

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DIFFUSION & ADVERSARIAL SCHRÖDINGER BRIDGES VIA ITERATIVE PROPORTIONAL MARKOVIAN FITTING

Anonymous authors

Paper under double-blind review

ABSTRACT

The Iterative Markovian Fitting (IMF) procedure, which iteratively projects onto the space of Markov processes and the reciprocal class, successfully solves the Schrödinger Bridge (SB) problem. However, an efficient practical implementation requires a heuristic modification—alternating between fitting forward and backward time diffusion at each iteration. This modification is crucial for stabilizing training and achieving reliable results in applications such as unpaired domain translation. Our work reveals a close connection between the modified version of IMF and the Iterative Proportional Fitting (IPF) procedure—a foundational method for the SB problem, also known as Sinkhorn’s algorithm. Specifically, we demonstrate that the heuristic modification of the IMF effectively integrates both IMF and IPF procedures. We refer to this combined approach as the Iterative Proportional Markovian Fitting (IPMF) procedure. Through theoretical and empirical analysis, we establish the convergence of the IPMF procedure under various settings, contributing to developing a unified framework for solving SB problems. Moreover, from a practical standpoint, the IPMF procedure enables a flexible trade-off between image similarity and generation quality, offering a new mechanism for tailoring models to specific tasks.

1 INTRODUCTION

Diffusion Bridge models inspired by the Schrödinger Bridge (SB) theory, which connects stochastic processes with optimal transport, have recently become powerful approaches in biology (Tong et al., 2024; Bunne et al., 2023), chemistry (Somnath et al., 2023; Igashov et al.; Kim et al., 2024), computer vision (Liu et al., 2023a; Shi et al., 2023; Ksenofontov & Korotin, 2025) and speech processing (Chen et al., 2023b). Most of these applications deal with either supervised domain translation, e.g., image super-resolution and inpainting (Liu et al., 2023a) or with unpaired translation, e.g., image style-transfer (Shi et al., 2023) or single-cell data analysis (Tong et al., 2024).

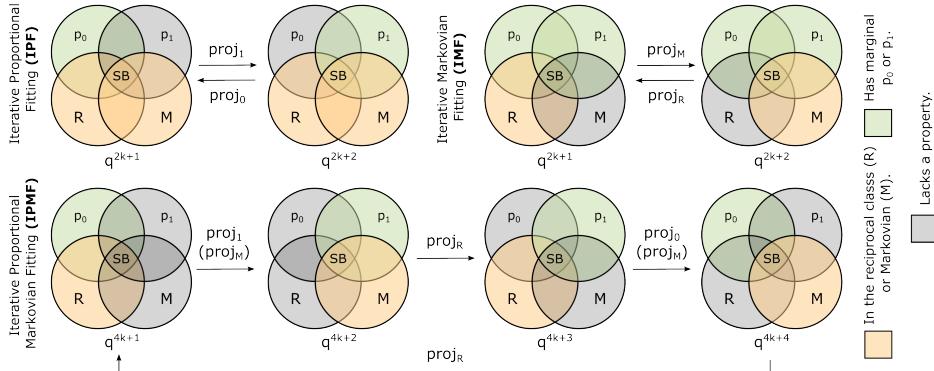


Figure 1: Diagrams of IPF, IMF, and unified IPMF procedure. All procedures aim to converge to the Schrödinger Bridge, i.e., a Markovian process in the reciprocal class, with marginals p_0 and p_1 .

This work specifically focuses on *unpaired* domain translation (Zhu et al., 2017, Fig. 2). In this setting, given two domains represented solely by unpaired samples, the goal is to transform a sample from the input domain into a sample related to it in the target domain. In this context, researchers usually use SB-based algorithms because they enforce **two** key properties: *the optimality property*,

054 ensuring similarity between the input and the translated object, and the *marginal matching property*,
 055 ensuring the translation of the input domain to the target domain. The motivation for relying on such
 056 specialized methods, rather than general text-to-data models, is further discussed in Appx. B.

057 Early works (De Bortoli et al., 2021; Vargas et al., 2021; Chen et al., 2021; Pavon et al., 2021) on
 058 using the SB for unpaired domain translation employed the well-celebrated **Iterative Proportional**
 059 **Fitting (IPF)** procedure (Kullback, 1968), also known as the Sinkhorn algorithm (Cuturi & Doucet,
 060 2014). The IPF procedure is initialized with a simple prior process satisfying the optimality prop-
 061 erty. It then refines this process iteratively through optimality-preserving transformations until the
 062 marginal matching property is achieved. In each iteration, IPF decreases the *forward* KL-divergence
 063 $KL(q^* \| q)$ between the current approximation q and the ground-truth Schrödinger Bridge q^* . How-
 064 ever, in practice, approximation errors may cause IPF to suffer from the “prior forgetting”, where
 065 the marginal matching property is achieved but optimality is lost (Vargas et al., 2024; 2021).

066 The **Iterative Markovian Fitting (IMF)** procedure (Shi et al., 2023; Peluchetti, 2023a; Gushchin
 067 et al., 2024) emerged as a promising competitor to IPF. Contrary to IPF, IMF starts from a stochastic
 068 process satisfying the marginal matching property and iteratively achieving optimality. Each iter-
 069 ation of IMF decreases the *reverse* KL-divergence $KL(q \| q^*)$ between the current approximation q
 070 and the ground-truth Schrödinger Bridge q^* (cf. with IPF). The approach generalizes rectified flows
 071 (Liu et al., 2022) to stochastic processes, which are employed (Liu et al., 2023b; Yan et al., 2024)
 072 in modern foundational generative models such as Stable Diffusion 3 (Egger et al., 2024). Like IPF,
 073 IMF may also accumulate errors. Specifically, it may fail to approximate data distributions due to
 074 an imperfect fit at each iteration, causing the marginal matching property to be lost.

075 In practice, to stabilize IMF training, prevent error accumulation and loss of marginal matching
 076 property, practitioners use a heuristic modification of IMF. This is a bidirectional procedure alter-
 077 nating between learning forward and backward processes, either by diffusion-based models in the
 078 **Diffusion** Schrödinger Bridge Matching (DSBM) algorithm (Shi et al., 2023) or GANs in **Adver-
 079 sarial** Schrödinger Bridge Matching (ASBM) algorithm (Gushchin et al., 2024). In this work, we
 080 investigate the properties of the heuristic modification of the IMF. **Our contributions:**

- 081 **Theory.** We show that the heuristic bidirectional IMF procedure used in practice is closely
 082 related to IPF—in fact, it *secretly* uses IPF iterations. Therefore, we propose calling the bidi-
 083 rectional IMF procedure **Iterative Proportional Markovian Fitting** (IPMF, §3.1). We prove
 084 that the IPMF procedure *exponentially* converges for Gaussians under various settings. We also
 085 guarantee that IPMF converges to q^* , if p_0 and p_1 have bounded supports and *conjecture* that
 086 IPMF converges under very general settings, offering a promising way of developing a unified
 087 framework for solving the SB problem (§3.2).
- 088 **Practice I.** We empirically validate our conjecture through a series of experiments, including the
 089 Gaussian setup (§4), toy 2D setups (§4.2), the Schrödinger Bridge benchmark (§4.3), setup with
 090 real-world colored MNIST and CelebA image data (§4.4).
- 091 **Practice II.** Thanks to the proposed IPMF framework, we introduce a novel way to trade-off be-
 092 tween generation quality and input-output similarity of Schrödinger Bridge solvers by designing
 093 the starting coupling. Empirically, we demonstrate on real-world image data that the proposed
 094 initializations outperform classical ones (§4.4).

095 These contributions demonstrate that the IPMF procedure has significant potential to **unify** a range of
 096 previously introduced SB methods—including IPF and IMF-based ones—in both discrete (Gushchin
 097 et al., 2024; De Bortoli et al., 2021) and continuous time (Shi et al., 2023; Peluchetti, 2023a; Vargas
 098 et al., 2021) settings, as well as their online versions (De Bortoli et al., 2024; Peluchetti, 2025;
 099 Karimi et al., 2024). Furthermore, the forward-backward IPMF framework could enable rectified
 100 flows to avoid error accumulation, making them even more powerful in generative modeling.

101 **Notations.** $\mathcal{P}_{2,ac}(\mathbb{R}^D)$ is a set of absolutely continuous distributions on \mathbb{R}^D with finite second
 102 moment and finite entropy. We fix $N \geq 1$ intermediate time moments and set $0 = t_0 < t_1 < \dots <$
 103 $t_N < t_{N+1} = 1$. Let $q \in \mathcal{P}_{2,ac}(\mathbb{R}^{D \times (N+2)})$ be an associated discrete stochastic process on this
 104 grid. For any such q , we denote the density at $(x_0, x_{t_1}, \dots, x_{t_N}, x_1) \in \mathbb{R}^{D \times (N+2)}$ as $q(x_0, x_{\text{in}}, x_1)$,
 105 with $x_{\text{in}} = (x_{t_1}, \dots, x_{t_N})$. W^ϵ is a Wiener process with volatility $\epsilon > 0$ and initial distribution
 106 p_0 . Let p^{W^ϵ} be its discretization, i.e., $p^{W^\epsilon}(x_0, x_{\text{in}}, x_1) = p_0(x_0) \prod_{n=1}^{N+1} \mathcal{N}(x_{t_n} | x_{t_{n-1}}, \epsilon(t_n - t_{n-1}) I_D)$,
 107 where $\mathcal{N}(\cdot | \cdot)$ is a conditional Gaussian distribution. $H(q)$ is the differential entropy of q .

108 **2 BACKGROUND**

110 This section details the study’s key concepts; §2.1 introduces the Schrödinger Bridge (SB) problem,
 111 §2.2 presents the Iterative Proportional Fitting (IPF), §2.3 describes the Iterative Markovian Fitting
 112 (IMF), §2.4 discusses the heuristic modification of the IMF (Bidirectional IMF).

113 Recall that the SB problem (Schrödinger, 1931), IPF, and IMF admit both discrete- and continuous-
 114 time setups leading to the same problem solution. Moreover, the explicit formulas for IPF and IMF
 115 in the discrete setting are expressed in terms of probability densities, which helps to convey the main
 116 idea of our paper. Thus, for the sake of presentation flow, **the main text focuses exclusively on the**
 117 **discrete setup**, while Appendix C presents the continuous setup.

118 **2.1 SCHRÖDINGER BRIDGE (SB) PROBLEM**

119 The SB problem with a Wiener prior in the discrete-time setting (De Bortoli et al., 2021), given the
 120 initial distribution $p_0(x_0)$ and the final distribution $p_1(x_1)$, is stated as

$$122 \min_{q \in \Pi_N(p_0, p_1)} \text{KL}(q(x_0, x_{\text{in}}, x_1) \| p^{W^e}(x_0, x_{\text{in}}, x_1)), \quad (1)$$

123 where $\Pi_N(p_0, p_1) \subset \mathcal{P}_{2,ac}(\mathbb{R}^{D \times (N+2)})$ is the subset of discrete stochastic processes with marginals
 124 $q(x_0) = p_0(x_0)$, $q(x_1) = p_1(x_1)$. The objective function in (1) admits a decomposition

$$126 \text{KL}(q(x_0, x_{\text{in}}, x_1) \| p^{W^e}(x_0, x_{\text{in}}, x_1)) = \text{KL}(q(x_0, x_1) \| p^{W^e}(x_0, x_1)) \\ 127 + \int \text{KL}(q(x_{\text{in}}|x_0, x_1) \| p^{W^e}(x_{\text{in}}|x_0, x_1)) q(x_0, x_1) dx_0 dx_1.$$

130 All $q(x_{\text{in}}|x_0, x_1)$ can be chosen independently of $q(x_0, x_1)$. Thus, we can consider $q(x_{\text{in}}|x_0, x_1) =$
 131 $p^{W^e}(x_{\text{in}}|x_0, x_1)$ and get $\text{KL}(q(x_{\text{in}}|x_0, x_1) \| p^{W^e}(x_{\text{in}}|x_0, x_1)) = 0$.

132 This leads to the **Static SB problem**:

$$133 \min_{q \in \Pi(p_0, p_1)} \text{KL}(q(x_0, x_1) \| p^{W^e}(x_0, x_1)), \quad (2)$$

135 where $\Pi(p_0, p_1) \subset \mathcal{P}_{2,ac}(\mathbb{R}^{D \times D})$ is the subset of joint distributions $q(x_0, x_1)$ s.t. $q(x_0) = p_0(x_0)$,
 136 $q(x_1) = p_1(x_1)$. Finally, the static SB objective can be expanded (Gushchin et al., 2023a, Eq. 7)

$$138 \text{KL}(q(x_0, x_1) \| p^{W^e}(x_0, x_1)) = \int \frac{\|x_1 - x_0\|^2}{2\epsilon} dq(x_0, x_1) - H(q(x_0, x_1)) + C, \quad (3)$$

140 that is equivalent to the objective of the *entropic optimal transport* (EOT) problem with the *quadratic*
 141 *cost* up to an additive constant (Cuturi, 2013; Peyré et al., 2019; Léonard, 2013; Genevay, 2019).

142 **2.2 ITERATIVE PROPORTIONAL FITTING (IPF)**

143 Early works on SB (Vargas et al., 2021; De Bortoli et al., 2021; Tang et al., 2024) propose computational
 144 methods based on the IPF procedure (Kullback, 1968). The IPF-based algorithm is started by
 145 setting the process $q^0(x_0, x_{\text{in}}, x_1) = p_0(x_0)p^{W^e}(x_{\text{in}}, x_1|x_0)$. Then, the algorithm alternates between
 146 two types of IPF projections, proj_1 and proj_0 , given by (De Bortoli et al., 2021, Prop. 2):

$$148 q^{2k+1} = \text{proj}_1 \left(q^{2k}(x_1) \underbrace{\prod_{n=0}^N q^{2k}(x_{t_n}|x_{t_{n+1}})}_{q^{2k}(x_1)q^{2k}(x_0, x_{\text{in}}|x_1)} \right) \stackrel{\text{def}}{=} p_1(x_1) \underbrace{\prod_{n=0}^N q^{2k}(x_{t_n}|x_{t_{n+1}})}_{q^{2k}(x_0, x_{\text{in}}|x_1)}, \quad (4)$$

$$152 q^{2k+2} = \text{proj}_0 \left(q^{2k+1}(x_0) \underbrace{\prod_{n=1}^{N+1} q^{2k+1}(x_{t_n}|x_{t_{n-1}})}_{q^{2k+1}(x_0)q^{2k+1}(x_{\text{in}}, x_1|x_0)} \right) \stackrel{\text{def}}{=} p_0(x_0) \underbrace{\prod_{n=1}^{N+1} q^{2k+1}(x_{t_n}|x_{t_{n-1}})}_{q^{2k+1}(x_{\text{in}}, x_1|x_0)}. \quad (5)$$

156 Thus, proj_1 and proj_0 replace marginal distributions $q(x_1)$ and $q(x_0)$ in $q(x_0, x_{\text{in}}, x_1)$ by $p_1(x_1)$ and
 157 $p_0(x_0)$ respectively. The constructed sequence $\{q^k\}$ converges to the solution of the SB problem
 158 q^* and causes the forward KL-divergence $\text{KL}(q^* \| q^k)$ to decrease monotonically at each iteration.

159 In practice, since the prior process p^{W^e} is used only for initialization, the imperfect fit may lead to
 160 a deviation from the SB solution at some iteration. This problem is called “prior forgetting” and
 161 was discussed in (Vargas et al., 2024, Appx. E.3). The authors of Vargas et al. (2021) consider a
 162 continuous analog of the IPF procedure using inversions of diffusion processes (see Appx. C.2).

162 2.3 ITERATIVE MARKOVIAN FITTING (IMF)
163

164 The Iterative Markovian Fitting (IMF) procedure (Peluchetti, 2023a; Shi et al., 2023; Gushchin
165 et al., 2024) emerged as a strong competitor to the IPF procedure. In contrast to IPF, IMF does not
166 suffer from the “prior forgetting”. The procedure is initialized with any $q^0 \in \Pi_N(p_0, p_1)$. Then it
167 alternates between reciprocal projection $\text{proj}_{\mathcal{R}}$ and Markovian projection $\text{proj}_{\mathcal{M}}$:

$$168 \quad q^{2k+1} = \text{proj}_{\mathcal{R}}(q^{2k}) \stackrel{\text{def}}{=} q^{2k}(x_0, x_1) p^{W^e}(x_{\text{in}} | x_0, x_1), \quad (6)$$

$$169 \quad q^{2k+2} = \text{proj}_{\mathcal{M}}(q^{2k+1}) \stackrel{\text{def}}{=} \underbrace{q^{2k+1}(x_0) \prod_{n=1}^{N+1} q^{2k+1}(x_{t_n} | x_{t_{n-1}})}_{\text{forward representation}} = \underbrace{q^{2k+1}(x_1) \prod_{n=0}^N q^{2k+1}(x_{t_n} | x_{t_{n+1}})}_{\text{backward representation}} \quad (7)$$

173 The reciprocal projection $\text{proj}_{\mathcal{R}}$ creates a new (in general, non-Markovian) process combining
174 the distribution $q(x_0, x_1)$ and $p^{W^e}(x_{\text{in}} | x_0, x_1)$. The latter is called the discrete Brownian
175 Bridge. The Markovian projection $\text{proj}_{\mathcal{M}}$ uses the set of transitional densities $\{q(x_{t_n} | x_{t_{n-1}})\}$
176 or $\{q(x_{t_n} | x_{t_{n+1}})\}$ to create a new Markovian process starting from $q(x_0)$ or $q(x_1)$ respectively.
177 Markovian projection keeps the marginal distributions at each timestep, but, in general, changes
178 the joint distributions between them. The sequence $\{q^k\}$ converges to the SB q^* and causes the
179 reverse KL-divergence $\text{KL}(q^k \| q^*)$ to decrease monotonically at each iteration (cf. with IPF). The
180 authors of Shi et al. (2023); Peluchetti (2023a) consider a continuous-time version of the IMF.

181 2.4 HEURISTIC BIDIRECTIONAL MODIFICATION OF IMF
182

183 The result of the Markovian projection (7) admits both forward and backward representation. To
184 learn the corresponding transitional densities, one uses neural networks $\{q_{\theta}(x_{t_n} | x_{t_{n-1}})\}$ (**forward**
185 **parametrization**) or $\{q_{\phi}(x_{t_n} | x_{t_{n+1}})\}$ (**backward parametrization**). The starting distributions are
186 as follows: $q_{\theta}(x_0) = p_0(x_0)$ for the forward parametrization and $q_{\phi}(x_1) = p_1(x_1)$ for the backward
187 parametrization. In practice, the alternation between representations of Markovian processes is used
188 in both implementations of continuous-time IMF by **DSBM** algorithm (Shi et al., 2023, Alg. 1)
189 based on diffusion models and discrete-time IMF by **ASBM** algorithm (Gushchin et al., 2024, Alg.
1) based on the GANs. This **bidirectional** procedure can be described as follows:

$$190 \quad q^{4k+1} = \underbrace{q^{4k}(x_0, x_1) p^{W^e}(x_{\text{in}} | x_0, x_1)}_{\text{proj}_{\mathcal{R}}(q^{4k})}, \quad q^{4k+2} = p(x_1) \underbrace{\prod_{n=0}^N q_{\phi}^{4k+1}(x_{t_{n-1}} | x_{t_n})}_{\text{backward parametrization}}, \quad (8)$$

$$195 \quad q^{4k+3} = \underbrace{q^{4k+2}(x_0, x_1) p^{W^e}(x_{\text{in}} | x_0, x_1)}_{\text{proj}_{\mathcal{R}}(q^{4k+2})}, \quad q^{4k+4} = p(x_0) \underbrace{\prod_{n=1}^{N+1} q_{\theta}^{4k+3}(x_{t_n} | x_{t_{n-1}})}_{\text{forward parametrization}}. \quad (9)$$

198 Thus, only one marginal is fitted perfectly, e.g., $q_{\theta}(x_0) = p_0(x_0)$ in the case
199 of forward representation, while the other marginal is only learned, e.g., $q_{\theta}(x_1) =$
200 $\int p_0(x_0) \prod_{n=1}^{N+1} q_{\theta}(x_{t_n} | x_{t_{n-1}}) dx_0 dx_1 \cdots dx_N \approx p_1(x_1)$.

202 3 ITERATIVE PROPORTIONAL MARKOVIAN FITTING

203 This section demonstrates that the heuristic bidirectional IMF (§2.4) is, in fact, the alternating imple-
204 mentation of IPF and IMF projections. §3.1 establishes that this heuristic defines the unified Iterative
205 Proportional Markovian Fitting (IPMF) procedure. §3.2 provides the analysis of the convergence of
206 the IPMF procedure under various settings, with the proofs provided in Appendix D.

208 3.1 BIDIRECTIONAL IMF IS IPMF

209 For a given Markovian process q , we recall that its IPF projections ($\text{proj}_0(q)$ (5) and $\text{proj}_1(q)$ (4))
210 replace the starting distribution $q(x_0)$ with $p_0(x_0)$ and $q(x_1)$ with $p_1(x_1)$, respectively. Further, the
211 process q^{4k+2} (8) is a result of a combination of the Markovian projection $\text{proj}_{\mathcal{M}}$ (7) in forward
212 parametrization and of the IPF projection proj_1 (4):

$$213 \quad q^{4k+2} = p(x_1) \underbrace{\prod_{n=0}^N q^{4k+1}(x_{t_n} | x_{t_{n+1}})}_{\text{proj}_1(\text{proj}_{\mathcal{M}}(q^{4k+1}))} = \text{proj}_1 \left(q^{4k+1}(x_1) \prod_{n=0}^N q^{4k+1}(x_{t_n} | x_{t_{n+1}}) \right).$$

216 Next, the process q^{4k+4} (9) results from a combination of the Markovian projection $\text{proj}_{\mathcal{M}}$ (7) in
 217 backward parametrization and of the IPF projection proj_0 (5):
 218

$$219 \quad q^{4k+3} = p(x_0) \prod_{n=1}^{N+1} q^{4k+3}(x_{t_n} | x_{t_{n-1}}) = \underbrace{\text{proj}_0(q^{4k+3}(x_0) \prod_{n=1}^{N+1} q^{4k+3}(x_{t_n} | x_{t_{n-1}}))}_{\text{proj}_0(\text{proj}_{\mathcal{M}}(q^{4k+3}))}.$$

$$220 \quad 221 \quad 222$$

223 Thus, we can represent the heuristic bidirectional IMF given by (9) and (8) as follows:
 224

225 **Iterative Proportional Markovian Fitting (Discrete time)**

$$226 \quad q^{4k+1} = \underbrace{q^{4k}(x_0, x_1) p^{W^\epsilon}(x_{\text{in}} | x_0, x_1)}_{\text{proj}_{\mathcal{R}}(q^{4k})}, \quad q^{4k+2} = p(x_1) \prod_{n=0}^N q^{4k+1}(x_{t_{n-1}} | x_{t_n}),$$

$$227 \quad 228 \quad 229$$

$$230 \quad q^{4k+3} = \underbrace{q^{4k+2}(x_0, x_1) p^{W^\epsilon}(x_{\text{in}} | x_0, x_1)}_{\text{proj}_{\mathcal{R}}(q^{4k+2})}, \quad q^{4k+4} = p(x_0) \prod_{n=1}^{N+1} q^{4k+3}(x_{t_n} | x_{t_{n-1}}).$$

$$231 \quad 232 \quad 233$$

234 The heuristic bidirectional IMF alternates between two IMF projections ($\text{proj}_{\mathcal{M}}(\text{proj}_{\mathcal{R}}(\cdot))$) during
 235 which the process “became more optimal” (step towards optimality property) and two IPF projec-
 236 tions (proj_0 and proj_1) during which the marginal fitting improves (step towards marginal matching
 237 property). We refer to this procedure as **Iterative Proportional Markovian Fitting (IPMF)**. An
 238 *IPMF step* consists of two IMF projections and two IPF projections. We hypothesize that IPMF
 239 converges from any initial process $q^0(x_0, x_{\text{in}}, x_1)$, unlike IPF and IMF, which require a specific
 240 form of the starting process. We emphasize that IPMF reduces to IMF when the initial coupling has
 241 the correct marginals p_0 and p_1 and has Brownian Bridge between the marginals. Similarly, if the
 242 initial coupling is Markovian, is in the reciprocal class, and has the correct initial marginal p_0 or p_1 ,
 243 then IPMF reduces to IPF. Fig. 1 visualizes these cases, clarifying the role of the initial coupling and
 244 the iterative steps. A similar analysis for continuous-time IPMF is provided in Appx. C.3.
 245

246 **3.2 THEORETICAL CONVERGENCE ANALYSIS IN VARIOUS CASES**

247 Our first result introduces a novel approach to quantify the optimality property for a Gaussian plan.
 248 We show that any 2D Gaussian distribution ($D \geq 1$) is an entropic OT plan between its marginals for
 249 a certain transport cost. Let $Q, S \in \mathbb{R}^{D \times D}$ be positive definite matrices ($Q, S \succ 0$) and $P \in \mathbb{R}^{D \times D}$
 250 be s.t. $Q - P(S)^{-1}P^\top \succ 0$. Define
 251

$$252 \quad \Xi(P, Q, S) \stackrel{\text{def}}{=} (S)^{-1}P^\top(Q - P(S)^{-1}P^\top)^{-1}. \quad (10)$$

253 **Theorem 3.1.** Let $q(x_0, x_1)$ be Gaussian with marginals $p = \mathcal{N}(\eta, Q)$ and $\tilde{p} = \mathcal{N}(\nu, S)$,
 254

$$255 \quad q(x_0, x_1) = \mathcal{N}\left(\begin{pmatrix} \eta \\ \nu \end{pmatrix}, \begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix}\right).$$

$$256 \quad 257$$

258 Let $A = \Xi(P, Q, S)$. Then q is the unique minimizer of

$$259 \quad 260 \quad \min_{q' \in \Pi(p, \tilde{p})} \left\{ \int (-x_1^\top A x_0) \cdot q'(x_0, x_1) dx_0 dx_1 - H(q') \right\}. \quad (11)$$

$$261 \quad 262$$

263 Problem (11) is the OT problem with the transport cost $c_A(x_0, x_1) := -x_1^\top A x_0$ and entropy regu-
 264 larization (with weight 1) (Cuturi, 2013; Genevay, 2019). In other words, for any 2D Gaussian dis-
 265 tribution q , there exists a matrix $A(q) \in \mathbb{R}^{D \times D}$ that defines the cost function for which q solves the
 266 EOT problem. We name $A(q)$ the **optimality matrix**. If q is such that $A(q) = \epsilon^{-1}I_D$, then the cor-
 267 responding transport cost is $c_A(x_0, x_1) = -\epsilon^{-1} \cdot \langle x_1, x_0 \rangle$ which is equivalent to $\epsilon^{-1} \cdot \|x_1 - x_0\|^2 / 2$.
 268 Consequently, q is the static SB (2) between its $q_0(x_0)$ and $q_1(x_1)$ for the prior W^ϵ , recall (3).

269 **Main result.** We prove the exponential convergence of IPMF (w.r.t. the parameters) to the solution
 q^* of the static SB problem (2) between p_0 and p_1 under certain settings.

270 **Theorem 3.2** (Convergence of IPMF for Gaussians). *Let $p_0 = \mathcal{N}(\mu_0, \Sigma_0)$ and $p_1 = \mathcal{N}(\mu_1, \Sigma_1)$ be
271 D -dimensional Gaussians. Assume that we run IPMF with $\epsilon > 0$, starting from some 2D Gaussian¹*

$$273 \quad q^0(x_0, x_1) = \mathcal{N} \left(\begin{pmatrix} \mu_0 \\ \nu \end{pmatrix}, \begin{pmatrix} \Sigma_0 & P_0 \\ P_0 & S_0 \end{pmatrix} \right) \in \mathcal{P}_{2,ac}(\mathbb{R}^D \times \mathbb{R}^D).$$

275 We denote the distribution obtained after k IPMF steps by

$$277 \quad q^{4k}(x_0, x_1) \stackrel{\text{def}}{=} \mathcal{N} \left(\begin{pmatrix} \mu_0 \\ \nu_k \end{pmatrix}, \begin{pmatrix} \Sigma_0 & P_k \\ P_k & S_k \end{pmatrix} \right) \in \mathcal{P}_{2,ac}(\mathbb{R}^D \times \mathbb{R}^D)$$

279 and $A_k \stackrel{\text{def}}{=} \Xi(P_k, \Sigma_0, S_k)$. Then in the following settings

- 281 • $D = 1$, discrete- or continuous-time IMF ($N = 1$), any $\epsilon > 0$;
- 282 • $D > 1$, discrete-time IMF, $\epsilon \gg 0$ (see Appendix D.4);

284 the following exponential convergence bounds hold:

$$285 \quad \|S_k^{-\frac{1}{2}} \Sigma_1 S_k^{-\frac{1}{2}} - I_D\|_2 \leq \alpha^{2k} \|S_0^{-\frac{1}{2}} \Sigma_1 S_0^{-\frac{1}{2}} - I_D\|_2,$$

$$287 \quad \|\Sigma_1^{-\frac{1}{2}}(\nu_k - \mu_1)\|_2 \leq \alpha^k \|\Sigma_1^{-\frac{1}{2}}(\nu_0 - \mu_1)\|_2, \quad \|A_k - \epsilon^{-1} I_D\|_2 \leq \beta^{2k} \|A_0 - \epsilon^{-1} I_D\|_2, \quad (12)$$

289 with $\alpha, \beta < 1$ and $\|\cdot\|_2$ being the spectral norm; α, β depend on IPMF type (discrete or
290 continuous), initial parameters S_0, ν_0, P_0 , marginal distributions p_0, p_1 , and ϵ . Consequently,
291 $\text{KL}(q^{4k} \| q^*), \text{KL}(q^* \| q^{4k}) \xrightarrow{k \rightarrow \infty} 0$.

