert_index)
42 # calculate the number of instances that need to be used to process all tokens
43 bd_pids_for_expert = tl.cdiv(expert_samples_count , BLOCK_SIZE_BD)
44 # instances that have no computation to perform exit early
45 if pid_bd < bd_pids_for_expert:
46 # calculate offsets that will be used for addressing data in memory
47 offs_bd = ...
48 offs_ed = ...
49 offs_hd = ...
50 # pick the data to load based on the sort indices
51 in_data_indices = tl.load(sort_indices_ptr + expert_index * ... + offs_bd * ...)
52 # calculate memory addresses of the input data and weights
53 # during loading this will group samples for the current learner only
54 x_ptrs = x_ptr + in_data_indices [:, None] * ...
55 w_ptrs = weight_ptr + expert_index * ...
56 # the result will be accumulated in this variable
57 accumulator = tl.zeros(( BLOCK_SIZE_BD , BLOCK_SIZE_ED), dtype=tl.float32)
58 # iterate over the innermost dimension
59 for k in range(0, tl.cdiv(hidden_dim , BLOCK_SIZE_HD)):
60 # load the memory from the current input and weight tiles
61 x = tl.load(x_ptrs , mask =..., other =0.0)
62 w = tl.load(w_ptrs , mask =..., other =0.0)
63 # perform matrix multiplication for these tiles and accumulate
64 # (since data is grouped , this can be performed in an efficient manner)
65 accumulator += tl.dot(x, w)
66 # advance the pointers to the next tile
67 x_ptrs += BLOCK_SIZE_HD * stride_x_hd
68 w_ptrs += BLOCK_SIZE_HD * stride_weight_hd
69 # load and add biases to the accumulated result
70 offs_b_ed = ...
71 b_ptrs = bias_ptr + expert_index * ...
72 accumulator += tl.load(b_ptrs , mask =..., other =0.0)
73 # apply the activation function on the result
74 if ACTIVATION == ’relu’:
75 accumulator = relu(accumulator)
76 ...
77 # calculate the memory addresses for the output
78 offs_out_bd = ...
79 out_ptrs = output_ptr + expert_index * ... + \
80 offs_out_bd [:, None] * ... + offs_b_ed[None , :] * ...
81 out_mask = ...
82 # store the result to the main GPU memory
83 tl.store(out_ptrs , accumulator , mask=out_mask)
84

Listing 1: Simplified pseudocode of our efficient D2DMoE implementation for GPUs
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Figure 16: Per-layer distribution of the number of executed experts in D2DMoE trained on the
CARER with different τ thresholds for a standard, non-sparsified model (top row) and a sparsified
model (bottom row). The high variability of that number explains the computational gains from using
dynamic-k.

1
3

6
9

12
M

od
el

 a
ye

r

= 0.1 = 0.01

B
ase m

odel

= 0.001

0 20 40 60 80 100
Ratio of selected experts (%)

1
3

6
9

12
M

od
el

 a
ye

r

0 20 40 60 80 100
Ratio of selected experts (%)

0 20 40 60 80 100
Ratio of selected experts (%)

S
parse m

odel

Figure 17: Distribution of the number of executed experts in each layer for query projections.
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Figure 18: Distribution of the number of executed experts in each layer for key projections.
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Figure 19: Distribution of the number of executed experts in each layer for value projections.
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Figure 20: Distribution of the number of executed experts in each layer for output projections.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We put a lot of effort to accurately present our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include a separate "Limitations" section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have a dedicated appendix section to thoroughly describe our experimental
settings (we also provide the source code).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the source code along with a README. Code is easy to run once
the environment is set up, and generates the plots automatically.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We list the necessary facts in the main paper, and provide all the details in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not have the computational resources to run our main experiments with
multiple seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We did not gather this information during our work on this paper as we were
not aware of this requirement. Gathering this data now is close to impossible. We do provide
information on the type of GPUs used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We went through the guidelines and do not see any ethical issues.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the impact of our work, which we believe is positive.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release new data or new models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We always cite or credit the original authors. We always check the license of
the assets we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the source code. We apply the MIT license to our code and provide
a README description.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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