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Abstract—Imitation and emulation are foundational mechanisms 
through which humans, particularly children, acquire knowledge 
and adapt to complex social environments. Developmental 
research shows that children initially engage in high-fidelity 
imitation, including the reproduction of causally irrelevant 
actions, but gradually shift toward emulation, selectively 
reproducing goal-relevant aspects of behavior. This trajectory, 
from surface-level copying to intentional, goal-directed 
understanding, offers a powerful model for continual robot 
learning. In this position paper, we propose that robots can 
benefit from a similarly staged learning process, beginning with 
broad imitation and advancing toward flexible emulation guided 
by sustained human interaction and feedback. Drawing on 
theoretical and empirical insights from developmental 
psychology, we define key learning stages and introduce 
benchmark tasks that assess fidelity, causal reasoning, 
generalization, and social alignment. By aligning robot learning 
with human cognitive trajectories, we aim to develop systems that 
are not only robust and adaptive but also interpretable and 
capable of evolving within human environments.  
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I.  INTRODUCTION 
As robots become increasingly integrated into human 

environments, the demand for systems that can continually 
adapt to new social contexts, evolving human needs, and 
dynamic tasks becomes more pressing. Unlike static training 
paradigms, continual learning enables robots to update their 
knowledge and behavior incrementally over time. Human 
development, particularly in early childhood, offers a 
compelling model for this type of learning. One of the key 
trajectories in developmental psychology is the progression 
from imitation to emulation: From replicating observed actions 
to inferring and achieving goals through flexible strategies. In 
developmental psychology, this progression reflects not only 
growing cognitive sophistication but also increasing social 
attunement, including the ability to interpret communicative 
intent and infer causal structures [1-2].  

In the context of human-robot interaction, continual 
learning should be similarly framed not only as a technical 
challenge but also as a process of social, situated, and 
cognitively interpretable adaptation. We propose a 
developmentally inspired framework in which robot learning 
mirrors children’s progression from mimicry to norm-sensitive 
reasoning. By grounding robotic learning in this scaffolded 
trajectory, we argue that robots can better align with human 
expectations, adapt in socially appropriate ways, and generalize 
knowledge across tasks and users. 

II. IMITATION AND EMULATION IN HUMAN DEVELOPMENT 
Imitation refers to the replication of observed behavior, 

often performed without a full understanding of its purpose. 
From the earliest stages of life, infants demonstrate a capacity 
for imitation: Newborns can reproduce facial expressions, such 
as tongue protrusion, within the first few weeks of life [3], and 
by toddlerhood, children can replicate complex sequences of 
object-directed actions. Crucially, this imitation is often overly 
inclusive. Children often engage in overimitation, copying not 
only task-relevant actions but also causally unnecessary ones [2]  

Overimitation is not a developmental error but a signal of 
social attunement. Research shows that 14-month-old infants 
are more likely to imitate an unconventional action, such as 
turning on a light with one’s forehead, if it is presented in an 
ostensive-communicative manner [1]. This suggests that young 
learners are sensitive to cues indicating teaching intent and 
assume that demonstrated behaviors carry social or 
instructional significance, even when they appear inefficient.  

As cognitive and social capabilities mature, children begin 
to transition from high-fidelity imitation to emulation, 
replicating the goal of an action rather than the specific means 
by which it is achieved. Emulation allows for flexibility, as 
children now use alternative methods to achieve the same 
outcomes, guided by emerging skills in causal reasoning [4], 
theory of mind [5], and social learning [6]. These 
developmental shifts support generalization across contexts, 
allowing children to abstract underlying principles from 
observed behavior—an essential capability for building robots 
that must operate in dynamic, human-centered environments.  

III. IMPLICATIONS FOR ROBOT LEARNING 
Despite advances in robot learning from demonstration and 

reinforcement learning, most systems remain limited in their 
ability to adapt flexibly and meaningfully over time, 
particularly in socially rich or uncertain environments. Current 
models are often trained in narrowly defined settings with fixed 
goals, resulting in behavior that is brittle, non-interpretable, and 
difficult to personalize. These systems typically lack 
mechanisms for building causal models, integrating long-term 
feedback, or interpreting ambiguous social signals, which are 
key capacities that underlie robust human learning.  

In contrast, developmental research highlights how 
children’s learning unfolds in a socially scaffolded, iterative 
fashion. Early overimitation facilitates the broad preservation 
of observed behaviors, whereas later stages involve causal 



inference, abstraction, and goal-based reasoning. This 
progression suggests that imitation should not be dismissed as a 
naïve strategy but embraced as an exploratory heuristic—a 
foundation from which more refined and abstract reasoning can 
emerge. We propose that robots adopt a similar trajectory, 
beginning with broad imitation and progressing toward 
emulation and norm inference, guided by interaction and 
feedback.   