292 *Proof idea.* An IPF step does not change the ‘‘copula’’, i.e., the information about the joint distribution
293 that is invariant w.r.t. changes in marginals p_0 and p_1 . In the Gaussian case can be represented
294 by the optimality matrix A_k (see Lemma D.3). In contrast, an IMF iteration changes the copula but
295 preserves the marginals. Next, we analyze closed formulas for the IMF step in the Gaussian case
296 (Peluchetti, 2023a; Gushchin et al., 2024) and show that the IMF step makes A_k closer to $\epsilon^{-1} I_D$.
297 Specifically, we verify the contractivity of each step w.r.t. A_k . \square

298 Our next result shows that the convergence of IPMF holds far beyond the Gaussian setting.

300 **Theorem 3.3** (Convergence of IPMF under boundness assumption). *Assume p_0 and p_1
301 have bounded supports. Then for both discrete-time and continuous-time IPMF it holds
302 $q^{4k}(x_0, x_1) \xrightarrow{w} q^*(x_0, x_1)$, where \xrightarrow{w} denotes weak convergence.*

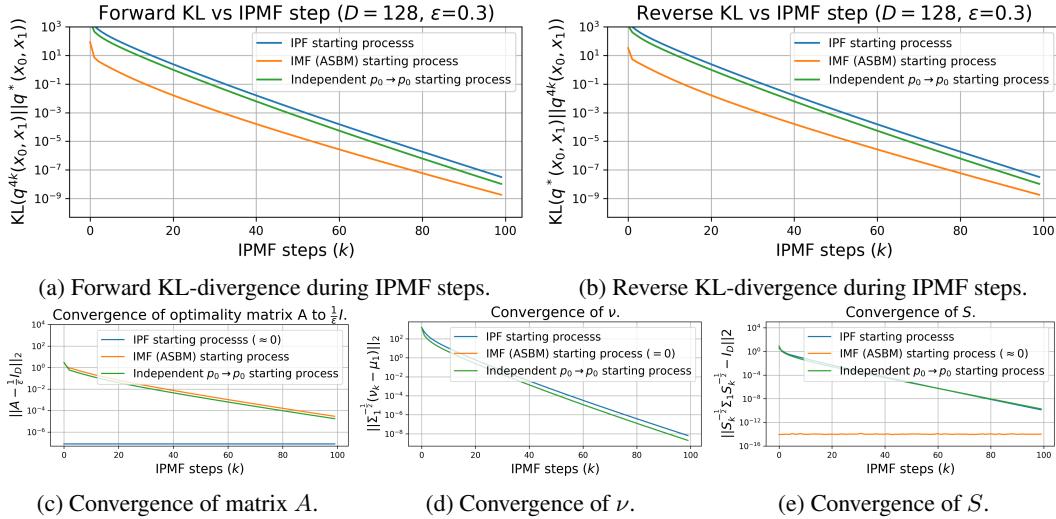
303 **General conjecture.** *Given our results, we believe that IPMF converges under very general settings
304 (beyond the Gaussian and bounded cases). Moreover, in the Gaussian case, we expect exponential
305 convergence for all $\epsilon > 0$, all D , and IMF types. We verify these claims experimentally (§4).*

306 **Related works and our novelty.** Our work provides the first theoretical analysis of bidirectional
307 IMF, whereas prior studies analyzed only vanilla IMF. (Shi et al., 2023, Theorem 8) and (Gushchin
308 et al., 2024, Theorem 3.6) proved sublinear convergence of IMF in reverse KL divergence for con-
309 tinuous and discrete cases. For IPF, sublinear convergence in forward KL divergence under mild
310 assumptions, as well as geometric convergence for Gaussians, are shown in (De Bortoli et al., 2021,
311 Propositions 4 and 43). Previous results cannot be directly generalized to IPMF. First, IPF and IMF
312 converge in different divergence measures, and a decrease in one does not imply a reduction in the
313 other. Second, IPF updates marginals at each step, so IMF must optimize toward a moving target,
314 whereas pure IMF has a fixed optimum. Unlike (Shi et al., 2023), which proves convergence only
315 from the IPF starting coupling, our analysis applies to arbitrary starting couplings. We also view the
316 starting coupling as a tunable hyperparameter and examine its effect in the next section.

317 4 EXPERIMENTAL ILLUSTRATIONS

318 This section provides empirical evidence that IPMF converges under a more general setting—
319 specifically, from any starting process—unlike IPF and IMF. The first goal is to achieve the same or
320 similar results across all used starting couplings and for both discrete-time (ASBM) and continuous-
321 time (DSBM) solvers on illustrative setups (§4.1, §4.2, §4.3, §4.4). The second one is to highlight

322 ¹We assume that $q^0(x_0) = p_0(x_0)$, i.e., the initial process starts at p_0 at time $t = 0$. This is reasonable, as
323 after the first IPMF round the process will satisfy this property thanks to the IPF projections involved.

Figure 2: Convergence of IPMF procedure with different starting process q^0 .

that, while all initializations converge to qualitatively similar outcomes, in practice, some offer better generation quality and others better input-output similarity on real-world data, due to different starting points. This allows one to choose initializations based on specific task requirements (§4.4).

In §3.1 and Appx. C we show that the bidirectional IMF and the proposed IPMF differ only in the initial starting process. Since both practical implementations of continuous-time IMF (Shi et al., 2023, Alg. 1) and discrete-time IMF (Gushchin et al., 2024, Alg. 1) use the considered bidirectional version, we use practical algorithms introduced in these works, i.e., Diffusion Schrödinger Bridge Matching (**DSBM**) and Adversarial Schrödinger Bridge Matching (**ASBM**) respectively.

Experimental setups. We consider multivariate Gaussian distributions for which we have closed-form IPMF update formulas, an illustrative 2D example, the Schrödinger Bridges Benchmark (Gushchin et al., 2023b) and real-life image data distributions, i.e., the colored MNIST dataset and the CelebA dataset (Liu et al., 2015b). All technical details can be found in the Appx. E.

Starting processes. We focus on running the IPMF procedure from various initializations, referred to as *starting processes*. The starting processes are constructed by selecting different couplings $q^0(x_0, x_1)$ and incorporating the Brownian Bridge process $W_{|x_0, x_1}^{\epsilon}$ (i.e., W^{ϵ} conditioned on x_0, x_1). In the discrete-time setup, for each selected coupling $q^0(x_0, x_1)$ we construct the starting process as $q^0(x_0, x_{in}, x_1) = q^0(x_0, x_1)p^{W^{\epsilon}}(x_{in}|x_0, x_1)$ and $T^0 = \int W_{|x_0, x_1}^{\epsilon} dq^0(x_0, x_1)$ for the continuous-time case (see Appx. C). We consider three “starting” scenarios: IMF-like starting process of the form $q^0(x_0, x_1) = p_0(x_0)p_1(x_1)$, IPF-like starting process of the form $q^0(x_0, x_1) = p_0(x_0)p^{W^{\epsilon}}(x_1|x_0)$, and various starting processes which cannot be used to initialize IMF or IPF. The latter demonstrates that IPMF converges under a more general setting.

The results of DSBM and ASBM with different starting processes are denoted as (D/A)SBM- $*$ coupling*, e.g., DSBM-IMF for DSBM with IMF as the starting process.

Remark. Notably, in practice, both the IPF and IMF procedures can be recovered through different implementations. For example, IPF can be realized through (D/A)SBM with the IPF starting coupling, or alternatively via DSB (De Bortoli et al., 2021). IMF, in turn, can be implemented using (D/A)SBM with a one-directional parametrization. However, in practice, matching-based methods exhibit superior performance (Shi et al., 2023). Furthermore, the authors of (Shi et al., 2023; Peluchetti, 2023a; Gushchin et al., 2024) observed that bidirectional IMF does not accumulate approximation errors, whereas relying solely on one direction parametrization leads to error accumulation and eventual divergence (De Bortoli et al., 2024, Appx. I). Therefore, we argue that a direct comparison between the IPMF procedure and previous practical implementations is unnecessary.

4.1 HIGH DIMENSIONAL GAUSSIANS

This section experimentally validates the convergence of IPMF for the multivariate Gaussians (see our **General conjecture**, §3.2). We use explicit formulas for the discrete IPF and IMF (Gushchin et al., 2024, Thm. 3.8) and follow the setup from (Gushchin et al., 2023a, Sec. 5.2). Specifically,

	Algorithm Type	$\epsilon = 0.1$				$\epsilon = 1$				$\epsilon = 10$			
		$D=2$	$D=16$	$D=64$	$D=128$	$D=2$	$D=16$	$D=64$	$D=128$	$D=2$	$D=16$	$D=64$	$D=128$
		Varies	1.94	13.67	11.74	11.4	1.04	9.08	18.05	15.23	1.40	1.27	2.36
DSBM-IMF		1.21	4.61	9.81	19.8	0.68	0.63	5.8	29.5	0.23	5.45	68.9	362
DSBM-IPF		2.55	17.4	15.85	17.45	0.29	0.76	4.05	29.59	0.35	3.98	83.2	210
DSBM- <i>Identity</i>	IPMF	1.23	18.86	24.71	21.39	0.26	0.69	7.46	29.5	0.13	3.99	88.2	347
ASBM-IMF [†]		0.89	8.2	13.5	53.7	0.19	1.6	5.8	10.5	0.13	0.4	1.9	4.7
ASBM-IPF		3.06	14.37	44.35	32.5	0.18	1.68	9.25	20.47	0.13	0.36	2.28	4.97
ASBM- <i>Identity</i>		0.58	24.9	29.1	85.2	0.19	2.44	8.28	11.61	0.12	0.35	1.66	2.86
SF ² M-Sink [†]	Bridge Matching	0.54	3.7	9.5	10.9	0.2	1.1	9	23	0.31	4.9	319	819

Table 1: Comparisons of $c\mathbb{W}_2^2$ -UVP \downarrow (%) between the static SB solution $q^*(x_0, x_1)$ and the learned solution on the SB benchmark. The best metric is **bolded**. Results marked with \dagger are taken from (Gushchin et al., 2024) and (Gushchin et al., 2023b). The results of DSBM and ASBM algorithms starting from different starting processes are denoted as $(D/A)SBM-*$ name of starting process*

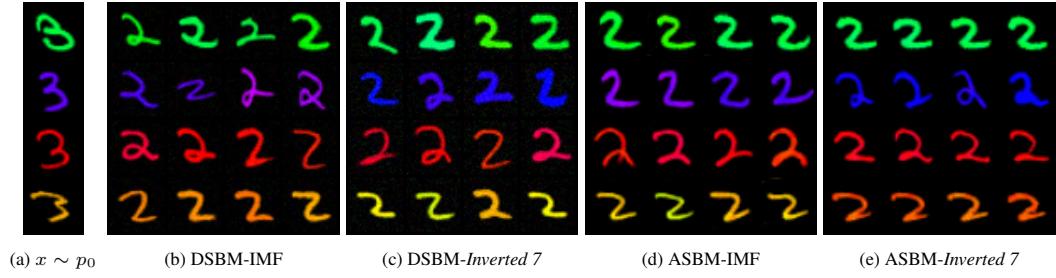


Figure 3: Samples from DSBM and ASBM learned with IPMF using IMF and q^{inv7} starting processes on Colored MNIST 3→2 (32×32) translation for $\epsilon = 10$.

we consider the Schrödinger Bridge (SB) problem with $D = 128$ and $\epsilon = 0.3$, where the marginal distributions are Gaussian: $p_0 = \mathcal{N}(\mathbf{0}, \Sigma_0)$ and $p_1 = \mathcal{N}(\mathbf{3}, \Sigma_1)$, with $\mathbf{0} \in \mathbb{R}^D$ denoting the vector of all zeros and $\mathbf{3} \in \mathbb{R}^D$ - the vector of all threes. The eigenvectors of Σ_0 and Σ_1 are sampled from the uniform distribution on the unit sphere. Their eigenvalues are sampled from the loguniform distribution on $[-\log 2, \log 2]$. We choose $N = 3$ intermediate time points uniformly between $t = 0$ and $t = 1$ and run 100 steps of the IPMF procedure, each consisting of two IPF projections and two Markovian–Reciprocal projections (see §3.1). Denote as $q^{4k} = q^{4k}(x_0, x_1)$ the IPMF output at the k -th step and let $q^* = q^*(x_0, x_1)$ be the solution of the static SB. Fig. 2 shows that both the forward KL ($q^* \| q^{4k}$) and reverse KL($q^{4k} \| q^*$) divergences converge. The quantities from (12) converge to zero exponentially, as expected. Note that particular starting processes can cause an immediate match of the parameters: an IMF starting process that already has the required marginals converges only in optimality, while IPF converges to the true marginals with the unchanged optimality matrix.

4.2 ILLUSTRATIVE 2D EXAMPLE

We consider the SB problem with $\epsilon = 0.1$, p_0 being a Gaussian distribution on \mathbb{R}^2 and p_1 being the Swiss roll. We train DSBM and ASBM algorithms using IMF and IPF starting processes. Additionally, we consider *Identity* starting processes induced by $q^0(x_0, x_1) = p_0(x_0)\delta_{x_0}(x_1)$, i.e. we set $x_1 = x_0$ after sampling $x_0 \sim p(x_0)$. The purpose of testing the *Identity* coupling is to verify that IPMF converges even when initialized with a naive coupling. Furthermore, we hypothesize that this coupling is the best in terms of the optimality property. We present the starting processes and the results in Fig. 7 in Appendix E. In all the cases, we observe similar results.

4.3 EVALUATION ON THE SB BENCHMARK

We use the SB mixtures benchmark (Gushchin et al., 2023b) with the ground truth solution to the SB problem to test ASBM and DSBM with IMF, IPF, and *Identity* (§4.2) as the starting processes. The benchmark provides continuous distribution pairs p_0, p_1 for dimensions $D \in \{2, 16, 64, 128\}$ that have known SB solutions for volatility $\epsilon \in \{0.1, 1, 10\}$. To evaluate the quality of the recovered SB solutions, we use the $c\mathbb{W}_2^2$ -UVP metric (Gushchin et al., 2023b). Tab. 1 provides the results. We also include the results of the standard baseline for Bridge Matching tasks called SF²M-Sink (Gushchin et al., 2023b). We provide training details and additional results in Appx. E. All starting processes yield similar results within each solver type (DSBM or ASBM).

4.4 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

To test IPMF on real data, we consider two unpaired image-to-image translation setups: *colorized 3 → colorized 2* digits from the MNIST dataset with 32×32 resolution size and *male → female* faces from the CelebA dataset with 64×64 resolution size.

	Initialisation (coupling)				DSBM				ASBM			
	IMF	DDPM	SD	Identity	IMF	DDPM	SD	Identity	IMF	DDPM	SD	Identity
FID \downarrow	0.0	35.23	28.77	61.56	13.65	<u>14.84</u>	22.65	33.11	19.32	21.84	20.64	<u>19.58</u>
MSE(x_0, \hat{x}_1) \downarrow	0.16	0.02	0.02	0.0	0.16	0.09	<u>0.04</u>	0.03	0.17	0.07	0.08	<u>0.07</u>

Table 2: Qualitative results on CelebA (64×64) for *male* \rightarrow *female* translation with ASBM and DSBM across different starting processes. Generative quality (FID \downarrow) and similarity (MSE(x_0, \hat{x}_1) \downarrow) are reported on the test set. Best and second-best values for solvers are marked in **bold** and underline, respectively.

Colored MNIST. We construct train and test sets by RGB colorization of MNIST digits from corresponding train and test sets of classes “2” and “3”. We train ASBM and DSBM algorithms starting from the IMF process. Additionally, we test a starting process induced by the independent coupling of the distribution of colored digits of class “3” (p_0) and the distribution of colored digits of class “7” with inverted RGB channels ($p^{\text{inv7}}(x_1)$). We refer to this process as *Inverted 7*, i.e., $q^0(x_0, x_1) = p_0(x_0)p^{\text{inv7}}(x_1)$ (see Fig. 10). Appx. E contains further technical details. We learn DSBM and ASBM on the *train* set of digits and visualize the translated *test* images (Fig. 3).

Both DSBM and ASBM algorithms starting from both IMF and *Inverted 7* starting process fit the target distribution of colored MNIST digits of class “2” and preserve the color of the input image during translation. This supports that the limiting behavior of IPMF resembles the solution of SB.

CelebA. We consider the IMF-OT variation of the IMF starting process. It is induced by a mini-batch optimal transport coupling $q^{\text{OT}}(x_0, x_1)$ (Tong et al., 2024; Pooladian et al., 2023). We also test *Identity* (§4.2) starting process. Additionally, we test starting processes induced by *DDPM SDEdit* and *SD SDEdit* couplings, which is the SDEdit method (Meng et al., 2022) used for *male* \rightarrow *female* translation with (1) DDPM (Ho et al., 2020) model trained on the female part of CelebA and (2) Stable Diffusion v1.5 (Rombach et al., 2022) with designed text prompt, see Appx. E.3. The aim of introducing such a coupling is to test the hypothesis that well-designed SDEdit couplings can improve the metrics of both properties. We use approximately the same number of parameters for the DSBM and the ASBM generators and 10% of images for evaluation (see Appx. E, other details).

We provide qualitative results in Fig. 4. Additionally, we report the final FID score (generation quality) and the Mean Squared Error (MSE) between the input x_0 and the translated image \hat{x}_1 (input-output similarity) in Table 2. Figure 4 illustrates that the models (1) converge to the target distribution and (2) preserve semantic alignment between input and output (e.g., hair color, background). Despite this, their outputs differ due to the influence of initialization on optimization trajectories. For DSBM, our couplings (SD SDEdit, DDPM SDEdit, *Identity*) maintain generation quality while greatly improving similarity. For ASBM, they boost similarity but slightly reduce quality. Results with

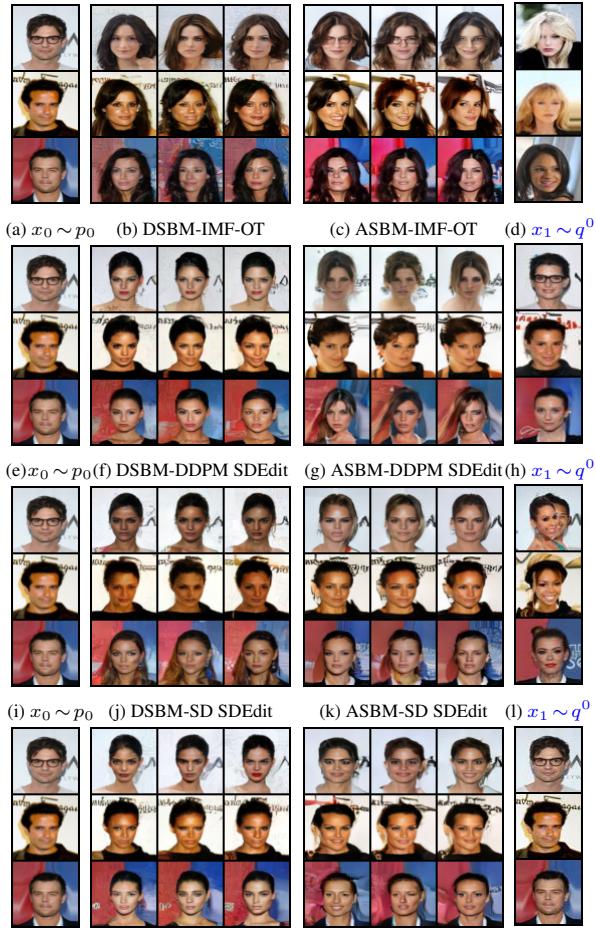


Figure 4: Results of CelebA at 64×64 size for *male* \rightarrow *female* translation learned with ASBM and DSBM using various starting processes for $\epsilon = 1$. Samples $x_0 \sim p_0$ are samples from the source marginal. Samples $x_1 \sim q^0$ are samples from the initialization coupling $q^0(x_1|x_0)$ for a given x_0 from p_0 .

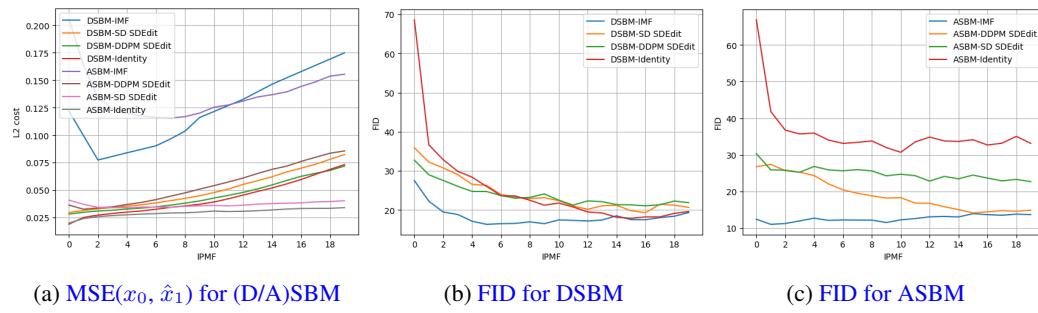


Figure 5: Test metrics in CelebA *male* → *female* (64×64) as a function of IPMF iteration for various starting couplings.

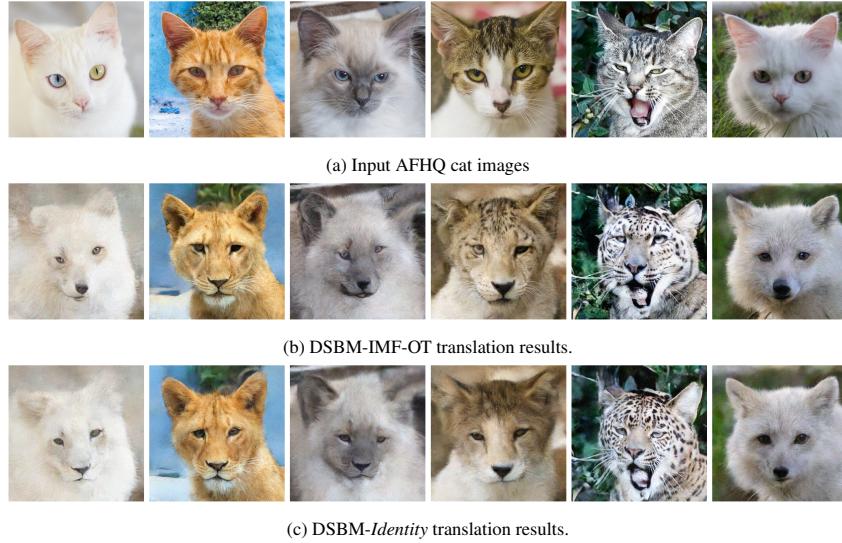


Figure 6: Results of AFHQ at 512×512 size for *cat* → *wild* translation learned with DSBM using various starting processes for $\epsilon = 1$.

Identity couplings support our hypothesis (§4.2), whereas experiments with SDEdit offer only partial validation and yield moderate FID.

Furthermore, in Figure 5 we present a quantitative study of IPMF convergence, reporting FID (Jayasumana et al., 2024) and the Mean Squared Error (MSE) between the inputs and the translated outputs as functions of the IPMF iteration. Both metrics are computed on the CelebA *male* → *female* (64×64) test set. We observe a consistent pattern: the higher the similarity or generation quality of the coupling, the better the model performs on the corresponding metric. For additional quantitative results on CelebA 64×64 , we refer the reader to Appendix E.4.

AFHQ. For AFHQ (Choi et al., 2020), we consider classes cat and wild with 512×512 resolution images. Each class contains approximately 5000 samples. We run DSBM with IMF-OT and Identity couplings and present the results in Figure 6 and Table E.10. We observe similar quality-similarity tradeoff as CelebA setup. We provide technical details for this setup in Appendix E.10.

For a broader discussion of the potential implications and limitations of this work, see Appendix A.

5 BROADER IMPACT

This paper presents work whose goal is to advance the field of Artificial Intelligence, Machine Learning and Generative Modeling. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

Coupling	FID↓	MSE↓	CMMD↓
DSBM-IMF-OT	53.42	0.085	0.591
DSBM-Identity	65.19	0.054	0.731

Table 3: Results of AFHQ at 512×512 size for *cat* → *wild* translation learned with DSBM using various starting processes for $\epsilon = 1$.

540
541

6 LLM USAGE

542
543 Large Language Models (LLMs) were used only to assist with rephrasing sentences and improving
544 the clarity of the text. All scientific content, results, and interpretations in this paper were developed
545 solely by the authors.546
547

REFERENCES

548
549 Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, and Andreas Krause. The schrödinger bridge be-
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood training of schrödinger bridge using forward-backward sdes theory. In *International Conference on Learning Representations*, 2021.
Tianrong Chen, Guan-Horng Liu, Molei Tao, and Evangelos Theodorou. Deep momentum multi-marginal Schrödinger bridge. *Advances in Neural Information Processing Systems*, 36:57058–57086, 2023a.
Yongxin Chen, Giovanni Conforti, Tryphon T Georgiou, and Luigia Ripani. Multi-marginal Schrödinger bridges. In *International Conference on Geometric Science of Information*, pp. 725–732. Springer, 2019.
Zehua Chen, Guande He, Kaiwen Zheng, Xu Tan, and Jun Zhu. Schrodinger bridges beat diffusion models on text-to-speech synthesis. *arXiv preprint arXiv:2312.03491*, 2023b.
Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8188–8197, 2020.
Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural information processing systems*, 26, 2013.
Marco Cuturi and Arnaud Doucet. Fast computation of Wasserstein barycenters. 2014.
Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger bridge with applications to score-based generative modeling. *Advances in Neural Information Processing Systems*, 34:17695–17709, 2021.
Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, and Arnaud Doucet. Schrodinger bridge flow for unpaired data translation. *Advances in Neural Information Processing Systems*, 37:103384–103441, 2024.
Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. 2024.
Aude Genevay. *Entropy-regularized optimal transport for machine learning*. PhD thesis, Paris Sciences et Lettres (ComUE), 2019.
Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry Vetrov, and Evgeny Burnaev. Entropic neural optimal transport via diffusion processes. In *Advances in Neural Information Processing Systems*, 2023a.
Nikita Gushchin, Alexander Kolesov, Petr Mokrov, Polina Karpikova, Andrey Spiridonov, Evgeny Burnaev, and Alexander Korotin. Building the bridge of schr\"odinger: A continuous entropic optimal transport benchmark. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023b.
Nikita Gushchin, Daniil Selikhanovych, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin. Adversarial schrödinger bridge matching. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=L3Knnigicu>.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 595 *Neural Information Processing Systems*, 33:6840–6851, 2020.

596

597 Samuel Howard, Peter Potapchik, and George Deligiannidis. Schrödinger bridge matching for tree-
 598 structured costs and entropic Wasserstein barycentres. *arXiv preprint arXiv:2506.17197*, 2025.

599 Ilia Igashov, Arne Schneuing, Marwin Segler, Michael M Bronstein, and Bruno Correia. Retro-
 600 bridge: Modeling retrosynthesis with markov bridges. In *The Twelfth International Conference*
 601 *on Learning Representations*.

602

603 Sadeep Jayasumana, Sri Kumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
 604 Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In *Pro-
 605 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9307–
 606 9315, 2024.

607 Mohammad Reza Karimi, Ya-Ping Hsieh, and Andreas Krause. Sinkhorn flow as mirror flow: A
 608 continuous-time framework for generalizing the sinkhorn algorithm. In *International Conference*
 609 *on Artificial Intelligence and Statistics*, pp. 4186–4194. PMLR, 2024.

610 Jun Hyeong Kim, Seonghwan Kim, Seokhyun Moon, Hyeongwoo Kim, Jeheon Woo, and Woo Youn
 611 Kim. Discrete diffusion schrödinger bridge matching for graph transformation. In *NeurIPS*
 612 *2024 Workshop on AI for New Drug Modalities*, 2024. URL [https://openreview.net/
 613 forum?id=p0KYWGpAHB](https://openreview.net/forum?id=p0KYWGpAHB).

614

615 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 616 *arXiv:1412.6980*, 2014.

617 Peter E. Kloeden. *Numerical solution of stochastic differential equations / Peter E. Kloeden, Eckhard*
 618 *Platen*. Applications of mathematics; v. 23. Springer, Berlin, 1992. ISBN 0387540628.

619

620 Grigoriy Ksenofontov and Alexander Korotin. Categorical Schrödinger bridge matching. In *Forty-
 621 second International Conference on Machine Learning*, 2025. URL [https://openreview.net/
 622 forum?id=RB1y0nOr2h](https://openreview.net/forum?id=RB1y0nOr2h).

623 Solomon Kullback. Probability densities with given marginals. *The Annals of Mathematical Statis-
 624 tics*, 39(4):1236–1243, 1968.

625 Hugo Lavenant, Stephen Zhang, Young-Heon Kim, and Geoffrey Schiebinger. Towards a mathe-
 626 matical theory of trajectory inference. *arXiv preprint arXiv:2102.09204*, 2021.

627

628 Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal
 629 transport. *arXiv preprint arXiv:1308.0215*, 2013.

630

631 Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
 632 Anandkumar. I^2 sb: Image-to-image schrödinger bridge. *The Fortieth International Conference*
 633 *on Machine Learning*, 2023a.

634

635 Xingchao Liu, Lemeng Wu, Mao Ye, et al. Let us build bridges: Understanding and extending
 636 diffusion generative models. In *NeurIPS 2022 Workshop on Score-Based Methods*.

637

638 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
 639 with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2022.

640

641 Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
 642 high-quality diffusion-based text-to-image generation. In *The Twelfth International Conference*
 643 *on Learning Representations*, 2023b.

644

645 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 646 In *Proceedings of the IEEE international conference on computer vision*, pp. 3730–3738, 2015a.

647

648 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 649 In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015b.