This developmental framing offers several implications for 
robot learning architectures. It encourages the design of 
systems that initially preserve high-fidelity demonstrations, 
even at the cost of redundancy, and then gradually prune 
behavior through causal learning. It also prioritizes human-
aligned interpretability, where learning outcomes reflect not 
only task efficiency but also responsiveness to social norms, 
communicative cues, and user intent. Ultimately, this approach 
enables the development of robots that are not merely 
adaptable but socially embedded and capable of continual 
learning across time and context.   

IV. DEVELOPMENTAL STAGES FOR ROBOT LEARNING 
To model human-like continual learning in robots, we 

outline a set of staged learning capabilities inspired by human 
development. These stages mirror how young children 
progressively acquire, refine, and generalize their knowledge 
through observation, action, and social interaction. Each stage 
reflects a qualitative shift in the learner’s underlying cognitive 
representations and adaptive capabilities. 

A. Stage 1: Mimicry 
The first stage, mimicry, involves the learner reproducing 

all observable aspects of a demonstrated behavior, irrespective 
of their causal relevance. This corresponds to infants’ earliest 
imitation behaviors, which typically reflect perceptual 
matching rather than intentional understanding [3]. For 
example, a child may copy an adult’s unnecessary gestures or 
vocal tone while performing a simple task, not because those 
elements are functionally necessary, but because they are 
salient and socially meaningful within the interaction. 

In robotic systems, mimicry can serve as a crucial 
bootstrapping mechanism, allowing the agent to collect rich 
action-perception data, form action mappings, and preserve 
behavioral structure that might later prove meaningful [7]. 
Although this strategy may include redundant or irrelevant 
components, such high-fidelity replication is not without value. 
It ensures that potentially essential but not yet understood 
actions are retained for later analysis and refinement as the 
robot’s causal and goal inference capabilities develop. In this 
sense, mimicry functions not as a flawed imitation strategy but 
as a developmentally appropriate phase in a staged learning 
architecture.  

B. Stage 2: Imitation 
The second stage reflects selective imitation, where the 

learner begins to distinguish between essential and non-
essential components of a demonstrated behavior. Children 
typically reach this stage in toddlerhood, developing the ability 
to selectively reproduce intentional, goal-directed actions while 

omitting inefficient or accidental components [8]. However, 
evidence from overimitation studies shows that young children 
often continue to copy causally irrelevant steps, particularly 
when those actions are presented in a pedagogical context, 
suggesting sensitivity to social and communicative cues [1-2]. 
For robotic systems, this stage involves segmenting action 
sequences, identifying elements that predict successful 
outcomes, and refining imitation through feedback or 
reinforcement learning mechanisms.   

C. Stage 3: Emulation 
The third stage involves emulation, where the learner 

achieves the same outcome as a demonstrator but through 
potentially novel means. In human development, this ability 
emerges as children begin to understand the causal structure of 
tasks and focus on reproducing results rather than specific 
actions [9]. Emulation indicates that the learner has formed an 
internal representation of the goal and can flexibly adapt 
behavior to achieve it, even when tools or environmental 
constraints vary. For robots, this stage depends on causal 
modeling, relational abstraction, and the capacity to operate 
across multiple strategies, enabling generalization beyond exact 
demonstrations. 

D. Stage 4: Generalization 
The fourth stage focuses on generalization, which involves 

applying learned behaviors or principles to novel but 
structurally similar tasks. In children, this capacity is supported 
by analogical reasoning and relational abstraction, allowing 
them to detect profound similarities across superficially 
different contexts [10]. Robots at this stage should demonstrate 
the ability to recognize underlying task patterns and transfer 
strategies across settings, tools, or goals. This stage requires 
integrating memory consolidation mechanisms and 
representation alignment frameworks, which are key 
components of continual learning systems that aim to minimize 
catastrophic forgetting while supporting adaptation over time 
[11].  

E. Stage 5: Intent inference 
The final stage is intent inference, where the learner can 

deduce the underlying goals or mental states of others, even 
when behaviors are ambiguous or incomplete. In humans, this 
capacity relies on the Theory of Mind (i.e., the ability to 
attribute beliefs, desires, and intentions to others) and plays a 
crucial role in flexible, socially guided learning [5]. By 12 
months, infants engage in rational imitation, selectively 
reproducing actions they interpret as intentional or constrained 
[1]. In robotic systems, this maps onto the ability to interpret 
indirect feedback, ambiguous instructions, or evolving social 
norms. Robots operating at this stage should not only 
reproduce what was demonstrated but also infer why, adjusting 
behavior to better align with human expectations and unspoken 
goals. 

V. A DEVELOPMENTAL BENCHMARK FOR ROBOT LEARNING 
To assess continual learning in robots, we propose a set of 

benchmark tasks modeled on paradigms from developmental 



psychology that reveal how children gradually shift from 
copying to understanding. Each task is designed to evaluate one 
or more dimensions of learning over time, such as imitative 
fidelity, causal flexibility, generalization, and social alignment. 
These tasks are grounded in well-established developmental 
theories and paired with evaluation metrics informed by 
research on imitation, pedagogy, and cognitive abstraction.  

A. Redundant action task 
In this task, a human demonstrator performs a multi-step 

behavior that includes both causally necessary and arbitrary or 
irrelevant actions. For example, before opening a box to 
retrieve an object, the demonstrator might first tap the lid three 
times—an action unrelated to task success. The robot observes 
several demonstrations of this sequence and is later tested to 
see if it replicates the entire sequence or selectively omits 
nonfunctional steps. This task assesses whether the robot 
begins with high-fidelity imitation, including irrelevant steps, 
but progressively refines its behavior as it gains causal insight 
and feedback.  

This setup mirrors the developmental phenomenon of 
overimitation, in which children copy both relevant and 
irrelevant components of an action sequence. As mentioned 
earlier, overimitation is believed to reflect children’s 
assumptions that all demonstrated actions are meaningful, 
particularly in pedagogical contexts. The redundant action task, 
therefore, provides insights into a robot’s transition from 
mimicry to selective imitation, evaluating its ability to 
construct, revise, and generalize causal models through 
repeated exposure and interaction.  

Performance should be measured across multiple sessions 
using metrics such as action efficiency (e.g., the number of 
steps versus the optimal steps), causal filtering score (e.g., the 
elimination of irrelevant actions), learning trajectory (e.g., 
changes over time), and responsiveness to feedback (e.g., 
behavioral adjustments after correction). A robot that initially 
imitates the full action sequence but eventually focuses on the 
causally relevant components would demonstrate 
developmental progression toward goal-sensitive emulation.  

B. Causal distribution task 
In this task, a method previously demonstrated to achieve a 

goal is rendered ineffective; for example, the tool used in the 
earlier demonstration is now broken or unavailable. To succeed, 
the robot must emulate the goal by discovering alternative 
means of achieving the same outcome. This task tests the 
robot’s causal reasoning, behavioral flexibility, and its ability 
to decouple actions from goals, which are hallmarks of 
emulative rather than imitative learning.  

Children begin to exhibit this capacity for emulation 
between the ages of four and five, transitioning from 
replicating exact behaviors to using novel strategies that fulfill 
the same function [9]. Robots modeled on this capability 
should develop and update internal causal models that allow 
them to predict outcomes based on environmental conditions, 
rather than simply memorizing successful action sequences. 
Evaluation metrics include success rate in altered context, 
solution diversity, and latency to adaptation.  

C. Outcome reproduction task 
The outcome reproduction task presents the robot with 

multiple demonstrations where different methods or tools are 
used to accomplish the same end-state goal. The robot is then 
asked to reproduce the goal independently, ideally using a 
novel or efficient approach. This task tests the ability to extract 
high-level, goal-invariant representations across varying 
perceptual or procedural conditions.  

This developmental trajectory parallels children’s growing 
capacity for analogical abstraction, in which learning shifts 
from superficial imitation to recognizing deeper relational 
similarities [10]. For robots, success in the task indicates the 
formation of internal representations that support goal 
generalization, a core requirement for lifelong learning. Key 
evaluation metrics include goal accuracy, novelty of the 
method used, and consistency across different environmental 
setups.   

D. Analogical transfer task 
The analogical transfer task introduces a novel but 

structurally analogous problem to one the robot has previously 
encountered. For example, if the robot previously learned to 
retrieve a toy using a stick, it is now expected to solve a similar 
task using a string to pull an object. Success depends on the 
robot’s ability to recognize structural similarities, abstract prior 
knowledge, and transfer learned strategies to new domains.  

In developmental psychology, analogical transfer marks a 
significant cognitive milestone, supported by structure-
mapping theory, which posits that learners align relational 
correspondences between domains rather than surface features. 
For robots, this task assesses the modularity and abstraction of 
internal representations, as well as their applicability beyond 
the original learning context. Evaluation includes task success 
rate, degree of structural alignment, and representational 
similarity to prior learned solutions.  

E. Novel goal task 
The novel goal task challenges the robot to infer and 

execute a goal based on ambiguous or incomplete 
demonstrations. For example, a human may begin reaching 
toward an object but stop midway, or gesture vaguely in the 
direction of multiple items. Unlike tasks with explicit, full 
observed actions, this scenario requires the robot to rely on 
contextual cues, prior experiences, and social reasoning to 
determine the intended outcome.  