650

651 Jan R Magnus and Heinz Neudecker. *Matrix differential calculus with applications in statistics and*
 652 *econometrics*. John Wiley & Sons, 2019.

648 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 649 Sdedit: Guided image synthesis and editing with stochastic differential equations. In *International*
 650 *Conference on Learning Representations*, 2022.

651 Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do
 652 actually converge? In *International conference on machine learning*, pp. 3481–3490. PMLR,
 653 2018.

654 Michele Pavon, Giulio Trigila, and Esteban G Tabak. The data-driven schrödinger bridge. *Commu-*
 655 *niques on Pure and Applied Mathematics*, 74(7):1545–1573, 2021.

656 Stefano Peluchetti. Diffusion bridge mixture transports, schrödinger bridge problems and generative
 657 modeling. *Journal of Machine Learning Research*, 24(374):1–51, 2023a.

658 Stefano Peluchetti. Non-denoising forward-time diffusions. *arXiv preprint arXiv:2312.14589*,
 659 2023b.

660 Stefano Peluchetti. BM\$^2\$: Coupled schrödinger bridge matching. *Transactions on Machine*
 661 *Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=fqkq1MgONB>.

662 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. *Foundations and Trends® in*
 663 *Machine Learning*, 11(5-6):355–607, 2019.

664 Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
 665 man, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch cou-
 666 plings. *arXiv preprint arXiv:2304.14772*, 2023.

667 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 668 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-*
 669 *ference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

670 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 671 image segmentation. In *Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18*, pp. 234–241. Springer, 2015.

672 Alina Schneider, Gastao Cruz, Camila Munoz, Reza Hajosseiny, Thomas Kuestner, Karl P Kunze,
 673 Radhouene Neji, René M Botnar, and Claudia Prieto. Whole-heart non-rigid motion corrected
 674 coronary MRA with autofocus virtual 3D iNAV. *Magnetic Resonance Imaging*, 87:169–176,
 675 2022.

676 Erwin Schrödinger. *Über die umkehrung der naturgesetze*. Verlag der Akademie der Wissenschaften
 677 in Kommission bei Walter De Gruyter u . . . , 1931.

678 Yunyi Shen, Renato Berlinghieri, and Tamara Broderick. Multi-marginal Schrödinger bridges with
 679 iterative reference refinement. In *International Conference on Artificial Intelligence and Statistics*,
 680 pp. 3817–3825. PMLR, 2025.

681 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
 682 bridge matching. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 683 URL <https://openreview.net/forum?id=qy07OHsJT5>.

684 Marta Gentiloni Silveri, Giovanni Conforti, and Alain Durmus. Exponential convergence guarantees
 685 for iterative markovian fitting. *arXiv preprint arXiv:2510.20871*, 2025.

686 Nalini M Singh, Neel Dey, Malte Hoffmann, Bruce Fischl, Elfar Adalsteinsson, Robert Frost,
 687 Adrian V Dalca, and Polina Golland. Data consistent deep rigid MRI motion correction. In
 688 *Medical imaging with deep learning*, pp. 368–381. PMLR, 2024.

689 Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, Andreas Krause,
 690 and Charlotte Bunne. Aligned diffusion schrödinger bridges. In *Uncertainty in Artificial Intelli-*
 691 *gence*, pp. 1985–1995. PMLR, 2023.

702 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=St1giarCHLP>.

703

704

705 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*.

706

707

708

709 Daniel W Stroock. *An introduction to Markov processes*. Springer, 2005.

710

711 Zhicong Tang, Tiankai Hang, Shuyang Gu, Dong Chen, and Baining Guo. Simplified diffusion

712 Schrödinger bridge. *arXiv preprint arXiv:2403.14623*, 2024.

713 Panagiotis Theodoropoulos, Augustinos D. Saravacos, Evangelos A. Theodorou, and Guan-Horng

714 Liu. Momentum multi-marginal schrödinger bridge matching, 2025. URL <https://arxiv.org/abs/2506.10168>.

715

716

717 Alexander Y Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume

718 Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow

719 matching. In *International Conference on Artificial Intelligence and Statistics*, pp. 1279–1287.

720 PMLR, 2024.

721

722 Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger

723 bridges via maximum likelihood. *Entropy*, 23(9):1134, 2021.

724

725 Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets variational

726 inference: Controlled monte carlo diffusions. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=PP1rudnxW>.

727

728 Thomas P Wihler. On the Hölder continuity of matrix functions for normal matrices. *Journal of*

729 *inequalities in pure and applied mathematics*, 10(10), 2009.

730

731 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,

732 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art

733 natural language processing. In *Proceedings of the 2020 conference on empirical methods in*

734 *natural language processing: system demonstrations*, pp. 38–45, 2020.

735

736 Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with

737 denoising diffusion gans. In *International Conference on Learning Representations*.

738

739 Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, qiang liu, and Jiashi Feng. PeR-

740 Flow: Piecewise rectified flow as universal plug-and-play accelerator. 2024. URL <https://openreview.net/forum?id=qrlguyKu7a>.

741

742 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation

743 using cycle-consistent adversarial networks. In *Proceedings of the IEEE international conference*

744 *on computer vision*, pp. 2223–2232, 2017.

745

746

747

748

749

750

751

752

753

754

755

756	APPENDIX CONTENTS	
757		
758		
759	A Discussion	15
760		
761	B Motivation for SB over Foundational Models	16
762		
763	C Continuous-time Schrödinger Bridge Setup	16
764		
765	C.1 Schrödinger Bridge (SB) Problem in continuous-time	16
766	C.2 Iterative Proportional Fitting (IPF) for continuous-time	17
767	C.3 Iterative Markovian Fitting (IMF) for continuous-time	18
768	C.4 Iterative Proportional Markovian Fitting (IPMF) for continuous-time	18
769		
770		
771	D Theoretical Analysis for Gaussians	19
772		
773	D.1 Gaussian plans as entropic optimal transport plans	19
774	D.2 IPF step analysis	20
775	D.3 Discrete IMF step analysis: multidimensional case for large ϵ	23
776	D.4 Proof of D-IPMF Convergence Theorem 3.2, $D > 1$	29
777	D.5 IMF step analysis in 1D	31
778	D.6 Proof of IPMF Convergence Theorem 3.2, $D = 1$	35
779	D.7 Proof of IPMF General Convergence Theorem 3.3	35
780		
781		
782		
783	E Experimental supplementary	37
784		
785	E.1 Illustrative 2D example visualization.	37
786	E.2 SB benchmark BW_2^2 -UVP	38
787	E.3 CelebA SDEdit starting processes description	38
788	E.4 CelebA experiment additional quantitative study	38
789	E.5 General experimental details	39
790	E.6 Illustrative 2D examples details	40
791	E.7 SB benchmark details	41
792	E.8 CMNIST details	41
793	E.9 CelebA details	42
794	E.10 AFHQ details	42
795	E.11 Computational resources	43
796		
797		
798		
799		
800		
801		
802	A DISCUSSION	
803		

Potential impact. The IPMF procedure demonstrates a potential to overcome the error accumulation problem observed in distillation methods—such as rectified flows (Liu et al., 2022; 2023b)—which are used to accelerate foundational image generation models like StableDiffusion 3 in (Esser et al., 2024). These distillation methods are the limit of one-directional IMF procedure with $\epsilon \rightarrow 0$. The one-directional version accumulates errors, which may lead to the divergence (De Bortoli et al., 2024, Appx. I). The use of the bidirectional version (with $\epsilon > 0$) should correct the marginals and make diffusion trajectories straighter to accelerate the inference of diffusion models. We believe

810	Method	View of bidirectional procedure	Convergence guarantees	Starting coupling
811	DSBM (Shi et al., 2023)	A heuristic approach for mitigating error accumulation	Only for one-directional continuous-time procedure with IMF and IPF starting couplings	Only IMF and IPF
812	ASBM (Gushchin et al., 2024)	A heuristic approach for mitigating error accumulation	Only for one-directional discrete-time procedure with IMF starting couplings	Only IMF
813	IPMF (our work)	A theoretically grounded approach for mitigating error accumulation and managing the trade-off between input-output similarity and generative quality	For Gaussian marginals in discrete and continuous time (Theorem 3.2), and convergence for bounded-support distributions in discrete and continuous time (Theorem 3.3).	Arbitrary

Table 4: Positioning of our IPMF framework relative to prior bidirectional SB heuristics.

820
821
822
823 that considering such distillation techniques from the IPMF perspective may help to overcome the
824 current limitations of these techniques.

825 Another potential impact of our contribution is the advancement of multi-marginal SB methods.
826 This direction has been explored only rarely in the literature (Chen et al., 2019; 2023a; Shen et al.,
827 2025; Howard et al., 2025; Lavenant et al., 2021; Theodoropoulos et al., 2025), mainly because the
828 multi-marginal case is inherently difficult: it requires solving multiple two-marginal (classical) SB
829 instances. A notable examples are (Howard et al., 2025; Theodoropoulos et al., 2025), which extends
830 the IMF procedure to the multi-marginal setting. Within this context, our framework provides a way
831 to select a suitable starting coupling for initialization, thereby offering a potential route to reducing
832 the training burden. In this sense, our contribution may encourage more systematic and deeper
833 analysis of multi-marginal SB.

834 **Limitations.** While we show the proof of exponential convergence of the IPMF procedure in the
835 Gaussian case in various settings, and present a wide set of experiments supporting this procedure,
836 the proof of its convergence in the general case still remains a promising avenue for future work.

837 B MOTIVATION FOR SB OVER FOUNDATIONAL MODELS

840 At first glance, one might consider foundational models as potential baselines, since translation via
841 large text-to-image models trained on extensive image corpora may work adequately on the bench-
842 mark datasets we consider (CelebA, MNIST). However, they do not constitute a relevant baseline
843 for the unpaired translation task, because their training data may lack the domain-specific examples
844 required. In contrast, methods for solving the unpaired translation (including the SB) are designed
845 to address domain-specific tasks across various scientific fields (Schneider et al., 2022; Singh et al.,
846 2024; Shi et al., 2023). Moreover, these methods successfully address non-image-related down-
847 stream tasks such as single-cell data analysis (Tong et al., 2024, Section 6), where large text-to-image
848 models are just irrelevant.

849 C CONTINUOUS-TIME SCHRÖDINGER BRIDGE SETUP

851 For considering the continuous version of Schrödinger Bridge we denote by $\mathcal{P}(C([0, 1]), \mathbb{R}^D)$ the
852 set of continuous stochastic processes with time $t \in [0, 1]$, i.e., the set of distributions on continuous
853 trajectories $f : [0, 1] \rightarrow \mathbb{R}^D$. We use dW_t to denote the differential of the standard Wiener process.
854 We denote by $p^T \in \mathcal{P}(\mathbb{R}^{D \times (N+2)})$ the discrete process which is the finite-dimensional projection
855 of T to time moments $0 = t_0 < t_1 < \dots < t_N < t_{N+1} = 1$.

857 C.1 SCHRÖDINGER BRIDGE (SB) PROBLEM IN CONTINUOUS-TIME

859 This section covers the continuous-time formulation of SB as its IPF and IMF procedures. First,
860 we introduce several new notations to better align the continuous version with the discrete-time
861 version considered in the main text. Consider the Markovian process T defined by the corresponding
862 forward or backward (time-reversed) SDEs:

$$863 T : dx_t = v^+(x_t, t)dt + \sqrt{\epsilon}dW_t^+, \quad x_0 \sim p_0(x_0),$$

864 $T : dx_t = v^-(x_t, t)dt + \sqrt{\epsilon}dW_t^-, \quad x_1 \sim p_1(x_1),$
 865

866 where we additionally denote by W_t^+ and W_t^- the Wiener process in forward or backward time. We
 867 say $T|_{x_0}$ and $T|_{x_1}$ denotes the conditional process of T fixing the marginals using delta functions,
 868 i.e., setting $p_0(x_0) = \delta_{x_0}(x)$ and $p_1(x_1) = \delta_{x_1}(x)$:

869 $T|_{x_0} : dx_t = v^+(x_t, t)dt + \sqrt{\epsilon}dW_t^+, \quad x_0 \sim \delta_{x_0}(x),$
 870
 871 $T|_{x_1} : dx_t = v^-(x_t, t)dt + \sqrt{\epsilon}dW_t^-, \quad x_1 \sim \delta_{x_1}(x).$

872 Moreover, we use $p(x_0)T|_{x_0}$ to denote the stochastic process which starts by sampling $x_0 \sim p(x_0)$
 873 and then moving this x_0 according the SDE given by $T|_{x_0}$, i.e., $p(x_0)T|_{x_0}$ is short for the process
 874 $\int T|_{x_0} p(x_0) dx_0$. Finally, we use the shortened notation of the process $T|_{0,1}(x_0, x_1)$ conditioned
 875 on its values at times 0 and 1, saying $p^T(x_0, x_1)T|_{0,1}(x_0, x_1) = \int T|_{0,1}(x_0, x_1)p^T(x_0, x_1)dx_0 dx_1$.
 876 This links the following equations with the discrete-time formulation.

877 **Schrödinger Bridge problem.** Considering the continuous case, the Schrödinger Bridge problem
 878 is stated using continuous stochastic processes instead of one with predefined timesteps. Thus,
 879 the Schrödinger Bridge problem finds the most likely in the sense of Kullback-Leibler divergence
 880 stochastic process T with respect to prior Wiener process W^ϵ , i.e.:

882
$$\min_{T \in \mathcal{F}(p_0, p_1)} \text{KL}(T||W^\epsilon), \quad (13)$$

 883

884 where $\mathcal{F}(p_0, p_1) \subset \mathcal{P}(C([0, 1]), \mathbb{R}^D)$ is the set of all stochastic processes pinned by marginal dis-
 885 tributions p_0 and p_1 at times 0 and 1, respectively. The minimization problem (13) has a unique
 886 solution T^* which can be represented as forward or backward diffusion (Léonard, 2013):

887 $T^* : dx_t = v^{*+}(x_t, t)dt + \sqrt{\epsilon}dW_t^+, \quad x_0 \sim p_0(x_0),$
 888
 889 $T^* : dx_t = v^{*-}(x_t, t)dt + \sqrt{\epsilon}dW_t^-, \quad x_1 \sim p_1(x_1),$

890 where v^{*+} and v^{*-} are the corresponding drift functions.

891 **Static Schrödinger Bridge problem.** As in discrete-time, Kullback-Leibler divergence in (13)
 892 could be decomposed as follows:

894
$$\text{KL}(T||W^\epsilon) = \text{KL}(p^T(x_0, x_1)||p^{W^\epsilon}(x_0, x_1)) + \int \text{KL}(T|_{x_0, x_1}||W^\epsilon|_{x_0, x_1})dp^T(x_0, x_1). \quad (14)$$

 895

896 It has been proved (Léonard, 2013) that for the solution T^* its conditional process is given by
 897 $T^*|_{x_0, x_1} = W^\epsilon|_{x_0, x_1}$. Thus, we can set $T|_{x_0, x_1} = W^\epsilon|_{x_0, x_1}$ zeroing the second term in (14) and
 898 minimize over processes with $T|_{x_0, x_1} = W^\epsilon|_{x_0, x_1}$. This leads to the equivalent Static formulation of
 899 the Schrödinger Bridge problem:

900
$$\min_{q \in \Pi(p_0, p_1)} \text{KL}(q(x_0, x_1)||p^{W^\epsilon}(x_0, x_1)), \quad (15)$$

 901

902 where $\Pi(p_0, p_1)$ is the set of all joint distributions with marginals p_0 and p_1 . Whether time is discrete
 903 or continuous, the decomposition of SB leads to the same static formulation, which is closely related
 904 to Entropic OT as shown in (3).

906 C.2 ITERATIVE PROPORTIONAL FITTING (IPF) FOR CONTINUOUS-TIME
 907

908 Following the main text, we describe the IPF procedure for continuous-time setup using stochastic
 909 processes. Likewise, IPF starts with setting $T^0 = p_0(x_0)W^\epsilon|_{x_0}$ and then it alternates betwethe
 910 followingg projections:

912
$$T^{2k+1} = \text{proj}_1 \left(p^{T^{2k}}(x_1)T_{|x_1}^{2k} \right) \stackrel{\text{def}}{=} p_1(x_1)T_{|x_1}^{2k}, \quad (16)$$

 913

914
$$T^{2k+2} = \text{proj}_0 \left(p^{T^{2k+1}}(x_0)T_{|x_0}^{2k+1} \right) \stackrel{\text{def}}{=} p_0(x_0)T_{|x_0}^{2k+1}. \quad (17)$$

 915

916 As in the discrete-time case, these projections replace marginal distributions $p^T(x_1)$ and $p^T(x_0)$ in
 917 the processes $p^T(x_1)T_{|x_1}$ and $p^T(x_0)T_{|x_0}$ by $p_1(x_1)$ and $p_0(x_0)$ respectively. Similarly to discrete-
 918 time formulation, the sequence of T^k converges to the solution of the Schrödinger Bridge problem

918 T^* implicitly decreasing the reverse Kullback-Leibler divergence $\text{KL}(T^k || T^*)$ between the current
 919 process T^k and the solution to the SB problem T^* . Additionally, it should be mentioned that existing
 920 methods perform projections via numerical approximation of forward and time-reversed conditional
 921 processes, $T_{|x_0}$ and $T_{|x_1}$, by learning their drifts via one of the methods: score matching (De Bortoli
 922 et al., 2021) or maximum likelihood estimation (Vargas et al., 2021).

924 C.3 ITERATIVE MARKOVIAN FITTING (IMF) FOR CONTINUOUS-TIME

926 IMF introduces new projections that alternate between reciprocal and Markovian processes starting
 927 from any process T^0 pinned by p_0 and p_1 at times 0 and 1, i.e., in $T^0 \in \mathcal{F}(p_0, p_1)$:

$$928 \quad T^{2k+1} = \text{proj}_{\mathcal{R}}(T^{2k}) \stackrel{\text{def}}{=} p^{T^{2k}}(x_0, x_1) W_{|x_0, x_1}^{\epsilon}, \quad (18)$$

$$930 \quad T^{2k+2} = \text{proj}_{\mathcal{M}}(T^{2k+1}) \stackrel{\text{def}}{=} \underbrace{p^{T^{2k+1}}(x_0) T_{M|x_0}^{2k+1}}_{\text{forward representation}} = \underbrace{p^{T^{2k+1}}(x_1) T_{M|x_1}^{2k+1}}_{\text{backward representation}}. \quad (19)$$

933 where we denote by T_M the Markovian projections of the processes T , which can be represented as
 934 the forward or backward time diffusion as follows (Gushchin et al., 2024, Section 2.1):

$$936 \quad T_M : dx_t^+ = v_M^+(x_t^+, t) dt + \sqrt{\epsilon} dW_t^+, \quad x_0 \sim p^T(x_0), \quad v_M^+(x_t^+, t) = \int \frac{x_1 - x_t^+}{1-t} p^T(x_1|x_t) dx_1,$$

$$938 \quad T_M : dx_t^- = v_M^-(x_t^-, t) dt + \sqrt{\epsilon} dW_t^-, \quad x_1 \sim p^T(x_1), \quad v_M^-(x_t^-, t) = \int \frac{x_0 - x_t^-}{1-t} p^T(x_0|x_t) dx_0.$$

940 This procedure converges to a unique solution, which is the Schrödinger bridge T^* (Léonard, 2013).
 941 While reciprocal projection can be easily done by combining the joint distribution $p^T(x_0, x_1)$ of the
 942 process T and Brownian bridge $W_{|x_0, x_1}^{\epsilon}$, the Markovian projection is much more challenging and
 943 must be fitted via Bridge matching (Shi et al., 2023; Liu et al.; Peluchetti, 2023b).

944 Since the result of the Markovian projection (19) can be represented both by forward and back-
 945 ward representation, in practice, neural networks v_{θ}^+ (**forward parametrization**) or v_{ϕ}^- (**backward
 946 parametrization**) are used to learn the corresponding drifts of the Markovian projections. In turn,
 947 starting distributions are set to be $p_0(x_0)$ for forward parametrization and $p_1(x_1)$ for the backward
 948 parametrization. So, this **bidirectional** procedure can be described as follows:

$$950 \quad T^{4k+1} = \underbrace{p^{T^{4k}}(x_0, x_1) W_{|x_0, x_1}^{\epsilon}}_{\text{proj}_{\mathcal{R}}(T^{4k})}, \quad T^{4k+2} = \underbrace{p_1(x_1) T_{M|x_1}^{4k+1}}_{\text{backward parametrization}}, \quad (20)$$

$$953 \quad T^{4k+3} = \underbrace{p^{T^{4k+2}}(x_0, x_1) W_{|x_0, x_1}^{\epsilon}}_{\text{proj}_{\mathcal{R}}(T^{4k+2})}, \quad T^{4k+4} = \underbrace{p_0(x_0) T_{M|x_0}^{4k+3}}_{\text{forward parametrization}}. \quad (21)$$

956 C.4 ITERATIVE PROPORTIONAL MARKOVIAN FITTING (IPMF) FOR CONTINUOUS-TIME

958 Here, we analyze the continuous version of the heuristical bidirectional IMF. First, we recall, that
 959 the IPF projections $\text{proj}_0(T)$ and $\text{proj}_1(T)$ given by (16) and (17) of the Markovian process T is just
 960 change the starting distribution from $p^T(x_0)$ to $p_0(x_0)$ and $p^T(x_1)$ to $p_1(x_1)$.

961 Now we note that the process T^{4k+2} in (20) is obtained by using a combination of Markovian
 962 projection $\text{proj}_{\mathcal{M}}$ given by (19) in backward parametrization and IPF projection proj_1 given by (17):

$$964 \quad T^{4k+2} = p_1(x_1) T_{M|x_1}^{4k+1} = \underbrace{\text{proj}_1(p^{T^{4k+1}}(x_1) T_{M|x_1}^{4k+1})}_{\text{proj}_1(\text{proj}_{\mathcal{M}}(T^{4k+1}))}.$$

967 In turn, the process T^{4k+4} in (21) is obtained by using a combination of Markovian projection $\text{proj}_{\mathcal{M}}$
 968 given by (19) in forward parametrization and IPF projection proj_0 given by (16):

$$970 \quad T^{4k+3} = p_0(x_0) T_{M|x_0}^{4k+3} = \underbrace{\text{proj}_0(p^{T^{4k+3}}(x_0) T_{M|x_0}^{4k+3})}_{\text{proj}_0(\text{proj}_{\mathcal{M}}(T^{4k+3}))}.$$

972 Combining these facts we can rewrite bidirectional IMF in the following manner:
 973

974 **Iterative Proportional Markovian Fitting (Conitnious time setting)**

975 $T^{4k+1} = \underbrace{p^{T^{4k}}(x_0, x_1) W_{|x_0, x_1}^\epsilon}_{\text{proj}_{\mathcal{R}}(T^{4k})}, \quad T^{4k+2} = \underbrace{p_1(x_1) T_{M|x_1}^{4k+1}}_{\text{proj}_1(\text{proj}_{\mathcal{M}}(T^{4k+1}))}$ (22)

976

977 $T^{4k+3} = \underbrace{p^{T^{4k+2}}(x_0, x_1) W_{|x_0, x_1}^\epsilon}_{\text{proj}_{\mathcal{R}}(T^{4k+2})}, \quad T^{4k+4} = \underbrace{p_0(x_0) T_{M|x_0}^{4k+3}}_{\text{proj}_0(\text{proj}_{\mathcal{M}}(T^{4k+3}))}.$ (23)

978

981 Thus, we obtain the analog of the discrete-time IPMF procedure, which concludes our description
 982 of the continuous setups.
 983

984 **D THEORETICAL ANALYSIS FOR GAUSSIANS**
 985

986 Here, we study behavior of IPMF with volatility ϵ between D -dimensional Gaussians $p_0 =$
 987 $\mathcal{N}(\mu_0, \Sigma_0)$ and $p_1 = \mathcal{N}(\mu_1, \Sigma_1)$. For various settings, we prove that the parameters of q^{4k} with
 988 each step geometrically converge to desired values $\mu_0, \mu_1, \Sigma_0, \Sigma_1, \epsilon$. The steps are as follows:
 989

990 1) In Appendix D.1, we reveal the connection between $2D$ -dimensional Gaussian distribution and
 991 solution of entropic OT problem with specific transport cost, i.e., we prove our Theorem 3.1.
 992

993 2) In Appendix D.2, we study the effect of IPF steps on the current process. We show that during
 994 these steps, the marginals become close to p_0 and p_1 , and the optimality matrix does not change.
 995 We also prove that the spectral norms of the marginal matrices are bounded during the whole IPMF
 996 procedure.

997 3) In Appendix D.3, we study the effect of IMF step on the current process when $D > 1$. We show
 998 that after a discrete IMF step, the distance between current optimality matrix and desired one can be
 999 bounded by the scaled previous distance.

1000 4) In Appendix D.5, we study the effect of IMF step in a particular case $D = 1$. We show that after
 1001 IMF step (continuous or discrete with $N = 1$), marginals remain the same, and the intermediate
 1002 distribution becomes closer to the intermediate distribution of the static ϵ -EOT solution between the
 1003 marginals.

1004 5) Finally, in Appendices D.4 and D.6, we prove our main Theorem 3.2 for the case $D > 1$ and
 1005 $D = 1$, respectively.

1006 **D.1 GAUSSIAN PLANS AS ENTROPIC OPTIMAL TRANSPORT PLANS**
 1007

1008 *Proof of Theorem 3.1.* The conditional distribution of $q(x_0|x_1)$ has a closed form:
 1009

1010
$$\begin{aligned} q(x_0|x_1) &= \mathcal{N}(x_0|\eta + P(S)^{-1}(x_1 - \nu), Q - P(S)^{-1}P^\top) \\ 1011 &= Z_{x_0} Z_{x_1} \exp(x_0^\top (Q - P(S)^{-1}P^\top)^{-1} P(S)^{-1} x_1) \\ 1012 &= Z_{x_0} Z_{x_1} \exp(x_1^\top A x_0), \end{aligned} \quad (24)$$

1013

1014 where factors Z_{x_0} and Z_{x_1} depend only on x_0 and x_1 , respectively, and the matrix A is
 1015

1016
$$A = (S)^{-1}P^\top (Q - P(S)^{-1}P^\top)^{-1}. \quad (25)$$

1017

1018 Theorem 3.2 from Gushchin et al. (2023b) states that if the conditional distribution $q(x_1|x_0)$ can be
 1019 expressed as:

1020
$$q(x_0|x_1) \propto \exp(-c(x_0, x_1) + f_c(x_0)), \quad (26)$$

1021

1022 where $c(x_0, x_1)$ is a lower bounded cost function, and the function $f_c(x_0)$ depends only on x_0 , then
 1023 q solves 1-entropic OT with the cost function $c(x_0, x_1)$. Equating the terms in (24) and (26) which
 1024 depend on both x_0 and x_1 , we derive the formula for the cost function is $c(x_0, x_1) = -x_0^\top A x_1$. We
 1025 denote it as $c_A(x_0, x_1) := -x_0^\top A x_1$ to show the dependency on the optimality matrix A .

1026 We only need to note that we can add any functions $f(x_0)$ and $g(x_1)$ depending only on x_0 or x_1 ,
 1027 respectively, to the cost function $c_A(x_0, x_1) = -x_0^\top A x_1$, and the OT solution will not change. This

1026 is because the integrals of such functions over any transport plan will be constants, as they will
 1027 depend only on the marginals (which are given) but not on the plan itself. Thus, for any $A \in \mathbb{R}^{D \times D}$,
 1028 we can rearrange the cost term $c_A(x_0, x_1)$ so that it becomes lower-bounded:
 1029

$$1030 \quad \tilde{c}_A(x_0, x_1) = \|Ax_0\|^2/2 - x_1^\top Ax_0 + \|x_1\|^2/2 = \|Ax_0 - x_1\|^2/2 \geq 0,$$

1031 where $\tilde{c}_A(x_0, x_1)$ is a lower bounded function. \square
 1032

1033 **D.2 IPF STEP ANALYSIS**
 1034

1035 We run IPMF with the desired volatility parameter ϵ_* between the desired distributions $p_0 =$
 1036 $\mathcal{N}(\mu_0, \Sigma_0)$ and $p_1 = \mathcal{N}(\mu_1, \Sigma_1)$, starting with the process $\mathcal{N}\left(\begin{pmatrix} \mu_0 \\ \nu \end{pmatrix}, \begin{pmatrix} \Sigma_0 & P \\ P^\top & S \end{pmatrix}\right)$ which has
 1037 the correlation matrix P .
 1038

1039 One IPMF step can be decomposed into the following consecutive steps:
 1040

- 1041 1. IMF step: projections $\text{proj}_{\mathcal{M}}(\text{proj}_{\mathcal{R}})$, refining the current optimality matrix,
 1042
2. IPF step: projection proj_1 , changing final prior at time $t = 1$ to $p_1 = \mathcal{N}(\mu_1, \Sigma_1)$,
 1043
3. IMF step: projections $\text{proj}_{\mathcal{M}}(\text{proj}_{\mathcal{R}})$, refining the current optimality matrix,
 1044
4. IPF step: projection proj_0 , changing starting prior at time $t = 0$ to $p_0 = \mathcal{N}(\mu_0, \Sigma_0)$.
 1045

1046 We use the following notations for the covariance matrices changes during IPMF step:
 1047

$$1048 \quad \begin{pmatrix} \Sigma_0 & P \\ P^\top & S \end{pmatrix} \xrightarrow{\text{IMF}} \begin{pmatrix} \Sigma_0 & \tilde{P} \\ \tilde{P}^\top & S \end{pmatrix} \xrightarrow{\text{IPF}} \begin{pmatrix} Q & P' \\ (P')^\top & \Sigma_1 \end{pmatrix} \\ 1049 \quad \xrightarrow{\text{IMF}} \begin{pmatrix} Q & \hat{P} \\ \hat{P}^\top & \Sigma_1 \end{pmatrix} \xrightarrow{\text{IPF}} \begin{pmatrix} \Sigma_0 & P'' \\ (P'')^\top & S' \end{pmatrix}, \\ 1050 \quad 1051 \quad 1052$$

1053 and for the means, the changes are:
 1054

$$1055 \quad \begin{pmatrix} \mu_0 \\ \nu \end{pmatrix} \xrightarrow{\text{IMF}} \begin{pmatrix} \mu_0 \\ \nu \end{pmatrix} \xrightarrow{\text{IPF}} \begin{pmatrix} \eta \\ \mu_1 \end{pmatrix} \xrightarrow{\text{IMF}} \begin{pmatrix} \eta \\ \mu_1 \end{pmatrix} \xrightarrow{\text{IPF}} \begin{pmatrix} \mu_0 \\ \nu' \end{pmatrix}. \\ 1056 \quad 1057$$

1058 **Lemma D.1** (Improvement after IPF steps). *Consider an initial 2D-dimensional Gaussian joint
 1059 distribution $\mathcal{N}\left(\begin{pmatrix} \mu_0 \\ \nu \end{pmatrix}, \begin{pmatrix} \Sigma_0 & P \\ P^\top & S \end{pmatrix}\right) \in \mathcal{P}_{2,ac}(\mathbb{R}^D \times \mathbb{R}^D)$. We run IPMF step between distributions
 1060 $\mathcal{N}(\mu_0, \Sigma_0)$ and $\mathcal{N}(\mu_1, \Sigma_1)$ and obtain new joint distribution $\mathcal{N}\left(\begin{pmatrix} \mu_0 \\ \mu'' \end{pmatrix}, \begin{pmatrix} \Sigma_0 & P'' \\ (P'')^\top & S' \end{pmatrix}\right)$. Then,
 1061 the distance between ground truth μ_1, Σ_1 and the new joint distribution parameters decreases as:
 1062*

$$1064 \quad \|(S')^{-\frac{1}{2}}\Sigma_1(S')^{-\frac{1}{2}} - I_D\|_2 \leq \|\tilde{P}_n\|_2^2 \cdot \|P''\|_2^2 \cdot \|S^{-\frac{1}{2}}\Sigma_1 S^{-\frac{1}{2}} - I_D\|_2, \quad (27)$$

$$1065 \quad \|\Sigma_1^{-\frac{1}{2}}(\nu' - \mu_1)\|_2 \leq \|\hat{P}_n^\top\|_2 \cdot \|P'_n\|_2 \cdot \|\Sigma_1^{-\frac{1}{2}}(\nu - \mu_1)\|_2, \quad (28)$$

1066 where $\tilde{P}_n := \Sigma_0^{-1/2}\tilde{P}S^{-1/2}$, $P'_n := (Q)^{-\frac{1}{2}}P'\Sigma_1^{-\frac{1}{2}}$, $\hat{P}_n := (Q)^{-1/2}\hat{P}\Sigma_1^{-1/2}$ and $P''_n := \Sigma_0^{-1/2}P''(S')^{-1/2}$ are normalized matrices whose spectral norms are not greater than 1.
 1067

1068 *Proof.* During IPF steps, we keep the conditional distribution and change the marginal. For the first
 1069 IPF, we keep the inner part $x_0|x_1$ for all $x_1 \in \mathbb{R}^D$:
 1070

$$1071 \quad \mathcal{N}\left(x_0|\mu_0 + \tilde{P}S^{-1}(x_1 - \nu), \Sigma_0 - \tilde{P}S^{-1}\tilde{P}^\top\right) = \mathcal{N}\left(x_0|\eta + P'\Sigma_1^{-1}(x_1 - \mu_1), Q - P'\Sigma_1^{-1}(P')^\top\right).$$

1072 This is equivalent to the system of equations:
 1073

$$1074 \quad \Sigma_0 - \tilde{P}S^{-1}\tilde{P}^\top = Q - P'\Sigma_1^{-1}(P')^\top, \quad (29)$$

$$1075 \quad P'\Sigma_1^{-1} = \tilde{P}S^{-1}, \quad (30)$$

$$1076 \quad \mu_0 - \tilde{P}S^{-1}\nu = \eta - P'\Sigma_1^{-1}\mu_1. \quad (31)$$

1080 Similarly, after the second IPF step, we have equations:
1081

$$\Sigma_1 - \hat{P}^\top(Q)^{-1}\hat{P} = S' - (P'')^\top\Sigma_0^{-1}P'', \quad (32)$$

$$(P'')^\top\Sigma_0^{-1} = \hat{P}^\top(Q)^{-1}, \quad (33)$$

$$\mu_1 - \hat{P}^\top(Q)^{-1}\eta = \nu' - (P'')^\top\Sigma_0^{-1}\mu_0. \quad (34)$$

1086 **Covariance matrices.** Combining equations (30), (29) and (33), (32) together, we obtain:
1087

$$\Sigma_0 - Q = \tilde{P}S^{-1}(S - \Sigma_1)S^{-1}\tilde{P}^\top, \quad // (29), (30) \quad (35)$$

$$I_D - \Sigma_0(Q)^{-1} = \tilde{P}S^{-1}(\Sigma_1 - S)S^{-1}\tilde{P}^\top(Q)^{-1}, \quad // (35) \cdot (Q)^{-1} \quad (36)$$

$$\Sigma_1 - S' = \hat{P}^\top(Q)^{-1}(I_D - \Sigma_0(Q)^{-1})\hat{P}, \quad // (32), (33) \quad (37)$$

$$\Sigma_1 - S' = \hat{P}^\top(Q)^{-1}\tilde{P}S^{-1}(\Sigma_1 - S)S^{-1}\tilde{P}^\top(Q)^{-1}\hat{P}, \quad // (36) \text{ insert to (37)}$$

$$\Sigma_1 - S' = (P'')^\top\Sigma_0^{-1}\tilde{P}S^{-1}(\Sigma_1 - S)S^{-1}\tilde{P}^\top\Sigma_0^{-1}P'', \quad // \text{change using (33)}$$

$$\begin{aligned} (S')^{-\frac{1}{2}}\Sigma_1(S')^{-\frac{1}{2}} - I_D &= (S')^{-\frac{1}{2}}(P'')^\top\Sigma_0^{-\frac{1}{2}} \cdot \Sigma_0^{-\frac{1}{2}}\tilde{P}S^{-\frac{1}{2}} \\ &\quad \cdot (S^{-\frac{1}{2}}\Sigma_1S^{-\frac{1}{2}} - I_D) \cdot S^{-\frac{1}{2}}\tilde{P}^\top\Sigma_0^{-\frac{1}{2}} \cdot \Sigma_0^{-\frac{1}{2}}P''(S')^{-\frac{1}{2}}. \end{aligned}$$

1098 The matrices (29) and (32) must be SPD to be covariance matrices:
1099

$$\Sigma_0 - \tilde{P}S^{-1}\tilde{P}^\top \succeq 0 \implies I_D \succeq \Sigma_0^{-1/2}\tilde{P}S^{-1/2} \cdot S^{-1/2}\tilde{P}^\top\Sigma_0^{-1/2},$$

$$S' - (P'')^\top\Sigma_0^{-1}P'' \succeq 0 \implies I_D \succeq \Sigma_0^{-1/2}P''(S')^{-1/2} \cdot (S')^{-1/2}(P'')^\top\Sigma_0^{-1/2}.$$

1103 In other words, denoting matrices $\tilde{P}_n := \Sigma_0^{-1/2}\tilde{P}S^{-1/2}$ and $P''_n := \Sigma_0^{-1/2}P''(S')^{-1/2}$, we can
1104 bound their spectral norms as $\|\tilde{P}_n\|_2 \leq 1$ and $\|P''_n\|_2 \leq 1$. We write down the final transaction for
1105 covariance matrices:

$$(S')^{-\frac{1}{2}}\Sigma_1(S')^{-\frac{1}{2}} - I_D = (P''_n)^\top \cdot \tilde{P}_n \cdot (S^{-\frac{1}{2}}\Sigma_1S^{-\frac{1}{2}} - I_D) \cdot \tilde{P}_n^\top \cdot P''_n. \quad (38)$$

1108 Hence, the spectral norm of the difference between ground truth Σ_1 and current S' drops exponentially as:
1109

$$\|(S')^{-\frac{1}{2}}\Sigma_1(S')^{-\frac{1}{2}} - I_D\|_2 \leq \|\tilde{P}_n\|_2^2 \cdot \|P''_n\|_2^2 \cdot \|S^{-\frac{1}{2}}\Sigma_1S^{-\frac{1}{2}} - I_D\|_2.$$

1112 **Means.** Combining equations (31), (30) and (34), (33) together, we obtain:
1113

$$\mu_0 - \eta = \tilde{P}S^{-1}\nu - P'\Sigma_1^{-1}\mu_1 = P'\Sigma_1^{-1}(\nu - \mu_1), \quad // (31), (30) \quad (39)$$

$$\nu' - \mu_1 = (P'')^\top\Sigma_0^{-1}\mu_0 - \hat{P}^\top(Q)^{-1}\eta = \hat{P}^\top(Q)^{-1}(\mu_0 - \eta), \quad // (34), (33) \quad (40)$$

$$\nu' - \mu_1 = \hat{P}^\top(Q)^{-1}P'\Sigma_1^{-1}(\nu - \mu_1), \quad // \text{insert (39) to (40)}$$

$$\Sigma_1^{-\frac{1}{2}}(\nu' - \mu_1) = \Sigma_1^{-\frac{1}{2}}\hat{P}^\top(Q)^{-\frac{1}{2}} \cdot (Q)^{-\frac{1}{2}}P'\Sigma_1^{-\frac{1}{2}} \cdot \Sigma_1^{-\frac{1}{2}}(\nu - \mu_1).$$

1120 The matrices (29) and (32) must be SPD to be covariance matrices:
1121

$$Q \succeq P'\Sigma_1^{-1}(P')^\top \implies I_D \succeq (Q)^{-\frac{1}{2}}P'\Sigma_1^{-\frac{1}{2}} \cdot \Sigma_1^{-\frac{1}{2}}(P')^\top(Q)^{-\frac{1}{2}},$$

$$\Sigma_1 \succeq \hat{P}^\top(Q)^{-1}\hat{P} \implies I_D \succeq \Sigma_1^{-1/2}\hat{P}^\top(Q)^{-1/2} \cdot (Q)^{-1/2}\hat{P}\Sigma_1^{-1/2}.$$

1125 Denoting matrices $P'_n := (Q)^{-\frac{1}{2}}P'\Sigma_1^{-\frac{1}{2}}$ and $\hat{P}_n := (Q)^{-1/2}\hat{P}\Sigma_1^{-1/2}$, we can bound their spectral
1126 norms as $\|P'_n\|_2 \leq 1$ and $\|\hat{P}_n\|_2 \leq 1$. We use this to estimate the ℓ_2 -norm of the difference between
1127 the ground truth μ_1 and the current mean:
1128

$$\Sigma_1^{-\frac{1}{2}}(\nu' - \mu_1) = \hat{P}_n^\top \cdot P'_n \cdot \Sigma_1^{-\frac{1}{2}}(\nu - \mu_1), \quad (41)$$

$$\|\Sigma_1^{-\frac{1}{2}}(\nu' - \mu_1)\|_2 \leq \|\hat{P}_n^\top\|_2 \cdot \|P'_n\|_2 \cdot \|\Sigma_1^{-\frac{1}{2}}(\nu - \mu_1)\|_2.$$

1133 \square

1134 **Lemma D.2** (Marginals norm bound during IPMF procedure). *Consider an initial 2D-dimensional*
 1135 *Gaussian joint distribution $\mathcal{N}\left(\begin{pmatrix} \mu_0 \\ \nu_0 \end{pmatrix}, \begin{pmatrix} \Sigma_0 & P_0 \\ P_0^\top & S_0 \end{pmatrix}\right) \in \mathcal{P}_{2,ac}(\mathbb{R}^D \times \mathbb{R}^D)$. We run k*
 1136 *IPMF step between distributions $\mathcal{N}(\mu_0, \Sigma_0)$ and $\mathcal{N}(\mu_1, \Sigma_1)$ and obtain new joint distribution*
 1137 *$\mathcal{N}\left(\begin{pmatrix} \mu_0 \\ \nu_k \end{pmatrix}, \begin{pmatrix} \Sigma_0 & P_k \\ P_k^\top & S_k \end{pmatrix}\right)$. Then the norm $\|S_k\|_2$ can be bounded independently of k by:*

$$1141 \quad \|S_k\|_2 \leq \frac{\|\Sigma_1\|_2}{\min\{\lambda_{\min}(S_0^{-\frac{1}{2}}\Sigma_1S_0^{-\frac{1}{2}}), 1\}}, \quad \|S_k^{-1}\|_2 \leq \max\{\lambda_{\max}(S_0^{-\frac{1}{2}}\Sigma_1S_0^{-\frac{1}{2}}), 1\}\|\Sigma_1^{-1}\|_2. \quad (42)$$

1142 *This statement also implies the invertibility of all matrices S_k .*

1143 *For matrices Q_k , the results are analogous.*

1144 *Proof.* Consider the last IPMF step. We denote symmetric matrices $\Delta_k := S_k^{-\frac{1}{2}}\Sigma_1S_k^{-\frac{1}{2}} - I_D$, $\Delta_{k-1} := S_{k-1}^{-\frac{1}{2}}\Sigma_1S_{k-1}^{-\frac{1}{2}} - I_D$ and $\hat{\lambda}_{\min}(\Delta) := \min\{0, \lambda_{\min}(\Delta)\}$, $\hat{\lambda}_{\max}(\Delta) := \max\{0, \lambda_{\max}(\Delta)\}$. Next, we estimate spectral norm of S_{k-1} as follows:

$$1145 \quad \begin{aligned} \Delta_k &= S_k^{-\frac{1}{2}}\Sigma_1S_k^{-\frac{1}{2}} - I_D \succeq \lambda_{\min}(\Delta_k)I_D \succeq \hat{\lambda}_{\min}(\Delta_k)I_D, \\ 1146 \quad S_k^{-\frac{1}{2}}\Sigma_1S_k^{-\frac{1}{2}} &\succeq (\hat{\lambda}_{\min}(\Delta_k) + 1)I_D, \\ 1147 \quad \Sigma_1 &\succeq (\hat{\lambda}_{\min}(\Delta_k) + 1)S_k \end{aligned}$$

1148 Note, that by design we have $\Delta_k \succeq -I_D \Rightarrow -1 \leq \hat{\lambda}_{\min}(\Delta_k) \leq 0 \Rightarrow 0 \leq (\hat{\lambda}_{\min}(\Delta_k) + 1) \leq 1$
 1149 and can obtain

$$1150 \quad \begin{aligned} \Sigma_1 &\succeq (\hat{\lambda}_{\min}(\Delta_k) + 1)S_k, \\ 1151 \quad S_k &\preceq \frac{1}{\hat{\lambda}_{\min}(\Delta_k) + 1}\Sigma_1, \\ 1152 \quad \|S_k\|_2 &\leq \frac{\|\Sigma_1\|_2}{\hat{\lambda}_{\min}(\Delta_k) + 1}. \end{aligned} \quad (43)$$

1153 Similarly, we prove that

$$1154 \quad S_k \succeq \frac{1}{\hat{\lambda}_{\max}(\Delta_k) + 1}\Sigma_1 \Rightarrow \|S_k^{-1}\|_2 \leq (\hat{\lambda}_{\max}(\Delta_k) + 1)\|\Sigma_1^{-1}\|_2.$$

1155 Now, we prove that $\hat{\lambda}_{\min}(\Delta_k) \geq \hat{\lambda}_{\min}(\Delta_{k-1})$. We denote by P_n'' and \tilde{P}_n normalized matrices after
 1156 the second IPF step and the first IMF step on the last iteration, respectively (see Lemma D.1). For
 1157 any $x \in \mathbb{R}^D$, $\|x\|_2 \leq 1$, we calculate the bilinear form:

$$1158 \quad \begin{aligned} x^\top \Delta_k x &\stackrel{(38)}{=} x^\top (P_n'')^\top \cdot \tilde{P}_n \cdot (S_{k-1}^{-\frac{1}{2}}\Sigma_1S_{k-1}^{-\frac{1}{2}} - I_D) \cdot \tilde{P}_n^\top \cdot P_n'' x \\ 1159 &= (\tilde{P}_n^\top \cdot P_n'' x)^\top \Delta_{k-1} (\tilde{P}_n^\top \cdot P_n'' x), \\ 1160 \hat{\lambda}_{\min}(\Delta_k) &= \min \left\{ 0, \min_{\|x\|_2=1} x^\top \Delta_k x \right\} \\ 1161 &\geq \min \left\{ 0, \min_{\|x\|_2=1} (\tilde{P}_n^\top \cdot P_n'' x)^\top \Delta_{k-1} (\tilde{P}_n^\top \cdot P_n'' x) \right\} \\ 1162 &\geq \|\tilde{P}_n^\top \cdot P_n'' x\|_2^2 \cdot \min \{0, \lambda_{\min}(\Delta_{k-1})\} \\ 1163 &\geq \|\tilde{P}_n\|^2 \|P_n''\|^2 \|x\|_2^2 \cdot \hat{\lambda}_{\min}(\Delta_{k-1}) \geq \hat{\lambda}_{\min}(\Delta_{k-1}). \end{aligned}$$

1164 Hence, after each IPMF step $\hat{\lambda}_{\min}(\Delta_k)$ increases and can be lower bounded by the initial value
 1165 $\hat{\lambda}_{\min}(\Delta_k) \geq \hat{\lambda}_{\min}(\Delta_0)$ using math induction. It implies the invertibility of all matrices S_k and
 1166 boundness of norms

$$1167 \quad \|S_k\|_2 \stackrel{(43)}{\leq} \frac{\|\Sigma_1\|_2}{\hat{\lambda}_{\min}(\Delta_k) + 1} \leq \frac{\|\Sigma_1\|_2}{\hat{\lambda}_{\min}(\Delta_0) + 1} = \frac{\|\Sigma_1\|_2}{\min\{\lambda_{\min}(S_0^{-\frac{1}{2}}\Sigma_1S_0^{-\frac{1}{2}}), 1\}}.$$

1188 Similarly, we prove that

$$\begin{aligned} \hat{\lambda}_{\max}(\Delta_k) \leq \hat{\lambda}_{\max}(\Delta_{k-1}) \Rightarrow \|S_k^{-1}\|_2 &\leq (\hat{\lambda}_{\max}(\Delta_0) + 1)\|\Sigma_1^{-1}\|_2 \\ &\leq \max\{\lambda_{\max}(S_0^{-\frac{1}{2}}\Sigma_1 S_0^{-\frac{1}{2}}), 1\}\|\Sigma_1^{-1}\|_2. \end{aligned}$$

□

1194 **Lemma D.3** (IPF step does not change optimality matrix A). *Consider an initial 2D-
1195 dimensional Gaussian joint distribution $\mathcal{N}\left(\begin{pmatrix} \mu_0 \\ \nu \end{pmatrix}, \begin{pmatrix} \Sigma_0 & \tilde{P} \\ \tilde{P}^\top & S \end{pmatrix}\right) \in \mathcal{P}_{2,ac}(\mathbb{R}^D \times \mathbb{R}^D)$. We
1196 run IPF step between distributions $\mathcal{N}(\mu_0, \Sigma_0)$ and $\mathcal{N}(\mu_1, \Sigma_1)$ and obtain new joint distribution
1197 $\mathcal{N}\left(\begin{pmatrix} \eta \\ \mu_1 \end{pmatrix}, \begin{pmatrix} Q & P' \\ (P')^\top & \Sigma_1 \end{pmatrix}\right)$. Then, IPF step does not change optimality matrix A , i.e.,*

$$1201 \quad A = \Xi(\tilde{P}, \Sigma_0, S) = \Xi(P', Q, \Sigma_1).$$

1202 For the second IPF step, the results are analogous.

1203 *Proof.* The explicit formulas for $\Xi(\tilde{P}, \Sigma_0, S)$ and $\Xi(P', Q, \Sigma_1)$ are

$$\begin{aligned} 1206 \quad \Xi(\tilde{P}, \Sigma_0, S) &= S^{-1}\tilde{P}^\top \cdot (\Sigma_0 - \tilde{P}S^{-1}\tilde{P}^\top), \\ 1207 \quad \Xi(P', Q, \Sigma_1) &= \Sigma_1^{-1}(P')^\top \cdot (Q - P'\Sigma_1^{-1}(P')^\top). \end{aligned}$$

1208 The first terms are equal due to equation (30), and the second terms are equal due to (29).

1209 We can prove this lemma in more general way. We derive the formula (25) for A only from the shape
1210 of the conditional distribution $q(x_0|x_1)$ (24). During IPF step, this distribution remains the same by
1211 design, while parameters S, \tilde{P} change. Hence, IPF step has no effect on the optimality matrix.

1212 For the second IPF step, the proof is similar. □

1215 D.3 DISCRETE IMF STEP ANALYSIS: MULTIDIMENSIONAL CASE FOR LARGE ϵ

1216 Consider a $2D$ -dimensional Gaussian distribution $\mathcal{N}\left(\begin{pmatrix} \eta \\ \nu \end{pmatrix}, \begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix}\right)$. We run a discrete IMF
1217 step consisting of reciprocal and Markovian projections with N intermediate timesteps $0 = t_0 < t_1 < \dots < t_N < t_{N+1} = 1$ and volatility parameter ϵ .

1218 Following (Gushchin et al., 2024), we have an explicit formula for the reciprocal step. For any
1219 $0 \leq i, j \leq N + 1$, we have marginal covariance Σ_{t_i, t_i} at time moment t_i and joint covariance Σ_{t_i, t_j}
1220 between time moments t_i and t_j :

$$\begin{aligned} 1221 \quad \Sigma_{t_i, t_j} &= (1 - t_i)(1 - t_j)Q + (1 - t_i)t_jP + (1 - t_j)t_iP^\top + t_i t_j S + t_i(1 - t_j)\epsilon \\ 1222 &= (1 - t_i)(1 - t_j)Q + (1 - t_i)t_j Q^{1/2} P_n S^{1/2} + (1 - t_j)t_i S^{1/2} P_n^\top Q^{1/2} \\ 1223 &\quad + t_i t_j S + t_i(1 - t_j)\epsilon, \\ 1224 \quad \Sigma_{t_i, t_i} &= (1 - t_i)^2 Q + t_i(1 - t_i)(P + P^\top) + t_i^2 S + t_i(1 - t_i)\epsilon \\ 1225 &= (1 - t_i)^2 Q + t_i(1 - t_i)(Q^{1/2} P_n S^{1/2} + S^{1/2} P_n^\top Q^{1/2}) + t_i^2 S + t_i(1 - t_i)\epsilon, \\ 1226 \quad \Sigma_{0, t_1} &= (1 - t_1)Q + t_1 P = (1 - t_1)Q + t_1 Q^{1/2} P_n S^{1/2}, \\ 1227 \quad \Sigma_{t_N, 1} &= t_N S + (1 - t_N)P = t_N S + (1 - t_N)Q^{1/2} P_n S^{1/2}, \end{aligned}$$

1228 where $P_n := Q^{-\frac{1}{2}} P S^{-\frac{1}{2}}$. Marginals $\Sigma_{0,0} = Q$ and $\Sigma_{t_{N+1}, t_{N+1}} = S$ at time moments 0 and 1 and
1229 covariance $\Sigma_{t_0, t_{N+1}} = P$ do not change.

1230 For the Markovian step, we write down an analytical formula for the new correlation \tilde{P} in the
1231 resulting process $\mathcal{N}\left(\begin{pmatrix} \eta \\ \nu \end{pmatrix}, \begin{pmatrix} Q & \tilde{P} \\ \tilde{P}^\top & S \end{pmatrix}\right)$, namely:

$$1232 \quad \tilde{P} := \Sigma_{0,0} \cdot \prod_{i=0}^N (\Sigma_{t_i, t_i}^{-1} \Sigma_{t_i, t_{i+1}}) = \Sigma_{0, t_1} \Sigma_{t_1, t_2}^{-1} \dots \Sigma_{t_N, t_N}^{-1} \Sigma_{t_N, 1}.$$

1242 For the normalized correlation $\tilde{P}_n = Q^{-\frac{1}{2}} \tilde{P} S^{-\frac{1}{2}} = \Sigma_{0,0}^{-\frac{1}{2}} \tilde{P} \Sigma_{1,1}^{-\frac{1}{2}}$, we can simplify the formula:
1243

$$\begin{aligned} 1244 \tilde{P}_n = f(P_n) &= \Sigma_{0,0}^{-\frac{1}{2}} \Sigma_{0,t_1} \Sigma_{t_1,t_1}^{-1/2} \cdot \Sigma_{t_1,t_1}^{-1/2} \Sigma_{t_1,t_2} \Sigma_{t_2,t_2}^{-1/2} \cdot \Sigma_{t_1,t_1}^{-1/2} \dots \Sigma_{t_N,t_N}^{-1/2} \cdot \Sigma_{t_N,t_N}^{-1/2} \Sigma_{t_N,1} \Sigma_{1,1}^{-\frac{1}{2}} \\ 1245 &= \prod_{i=0}^N \left(\Sigma_{t_i,t_i}^{-1/2} \Sigma_{t_i,t_{i+1}} \Sigma_{t_{i+1},t_{i+1}}^{-1/2} \right) = \prod_{i=0}^N \left(\Sigma_{n;t_i,t_{i+1}} \right), \end{aligned} \quad (44)$$

1249 where $\Sigma_{n;t_i,t_{i+1}} := \Sigma_{t_i,t_i}^{-1/2} \Sigma_{t_i,t_{i+1}} \Sigma_{t_{i+1},t_{i+1}}^{-1/2}$ denotes normalized correlation between marginals at
1250 time moments t_i and t_{i+1} and satisfies $\|\Sigma_{n;t_i,t_{i+1}}\|_2 \leq 1$.
1251

Lemma D.4 (IMF step correlation transition properties). *Let matrices $Q, S \succ 0$ be the marginals of
1252 2D-dimensional Gaussian distribution $\mathcal{N} \left(\begin{pmatrix} \eta \\ \nu \end{pmatrix}, \begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix} \right)$. The function f from (44) defined
1253 on the ball $\{P_n : \|P_n\|_2 \leq 1\}$ transforms the normalized correlation $P_n := Q^{-\frac{1}{2}} P S^{-\frac{1}{2}}$ to a new
1254 one after a discrete IMF step. Then $f(P_n)$ is Lipschitz on the unit ball with constant
1255*

$$\gamma(Q, S, \epsilon) := \frac{\|Q^{1/2}\|_2 \|S^{1/2}\|_2}{\sqrt{\epsilon}} \left(\sqrt{\frac{t_1 \|Q^{-\frac{1}{2}}\|_2^2}{(1-t_1)}} + \sqrt{\frac{t_N \|S^{-\frac{1}{2}}\|_2^2}{(1-t_N)}} + \sum_{i=1}^{N-1} \frac{(1-t_i)t_{i+1} + (1-t_{i+1})t_i}{\sqrt{\epsilon t_i t_{i+1} (1-t_i)(1-t_{i+1})}} \right). \quad (45)$$

1261 Moreover,

$$\|f(P_n)\|_2 \leq 1 - \frac{t_1 t_N (1-t_1)(1-t_N) \epsilon}{(\|Q^{1/2}\|_2 + \|S^{1/2}\|_2 + \sqrt{\epsilon})^2}. \quad (46)$$

1264 *Proof.* We differentiate $f(P_n)$ w.r.t. P_n and obtain

$$\begin{aligned} 1266 df &= d \left(\Sigma_{0,0}^{1/2} \cdot \prod_{i=0}^N \left(\Sigma_{t_i,t_i}^{-1} \Sigma_{t_i,t_{i+1}} \right) \cdot \Sigma_{1,1}^{-1/2} \right) \\ 1267 &= \sum_{i=0}^N \left(\Sigma_{0,0}^{1/2} \cdot \prod_{l < i} \left(\Sigma_{t_l,t_l}^{-1} \Sigma_{t_l,t_{l+1}} \right) \cdot \left(\Sigma_{t_i,t_i}^{-1} d\Sigma_{t_i,t_{i+1}} - \Sigma_{t_i,t_i}^{-1} d\Sigma_{t_i,t_i} \Sigma_{t_i,t_i}^{-1} \Sigma_{t_i,t_{i+1}} \right) \cdot \prod_{j > i} \left(\Sigma_{t_j,t_j}^{-1} \Sigma_{t_j,t_{j+1}} \right) \cdot \Sigma_{1,1}^{-1/2} \right) \\ 1268 &= \sum_{i=0}^N \left(\prod_{l < i} \left(\Sigma_{n;t_l,t_{l+1}} \right) \cdot \left(\Sigma_{t_i,t_i}^{-1/2} d\Sigma_{t_i,t_{i+1}} \Sigma_{t_{i+1},t_{i+1}}^{-1/2} \right) \cdot \prod_{j > i} \left(\Sigma_{n;t_j,t_{j+1}} \right) \right) \\ 1269 &\quad - \sum_{i=0}^N \left(\prod_{l < i} \left(\Sigma_{n;t_l,t_{l+1}} \right) \cdot \left(\Sigma_{t_i,t_i}^{-1/2} d\Sigma_{t_i,t_i} \Sigma_{t_i,t_i}^{-1/2} \right) \cdot \prod_{j \geq i} \left(\Sigma_{n;t_j,t_{j+1}} \right) \right). \end{aligned}$$