This task parallels the development of Theory of Mind in 
children—the ability to attribute mental states such as beliefs, 
desires, and intentions to others, and to interpret behavior 
accordingly. Children typically begin to succeed at such 
intention-reading tasks around the age of four, as they develop 
the ability to infer goals from unobservable internal states [4]. 
A robot capable of similar inference demonstrates a deeper 
level of understanding: one driven not by behavior replication 
but by goal abstraction, predictive modeling, and social context 
interpretation.  

Evaluation criteria for this task include goal inference 
accuracy (e.g., did the robot achieve the correct intended 



outcome?), action efficiency (e.g., did it reach the goal using 
minimal or optimal steps?), and feedback adaptation (e.g., can 
it revise its inference after receiving corrective signals?) 
Success in the novel task indicates a robot’s capacity for 
socially intelligent learning, where behavior is guided not 
merely by demonstration but by inference, context, and 
intention modeling.  

VI. INTEGRATING COGNITIVE EVALUATION PROTOCOLS 
To strengthen the developmental benchmarking framework 

proposed in this paper, our current focus is on integrating 
structured cognitive evaluation protocols inspired by research 
in developmental psychology and recent AI benchmarks. A 
two-phase familiarization-test structure—where the robot first 
observes human behavior in repeated, structured 
demonstrations, followed by a generalization phase with altered 
constraints—can be used to probe deeper learning mechanisms. 
This methodology mirrors infant cognition studies, where 
researchers assess understanding by introducing subtle 
violations of previously observed patterns and measuring the 
learner’s expectation regarding goal-directed behavior, action 
efficiency, and constraint sensitivity.   

For instance, in the redundant action task, a robot could be 
familiarized with a demonstrator repeatedly performing a 
causally irrelevant step (e.g., tapping a lid) before opening a 
box. During the test phase, the context is altered (e.g., tapping 
action is no longer possible or visibly unnecessary), and the 
robot’s behavior is observed. The key question becomes: does 
the robot continue to overimitate, or does it abstract the causal 
structure and omit the irrelevant action? This structured 
contrast allows researchers to pinpoint whether learning 
reflects surface mimicry or goal-based reasoning.   

Additionally, future work should adapt naturalistic and 
collaborative tasks that require the robot to interpret evolving 
social expectations and feedback. Such tasks include role 
constraints, dynamic goals, and ambiguous social cues to test a 
robot’s ability to act flexibly within human-centered 
environments. Evaluation metrics should go beyond task 
completion to include feedback-driven adaptation, norm 
generalization, and social alignment. Together, these protocols 
will support richer, developmentally inspired assessments of 
robot learning and better capture the long-term, interactive 
nature of continual learning in real-world settings.    

However, implementing such cognitively inspired 
evaluation protocols presents several challenges and opens 
critical questions. First, designing tasks that balance ecological 
validity with experimental controls remains difficult, as 
naturalistic interactions often introduce variability that obscures 
fine-grained assessments of learning. Second, reliably 
measuring a robot’s internal representations and distinguishing 
between surface-level mimicry and genuine causal inference 
requires interpretable models and multimodal behavioral 
analysis. Third, human feedback can be ambiguous or 
inconsistent, raising questions about how robots should 
integrate it over time to update their goals or strategies. These 
challenge points raise key open questions: How can we design 
benchmarks that adapt to individual robot learning trajectories? 

What types of errors are most informative about developmental 
progress? And how can feedback from human partners be 
structured to support both evaluation and improvement? 
Addressing these questions is critical for advancing robot 
learning systems that are not only technically robust but also 
socially responsive and cognitively grounded.  

VII. CONCLUSION 
Human cognitive development offers a powerful lens for 

reimagining how robots can learn in complex, interactive 
environments. In this paper, we have proposed a developmental 
framework for continual robot learning, grounded in the 
progression from imitation to emulation. This approach 
emphasizes the value of early-stage overimitation, the 
importance of causal abstraction, and the critical role of social 
inference in learning from humans over time.  

Our proposed benchmark tasks reflect key dimensions of 
this developmental trajectory, that is, fidelity, flexibility, 
generalization, and social alignment. It also provides a scaffold 
for evaluating lifelong learning in robots. By adopting 
structured cognitive evaluation protocols and drawing on well-
established principles from developmental science, we envision 
robots that not only perform tasks but also evolve alongside 
their human users. These systems will be more interpretable, 
more resilient, and more attuned to the norms and values that 
define effective human-robot collaboration.   
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