1270 Since all normalized correlations are bounded by $\|\Sigma_{n;t_i,t_{i+1}}\|_2 \leq 1$, we can also bound df by
1271

$$\begin{aligned} 1272 \|df\|_2 &\leq \sum_{i=0}^N (\|\Sigma_{t_i,t_i}^{-1/2} d\Sigma_{t_i,t_{i+1}} \Sigma_{t_{i+1},t_{i+1}}^{-1/2}\|_2 + \|\Sigma_{t_i,t_i}^{-1/2} d\Sigma_{t_i,t_i} \Sigma_{t_i,t_i}^{-1/2}\|_2) \\ 1273 &\leq \sum_{i=0}^N (\|\Sigma_{t_i,t_i}^{-1/2}\|_2 \|d\Sigma_{t_i,t_{i+1}}\|_2 \|\Sigma_{t_{i+1},t_{i+1}}^{-1/2}\|_2 + \|\Sigma_{t_i,t_i}^{-1/2}\|_2 \|d\Sigma_{t_i,t_i}\|_2 \|\Sigma_{t_i,t_i}^{-1/2}\|_2). \end{aligned}$$

1274 Since $\Sigma_{t_i,t_i} \succcurlyeq t_i(1-t_i)\epsilon I$, $\forall i \in \overline{1, N}$, we get estimate $\|\Sigma_{t_i,t_i}^{-1/2}\|_2 \leq 1/\sqrt{t_i(1-t_i)\epsilon}$. For differential
1275 $d\Sigma_{t_i,t_{i+1}}$, we have explicit formula and bound
1276

$$\begin{aligned} 1277 d\Sigma_{t_i,t_{i+1}} &= (1-t_i)t_{i+1} Q^{1/2} dPS^{1/2} + (1-t_{i+1})t_i S^{1/2} dP^\top Q^{1/2}, \\ 1278 \|d\Sigma_{t_i,t_{i+1}}\|_2 &\leq ((1-t_i)t_{i+1} + (1-t_{i+1})t_i) \|Q^{1/2}\|_2 \|S^{1/2}\|_2 \|dP\|_2. \end{aligned}$$

1279 In total, we can bound $\|df\|_2 \leq \gamma(Q, S, \epsilon) \|dP_n\|_2$ where $\gamma(Q, S, \epsilon) =$
1280

$$\frac{\|Q^{1/2}\|_2 \|S^{1/2}\|_2}{\sqrt{\epsilon}} \left(\sqrt{\frac{t_1}{(1-t_1)}} \|Q^{-1/2}\|_2 + \sqrt{\frac{t_N}{(1-t_N)}} \|S^{-1/2}\|_2 + \sum_{i=1}^{N-1} \frac{(1-t_i)t_{i+1} + (1-t_{i+1})t_i}{\sqrt{\epsilon t_i t_{i+1} (1-t_i)(1-t_{i+1})}} \right).$$

1296 Now we prove (46). We bound the norm of f using formula (44)
1297

$$\begin{aligned}
 1298 \|f(P_n)\|_2 &= \left\| \prod_{i=0}^N (\Sigma_{n; t_i, t_{i+1}}) \right\|_2 \leq \prod_{i=0}^N (\|\Sigma_{n; t_i, t_{i+1}}\|_2) \leq \|\Sigma_{n; t_0, t_1}\|_2 \cdot \|\Sigma_{n; t_N, t_{N+1}}\|_2 \\
 1299 &\leq \|Q^{-1/2} \Sigma_{0, t_1} \Sigma_{t_1, t_1}^{-1/2}\|_2 \cdot \|\Sigma_{t_N, t_N}^{-1/2} \Sigma_{t_N, t_N} S^{-1/2}\|_2 \\
 1300 &= \|((1-t_1)Q^{1/2} + t_1 P_n S^{1/2}) \Sigma_{t_1, t_1}^{-1/2}\|_2 \cdot \|\Sigma_{t_N, t_N}^{-1/2} (t_N S^{1/2} + (1-t_N)Q^{1/2} P)\|_2.
 \end{aligned}$$

1304 We note that $I - P_n^\top P_n \succcurlyeq 0$, $I - P_n P_n^\top \succcurlyeq 0$ and

$$\begin{aligned}
 1305 (Q^{-1/2} \Sigma_{0, t_1})^\top (Q^{-1/2} \Sigma_{0, t_1}) &= ((1-t_1)Q^{1/2} + t_1 S^{1/2} P_n^\top) ((1-t_1)Q^{1/2} + t_1 P_n S^{1/2}) \\
 1306 &= (1-t_1)^2 Q + t_1^2 S^{1/2} P_n^\top P_n S^{1/2} \\
 1307 &\quad + t_1(1-t_1) [S^{1/2} P_n^\top Q^{1/2} + Q^{1/2} P_n S^{1/2}] \\
 1308 &= \Sigma_{t_1, t_1} - t_1^2 S^{1/2} (I - P_n^\top P_n) S^{1/2} - t_1(1-t_1) \epsilon I \\
 1309 &\preccurlyeq \Sigma_{t_1, t_1} - t_1(1-t_1) \epsilon I.
 \end{aligned}$$

1312 Similarly, we have

$$\begin{aligned}
 1313 (\Sigma_{t_N, t_N} S^{-1/2}) (\Sigma_{t_N, t_N} S^{-1/2})^\top &= \Sigma_{t_N, t_N} - (1-t_N)^2 Q^{1/2} (I - P_n^\top P_n) Q^{1/2} - t_N(1-t_N) \epsilon I \\
 1314 &\preccurlyeq \Sigma_{t_N, t_N} - t_N(1-t_N) \epsilon I.
 \end{aligned}$$

1316 Next, we consider

$$\begin{aligned}
 1317 \|((1-t_1)Q^{1/2} + t_1 P_n S^{1/2}) \Sigma_{t_1, t_1}^{-1/2}\|_2 &= \|\Sigma_{t_1, t_1}^{-1/2} ((1-t_1)Q^{1/2} + t_1 P_n S^{1/2})^\top ((1-t_1)Q^{1/2} + t_1 P_n S^{1/2}) \Sigma_{t_1, t_1}^{-1/2}\|_2 \\
 1318 &= \|\Sigma_{t_1, t_1}^{-1/2} (\Sigma_{t_1, t_1} - t_1^2 S^{1/2} (I - P_n^\top P_n) S^{1/2} - t_1(1-t_1) \epsilon) \Sigma_{t_1, t_1}^{-1/2}\|_2 \\
 1319 &\leq \|\Sigma_{t_1, t_1}^{-1/2} (\Sigma_{t_1, t_1} - t_1(1-t_1) \epsilon) \Sigma_{t_1, t_1}^{-1/2}\|_2 \\
 1320 &= \|I - t_1(1-t_1) \epsilon \Sigma_{t_1, t_1}^{-1}\|_2 \leq 1 - t_1(1-t_1) \epsilon \lambda_{\min}(\Sigma_{t_1, t_1}^{-1}) \\
 1321 &\leq 1 - t_1(1-t_1) \epsilon / \lambda_{\max}(\Sigma_{t_1, t_1}) = 1 - t_1(1-t_1) \epsilon / \|\Sigma_{t_1, t_1}\|_2. \tag{47}
 \end{aligned}$$

1324 We also can see that

$$\begin{aligned}
 1325 \|\Sigma_{t_i, t_i}\|_2 &\leq (1-t_i)^2 \|Q\|_2 + 2t_i(1-t_i) \|Q^{1/2}\|_2 \|S^{1/2}\|_2 + t_i^2 \|S\|_2 + t_i(1-t_i) \epsilon \\
 1326 &\leq ((1-t_i) \|Q^{1/2}\|_2 + t_i \|S^{1/2}\|_2)^2 + t_i(1-t_i) \epsilon.
 \end{aligned}$$

1328 Thus, we conclude that

$$\begin{aligned}
 1330 \|((1-t_1)Q^{1/2} + t_1 P_n S^{1/2}) \Sigma_{t_1, t_1}^{-1/2}\|_2 &\leq 1 - \frac{t_1(1-t_1) \epsilon}{((1-t_1) \|Q^{1/2}\|_2 + t_1 \|S^{1/2}\|_2)^2 + t_1(1-t_1) \epsilon} \\
 1331 &\leq 1 - \frac{t_1(1-t_1) \epsilon}{(\|Q^{1/2}\|_2 + \|S^{1/2}\|_2 + \sqrt{\epsilon})^2}
 \end{aligned}$$

1334 Similarly, we have

$$\|\Sigma_{t_N, t_N}^{-1/2} (t_N S^{1/2} + (1-t_N)Q^{1/2} P)\|_2^2 \leq 1 - \frac{t_N(1-t_N) \epsilon}{(\|Q^{1/2}\|_2 + \|S^{1/2}\|_2 + \sqrt{\epsilon})^2}.$$

1338 The final result follows:

$$\begin{aligned}
 1339 \|f(P_n)\|_2 &\leq \|((1-t_1)Q^{1/2} + t_1 P_n S^{1/2}) \Sigma_{t_1, t_1}^{-1/2}\|_2 \cdot \|\Sigma_{t_N, t_N}^{-1/2} (t_N S^{1/2} + (1-t_N)Q^{1/2} P)\|_2 \\
 1340 &\leq 1 - \frac{t_1 t_N (1-t_1)(1-t_N) \epsilon}{(\|Q^{1/2}\|_2 + \|S^{1/2}\|_2 + \sqrt{\epsilon})^2}.
 \end{aligned}$$

1343 \square

1344
1345 Next, we switch from tracking the changes of normalized correlation matrices to tracking
1346 the changes of the optimality matrices. Recall that, for a 2D-dimensional Gaussian process
1347 $\mathcal{N} \left(\begin{pmatrix} \eta \\ \nu \end{pmatrix}, \begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix} \right)$, the optimality matrix A from the definition (10) is calculated as
1348

$$A(P) = \Xi(P, Q, S) = (S)^{-1} P^\top (Q - P(S)^{-1} P^\top)^{-1}.$$

1350 Functions $\Xi(P_n, Q, S)$ and $A(P_n)$ can take the normalized correlation $P_n := Q^{-\frac{1}{2}}PS^{-\frac{1}{2}}$ as the
 1351 first argument. In this case, the formulas and notations are
 1352

$$1353 \quad \Xi_n(P_n, Q, S) := S^{-1/2}P_n^\top (I - P_nP_n^\top)^{-1}Q^{-1/2}, \quad A(P_n) = \Xi_n(P_n, Q, S). \quad (48)$$

1354 **Lemma D.5** (Optimality matrix map properties). *Let matrices $Q, S \succ 0$ be the marginals of a
 1355 2D-dimensional Gaussian distribution $\mathcal{N}\left(\begin{pmatrix} \eta \\ \nu \end{pmatrix}, \begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix}\right)$ with the normalized correlation
 1356 $P_n := Q^{-\frac{1}{2}}PS^{-\frac{1}{2}}$. Then the map from normalized correlations to optimality matrices $A(P_n) =$
 1357 $S^{-1/2}P_n^\top (I - P_nP_n^\top)^{-1}Q^{-1/2}$ is bi-Lipschitz on the set $\{P_n \in \mathbb{R}^{D \times D} : \|P_n\|_2 \leq \sqrt{1-\omega}\}$ for
 1358 any $0 < \omega < 1$. Specifically, for any P_n and \tilde{P}_n from this set, the following inequalities hold*
 1359

$$1360 \quad L\|P_n - \tilde{P}_n\|_2 \leq \|A(P_n) - A(\tilde{P}_n)\|_2 \leq M_\omega\|P_n - \tilde{P}_n\|_2,$$

1361 where
 1362

$$1363 \quad L = \frac{1}{\sqrt{2D}\|S\|_2^{1/2} \cdot \|Q\|_2^{1/2}}, \quad M_\omega = \|S^{-1}\|_2^{1/2} \cdot \|Q^{-1}\|_2^{1/2} \left(\frac{1}{\omega} + \frac{2}{\omega^2} \right).$$

1364 Before proving the lemma, we introduce some notations. Let h be a scalar function. For any diagonal
 1365 matrix $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_D)$, we define
 1366

$$1367 \quad h(\Lambda) = \text{diag}(h(\lambda_1), \dots, h(\lambda_D)).$$

1368 Next, given a symmetric matrix $B \in \mathbb{R}^{D \times D}$ with spectral decomposition $B = Z\Lambda Z^\top$, we set
 1369

$$1370 \quad h(B) = Z h(\Lambda) Z^\top.$$

1371 *Proof.* To estimate M_ω , we differentiate $A(P_n)$ w.r.t. P_n that
 1372

$$1373 \quad dA = S^{-1/2}P_n^\top (I - P_nP_n^\top)^{-1}(dP_nP_n^\top + P_n dP_n^\top)(I - P_nP_n^\top)^{-1}Q^{-1/2} \\ 1374 \quad + S^{-1/2}dP_n^\top (I - P_nP_n^\top)^{-1}Q^{-1/2}. \quad (49)$$

1375 By the conditions of the lemma, $0 \preccurlyeq P_nP_n^\top \preccurlyeq (1-\omega)I$, hence $\|(I - P_nP_n^\top)^{-1}\|_2 \leq \frac{1}{\omega}$ and
 1376 $\|P_n\|_2 \leq 1$. Thus,
 1377

$$1378 \quad \|dA\|_2 \leq \|S^{-1/2}\|_2 \|Q^{-1/2}\|_2 \left(\frac{1}{\omega} + \frac{2}{\omega^2} \right) \|dP_n\|_2.$$

1379 Since the ball $\{P_n : \|P_n\|_2 \leq \sqrt{1-\omega}\}$ is convex, this yields the bound M_ω on the Lipschitz
 1380 constant.
 1381

1382 To estimate L , we define $B = S^{1/2}AQ^{1/2} = P_n^\top (I - P_nP_n^\top)^{-1}$ and note that
 1383

$$1384 \quad B^\top B = (I - P_nP_n^\top)^{-1}P_nP_n^\top (I - P_nP_n^\top)^{-1} = (I - P_nP_n^\top)^{-2} - (I - P_nP_n^\top)^{-1}.$$

1385 Next, we define $h(x) = \frac{2}{1+\sqrt{1+4x}}$, $x \geq 0$, so that $h^{-1}(y) = y^{-2} - y^{-1}$, $0 < y \leq 1$. Therefore, we
 1386 have
 1387

$$1388 \quad I - P_nP_n^\top = h(B^\top B), \quad (50)$$

$$1389 \quad P_n^\top = B(I - P_nP_n^\top) = Bh(B^\top B).$$

1390 For now, consider B such that its singular values are positive and distinct (note that the set of such
 1391 matrices is dense in $\mathbb{R}^{D \times D}$). Then the SVD map $B \mapsto (U, \Lambda, V)$ such that $B = U\Lambda V^*$ is differen-
 1392 tiable at B (see Magnus & Neudecker, 2019, Section 3.8.8), thus so is the polar decomposition map
 1393 $B \mapsto (Q, S)$ such that $B = KC$, where K is orthogonal and C is PSD matrices. As
 1394

$$1395 \quad P_n^\top = Bh(B^\top B) = KCh(C^2) = U\Lambda h(\Lambda^2)V^*$$

1396 and $xh(x^2)$ is differentiable, we obtain that
 1397

$$1398 \quad dP_n^\top = dKCh(C^2) + Kd(Ch(C^2)).$$

Furthermore, $0 < h(x) \leq 1$ and $(xh(x^2))' = \frac{2}{(1+\sqrt{1+4x^2})\sqrt{1+4x^2}} \in (0, 1]$, hence $0 \prec h(S^2) \preceq I$ and $Ch(C^2)$ is 1-Lipschitz w.r.t. the Frobenius norm (Wihler, 2009, Thm. 1.1). Note that $\|KdC\|_F^2 = \text{Tr}[(KdC)^\top dKC] = \text{Tr}[(CdC)(K^\top dK)] = 0$ since $K^\top dK$ is skew-symmetric. It can be shown from the orthogonality of K :

$$I = K^\top K \Rightarrow 0 = dI = dK^\top \cdot K + K^\top dK \Rightarrow dK^\top \cdot K = -K^\top dK.$$

Thus, we have

$$\|dB\|_F^2 = \|dKC + KdC\|_F^2 = \|dKC\|_F^2 + \|KdC\|_F^2 = \|dKC\|_F^2 + \|dC\|_F^2.$$

Therefore,

$$\begin{aligned} \|dP_n\|_F &= \|dKCh(C^2) + Kd(Ch(C^2))\|_F \leq \|dKC\|_F \|h(C^2)\|_2 + \|d(Ch(C^2))\|_F \\ &\leq \|dKC\|_F + \|dC\|_F \leq \sqrt{2}\|dB\|_F. \end{aligned} \quad (51)$$

In particular,

$$\|dP_n\|_2 \leq \|dP_n\|_F \leq \sqrt{2}\|dB\|_F \leq \sqrt{2D}\|dB\|_2 \leq \sqrt{2D}\|S^{1/2}\|_2\|Q^{1/2}\|_2\|dA\|_2.$$

By continuity of the SVD and thus of the map $Bh(B^\top B)$, this yields that

$$L^{-1} = \sqrt{2D}\|S^{1/2}\|_2\|Q^{1/2}\|_2.$$

□

Now we can show that the function, changing the optimality matrix during IMF step, is Lipschitz. This function is constructed as follows: first, it transforms optimality matrix into the normalized correlation via Ξ_n^{-1} , then it makes an IMF step to obtain new normalized correlation via f from (44), finally it transforms new correlation back to new optimality matrix via Ξ_n .

Corollary D.6 (IMF step optimality matrix transition properties). *Let matrices $Q, S \succ 0$ be the marginals of a 2D-dimensional Gaussian distribution $\mathcal{N}\left(\begin{pmatrix} \eta \\ \nu \end{pmatrix}, \begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix}\right)$ with the optimality matrix A defined in (48). Set the function $g(A) := \Xi_n(f(\Xi_n^{-1}(A, Q, S)), Q, S)$, where Ξ_n and f defined in (48) and (44), and $\Xi_n^{-1}(\cdot; Q, S)$ denotes the inverse map of Ξ_n w.r.t. the first argument.*

Then g is Lipschitz continuous with constant $\frac{M_\omega}{L}\gamma$ on the set $\{A \mid \|\Xi_n^{-1}(A)\|_2 \leq \sqrt{1-\omega}\}$ for any $0 < \omega < 1$.

Proof. Lipschitz constant of the functions composition is the product of Lipschitz constants of the combined functions. From Lemma D.5, we know that the constant for Ξ_n is M_ω , for Ξ_n^{-1} is $1/L$ as inverse of Ξ_n . For transition function f , the constant γ comes from Lemma D.4. □

We also prove the upper bound for the normalized correlation for further proofs.

Corollary D.7 (Bound for $\|P_n\|_2^2$). *Let matrices $Q, S \succ 0$ be the marginals of a 2D-dimensional Gaussian distribution $\mathcal{N}\left(\begin{pmatrix} \eta \\ \nu \end{pmatrix}, \begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix}\right)$ with optimality matrix $A = \Xi(P, Q, S)$ and normalized correlation $P_n = Q^{-\frac{1}{2}}PS^{-\frac{1}{2}}$. Then the following bound holds true:*

$$\|P_n\|_2^2 \leq 1 - \frac{2}{1 + \sqrt{1 + 4\|Q\|_2\|S\|_2\|A\|_2^2}}. \quad (52)$$

Proof. We recall the explicit formula (50) connecting P_n and A :

$$I - P_n P_n^\top = h(B^\top B), \quad (53)$$

where matrix $B := S^{1/2}AQ^{1/2}$ and scalar function $h(x) := \frac{2}{1+\sqrt{1+4x}}, x \geq 0$. Given a $D \times D$ symmetric positive definite matrix C with spectral decomposition $C = U\Lambda U^*$, we set $h(C) = Uh(\Lambda)U^*$. We start with estimate

$$\lambda_{\min}(h(B^\top B)) = \lambda_{\min}(I - P_n P_n^\top) = 1 - \lambda_{\max}(P_n P_n^\top) = 1 - \|P_n\|_2^2. \quad (54)$$

1458 Since function h is monotonously decreasing on $[0, +\infty)$ and matrix $B^\top B$ has non-negative eigen-
 1459 values, we have $\lambda_{\min}(h(B^\top B)) = h(\lambda_{\max}(B^\top B))$ and continue with:
 1460

$$\begin{aligned} 1461 \lambda_{\min}(h(B^\top B)) &= h(\lambda_{\max}(B^\top B)) = h(\|B^\top B\|_2) \\ 1462 &\geq h(\|A\|_2^2 \|\Sigma\|_2 \|\tilde{\Sigma}\|_2) \\ 1463 &= \frac{2}{1 + \sqrt{1 + 4\|Q\|_2 \|S\|_2 \|A\|_2^2}}. \\ 1464 \\ 1465 \end{aligned}$$

1466 Combining bounds together, we conclude:
 1467

$$1468 \|P_n\|_2^2 \leq 1 - \frac{2}{1 + \sqrt{1 + 4\|Q\|_2 \|S\|_2 \|A\|_2^2}}. \\ 1469 \\ 1470$$

□

1471
 1472 Finally, we are ready to demonstrate convergence of the optimality matrix to the desired solution
 1473 $A^* = \epsilon^{-1} I_d$ after an IMF step.
 1474

1475 **Lemma D.8.** *IMF step convergence* Let matrices $Q, S \succ 0$ be the marginals of a 2D-dimensional
 1476 Gaussian distribution $\mathcal{N}\left(\begin{pmatrix} \eta \\ \nu \end{pmatrix}, \begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix}\right)$ with the optimality matrix A . Then after IMF step,
 1477 we obtain a new optimality matrix $\tilde{A} = g(A)$ (see Corollary D.6), satisfying the inequality
 1478

$$1479 \|\tilde{A} - \epsilon^{-1} I_d\|_2 \leq \frac{M_\omega}{L} \gamma(Q, S, \epsilon) \|A - \epsilon^{-1} I_d\|_2,$$

1480 where
 1481

$$\begin{aligned} 1482 \gamma &= \frac{\|Q^{1/2}\|_2 \|S^{1/2}\|_2}{\sqrt{\epsilon}} \left(\sqrt{\frac{t_1 \|Q^{-1/2}\|_2^2}{(1-t_1)}} + \sqrt{\frac{t_N \|S^{-1/2}\|_2^2}{(1-t_N)}} + \sum_{i=1}^{N-1} \frac{(1-t_i)t_{i+1} + (1-t_{i+1})t_i}{\sqrt{\epsilon} t_i t_{i+1} (1-t_i) (1-t_{i+1})} \right), \\ 1483 \\ 1484 \omega &= \min \left\{ 1 - \|P_n\|_2^2, 1 - \frac{t_1 t_N (1-t_1) (1-t_N) \epsilon}{(\|Q^{1/2}\|_2 + \|S^{1/2}\|_2 + \sqrt{\epsilon})^2} \right\}, \\ 1485 \\ 1486 L^{-1} &= \sqrt{2D} \|S^{1/2}\|_2 \|Q^{1/2}\|_2, \\ 1487 \\ 1488 M_\omega &= \|S^{-1}\|_2^{1/2} \cdot \|Q^{-1}\|_2^{1/2} \left(\frac{1}{\omega} + \frac{2}{\omega^2} \right). \\ 1489 \\ 1490 \end{aligned}$$

1491 *Proof.* The IMF method with volatility parameter ϵ can be viewed as an iterative application of the
 1492 transition function g . Since IMF converges to $A^* = \epsilon^{-1} I_d$, it follows that A^* is a stationary point
 1493 of g , i.e., $g(A^*) = A^*$. Hence, we apply Corollary D.6 to get
 1494

$$1495 \|\tilde{A} - A^*\|_2 = \|g(A) - g(A^*)\|_2 \leq \frac{M_\omega}{L} \gamma \|A - A^*\|_2,$$

1496 where explicit values for γ and ω, M_ω, L are taken from Lemmas D.4 and D.5, respectively. We
 1497 only need to satisfy condition on ω from Corollary D.6 for matrices A, \tilde{A}, A^* :
 1498

$$1500 \|\Xi_n^{-1}(A)\|_2 \leq \sqrt{1 - \omega}.$$

1501 In terms of normalized correlations $P_n, \tilde{P}_n = f(P_n)$ from (44) and $P_n^* = \Xi_n^{-1}(A^*)$ from (48), the
 1502 conditions are
 1503

$$1504 1 - \|P_n\|_2^2 \geq \omega, \quad 1 - \|\tilde{P}_n\|_2^2 \geq \omega. \quad (55)$$

1505 For the second inequality in (55), we use bound (46) from Lemma (D.4) for the result of applying
 1506 f :

$$1507 1 - \|\tilde{P}_n\|_2^2 = 1 - \|f(P_n)\|_2^2 \geq \frac{t_1 t_N (1-t_1) (1-t_N) \epsilon}{(\|Q^{1/2}\|_2 + \|S^{1/2}\|_2 + \sqrt{\epsilon})^2}.$$

1508 Finally, we combine all the bounds under the single minimum. □
 1509

1512 D.4 PROOF OF D-IPMF CONVERGENCE THEOREM 3.2, $D > 1$
1513

1514 *Proof.* We denote by Q_0 marginal matrix at $t = 0$ after the first IPF step. First, we note that all
1515 marginal matrices Q at $t = 0$ and S at $t = 1$ emerging during IPMF procedure are bounded by the
1516 initial ones (Lemma D.2):

$$\begin{aligned} 1517 \quad \|S\|_2 &\leq \frac{\|\Sigma_1\|_2}{\min\{\lambda_{\min}(S_0^{-\frac{1}{2}}\Sigma_1S_0^{-\frac{1}{2}}), 1\}} =: u_S, \|S^{-1}\|_2 \leq \max\{\lambda_{\max}(S_0^{-\frac{1}{2}}\Sigma_1S_0^{-\frac{1}{2}}), 1\}\|\Sigma_1^{-1}\|_2 =: r_S \\ 1518 \quad \|Q\|_2 &\leq \frac{\|\Sigma_0\|_2}{\min\{\lambda_{\min}(Q_0^{-\frac{1}{2}}\Sigma_0Q_0^{-\frac{1}{2}}), 1\}} =: u_Q, \|Q^{-1}\|_2 \leq \max\{\lambda_{\max}(Q_0^{-\frac{1}{2}}\Sigma_0Q_0^{-\frac{1}{2}}), 1\}\|\Sigma_0^{-1}\|_2 =: r_Q \end{aligned} \quad (56)$$

1523 **Optimality convergence and condition on ϵ .** Consider any IMF step during IPMF procedure which
1524 we denote by

$$\begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix} \xrightarrow{\text{IMF}} \begin{pmatrix} Q & \tilde{P} \\ \tilde{P}^\top & S \end{pmatrix}, \quad P_n := Q^{-\frac{1}{2}}PS^{-\frac{1}{2}}.$$

1527 We want to find such ϵ that new optimality matrix $\tilde{A} = \Xi(P, Q, S)$ becomes close to solution
1528 $A^* = \epsilon^{-1}I_D$ than starting $A = \Xi(P, Q, S)$. This transition from A to \tilde{A} satisfies (Lemma D.8):

$$\begin{aligned} 1530 \quad \|\tilde{A} - A^*\|_2 &\leq \left(\sqrt{2D} \left(\frac{1}{\omega} + \frac{2}{\omega^2} \right) \cdot \kappa(Q^{\frac{1}{2}})\kappa(S^{\frac{1}{2}}) \right) \gamma(Q, S, \epsilon) \|A - A^*\|_2, \\ 1531 \quad \gamma &\text{ is defined in (45),} \\ 1532 \quad \omega &= \min \left\{ 1 - \|P_n\|_2^2, 1 - \frac{t_1 t_N (1 - t_1)(1 - t_N) \epsilon}{(\|Q^{1/2}\|_2 + \|S^{1/2}\|_2 + \sqrt{\epsilon})^2} \right\}, \end{aligned} \quad (58)$$

1536 where $\kappa(\cdot)$ is condition number of a matrix.

1537 **Estimate ω .** The second term of ω in (59) can be lower bounded by

$$1539 \quad 1 - \frac{t_1 t_N (1 - t_1)(1 - t_N) \epsilon}{(\|Q^{1/2}\|_2 + \|S^{1/2}\|_2 + \sqrt{\epsilon})^2} \geq 1 - t_1 t_N (1 - t_1)(1 - t_N). \quad (60)$$

1542 To estimate $1 - \|P_n\|_2^2$ in the second term, we use lower bound (Corollary D.7):

$$1543 \quad 1 - \|P_n\|_2^2 \geq \frac{2}{1 + \sqrt{1 + 4\|Q\|_2\|S\|_2\|A\|_2^2}} \geq \frac{1}{\sqrt{1 + 4\|Q\|_2\|S\|_2\|A\|_2^2}}.$$

1546 Hence, we have lower bound for ω :

$$1547 \quad \omega \geq \min \left\{ \frac{1}{\sqrt{1 + 4\|Q\|_2\|S\|_2\|A\|_2^2}}, 1 - t_1 t_N (1 - t_1)(1 - t_N) \right\} \geq \frac{(1 - t_1 t_N (1 - t_1)(1 - t_N))}{\sqrt{1 + 4\|Q\|_2\|S\|_2\|A\|_2^2}}.$$

1550 The change of difference norm after one IMF step is

$$1552 \quad \|A' - A_*\|_2 \leq 6\sqrt{D} \cdot \kappa(Q^{\frac{1}{2}})\kappa(S^{\frac{1}{2}}) \cdot \underbrace{\frac{(1 + 4\|Q\|_2\|S\|_2\|A\|_2^2)}{(1 - t_1 t_N (1 - t_1)(1 - t_N))^2} \cdot \gamma(Q, S, \epsilon) \cdot \|A - A_*\|_2}_{:= l(Q, S, \|A\|_2, \epsilon)}. \quad (61)$$

1555 Now we need to make this map contractive, i.e., bound the coefficient $l(Q, S, \|A\|_2, \epsilon) < 1$ for all
1556 matrices Q, S, A appearing during IPMF procedure.

1558 Universal bounds (57) and (56) state that matrices Q and S lie on matrix compacts $B_Q := \{Q \succ 0 | \|Q\|_2 \leq u_Q, \|Q^{-1}\|_2 \leq r_Q\}$ and $B_S := \{S \succ 0 | \|S\|_2 \leq u_S, \|S^{-1}\|_2 \leq r_S\}$, respectively.
1559 Moreover, the function $l(Q, S, \|A\|_2, \epsilon)$ is continuous w.r.t. all its parameters on these compacts.
1560 Hence, we can get rid of Q, S dependency, since the following maximum is attained

$$1562 \quad l(\|A\|_2, \epsilon) = \max_{Q \in B_Q, S \in B_S} l(Q, S, \|A\|_2, \epsilon).$$

1564 **$\|A\|_2$ dependency.** IPF steps do not change optimality matrices (Lemma D.3), hence, we consider
1565 only IMF steps here. We prove by induction that if at the first IMF step with initial optimality matrix

1566 A_0 coefficient $l(\|A_0\|_2 + 2\epsilon^{-1}, \epsilon) < 1$ is less than 1, then all optimality matrices $\{A_i\}$ during IPMF
 1567 procedure will be bounded by

$$1568 \quad \|A_i\|_2 \leq \|A_0\|_2 + 2\epsilon^{-1}, \quad \|A_i - A^*\|_2 \leq \|A_0 - A^*\|_2.$$

1570 First, we note that the coefficient $l(\|A\|_2, \epsilon)$ is increasing w.r.t. $\|A\|_2$. As the base, we show that
 1571 after the first IMF step new matrix A_1 is bounded:

$$\begin{aligned} 1573 \quad \|A_1\|_2 &\leq \|A_1 - A^*\|_2 + \|A^*\|_2 \leq l(\|A_0\|_2, \epsilon)\|A_0 - A^*\|_2 + \|A^*\|_2 \\ 1574 &\leq l(\|A_0\|_2 + 2\epsilon^{-1}, \epsilon)\|A_0 - A^*\|_2 + \|A^*\|_2 \leq \|A_0 - A^*\|_2 + \|A^*\|_2 \\ 1575 &\leq \|A_0\|_2 + 2\|A^*\|_2 \leq \|A_0\|_2 + 2\epsilon^{-1}. \end{aligned}$$

1576 Moreover, we have

$$1577 \quad \|A_1 - A^*\|_2 \leq \|A_0 - A^*\|_2.$$

1578 Assume that the bounds $\|A_i\|_2 \leq \|A_0\|_2 + 2\epsilon^{-1}$ and $\|A_i - A^*\|_2 \leq \|A_0 - A^*\|_2$ hold for the i -th
 1579 matrix, then, for the next matrix A_{i+1} , we prove:

$$\begin{aligned} 1581 \quad \|A_{i+1} - A^*\|_2 &\leq l(\|A_i\|_2, \epsilon)\|A_i - A^*\|_2 \leq l(\|A_0\|_2 + 2\epsilon^{-1}, \epsilon)\|A_i - A^*\|_2 \\ 1582 &\leq \|A_i - A^*\|_2 \leq \|A_0 - A^*\|_2, \\ 1583 \quad \|A_{i+1}\|_2 &\leq \|A_{i+1} - A^*\|_2 + \|A^*\|_2 \leq \|A_0 - A^*\|_2 + \|A^*\|_2 \leq \|A_0\|_2 + 2\epsilon^{-1}. \end{aligned}$$

1584 Thus, we take maximal possible norm among all matrices $\|A_i\|_2 \leq \|A_0\|_2 + 2\epsilon^{-1}$ to upper bound
 1585 the coefficient $l(\|A_i\|_2, \epsilon) \leq l(\|A_0\|_2 + 2\epsilon^{-1}, \epsilon) < 1$.

1587 **The final condition (62) on ϵ is**

$$1588 \quad \beta(Q_0, S_0, P_0, \epsilon) := \max_{Q \in B_Q, S \in B_S} \left[6\sqrt{D} \cdot \kappa(Q^{\frac{1}{2}}) \kappa(S^{\frac{1}{2}}) \cdot \frac{(1 + 4\|Q\|_2\|S\|_2(\|A_0\|_2 + 2\epsilon^{-1})^2)}{(1 - t_1 t_N(1 - t_1)(1 - t_N))^2} \cdot \gamma(Q, S, \epsilon) \right] < 1.$$

1590 We can see from the definition

$$1592 \quad \gamma(Q, S, \epsilon) := \frac{\|Q^{\frac{1}{2}}\|_2\|S^{\frac{1}{2}}\|_2}{\sqrt{\epsilon}} \left(\sqrt{\frac{t_1\|Q^{-\frac{1}{2}}\|_2^2}{(1 - t_1)}} + \sqrt{\frac{t_N\|S^{-\frac{1}{2}}\|_2^2}{(1 - t_N)}} + \sum_{i=1}^{N-1} \frac{(1 - t_i)t_{i+1} + (1 - t_{i+1})t_i}{\sqrt{\epsilon t_i t_{i+1}(1 - t_i)(1 - t_{i+1})}} \right)$$

1595 that the largest value of γ is achieved when $\|Q^{1/2}\|_2, \|S^{1/2}\|_2, \|Q^{-1/2}\|_2, \|S^{-1/2}\|_2$ are the largest.
 1596 Since these values are bounded by $\|Q^{1/2}\|_2 \leq \sqrt{u_Q}, \|S^{1/2}\|_2 \leq \sqrt{u_S}$ and $\|Q^{-1/2}\|_2 \leq \sqrt{r_Q}, \|S^{-1/2}\|_2 \leq \sqrt{r_Q}$, we can estimate the maximum and get lower bound for ϵ :

$$\begin{aligned} 1599 \quad \beta(Q_0, S_0, P_0, \epsilon) &\leq 6\sqrt{D \cdot u_Q r_Q u_S r_S} \cdot \frac{(1 + 4u_Q u_S(\|A_0\|_2 + 2\epsilon^{-1})^2)}{(1 - t_1 t_N(1 - t_1)(1 - t_N))^2} \\ 1600 &\quad \cdot \frac{\sqrt{u_Q u_S}}{\sqrt{\epsilon}} \left(\sqrt{\frac{t_1 r_Q}{(1 - t_1)}} + \sqrt{\frac{t_N r_S}{(1 - t_N)}} + \sum_{i=1}^{N-1} \frac{(1 - t_i)t_{i+1} + (1 - t_{i+1})t_i}{\sqrt{\epsilon t_i t_{i+1}(1 - t_i)(1 - t_{i+1})}} \right) \leq 1, \\ 1604 \quad \epsilon &= O(D \cdot r_Q^2 r_S^2 \cdot u_Q^4 u_S^4 \cdot \|A_0\|_2^4). \end{aligned} \tag{62}$$

1605 If the above ϵ -condition (62) holds true, then A_k exponentially converges to A^* (square appears
 1606 since IPMF step includes two IMF steps):

$$1608 \quad \|A_k - A^*\|_2 \leq \beta(Q_0, S_0, P_0, \epsilon)^{2k} \|A_0 - A^*\|_2.$$

1609 **Marginals convergence.** Furthermore, we prove that marginals converge to ground truth Σ_1 as well.

1610 We note that, during any condition $\begin{pmatrix} Q & P \\ P^\top & S \end{pmatrix}$ of IPMF procedure, the norm of the normalized
 1611 matrix $P_n = Q^{-\frac{1}{2}} P S^{-\frac{1}{2}}$ is bounded:

$$1614 \quad \|P_n\|_2^2 \leq 1 - \frac{2}{1 + \sqrt{1 + 4\|Q\|_2\|S\|_2\|A\|_2^2}}.$$

1616 Since $\|Q\|_2 \leq u_Q$ holds from (57), $\|S\|_2 \leq u_S$ holds from (56) and $\|A\|_2 \leq \|A_0\|_2 + 2\epsilon^{-1}$ (due to
 1617 contractivity of A), we can upper bound the normalized correlation

$$1619 \quad \|P_n\|_2^2 \leq 1 - \frac{2}{1 + \sqrt{1 + 4u_Q u_S(\|A_0\|_2 + 2\epsilon^{-1})^2}} =: \alpha(Q_0, S_0, P_0, \epsilon)^2 < 1.$$

Finally, we apply bounds from IPF steps Lemma D.1 at k -th step and put maximal norm value $\alpha(Q_0, S_0, P_0, \epsilon)^2$:

$$\begin{aligned} \|S_k^{-\frac{1}{2}} \Sigma_1 S_k^{-\frac{1}{2}} - I_D\|_2 &\leq \alpha(Q_0, S_0, P_0, \epsilon)^2 \cdot \|S_0^{-\frac{1}{2}} \Sigma_1 S_0^{-\frac{1}{2}} - I_D\|_2, \\ \|\Sigma_1^{-\frac{1}{2}}(\nu_k - \mu_1)\|_2 &\leq \alpha(Q_0, S_0, P_0, \epsilon)^2 \cdot \|\Sigma_1^{-\frac{1}{2}}(\nu_0 - \mu_1)\|_2. \end{aligned}$$

□

D.5 IMF STEP ANALYSIS IN 1D

Preliminaries. In case $D = 1$, we change notation from matrices to scalars:

$$\begin{pmatrix} q & \rho \\ \rho & s \end{pmatrix} \xrightarrow{\text{IMF}} \begin{pmatrix} q & \tilde{\rho} \\ \tilde{\rho} & s \end{pmatrix}, \quad \rho_n := \rho/\sqrt{sq}, \tilde{\rho}_n := \tilde{\rho}/\sqrt{sq}.$$

Using these notations, formula (48) for optimality coefficient $\chi \in \mathbb{R}$ (instead of matrix A) can be expressed as

$$\Xi_n(\rho_n, q, s) = \frac{\rho_n}{\sqrt{sq}(1 - \rho_n^2)} = \chi \in (-\infty, +\infty). \quad (63)$$

The function Ξ_n is monotonously increasing w.r.t. $\rho_n \in (-1, 1)$ and, thus, invertible, i.e., there exists a function $\Xi_n^{-1} : (-\infty, +\infty) \times \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow (-1, 1)$ such that

$$\Xi_n^{-1}(\chi, s, q) = \frac{\sqrt{\chi^2 sq + 1/4} - 1/2}{\chi \sqrt{sq}}. \quad (64)$$

The inverse function is calculated via solving quadratic equation w.r.t. ρ_n .

In our paper, we consider both discrete and continuous IMF. By construction, IMF step does change marginals of the process it works with. Moreover, for both continuous and discrete IMF, the new correlation converges to the correlation of the ϵ -EOT between marginals.

Lemma D.9 (Correlation improvement after (D)IMF step). *Consider a 2-dimensional Gaussian distribution with marginals $\mathcal{N}(\eta, q)$ and $\mathcal{N}(\nu, s)$ and normalized correlation $\rho_n \in (-1, 1)$ between its components. After continuous IMF or DIMF with single time point t , we obtain normalized correlation $\tilde{\rho}_n$. The distance between $\tilde{\rho}_n$ and EOT correlation $\rho_n^* = \Xi_n^{-1}(1/\epsilon, q, s)$ decreases as:*

$$|\tilde{\rho}_n - \rho_n^*| \leq \gamma \cdot |\rho_n - \rho_n^*|,$$

where factor γ for continuous and discrete IMF (with $N = 1$) is, respectively,

$$\begin{aligned} \gamma_c(q, s) &= \left| \frac{2\epsilon^2 qs \cdot f(0)}{(\epsilon^2 - 4q^2 s^2)^{\frac{3}{2}}} \left(\tanh^{-1} \left(\frac{\epsilon - 2q^2}{\sqrt{\epsilon - 4q^2 s^2}} \right) + \tanh^{-1} \left(\frac{\epsilon - 2s^2}{\sqrt{\epsilon - 4q^2 s^2}} \right) - \frac{\sqrt{\epsilon^2 + 4q^2 s^2}}{\epsilon} \right) \right|, \\ \gamma_d(q, s, t) &= \frac{1}{1 + \frac{t^2(1-t)^2 qs + t(1-t)(t^2 s + (1-t)^2 q) \epsilon + t^2(1-t)^2 \epsilon^2}{(1-t)^2((1-t)q + t\sqrt{qs})^2 + t^2(ts + (1-t)\sqrt{qs})^2 + t(1-t)((1-t)\sqrt{q} + t\sqrt{s})^2 \epsilon}}. \end{aligned} \quad (65)$$

Proof. **Continuous case.** Following (Peluchetti, 2023a, Eq. 42), we have the formula for $\tilde{\rho}_n$:

$$\tilde{\rho}_n = f(\rho_n) = \exp \left\{ -\epsilon \frac{\tanh^{-1} \left(\frac{c_1}{c_3} \right) + \tanh^{-1} \left(\frac{c_2}{c_3} \right)}{c_3} \right\} > 0, \quad (67)$$

$$\begin{aligned} c_1 &= \epsilon + 2s(\rho_n q - s), c_3 = \sqrt{(\epsilon + 2(\rho_n + 1)qs)(\epsilon + 2(\rho_n - 1)qs)}, \\ c_2 &= \epsilon + 2q(\rho_n s - q). \end{aligned}$$

Note that the function $f(\rho_n)$ is positive and concave on $(-1, 1)$, i.e., its derivative is decreasing on $(-1, 1)$. Hence, in negative segment $(-1, 0]$, the distance until the fixed point $\rho_n^* > 0$ is decreasing faster, than in positive segment, and we need to deal only with the positive segment $[0, 1)$. We will show that the function f has a derivative norm bounded by 1 on $[0, 1)$, and, hence, it is contractive. Due to concavity, its derivative is decreasing on $[0, 1)$, and we can check the bound only for derivative at the point $\rho_n = 0$. Direct calculation gives us:

$$f'(0) = \frac{f(0) \cdot 2\epsilon qs}{(\epsilon^2 - 4q^2 s^2)^2} \left(\epsilon \sqrt{\epsilon - 4q^2 s^2} \left[\tanh^{-1} \left(\frac{\epsilon - 2q^2}{\sqrt{\epsilon - 4q^2 s^2}} \right) + \tanh^{-1} \left(\frac{\epsilon - 2s^2}{\sqrt{\epsilon - 4q^2 s^2}} \right) \right] - \epsilon^2 + 4q^2 s^2 \right),$$

$$1674 \quad \gamma_c(q, s) = |f'(0)| < 1.$$

1675
1676 Thus, we can bound $|f'(\rho_n)| \leq \gamma_c(q, s), \forall \rho_n \in [0, 1]$ and get on the whole interval $(-1, 1)$

$$1677 \quad |\tilde{\rho}_n - \rho_n^*| = |f(\rho_n) - f(\rho_n^*)| \leq \gamma_c(q, s)|\rho_n - \rho_n^*|.$$

1679 **Discrete case ($N = 1$).** We use explicit formula (44) for a new correlation $\tilde{\rho}_n = f(\rho_n)$ after D-IMF
1680 step from (Gushchin et al., 2024) provided in the beginning of Section D.3.

1681 In the case of single point $t = t_1$ ($N = 1$), we prove that the function $f(\rho_n)$ is a contraction
1682 map. The sufficient condition for the map to be contraction is to have derivative's norm bounded by
1683 $\gamma_d < 1$. First, we can write down the simplified formula $f(\rho_n)$:

$$1685 \quad f(\rho_n) = \frac{((1-t)\sqrt{q} + t\rho_n\sqrt{s})(t\sqrt{s} + (1-t)\rho_n\sqrt{q})}{(1-t)q + 2t(1-t)\rho_n\sqrt{sq} + t^2s + t(1-t)\epsilon}. \quad (68)$$

1687 Next, we simplify derivative $f'(\rho_n)$:

$$\begin{aligned} 1689 \quad \sigma_{0,t} &= (1-t) \cdot q + t \cdot \rho, \\ 1690 \quad \sigma_{t,1} &= t \cdot s + (1-t) \cdot \rho, \\ 1691 \quad \sigma_{t,t} &= (1-t)^2 \cdot q + 2(1-t)t \cdot \rho + t^2 \cdot s + t(1-t)\epsilon = (1-t) \cdot \sigma_{0,t} + t \cdot \sigma_{t,1} + t(1-t)\epsilon, \\ 1693 \quad f'(\rho_n) &= \frac{(1-t)\sigma_{0,t}}{\sigma_{t,t}} + \frac{t\sigma_{t,1}}{\sigma_{t,t}} - 2 \cdot \frac{t\sigma_{t,1} \cdot (1-t)\sigma_{0,t}}{\sigma_{t,t} \cdot \sigma_{t,t}}. \end{aligned}$$

1695 We define new variables $\hat{\sigma}_{0,t} \stackrel{\text{def}}{=} (1-t)\sigma_{0,t}$, $\hat{\Sigma}_{t,1} \stackrel{\text{def}}{=} t\sigma_{t,1}$, $\hat{\epsilon} = t(1-t)\epsilon$ and restate f' as:

$$\begin{aligned} 1697 \quad f' &= \frac{\hat{\sigma}_{0,t}}{\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t} + \hat{\epsilon}} + \frac{\hat{\sigma}_{1,t}}{\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t} + \hat{\epsilon}} - \frac{2\hat{\sigma}_{0,t}\hat{\sigma}_{1,t}}{(\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t} + \hat{\epsilon})^2} \\ 1700 &= \frac{(\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t})(\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t} + \hat{\epsilon}) - 2\hat{\sigma}_{0,t}\hat{\sigma}_{1,t}}{(\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t} + \hat{\epsilon})^2} \end{aligned} \quad (69)$$

$$1702 \quad = \frac{\hat{\sigma}_{0,t}^2 + \hat{\sigma}_{1,t}^2 + (\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t})\hat{\epsilon}}{(\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t} + \hat{\epsilon})^2} \quad (70)$$

$$1704 \quad = \frac{\hat{\sigma}_{0,t}^2 + \hat{\sigma}_{1,t}^2 + (\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t})\hat{\epsilon}}{\hat{\sigma}_{0,t}^2 + 2\hat{\sigma}_{0,t}\hat{\sigma}_{1,t} + \hat{\sigma}_{1,t}^2 + 2(\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t})\hat{\epsilon} + \hat{\epsilon}^2} \quad (71)$$

$$1707 \quad = \frac{1}{1 + \frac{2\hat{\sigma}_{0,t}\hat{\sigma}_{1,t} + (\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t})\hat{\epsilon} + \hat{\epsilon}^2}{\hat{\sigma}_{0,t}^2 + \hat{\sigma}_{1,t}^2 + (\hat{\sigma}_{0,t} + \hat{\sigma}_{1,t})\hat{\epsilon}}}. \quad (72)$$

1710 We note that all terms in (70) are greater than 0 and, thus, f is monotone:

$$1711 \quad 0 < f'(\rho_n), \quad \rho_n \in (-1, 1). \quad (73)$$

1713 In the negative segment $\rho_n \in (-1, 0]$, the derivative norm $|f'|$ is greater than in the positive segment
1714 $[0, 1]$, and value of the function is always larger than its argument. Thus, in negative segment, the
1715 distance until the fixed point $\rho_n^* > 0$ is decreasing faster, than in positive segment.

1716 For $\rho_n \in [0, 1]$, we can bound the fraction in denominator of (72) by taking its numerator's minimum
1717 at $\rho_n = 0$ and its denominator's maximum at $\rho_n = 1$, i.e,

$$1718 \quad 0 < f' \leq \gamma_d(q, s, t) < 1,$$

$$1720 \quad \gamma_d(q, s, t) = \frac{1}{1 + \frac{t^2(1-t)^2qs + t(1-t)(t^2s + (1-t)^2q)\epsilon + t^2(1-t)^2\epsilon^2}{(1-t)^2((1-t)q + t\sqrt{sq})^2 + t^2(ts + (1-t)\sqrt{qs})^2 + t(1-t)((1-t)\sqrt{q} + t\sqrt{s})^2\epsilon}}.$$

1722 We note that $\gamma_d(q, s, t)$ is increasing function w.r.t. q, s .

1724 If we put into the function f argument ρ_n^* corresponding to the ϵ -EOT correlation, DIMF does not
1725 change it. Hence, ρ_n^* is the fixed point of $f(\rho_n)$, and we have

$$1726 \quad |\tilde{\rho}_n - \rho_n^*| = |f(\rho_n) - f(\rho_n^*)| \leq \gamma_d(q, s, t)|\rho_n - \rho_n^*|.$$

1727

□

1728
 1729 **Lemma D.10** (χ improvement after (D)IMF step). Consider a 2-dimensional Gaussian distribution
 1730 with marginals $\mathcal{N}(\eta, q)$ and $\mathcal{N}(\nu, s)$ and normalized correlation $\rho_n \in (-1, 1)$ between its compo-
 1731 nents. After continuous IMF or DIMF with a single time point t , we obtain new correlation $\tilde{\rho}_n$, such
 1732 that $|\tilde{\rho}_n - \rho_n^*| \leq \gamma |\rho_n - \rho_n^*|$ where $\rho_n^* = \Xi_n^{-1}(1/\epsilon, q, s)$ and $\gamma < 1$ is from (65) for IMF and from
 1733 (66) for DIMF. We have bound in terms of $\chi = \Xi_n(\rho_n, q, s)$ and $\tilde{\chi} = \Xi_n(\tilde{\rho}_n, q, s)$:

$$1733 \quad |\tilde{\chi} - 1/\epsilon| \leq l(\rho_n, \rho_n^*, \gamma) \cdot |\chi - 1/\epsilon|, \quad (74) \\ 1734 \quad l(\rho_n, \rho_n^*, \gamma) = \left[1 - (1 - \gamma) \frac{(1 - \max\{\rho_n^*, |\rho_n|\})^2}{1 + \max\{\rho_n^*, |\rho_n|\}} \right] < 1. \\ 1735 \\ 1736$$

1737 *Proof. Monotone.* The function $f(\rho_n)$ from (67) for continuous IMF and from (68) for DIMF is
 1738 monotonously increasing on $(-1, 1)$. The monotone means that the value $\tilde{\rho}_n$ always remains from
 1739 the same side from ρ_n^* :

$$1740 \quad \begin{cases} \rho_n > \rho_n^* \implies f(\rho_n) > \rho_n^*, \\ \rho_n \leq \rho_n^* \implies f(\rho_n) \leq \rho_n^*, \end{cases} \quad (75)$$

1741 The same inequalities hold true for $\chi = \Xi_n(\rho_n, q, s)$, $\tilde{\chi} = \Xi_n(\tilde{\rho}_n, q, s)$ and $\chi_* = 1/\epsilon$ as well: if
 1742 $\chi < \chi_*$, then $\tilde{\chi} < \chi_*$ and vice versa, since $\Xi_n(\rho_n, q, s)$ is monotonously increasing w.r.t. ρ_n .

1743 **Properties.** In this proof, we omit arguments q, s of $\Xi_n^{-1}(\chi, q, s)$ and $\Xi_n(\rho_n, q, s)$, because they
 1744 do not change during IMF step. The second derivative of the function $\Xi_n(\rho_n)$ is

$$1745 \quad \frac{d^2 \Xi_n}{d \rho_n^2}(\rho_n) = \frac{2 \rho_n (3 + \rho_n^2)}{\sqrt{sq} (1 - \rho_n^2)^3}.$$

1746 Hence, we have $\frac{d^2 \Xi_n}{d \rho_n^2}(\rho_n) \leq 0$ for $\rho_n \in (-1, 0]$ and $\frac{d^2 \Xi_n}{d \rho_n^2}(\rho_n) \geq 0$ for $\rho_n \in [0, 1)$. It means that the
 1747 function $\Xi_n(\rho_n)$ is concave on $(-1, 0]$ and convex on $[0, 1)$.

1748 The function $\Xi_n(\rho_n)$ is monotonously increasing w.r.t. ρ_n , thus, decreasing of the radius $h \stackrel{\text{def}}{=} | \rho_n - \rho_n^* |$ around ρ_n^* causes the decreasing of $|\chi - \chi_*|$ around χ_* . We consider two cases: $\chi > \chi_*$ and $\chi < \chi_*$.

1749 **Case $\chi > \chi_*$.** We have $\rho_n = \rho_n^* + h$, $\chi = \Xi_n(\rho_n^* + h) = \Xi_n(\rho_n)$ and $\Xi_n(\rho_n^* + \gamma h) \geq \tilde{\chi}$. We
 1750 compare the difference using convexity on $[0, 1)$:

$$1751 \quad \chi - \tilde{\chi} \geq \Xi_n(\rho_n^* + h) - \Xi_n(\rho_n^* + \gamma h) \geq (\rho_n^* + h - (\rho_n^* + h\gamma)) \cdot \frac{d \Xi_n}{d \rho_n}(\rho_n^* + \gamma h) \\ 1752 \\ 1753 = (1 - \gamma)h \cdot \frac{d \Xi_n}{d \rho_n}(\rho_n^* + \gamma h).$$

1754 Since the derivative of Ξ_n is always positive, we continue the bound:

$$1755 \quad \Xi_n(\rho_n^* + h) - \Xi_n(\rho_n^* + \gamma h) \geq \min_{\rho'_n \in [\rho_n^*, \rho_n^* + h]} \left| \frac{d \Xi_n}{d \rho_n}(\rho'_n) \right| (1 - \gamma) |\rho_n - \rho_n^*|.$$

1756 Next, we use Lipschitz property of Ξ_n , i.e.,

$$1757 \quad |\chi - \chi_*| = |\Xi_n(\rho_n) - \Xi_n(\rho_n^*)| \leq \max_{\rho'_n \in [\rho_n^*, \rho_n^* + h]} \left| \frac{d \Xi_n}{d \rho_n}(\rho'_n) \right| |\rho_n - \rho_n^*|,$$

1758 and combine it with the previous bound

$$1759 \quad \chi - \tilde{\chi} \geq \Xi_n(\rho_n^* + h) - \Xi_n(\rho_n^* + \gamma h) \geq \frac{\min_{\rho'_n \in [\rho_n^*, \rho_n]} \left| \frac{d \Xi_n}{d \rho_n}(\rho'_n) \right|}{\max_{\rho'_n \in [\rho_n^*, \rho_n]} \left| \frac{d \Xi_n}{d \rho_n}(\rho'_n) \right|} (1 - \gamma) |\chi - \chi_*|.$$

1760 **Case $\chi < \chi_*$.** We have $\rho_n = \rho_n^* - h$, $\chi = \Xi_n(\rho_n^* - h) = \Xi_n(\rho_n)$ and $\Xi_n(\rho_n^* - \gamma h) \leq \tilde{\chi}$. There are
 1761 three subcases for $\chi, \tilde{\chi}$ positions around 0:

1762 1. For positions $\chi_* > \tilde{\chi} \geq \Xi_n(\rho_n^* - \gamma h) > \chi \geq 0$, we use *convexity* of Ξ_n on $[0, 1)$ and
 1763 obtain

$$1764 \quad \tilde{\chi} - \chi \geq \Xi_n(\rho_n^* - \gamma h) - \Xi_n(\rho_n^* - h) \geq (1 - \gamma)h \cdot \frac{d \Xi_n}{d \rho_n}(\rho_n^* - h)$$

$$\geq \min_{\rho'_n \in [\rho_n^* - h, \rho_n^*]} \left| \frac{d\Xi_n}{d\rho_n}(\rho'_n) \right| (1 - \gamma) |\rho_n - \rho_n^*|.$$

2. For positions $\chi_* > 0 \geq \tilde{\chi} \geq \Xi_n(\rho_n^* - \gamma h) > \chi$ and $\chi_* \geq \tilde{\chi} \geq 0 \geq \Xi_n(\rho_n^* - \gamma h) > \chi$, we use *concavity* of Ξ_n on $(-1, 0]$ and obtain

$$\begin{aligned} \tilde{\chi} - \chi &\geq \Xi_n(\rho_n^* - \gamma h) - \Xi_n(\rho_n^* - h) \geq (1 - \gamma)h \cdot \frac{d\Xi_n}{d\rho_n}(\rho_n^* - \gamma h) \\ &\geq \min_{\rho'_n \in [\rho_n^* - h, \rho_n^*]} \left| \frac{d\Xi_n}{d\rho_n}(\rho'_n) \right| (1 - \gamma) |\rho_n - \rho_n^*|. \end{aligned}$$

3. For positions $\chi_* > \tilde{\chi} \geq \Xi_n(\rho_n^* - \gamma h) > 0 > \chi$, we use *concavity* of Ξ_n on $(-1, 0]$ and *convexity* of Ξ_n on $[0, 1)$ and obtain

$$\begin{aligned} \tilde{\chi} - \chi &\geq \Xi_n(\rho_n^* - \gamma h) - \Xi_n(\rho_n^* - h) = [\Xi_n(\rho_n^* - \gamma h) - \Xi_n(0)] + [\Xi_n(0) - \Xi_n(\rho_n^* - h)] \\ &\geq (\rho_n^* - \gamma h) \cdot \frac{d\Xi_n}{d\rho_n}(0) + (h - \rho_n^*) \cdot \frac{d\Xi_n}{d\rho_n}(0) = (1 - \gamma)h \cdot \frac{d\Xi_n}{d\rho_n}(0) \\ &\geq \min_{\rho'_n \in [\rho_n^* - h, \rho_n^*]} \left| \frac{d\Xi_n}{d\rho_n}(\rho'_n) \right| (1 - \gamma) |\rho_n - \rho_n^*|. \end{aligned}$$

Overall, we make the bound

$$\begin{aligned} \tilde{\chi} - \chi &\geq \min_{\rho'_n \in [\rho_n^* - h, \rho_n^*]} \left| \frac{d\Xi_n}{d\rho_n}(\rho'_n) \right| (1 - \gamma) |\rho_n - \rho_n^*| \\ &\geq \frac{\min_{\rho'_n \in [\rho_n, \rho_n^*]} \left| \frac{d\Xi_n}{d\rho_n}(\rho'_n) \right|}{\max_{\rho'_n \in [\rho_n, \rho_n^*]} \left| \frac{d\Xi_n}{d\rho_n}(\rho'_n) \right|} (1 - \gamma) |\chi - \chi_*|. \end{aligned}$$

For the function $\Xi_n(\rho_n) = \frac{\rho_n}{\sqrt{sq(1 - \rho_n^2)}}$, the centrally symmetrical derivative is

$$\frac{d\Xi_n}{d\rho_n}(\rho_n) = \frac{1 + \rho_n^2}{\sqrt{sq(1 - \rho_n^2)^2}}.$$

The derivative $\frac{d\Xi_n}{d\rho_n}$ has its global minimum at $\rho_n = 0$. It grows as $\rho_n \rightarrow \pm 1$, hence, the maximum value is achieved at points which are farthest from 0:

$$\begin{aligned} \max_{\rho'_n \in [\rho_n^*, \rho_n]} \left| \frac{d\Xi_n}{d\rho_n}(\rho'_n) \right| &\leq \frac{d\Xi_n}{d\rho_n}(\rho_n), \\ \max_{\rho'_n \in [\rho_n, \rho_n^*]} \left| \frac{d\Xi_n}{d\rho_n}(\rho'_n) \right| &\leq \max \left\{ \frac{d\Xi_n}{d\rho_n}(\rho_n^*), \frac{d\Xi_n}{d\rho_n}(|\rho_n|) \right\}, \\ \min_{\rho'_n \in [-1, +1]} \left| \frac{d\Xi_n}{d\rho_n}(\rho'_n) \right| &\geq \frac{1}{\sqrt{sq}}. \end{aligned}$$

Thus, we prove the bound

$$|\chi - \chi_*| - |\tilde{\chi} - \chi_*| = |\tilde{\chi} - \chi| \geq \frac{(1 - \max\{\rho_n^*, |\rho_n|\})^2}{1 + \max\{\rho_n^*, |\rho_n|\}^2} (1 - \gamma) |\chi - \chi_*|.$$

$$|\tilde{\chi} - \chi_*| \leq \left[1 - (1 - \gamma) \frac{(1 - \max\{\rho_n^*, |\rho_n|\})^2}{1 + \max\{\rho_n^*, |\rho_n|\}^2} \right] |\chi - \chi_*|.$$

□

1836

D.6 PROOF OF IPMF CONVERGENCE THEOREM 3.2, $D = 1$

1837

1838 *Proof.* **Notations.** We introduce the notations for a k -th IPMF step in terms of scalars

1839

1840

1841

1842

1843

$$\begin{aligned} \begin{pmatrix} \sigma_0 & \rho_k \\ \rho_k & s_k \end{pmatrix} &\xrightarrow{IMF} \begin{pmatrix} \sigma_0 & \tilde{\rho}_k \\ \tilde{\rho}_k & s_k \end{pmatrix} \xrightarrow{IPF} \begin{pmatrix} q_k & \rho'_k \\ \rho'_k & \sigma_1 \end{pmatrix} \\ &\xrightarrow{IMF} \begin{pmatrix} q_k & \hat{\rho}_k \\ \hat{\rho}_k & \sigma_1 \end{pmatrix} \xrightarrow{IPF} \begin{pmatrix} \sigma_0 & \rho_{k+1} \\ \rho_{k+1} & s_{k+1} \end{pmatrix}, \end{aligned}$$

1844

and means

1845

1846

1847

$$\begin{pmatrix} \mu_0 \\ \nu_k \end{pmatrix} \xrightarrow{IMF} \begin{pmatrix} \mu_0 \\ \nu_k \end{pmatrix} \xrightarrow{IPF} \begin{pmatrix} \eta_k \\ \mu_1 \end{pmatrix} \xrightarrow{IMF} \begin{pmatrix} \eta_k \\ \mu_1 \end{pmatrix} \xrightarrow{IPF} \begin{pmatrix} \mu_0 \\ \nu_{k+1} \end{pmatrix}.$$

1848

1849

1850

1851

1852

1853

1854

We denote the variance of the 0-th marginal after the k -th IPMF step as q_k . For the first one, we have formula (35) $q_0 = \sigma_0 - \sigma_0 \tilde{\rho}_{n,0}^2 \left(1 - \frac{\sigma_1}{s_0}\right)$, where $\tilde{\rho}_{n,0} = \rho_0 / \sqrt{\sigma_0 s_0}$ is the normalized correlation after the first IMF step. More explicitly, $\tilde{\rho}_{n,0} \stackrel{\text{def}}{=} f(\rho_{n,0})$, where $\tilde{\rho}_{n,0}$ is taken from (67) for continuous IMF and from (68) for DIMF. We denote optimality coefficients $\chi_k \stackrel{\text{def}}{=} \Xi_n(\frac{\rho_k}{\sqrt{\sigma_0 s_k}}, \sigma_0, s_k)$ and $\chi_* = 1/\epsilon$.

1855

1856

1857

1858

1859

1860

Ranges. We note that IMF step keeps q_k, s_k, η_k, ν_k , while IPF keeps χ_k . Due to contractive update equations for χ_k (75) and for s_k (38), the parameters s_k, χ_k remain on the same side from $\sigma_1, \frac{1}{\epsilon}$, respectively. Namely, we have ranges for the variances $s_k \in [\min\{\sigma_1, s_0\}, \max\{\sigma_1, s_0\}] \stackrel{\text{def}}{=} [\sigma_1^{\min}, \sigma_1^{\max}]$, $q_k \in [\min\{\sigma_0, q_0\}, \max\{\sigma_0, q_0\}] \stackrel{\text{def}}{=} [\sigma_0^{\min}, \sigma_0^{\max}]$ and parameters $\chi_k \in [\min\{\chi_*, |\chi_0|\}, \max\{\chi_*, |\chi_0|\}] \stackrel{\text{def}}{=} [\chi^{\min}, \chi^{\max}]$.

1861

Update bounds. We use update bounds for χ (74) twice, for s (38) and for ν (41), however, we need to limit above the coefficients $|\Xi_n^{-1}(\chi, q, s)|$ and $l(\Xi_n^{-1}(\chi, q, s), \Xi_n^{-1}(\chi_*, q, s), \gamma(q, s))$ over the considered ranges of the parameters $q \in [\sigma_0^{\min}, \sigma_0^{\max}]$, $s \in [\sigma_1^{\min}, \sigma_1^{\max}]$ and $\chi \in [\chi^{\min}, \chi^{\max}]$. The functions Ξ_n^{-1}, l, γ are defined in (64), (74), (65) (or (66) with fixed t), respectively.

1862

1863

1864

Since the function $|\Xi_n^{-1}(\chi, q, s)|$ is increasing w.r.t. q, s' and χ (growing symmetrically around 0 for χ), we take maximal values $\sigma_0^{\max}, \sigma_1^{\max}$ and χ^{\max} . Similarly, the function $l(\Xi_n^{-1}(\chi, q, s), \Xi_n^{-1}(\chi_*, q, s), \gamma(q, s))$ is increasing w.r.t. all arguments symmetrically around 0. Hence, we maximize the function $|\Xi_n^{-1}|$ and the function γ , which is also increasing w.r.t. q and s .

1865

1866

1867

1868

Final bounds. The final bound after k step of IPMF are:

1869

1870

1871

1872

1873

1874

$$\begin{aligned} |s_k^2 - \sigma_1^2| &\leq \alpha^{2k} |\sigma_0^2 - \sigma_1^2|, \\ |\nu_k - \mu_1| &\leq \alpha^k |\nu_0 - \mu_1|, \\ |\chi_k - 1/\epsilon| &\leq \beta^{2k} |\chi_0 - 1/\epsilon|, \end{aligned}$$

1875

1876

1877

where $\beta \stackrel{\text{def}}{=} l(\Xi_n^{-1}(\chi^{\max}, \sigma_0^{\max}, \sigma_1^{\max}), \Xi_n^{-1}(\chi_*, \sigma_0^{\max}, \sigma_1^{\max}), \gamma(\sigma_0^{\max}, \sigma_1^{\max}))$ and $\alpha \stackrel{\text{def}}{=} \Xi_n^{-1}(\chi^{\max}, \sigma_0^{\max}, \sigma_1^{\max})$ taking l from (74), γ from (65) for continuous IMF and from (66) with fixed t for discrete IMF. \square

1878

1879

D.7 PROOF OF IPMF GENERAL CONVERGENCE THEOREM 3.3

1880

1881

Proof. We split the proof into two parts. First, consider the discrete case.

1882

1883

1884

1885

Discrete case. Let $k \geq 1$. Note that the transition probabilities $q^{4k+1}(x_{t_1}|x_0)$ can be bounded from below with $\alpha\mu(x_{t_1})$, where $\alpha \in (0, 1)$ and μ depend only on t_1, ϵ and supports of p_0 and p_1 . Thus, we can bound $q^{4k+1}(x_1|x_0) \geq \alpha\mu'(x_1)$, with $\mu'(x_1)$ depending on $q_{0,1}^{4k+1}$,

1886

1887

1888

1889

$$\begin{aligned} \text{proj}_{\mathcal{M}}[q^{4k+1}](x_1|x_0) &= \int \text{proj}_{\mathcal{M}}[q^{4k+1}](x_1|x_{t_1})q(x_{t_1}|x_0)dx_{t_1} \\ &\geq \alpha \int \text{proj}_{\mathcal{M}}[q](x_1|x_{t_1})d\mu(x_{t_1}) =: \alpha\mu'(x_1). \end{aligned} \tag{76}$$

1890 Similar statement holds for $q_{0,1}^{4k+3}$. Thus, the IPMF step is contracting. Specifically,

$$1892 \quad \|q_0^{4k+2} - p_0\|_{TV} \leq (1 - \alpha)\|q_1^{4k} - p_1\|_{TV}, \\ 1893 \quad \|q_1^{4k+4} - p_1\|_{TV} \leq (1 - \alpha)\|q_0^{4k+2} - p_0\|_{TV}.$$

1894 where TV denotes Total Variation distance. Thus,

$$1896 \quad q_0^{4k} \xrightarrow{TV} p_0, \quad q_1^{4k+2} \xrightarrow{TV} p_1. \quad (77)$$

1898 Since p_0 and p_1 have compact supports, Prokhorov's theorem ensures the existence of a weakly
1899 converging subsequence $q_{0,1}^{4k_j} \xrightarrow{w} \tilde{q}_{0,1}$. Moreover, (77) ensures that $\tilde{q}_{0,1} \in \Pi(p_0, p_1)$.

1900 Let $\text{IMF}[q]$ be the result of the IMF-step applied to q , and let $\text{IPMF}[q]$ be the result of IPMF-step
1901 applied to q . Note that the IMF step is continuous w.r.t. weak convergence, since all intermediate
1902 steps have smooth transition (i.e., conditional) densities. Combining the above results, we get that
1903

$$1904 \quad \text{IPMF}[q_{0,1}^{4k_j}] \xrightarrow{w} \text{IPMF}[\tilde{q}_{0,1}] = \text{IMF}[\text{IMF}[\tilde{q}_{0,1}]] \quad (78)$$

1906 The equality holds due to $\tilde{q}_{0,1} \in \Pi(p_0, p_1)$. Note that we also use the fact that convergence in TV is
1907 stronger than weak convergence.

1908 Recall that $q_{0,1}^{4k_j+4} = \text{IPMF}[q_{0,1}^{4k_j}]$. (78) ensures that for any fixed $n > 0$ it holds $q_{0,1}^{4k_j+4n} \xrightarrow{w} \text{IMF}^{2n}[\tilde{q}_{0,1}]$. Moreover, by Theorem 3.6 in [ASBM], it holds that $\text{IMF}^{2n}[\tilde{q}_{0,1}] \xrightarrow{w} q_{0,1}^*$.

1911 Thus, there exists a weakly converging subsequence

$$1913 \quad q_{0,1}^{4l_i} \xrightarrow{w} q_{0,1}^*. \quad (79)$$

1915 Finally, we argue by contradiction: if $q_{0,1}^{4k} \not\xrightarrow{w} q_{0,1}^*$, we can select a weakly converging subsequence
1916 $q_{0,1}^{4l_i} \xrightarrow{w} q'_{0,1} \neq q_{0,1}^*$. But by (79) $q'_{0,1} = q_{0,1}^*$. This finishes the proof.

1918 **Continious case.** We now explain how to extend the above argument to the continuous-time setting.
1919 The key point is to verify a Doeblin minorization condition for the Markovian process obtained
1920 after the projection step (see, e.g., Section 2 in Stroock (2005)).

1922 Fix some $\delta \in (0, 1/2)$. For each $k \in \mathbb{N}$, let $(X_t^{4k+2})_{t \in [0,1]}$ denote the Markov diffusion corresponding
1923 to the law q^{4k+2} , and let

$$1925 \quad P_k(x, A) := \mathbb{P}(X_1^{4k+2} \in A \mid X_0^{4k+2} = x), \quad x \in \mathbb{R}^D, A \in \mathcal{B}(\mathbb{R}^D),$$

1926 be its transition kernel from time 0 to time 1. We decompose the evolution on $[0, 1]$ into three
1927 subintervals $[0, \delta]$, $[\delta, 1 - \delta]$ and $[1 - \delta, 1]$. Accordingly, we write

$$1929 \quad P_k = K_k^{(0 \rightarrow \delta)} K_k^{(\delta \rightarrow 1 - \delta)} K_k^{(1 - \delta \rightarrow 1)},$$

1930 where $K_k^{(s \rightarrow t)}$ denotes the Markovian transition kernel from time s to t .

1932 Recall that, by construction of the Markovian projection, the drift on $[\delta, 1 - \delta]$ is Lipschitz and
1933 dissipative, and the diffusion coefficient is constant. In particular, for each fixed radius $R > 0$ there
1934 exists $\beta_R > 0$ and a probability measure ν_R on \mathbb{R}^D such that the *small set condition* holds:

$$1935 \quad \mathbb{P}(X_1^{4k+2} \in A \mid X_\delta^{4k+2} = x) \geq \beta_R \nu_R(A), \quad x \in B_R, A \in \mathcal{B}(\mathbb{R}^D), \quad (80)$$

1937 for all $k \in \mathbb{N}$, where $B_R := \{x \in \mathbb{R}^D : \|x\| \leq R\}$. Here β_R and ν_R may depend on R , but are
1938 independent of k .

1939 Next, we control the distribution of X_δ^{4k+2} uniformly in k . By the definition of the reciprocal
1940 projection, the segment $[0, 1]$ between X_0 and X_1 is (conditionally on (X_0, X_1)) distributed as a
1941 Brownian bridge with variance parameter $\sigma^2 = \varepsilon^2 \delta(1 - \delta)$. Hence, the marginal at time δ is a
1942 mixture of Gaussian laws with covariance matrix $\sigma^2 I_D$ and mean

$$1943 \quad m_\delta(x_0, x_1) = (1 - \delta)x_0 + \delta x_1,$$

1944 where (x_0, x_1) ranges over the support of the endpoint coupling. Since the supports of p_0 and p_1 are
 1945 bounded, there exists $R_0 > 0$ such that $\|m_\delta(x_0, x_1)\| \leq R_0$ for all (x_0, x_1) in this support. Standard
 1946 Gaussian tail bounds then imply that, for any $\eta \in (0, 1)$, we can choose $R > 0$ large enough so that
 1947

$$1948 \quad \sup_{k \in \mathbb{N}} \sup_{x \in \text{supp}(p_0)} \mathbb{P}(X_\delta^{4k+2} \notin B_R \mid X_0^{4k+2} = x) \leq \eta.$$

1950 Equivalently,

$$1952 \quad \mathbb{P}(X_\delta^{4k+2} \in B_R \mid X_0^{4k+2} = x) \geq 1 - \eta, \quad x \in \text{supp}(p_0), k \in \mathbb{N}. \quad (81)$$

1954 Combining (80) and (81), we obtain, for $x \in \text{supp}(p_0)$ and any measurable $A \subset \mathbb{R}^D$,
 1955

$$\begin{aligned} 1956 \quad P_k(x, A) &= \mathbb{E} \left[\mathbb{P}(X_1^{4k+2} \in A \mid X_\delta^{4k+2}) \mid X_0^{4k+2} = x \right] \\ 1957 \quad &\geq \mathbb{E} \left[\mathbb{P}(X_1^{4k+2} \in A \mid X_\delta^{4k+2}) \mathbf{1}_{\{X_\delta^{4k+2} \in B_R\}} \mid X_0^{4k+2} = x \right] \\ 1958 \quad &\geq \beta_R \nu_R(A) \mathbb{P}(X_\delta^{4k+2} \in B_R \mid X_0^{4k+2} = x) \\ 1959 \quad &\geq \beta_R (1 - \eta) \nu_R(A). \\ 1960 \quad & \\ 1961 \quad & \\ 1962 \quad & \\ 1963 \quad \text{Thus, for all } x \in \text{supp}(p_0) \text{ and all } k \in \mathbb{N}, \\ 1964 \quad P_k(x, \cdot) &\geq \alpha \mu(\cdot) \quad \text{with } \alpha := \beta_R (1 - \eta) \in (0, 1), \mu := \nu_R. \\ 1965 \quad & \\ 1966 \quad \text{That is, the family of kernels } (P_k)_k \text{ satisfies a uniform Doeblin minorization on } \text{supp}(p_0). \\ 1967 \quad & \\ 1968 \quad \text{It is well known that such a minorization implies total-variation contraction: for any probability} \\ 1969 \quad \text{measures } \lambda, \lambda' \text{ on } \text{supp}(p_0), \\ 1970 \quad \| \lambda P_k - \lambda' P_k \|_{\text{TV}} &\leq (1 - \alpha) \| \lambda - \lambda' \|_{\text{TV}}, \quad k \in \mathbb{N}. \\ 1971 \quad & \\ 1972 \quad \text{Applying this with } \lambda = q_0^{4k+1} \text{ and } \lambda' = p_0 \text{ yields} \\ 1973 \quad \| q_1^{4k+1} - p_1 \|_{\text{TV}} &= \| q_0^{4k+1} P_k - p_0 P_k \|_{\text{TV}} \leq (1 - \alpha) \| q_0^{4k+1} - p_0 \|_{\text{TV}}. \\ 1974 \quad & \\ 1975 \quad \text{The convergence } q_0^{4k+1} \rightarrow_{\text{TV}} p_0 \text{ is shown by the same argument applied backward in time (inter-} \\ 1976 \quad \text{changing the roles of } p_0 \text{ and } p_1), \text{ and we conclude that} \\ 1977 \quad & \\ 1978 \quad q_1^{4k+1} &\xrightarrow[k \rightarrow \infty]{\text{TV}} p_1. \\ 1979 \quad & \\ 1980 \quad \text{In particular, the continuous-time analogue of (77) holds.} \\ 1981 \quad & \\ 1982 \quad \text{Next, we notice that for any } t \in (0, 1) \text{ the marginal densities } q(x_t) \text{ are smooth and continuously} \\ 1983 \quad \text{depend on } q_{0,1}^{4k+2}. \text{ Note that the IPF step returns the smooth transport plan. Thus, the drift } b_t \text{ (see} \\ 1984 \quad \text{Silveri et al. (2025)) is smooth and dissipative. Since IMF is symmetric and does not depend on the} \\ 1985 \quad \text{direction, we can consider transitions } (0, 1/2) \text{ and } (1, 1/2). \text{ The corresponding Markovian kernels} \\ 1986 \quad \text{are smooth. So the joint distribution } q^{i+1}(x_0, x_{1/2}, x_1) \text{ depends continuously on } q^i(x_0, x_{1/2}, x_1). \\ 1987 \quad \text{So, IMF is weakly continuous w.r.t the weak convergence.} \\ 1988 \quad \text{The rest of the proof is similar to the discrete case.} \\ 1989 \quad & \quad \square \\ 1990 \quad & \\ 1991 \quad & \\ 1992 \quad \text{E EXPERIMENTAL SUPPLEMENTARY} \\ 1993 \quad & \\ 1994 \quad \text{E.1 ILLUSTRATIVE 2D EXAMPLE VISUALIZATION.} \\ 1995 \quad & \\ 1996 \quad \text{We provide the visualization of the starting processes and corresponding learned processes for } \text{Gaus-} \\ 1997 \quad \text{sian} \rightarrow \text{Swiss roll} \text{ translation in Fig. 7. One can visually observe that all the particle trajectories are} \\ \text{relatively straight and therefore close to the Schrödinger Bridge problem solution.} \\ 1998 \quad & \\ 1999 \quad & \\ 2000 \quad & \\ 2001 \quad & \\ 2002 \quad & \\ 2003 \quad & \\ 2004 \quad & \\ 2005 \quad & \\ 2006 \quad & \\ 2007 \quad & \\ 2008 \quad & \\ 2009 \quad & \\ 2010 \quad & \\ 2011 \quad & \\ 2012 \quad & \\ 2013 \quad & \\ 2014 \quad & \\ 2015 \quad & \\ 2016 \quad & \\ 2017 \quad & \\ 2018 \quad & \\ 2019 \quad & \\ 2020 \quad & \\ 2021 \quad & \\ 2022 \quad & \\ 2023 \quad & \\ 2024 \quad & \\ 2025 \quad & \\ 2026 \quad & \\ 2027 \quad & \\ 2028 \quad & \\ 2029 \quad & \\ 2030 \quad & \\ 2031 \quad & \\ 2032 \quad & \\ 2033 \quad & \\ 2034 \quad & \\ 2035 \quad & \\ 2036 \quad & \\ 2037 \quad & \\ 2038 \quad & \\ 2039 \quad & \\ 2040 \quad & \\ 2041 \quad & \\ 2042 \quad & \\ 2043 \quad & \\ 2044 \quad & \\ 2045 \quad & \\ 2046 \quad & \\ 2047 \quad & \\ 2048 \quad & \\ 2049 \quad & \\ 2050 \quad & \\ 2051 \quad & \\ 2052 \quad & \\ 2053 \quad & \\ 2054 \quad & \\ 2055 \quad & \\ 2056 \quad & \\ 2057 \quad & \\ 2058 \quad & \\ 2059 \quad & \\ 2060 \quad & \\ 2061 \quad & \\ 2062 \quad & \\ 2063 \quad & \\ 2064 \quad & \\ 2065 \quad & \\ 2066 \quad & \\ 2067 \quad & \\ 2068 \quad & \\ 2069 \quad & \\ 2070 \quad & \\ 2071 \quad & \\ 2072 \quad & \\ 2073 \quad & \\ 2074 \quad & \\ 2075 \quad & \\ 2076 \quad & \\ 2077 \quad & \\ 2078 \quad & \\ 2079 \quad & \\ 2080 \quad & \\ 2081 \quad & \\ 2082 \quad & \\ 2083 \quad & \\ 2084 \quad & \\ 2085 \quad & \\ 2086 \quad & \\ 2087 \quad & \\ 2088 \quad & \\ 2089 \quad & \\ 2090 \quad & \\ 2091 \quad & \\ 2092 \quad & \\ 2093 \quad & \\ 2094 \quad & \\ 2095 \quad & \\ 2096 \quad & \\ 2097 \quad & \\ 2098 \quad & \\ 2099 \quad & \\ 2100 \quad & \\ 2101 \quad & \\ 2102 \quad & \\ 2103 \quad & \\ 2104 \quad & \\ 2105 \quad & \\ 2106 \quad & \\ 2107 \quad & \\ 2108 \quad & \\ 2109 \quad & \\ 2110 \quad & \\ 2111 \quad & \\ 2112 \quad & \\ 2113 \quad & \\ 2114 \quad & \\ 2115 \quad & \\ 2116 \quad & \\ 2117 \quad & \\ 2118 \quad & \\ 2119 \quad & \\ 2120 \quad & \\ 2121 \quad & \\ 2122 \quad & \\ 2123 \quad & \\ 2124 \quad & \\ 2125 \quad & \\ 2126 \quad & \\ 2127 \quad & \\ 2128 \quad & \\ 2129 \quad & \\ 2130 \quad & \\ 2131 \quad & \\ 2132 \quad & \\ 2133 \quad & \\ 2134 \quad & \\ 2135 \quad & \\ 2136 \quad & \\ 2137 \quad & \\ 2138 \quad & \\ 2139 \quad & \\ 2140 \quad & \\ 2141 \quad & \\ 2142 \quad & \\ 2143 \quad & \\ 2144 \quad & \\ 2145 \quad & \\ 2146 \quad & \\ 2147 \quad & \\ 2148 \quad & \\ 2149 \quad & \\ 2150 \quad & \\ 2151 \quad & \\ 2152 \quad & \\ 2153 \quad & \\ 2154 \quad & \\ 2155 \quad & \\ 2156 \quad & \\ 2157 \quad & \\ 2158 \quad & \\ 2159 \quad & \\ 2160 \quad & \\ 2161 \quad & \\ 2162 \quad & \\ 2163 \quad & \\ 2164 \quad & \\ 2165 \quad & \\ 2166 \quad & \\ 2167 \quad & \\ 2168 \quad & \\ 2169 \quad & \\ 2170 \quad & \\ 2171 \quad & \\ 2172 \quad & \\ 2173 \quad & \\ 2174 \quad & \\ 2175 \quad & \\ 2176 \quad & \\ 2177 \quad & \\ 2178 \quad & \\ 2179 \quad & \\ 2180 \quad & \\ 2181 \quad & \\ 2182 \quad & \\ 2183 \quad & \\ 2184 \quad & \\ 2185 \quad & \\ 2186 \quad & \\ 2187 \quad & \\ 2188 \quad & \\ 2189 \quad & \\ 2190 \quad & \\ 2191 \quad & \\ 2192 \quad & \\ 2193 \quad & \\ 2194 \quad & \\ 2195 \quad & \\ 2196 \quad & \\ 2197 \quad & \\ 2198 \quad & \\ 2199 \quad & \\ 2200 \quad & \\ 2201 \quad & \\ 2202 \quad & \\ 2203 \quad & \\ 2204 \quad & \\ 2205 \quad & \\ 2206 \quad & \\ 2207 \quad & \\ 2208 \quad & \\ 2209 \quad & \\ 2210 \quad & \\ 2211 \quad & \\ 2212 \quad & \\ 2213 \quad & \\ 2214 \quad & \\ 2215 \quad & \\ 2216 \quad & \\ 2217 \quad & \\ 2218 \quad & \\ 2219 \quad & \\ 2220 \quad & \\ 2221 \quad & \\ 2222 \quad & \\ 2223 \quad & \\ 2224 \quad & \\ 2225 \quad & \\ 2226 \quad & \\ 2227 \quad & \\ 2228 \quad & \\ 2229 \quad & \\ 2230 \quad & \\ 2231 \quad & \\ 2232 \quad & \\ 2233 \quad & \\ 2234 \quad & \\ 2235 \quad & \\ 2236 \quad & \\ 2237 \quad & \\ 2238 \quad & \\ 2239 \quad & \\ 2240 \quad & \\ 2241 \quad & \\ 2242 \quad & \\ 2243 \quad & \\ 2244 \quad & \\ 2245 \quad & \\ 2246 \quad & \\ 2247 \quad & \\ 2248 \quad & \\ 2249 \quad & \\ 2250 \quad & \\ 2251 \quad & \\ 2252 \quad & \\ 2253 \quad & \\ 2254 \quad & \\ 2255 \quad & \\ 2256 \quad & \\ 2257 \quad & \\ 2258 \quad & \\ 2259 \quad & \\ 2260 \quad & \\ 2261 \quad & \\ 2262 \quad & \\ 2263 \quad & \\ 2264 \quad & \\ 2265 \quad & \\ 2266 \quad & \\ 2267 \quad & \\ 2268 \quad & \\ 2269 \quad & \\ 2270 \quad & \\ 2271 \quad & \\ 2272 \quad & \\ 2273 \quad & \\ 2274 \quad & \\ 2275 \quad & \\ 2276 \quad & \\ 2277 \quad & \\ 2278 \quad & \\ 2279 \quad & \\ 2280 \quad & \\ 2281 \quad & \\ 2282 \quad & \\ 2283 \quad & \\ 2284 \quad & \\ 2285 \quad & \\ 2286 \quad & \\ 2287 \quad & \\ 2288 \quad & \\ 2289 \quad & \\ 2290 \quad & \\ 2291 \quad & \\ 2292 \quad & \\ 2293 \quad & \\ 2294 \quad & \\ 2295 \quad & \\ 2296 \quad & \\ 2297 \quad & \\ 2298 \quad & \\ 2299 \quad & \\ 2300 \quad & \\ 2301 \quad & \\ 2302 \quad & \\ 2303 \quad & \\ 2304 \quad & \\ 2305 \quad & \\ 2306 \quad & \\ 2307 \quad & \\ 2308 \quad & \\ 2309 \quad & \\ 2310 \quad & \\ 2311 \quad & \\ 2312 \quad & \\ 2313 \quad & \\ 2314 \quad & \\ 2315 \quad & \\ 2316 \quad & \\ 2317 \quad & \\ 2318 \quad & \\ 2319 \quad & \\ 2320 \quad & \\ 2321 \quad & \\ 2322 \quad & \\ 2323 \quad & \\ 2324 \quad & \\ 2325 \quad & \\ 2326 \quad & \\ 2327 \quad & \\ 2328 \quad & \\ 2329 \quad & \\ 2330 \quad & \\ 2331 \quad & \\ 2332 \quad & \\ 2333 \quad & \\ 2334 \quad & \\ 2335 \quad & \\ 2336 \quad & \\ 2337 \quad & \\ 2338 \quad & \\ 2339 \quad & \\ 2340 \quad & \\ 2341 \quad & \\ 2342 \quad & \\ 2343 \quad & \\ 2344 \quad & \\ 2345 \quad & \\ 2346 \quad & \\ 2347 \quad & \\ 2348 \quad & \\ 2349 \quad & \\ 2350 \quad & \\ 2351 \quad & \\ 2352 \quad & \\ 2353 \quad & \\ 2354 \quad & \\ 2355 \quad & \\ 2356 \quad & \\ 2357 \quad & \\ 2358 \quad & \\ 2359 \quad & \\ 2360 \quad & \\ 2361 \quad & \\ 2362 \quad & \\ 2363 \quad & \\ 2364 \quad & \\ 2365 \quad & \\ 2366 \quad & \\ 2367 \quad & \\ 2368 \quad & \\ 2369 \quad & \\ 2370 \quad & \\ 2371 \quad & \\ 2372 \quad & \\ 2373 \quad & \\ 2374 \quad & \\ 2375 \quad & \\ 2376 \quad & \\ 2377 \quad & \\ 2378 \quad & \\ 2379 \quad & \\ 2380 \quad & \\ 2381 \quad & \\ 2382 \quad & \\ 2383 \quad & \\ 2384 \quad & \\ 2385 \quad & \\ 2386 \quad & \\ 2387 \quad & \\ 2388 \quad & \\ 2389 \quad & \\ 2390 \quad & \\ 2391 \quad & \\ 2392 \quad & \\ 2393 \quad & \\ 2394 \quad & \\ 2395 \quad & \\ 2396 \quad & \\ 2397 \quad & \\ 2398 \quad & \\ 2399 \quad & \\ 2400 \quad & \\ 2401 \quad & \\ 2402 \quad & \\ 2403 \quad & \\ 2404 \quad & \\ 2405 \quad & \\ 2406 \quad & \\ 2407 \quad & \\ 2408 \quad & \\ 2409 \quad & \\ 2410 \quad & \\ 2411 \quad & \\ 2412 \quad & \\ 2413 \quad & \\ 2414 \quad & \\ 2415 \quad & \\ 2416 \quad & \\ 2417 \quad & \\ 2418 \quad & \\ 2419 \quad & \\ 2420 \quad & \\ 2421 \quad & \\ 2422 \quad & \\ 2423 \quad & \\ 2424 \quad & \\ 2425 \quad & \\ 2426 \quad & \\ 2427 \quad & \\ 2428 \quad & \\ 2429 \quad & \\ 2430 \quad & \\ 2431 \quad & \\ 2432 \quad & \\ 2433 \quad & \\ 2434 \quad & \\ 2435 \quad & \\ 2436 \quad & \\ 2437 \quad & \\ 2438 \quad & \\ 2439 \quad & \\ 2440 \quad & \\ 2441 \quad & \\ 2442 \quad & \\ 2443 \quad & \\ 2444 \quad & \\ 2445 \quad & \\ 2446 \quad & \\ 2447 \quad & \\ 2448 \quad & \\ 2449 \quad & \\ 2450 \quad & \\ 2451 \quad & \\ 2452 \quad & \\ 2453 \quad & \\ 2454 \quad & \\ 2455 \quad & \\ 2456 \quad & \\ 2457 \quad & \\ 2458 \quad & \\ 2459 \quad & \\ 2460 \quad & \\ 2461 \quad & \\ 2462 \quad & \\ 2463 \quad & \\ 2464 \quad & \\ 2465 \quad & \\ 2466 \quad & \\ 2467 \quad & \\ 2468 \quad & \\ 2469 \quad & \\ 2470 \quad & \\ 2471 \quad & \\ 2472 \quad & \\ 2473 \quad & \\ 2474 \quad & \\ 2475 \quad & \\ 2476 \quad & \\ 2477 \quad & \\ 2478 \quad & \\ 2479 \quad & \\ 2480 \quad & \\ 2481 \quad & \\ 2482 \quad & \\ 2483 \quad & \\ 2484 \quad & \\ 2485 \quad & \\ 2486 \quad & \\ 2487 \quad & \\ 2488 \quad & \\ 2489 \quad & \\ 2490 \quad & \\ 2491 \quad & \\ 2492 \quad & \\ 2493 \quad & \\ 2494 \quad & \\ 2495 \quad & \\ 2496 \quad & \\ 2497 \quad & \\ 2498 \quad & \\ 2499 \quad & \\ 2500 \quad & \\ 2501 \quad & \\ 2502 \quad & \\ 2503 \quad & \\ 2504 \quad & \\ 2505 \quad & \\ 2506 \quad & \\ 2507 \quad & \\ 2508 \quad & \\ 2509 \quad & \\ 2510 \quad & \\ 2511 \quad & \\ 2512 \quad & \\ 2513 \quad & \\ 2514 \quad & \\ 2515 \quad & \\ 2516 \quad & \\ 2517 \quad & \\ 2518 \quad & \\ 2519 \quad & \\ 2520 \quad & \\ 2521 \quad & \\ 2522 \quad & \\ 2523 \quad & \\ 2524 \quad & \\ 2525 \quad & \\ 2526 \quad & \\ 2527 \quad & \\ 2528 \quad & \\ 2529 \quad & \\ 2530 \quad & \\ 2531 \quad & \\ 2532 \quad & \\ 2533 \quad & \\ 2534 \quad & \\ 2535 \quad & \\ 2536 \quad & \\ 2537 \quad & \\ 2538 \quad & \\ 2539 \quad & \\ 2540 \quad & \\ 2541 \quad & \\ 2542 \quad & \\ 2543 \quad & \\ 2544 \quad & \\ 2545 \quad & \\ 2546 \quad & \\ 2547 \quad & \\ 2548 \quad & \\ 2549 \quad & \\ 2550 \quad & \\ 2551 \quad & \\ 2552 \quad & \\ 2553 \quad & \\ 2554 \quad & \\ 2555 \quad & \\ 2556 \quad & \\ 2557 \quad & \\ 2558 \quad & \\ 2559 \quad & \\ 2560 \quad & \\ 2561 \quad & \\ 2562 \quad & \\ 2563 \quad & \\ 2564 \quad & \\ 2565 \quad & \\ 2566 \quad & \\ 2567 \quad & \\ 2568 \quad & \\ 2569 \quad & \\ 2570 \quad & \\ 2571 \quad & \\ 2572 \quad & \\ 2573 \quad & \\ 2574 \quad & \\ 2575 \quad & \\ 2576 \quad & \\ 2577 \quad & \\ 2578 \quad & \\ 2579 \quad & \\ 2580 \quad & \\ 2581 \quad & \\ 2582 \quad & \\ 2583 \quad & \\ 2584 \quad & \\ 2585 \quad & \\ 2586 \quad & \\ 2587 \quad & \\ 2588 \quad & \\ 2589 \quad & \\ 2590 \quad & \\ 2591 \quad & \\ 2592 \quad & \\ 2593 \quad & \\ 2594 \quad & \\ 2595 \quad & \\ 2596 \quad & \\ 2597 \quad & \\ 2598 \quad & \\ 2599 \quad & \\ 2600 \quad & \\ 2601 \quad & \\ 2602 \quad & \\ 2603 \quad & \\ 2604 \quad & \\ 2605 \quad & \\ 2606 \quad & \\ 2607 \quad & \\ 2608 \quad & \\ 2609 \quad & \\ 2610 \quad & \\ 2611 \quad & \\ 2612 \quad & \\ 2613 \quad & \\ 2614 \quad & \\ 2615 \quad & \\ 2616 \quad & \\ 2617 \quad & \\ 2618 \quad & \\ 2619 \quad & \\ 2620 \quad & \\ 2621 \quad & \\ 2622 \quad & \\ 2623 \quad & \\ 2624 \quad & \\ 2625 \quad & \\ 2626 \quad & \\ 2627 \quad & \\ 2628 \quad & \\ 2629 \quad & \\ 2630 \quad & \\ 2631 \quad & \\ 2632 \quad & \\ 2633 \quad & \\ 2634 \quad & \\ 2635 \quad & \\ 2636 \quad & \\ 2637 \quad & \\ 2638 \quad & \\ 2639 \quad & \\ 2640 \quad & \\ 2641 \quad & \\ 2642 \quad & \\ 2643 \quad & \\ 2644 \quad & \\ 2645 \quad & \\ 2646 \quad & \\ 2647 \quad & \\ 2648 \quad & \\ 2649 \quad & \\ 2650 \quad & \\ 2651 \quad & \\ 2652 \quad & \\ 2653 \quad & \\ 2654 \quad & \\ 2655 \quad & \\ 2656 \quad & \\ 2657 \quad & \\ 2658 \quad & \\ 2659 \quad & \\ 2660 \quad & \\ 2661 \quad & \\ 2662 \quad & \\ 2663 \quad & \\ 2664 \quad & \\ 2665 \quad & \\ 2666 \quad & \\ 2667 \quad & \\ 2668 \quad & \\ 2669 \quad & \\ 2670 \quad & \\ 2671 \quad & \\ 2672 \quad & \\ 2673 \quad & \\ 2674 \quad & \\ 2675 \quad & \\ 2676 \quad & \\ 2677 \quad & \\ 2678 \quad & \\ 2679 \quad & \\ 2680 \quad & \\ 2681 \quad & \\ 2682 \quad & \\ 2683 \quad & \\ 2684 \quad & \\ 2685 \quad & \\ 2686 \quad & \\ 2687 \quad & \\ 2688 \quad & \\ 2689 \quad & \\ 2690 \quad & \\ 2691 \quad & \\ 2692 \quad & \\ 2693 \quad & \\ 2694 \quad & \\ 2695 \quad & \\ 2696 \quad & \\ 2697 \quad & \\ 2698 \quad & \\ 2699 \quad & \\ 2700 \quad & \\ 2701 \quad & \\ 2702 \quad & \\ 2703 \quad & \\ 2704 \quad & \\ 2705 \quad & \\ 2706 \quad & \\ 2707 \quad & \\ 2708 \quad & \\ 2709 \quad & \\ 2710 \quad & \\ 2711 \quad & \\ 2712 \quad & \\ 2713 \quad & \\ 2714 \quad & \\ 2715 \quad & \\ 2716 \quad & \\ 2717 \quad & \\ 2718 \quad & \\ 2719 \quad & \\ 2720 \quad & \\ 2721 \quad & \\ 2722 \quad & \\ 2723 \quad & \\ 2724 \quad & \\ 2725 \quad & \\ 2726 \quad & \\ 2727 \quad & \\ 2728 \quad & \\ 2729 \quad & \\ 2730 \quad & \\ 2731 \quad & \\ 2732 \quad & \\ 2733 \quad & \\ 2734 \quad & \\ 2735 \quad & \\ 2736 \quad & \\ 2737 \quad & \\ 2738 \quad & \\ 2739 \quad & \\ 2740 \quad & \\ 2741 \quad & \\ 2742 \quad & \\ 2743 \quad & \\ 2744 \quad & \\ 2745 \quad & \\ 2746 \quad & \\ 2747 \quad & \\ 2748 \quad & \\ 2749 \quad & \\ 2750 \quad & \\ 2751 \quad & \\ 2752 \quad & \\ 2753 \quad & \\ 2754 \quad & \\ 2755 \quad & \\ 2756 \quad & \\ 2757 \quad & \\ 2758 \quad & \\ 2759 \quad & \\ 2760 \quad & \\ 2761 \quad & \\ 2762 \quad & \\ 2763 \quad & \\ 2764 \quad & \\ 2765 \quad & \\ 2766 \quad & \\ 2767 \quad & \\ 2768 \quad & \\ 2769 \quad & \\ 2770 \quad & \\ 2771 \quad & \\ 2772 \quad & \\ 2773 \quad & \\ 2774 \quad & \\ 2775 \quad & \\ 2776 \quad & \\ 2777 \quad & \\ 2778 \quad & \\ 2779 \quad & \\ 2780 \quad & \\ 2781 \quad & \\ 2782 \quad & \\ 2783 \quad & \\ 2784 \quad & \\ 2785 \quad & \\ 2786 \quad & \\ 2787 \quad & \\ 2788 \quad & \\ 2789 \quad & \\ 2790 \quad & \\ 2791 \quad & \\ 2792 \quad & \\ 2793 \quad & \\ 2794 \quad & \\ 2795 \quad & \\ 2796 \quad & \\ 2797 \quad & \\ 2798 \quad & \\ 2799 \quad & \\ 2800 \quad & \\ 2801 \quad & \\ 2802 \quad & \\ 2803 \quad & \\ 2804 \quad & \\ 2805 \quad & \\ 2806 \quad & \\ 2807 \quad & \\ 2808 \quad & \\ 2809 \quad & \\ 2810 \quad & \\ 2811 \quad & \\ 2812 \quad & \\ 2813 \quad & \\ 2814 \quad & \\ 2815 \quad & \\ 2816 \quad & \\ 2817 \quad & \\ 2818 \quad & \\ 2819 \quad & \\ 2820 \quad & \\ 2821 \quad & \\ 2822 \quad & \\ 2823 \quad & \\ 2824 \quad & \\ 2825 \quad & \\ 2826 \quad & \\ 2827 \quad & \\ 2828 \quad & \\ 2829 \quad & \\ 2830 \quad & \\ 2831 \quad & \\ 2832 \quad & \\ 2833 \quad & \\ 2834 \quad & \\ 2835 \quad & \\ 2836 \quad & \\ 2837 \quad & \\ 2838 \quad & \\ 2839 \quad & \\ 2840 \quad & \\ 2841 \quad & \\ 2842 \quad & \\ 2843 \quad & \\ 2$$

1998 Table 5: Datasets and code used in our work along with their licenses.
1999

2000	Name	URL	Citation	License
2001	Colored MNIST	GitHub Link	Gushchin et al. (2023b)	MIT
2002	CelebA	Dataset Link	Liu et al. (2015a)	Non-commercial research only
2003	SB Benchmark	GitHub Link	Gushchin et al. (2023b)	MIT
2004	ASBM Code	GitHub Link	Gushchin et al. (2024)	MIT
2005	DSBM Code	GitHub Link	Shi et al. (2023)	MIT

2006

2007	Algorithm Type	$\epsilon = 0.1$				$\epsilon = 1$				$\epsilon = 10$				
		$D=2$	$D=16$	$D=64$	$D=128$	$D=2$	$D=16$	$D=64$	$D=128$	$D=2$	$D=16$	$D=64$	$D=128$	
2008	Best algorithm on benchmark [†]	Varies	0.016	0.05	0.25	0.22	0.005	0.09	0.56	0.12	0.01	0.02	0.15	0.23
2009	DSBM-IMF		0.1	0.14	0.44	3.2	0.13	0.1	0.91	6.67	0.1	5.17	66.7	356
2010	DSBM-IPF		0.35	0.6	0.6	1.62	0.01	0.18	0.91	6.64	0.2	3.78	81	206
2011	DSBM- <i>Identity</i>	IPMF	0.13	0.64	2.67	7.12	0.1	0.12	2	6.67	0.02	3.8	86.4	343
2012	ASBM-IMF [†]		0.016	0.1	0.85	11.05	0.02	0.34	1.57	3.8	0.013	0.25	1.7	4.7
2013	ASBM-IPF		0.05	0.73	32.05	10.67	0.02	0.53	4.19	10.11	0.002	0.18	2.2	5.08
2014	ASBM- <i>Identity</i>		0.12	2.65	4.59	40.3	0.04	0.45	2.02	4.76	0.03	0.2	1.43	2.71
2015	SF ² M-Sink [†]	Bridge Matching	0.04	0.18	0.39	1.1	0.07	0.3	4.5	17.7	0.17	4.7	316	812

2016 Table 6: Comparisons of BW_2^2 -UVP \downarrow (%) between the ground truth static SB solution $p^T(x_0, x_1)$ and the learned solution on the SB
2017 benchmark. The best metric over is **bolded**. Results marked with [†] are taken from (Gushchin et al., 2024) or (Gushchin et al., 2023b).2018

E.2 SB BENCHMARK BW_2^2 -UVP

2019 We additionally study how well implementations of IPMF procedure starting from different starting
2020 processes map initial distribution p_0 into p_1 by measuring the metric BW_2^2 -UVP also proposed by
2021 the authors of the benchmark (Gushchin et al., 2023b). We present the results in Table 6. One can
2022 observe that DSBM initialized from different starting processes has quite close results and so is the
2023 case for ASBM experiments with $\epsilon \in \{1, 10\}$, but with $\epsilon = 0.1$ one can notice that ASBM starting
2024 from IPF and *Identity* experience a decline in BW_2^2 -UVP metric.2025

E.3 CELEBA SDEdit STARTING PROCESSES DESCRIPTION

2026 The IPMF framework does not require the starting process to have p_0, p_1 marginals or to be a
2027 Schrödinger bridge. One can then try other starting processes that would improve the practical
2028 performance of the IPMF algorithm. Properties of the starting process that would be desirable are
2029 (1) $q(x_0) = p_0(x_0)$ and marginal $q(x_1)$ to be close to $p_1(x_1)$ and (2) $q(x_0, x_1)$ to be close to SB.
2030 In the IMF or IPF, we had to choose one of these properties because we can not easily satisfy them
2031 both.2032 We propose to take a basic image-to-image translation method and use it as a coupling to induce
2033 a starting process for the IPMF procedure. Such a coupling could provide the two properties men-
2034 tioned above. We use SDEdit (Meng et al., 2022) which requires an already trained diffusion model
2035 (SDE prior). Given an input image x , SDEdit first adds noise to the input and then denoises the
2036 resulting image by the SDE prior to make it closer to the target distribution of the SDE prior. Vari-
2037 ous models can be used as an SDE prior. We explore two options: trainable and train-free. As the
2038 first option, we train the DDPM (Ho et al., 2020) model on the CelebA 64×64 size female only
2039 part. As the second option we take an already trained Stable Diffusion (SD) V1.5 model (Rombach
2040 et al., 2022) with text prompts conditioned on which model generates 512×512 images similar to
2041 the CelebA female part. We then apply SDEdit with the CelebA male images as input to produce
2042 similar female images using trainable DDPM and train-free SDv1.5 approaches, we call the starting
2043 processes generated by these SDEdit induced couplings DDPM-SDEdit and SD-SDEdit. Hyper-
2044 parameters of SDEdit, DDPM and SDv1.5 are provided in Appendix E.9.2045 The visualization of the DSBM and ASBM implementations of the IPMF procedure starting from
2046 DDPM-SDEdit and SD-SDEdit processes is in Figure 4.2047

E.4 CELEBA EXPERIMENT ADDITIONAL QUANTITATIVE STUDY

2048 In Table 8, we report the final CMMMD (Jayasumana et al., 2024) values for IPMF, while Figure 9
2049 illustrates how this metric evolves over IPMF iterations. Both evaluations are performed on the
2050 same test set as in §4.4. Notably, the resulting CMMMD curve closely mirrors the behavior observed

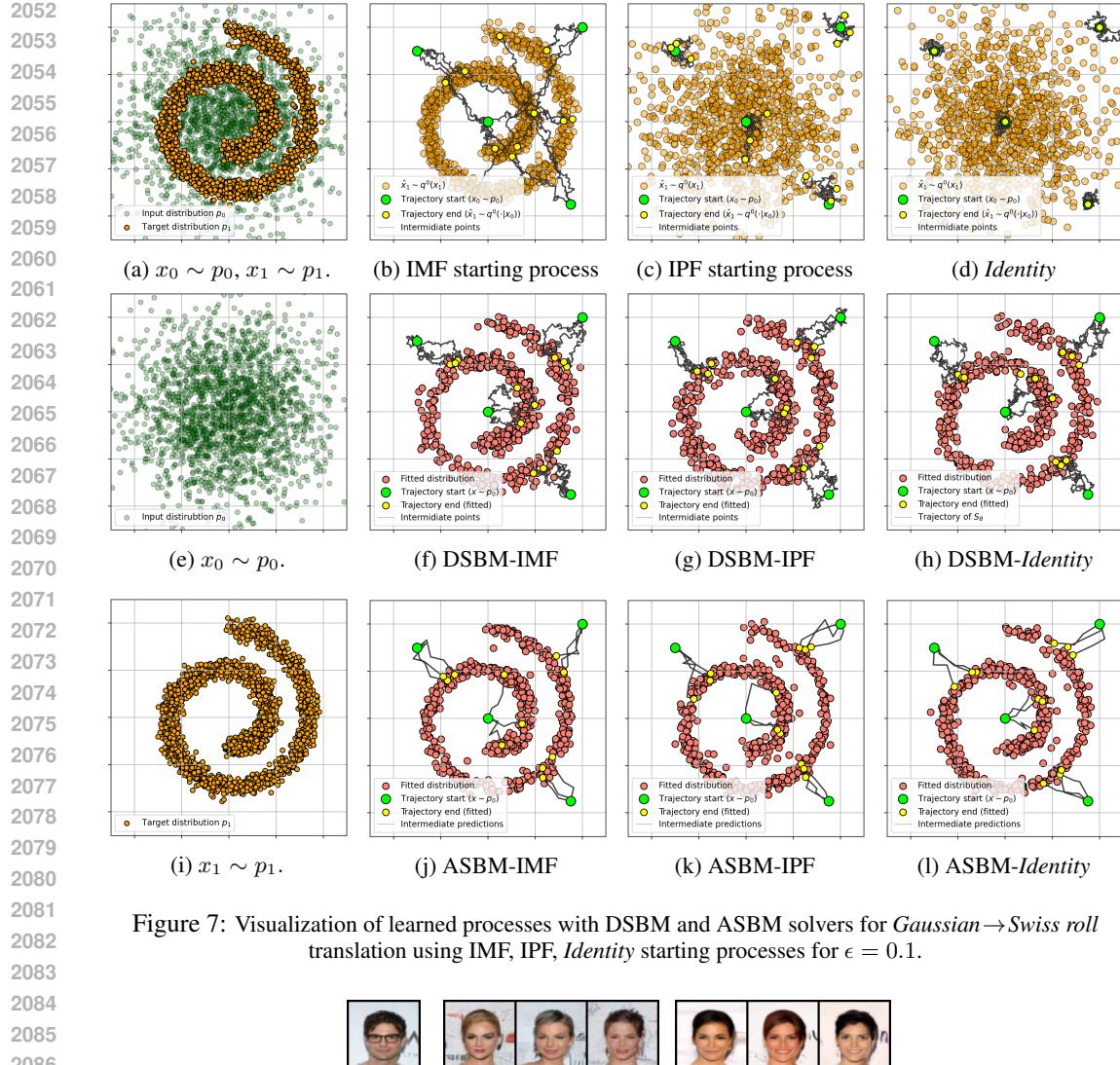


Figure 7: Visualization of learned processes with DSBM and ASBM solvers for *Gaussian* → *Swiss roll* translation using IMF, IPF, *Identity* starting processes for $\epsilon = 0.1$.

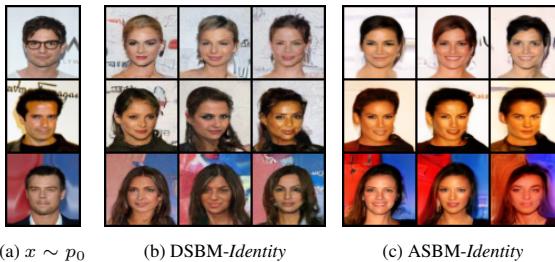


Figure 8: Results on the CelebA dataset for the *male* → *female* translation task, where $x_0 \sim p_0$ represents samples from the source distribution. DSBM-*Identity* and ASBM-*Identity* refers to the outputs generated using trained DSBM/ASBM with the *Identity* initialization. The model was trained with $\epsilon = 10$.

for FID in Figure 5. Additionally, Figure 8 and Table 7 present results obtained using DSBM and ASBM with the *Identity* initialization process on the CelebA dataset, with $\epsilon = 10$.

E.5 GENERAL EXPERIMENTAL DETAILS

Authors of ASBM (Gushchin et al., 2024) kindly provided us the code for all the experiments. All the hyperparameters including neural networks architectures were chosen as close as possible to the ones used by the authors of ASBM in their experimental section. Particularly, as it is described in (Gushchin et al., 2024, Appendix D), authors used DD-GAN (Xiao et al.) with Brownian Bridge posterior sampling instead of DDPM’s one and implementation from:

	Initialisation (coupling)				DSBM					ASBM					ASBM					
	IMF		DDPM		SD		Identity		Identity		IMF		DDPM		SD		Identity		Identity	
	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	Identity	Identity	Identity	Identity	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	
FID \downarrow	0.0	35.23	28.77	61.56	13.65	<u>14.84</u>	22.65	33.11	65.50	19.32	21.84	20.64	<u>19.58</u>	27.47						
MSE(x_0, \hat{x}_1) \downarrow	0.16	0.02	0.02	0.0	0.16	0.09	0.04	0.03	0.16	0.17	0.07	0.08	<u>0.07</u>	0.11						

Table 7: Extended for $\epsilon = 10$ qualitative results on CelebA (64×64) for *male* \rightarrow *female* translation with ASBM and DSBM across different starting processes. Generative quality (FID \downarrow) and similarity (MSE(x_0, \hat{x}_1) \downarrow) are reported on the test set. Best and second-best values for solvers are marked in **bold** and underline, respectively.

	Initialisation (coupling)				DSBM					ASBM					ASBM					
	IMF		DDPM		SD		Identity		IMF		DDPM		SD		Identity		Identity		Identity	
	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	Identity	Identity	Identity	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	SDEdit	
CMMMD \downarrow	0.0	0.31	0.69	0.84	0.32	0.46	0.34	<u>0.33</u>	0.28	0.42	<u>0.32</u>	0.51								

Table 8: Qualitative results on CelebA (64×64) for *male* \rightarrow *female* translation with ASBM and DSBM across different starting processes. Generative quality (CMMMD \downarrow) is reported on the test set. Best and second-best values for solvers are marked in **bold** and underline, respectively.

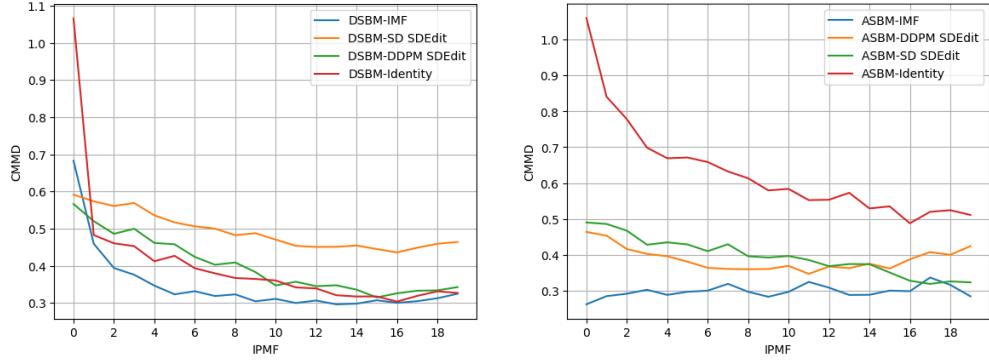


Figure 9: CMMMD metric in CelebA *male* \rightarrow *female* (64×64) as a function of IPMF iteration for various starting couplings.

<https://github.com/NVlabs/denoising-diffusion-gan>

DSBM (Shi et al., 2023) implementation is taken from the official code repository:

<https://github.com/yuyang-shi/dsmb-pytorch>

Sampling on the inference stage is done by Euler Maryama SDE numerical solver (Kloeden, 1992) with indicated in Table 9 NFE.

The Exponential Moving Average (EMA) has been used to enhance generator’s training stability of both ASBM and DSBM. The parameters of the EMA are provided in Table 9, in case the EMA decay is set to ‘N/A’ no averaging has been applied.

E.6 ILLUSTRATIVE 2D EXAMPLES DETAILS

ASBM. For toy experiments the MLP with hidden layers [256, 256, 256] has been chosen for both discriminator and generator. The generator takes vector of ($dim + 1 + 2$) length with data, latent variable and embedding (a simple lookup table `torch.nn.Embedding`) dimensions, respectively. The networks have `torch.nn.LeakyReLU` as activation layer with 0.2 angle of negative slope. The optimization has been conducted using `torch.optim.Adam` with running averages coefficients 0.5 and 0.9. Additionally, the `CosineAnnealingLR` scheduler has been used only at pretraining iteration with minimal learning rate set to 1e-5 and no restarting. To stabilize GAN training R1 regularizer with coefficient 0.01 (Mescheder et al., 2018) has been used.

2160	Model	Dataset	Start process	IPMF iters	IPMF-0 Grad Updates	IPMF-k Grad Updates
2161	ASBM	CelebA	All	20	200,000	20,000
2162	DSBM	CelebA	All	20	100,000	20,000
2163	ASBM	Swiss Roll	All	20	400,000	40,000
2164	DSBM	Swiss Roll	All	20	20,000	20,000
2165	ASBM	cMNIST	All	20	75,000	38,000
2166	DSBM	cMNIST	All	20	100,000	20,000
2167	ASBM	SB Bench	All	20	133,000	67,000
2168	DSBM	SB Bench	All	20	20,000	20,000

2169	Model	Dataset	Start process	NFE	EMA decay	Batch size	D/G opt ratio	Lr G	Lr D
2170	ASBM	CelebA	All	4	0.999	32	1:1	1.6e-4	1.25e-4
2171	DSBM	CelebA	All	100	0.999	64	N/A	1e-4	N/A
2172	ASBM	Swiss Roll	All	4	0.999	512	1:1	1e-4	1e-4
2173	DSBM	Swiss Roll	All	100	N/A	128	N/A	1e-4	N/A
2174	ASBM	cMNIST	All	4	0.999	64	2:1	1.6e-4	1.25e-4
2175	DSBM	cMNIST	All	30	0.999	128	N/A	1e-4	N/A
2176	ASBM	SB Bench	All	32	0.999	128	3:1	1e-4	1e-4
2177	DSBM	SB Bench	All	100	N/A	128	N/A	1e-4	N/A

Table 9: Hyperparameters of models from CelebA (§4.4), SwissRoll (§4.2), cMNIST (§4.4) and Benchmark (§4.3) experiments. In “Start process”, the column “All” states for all the used options. “N/A” corresponds to either not used or not applicable, the corresponding option.

DSBM. MLP with $[\text{dim} + 12, 128, 128, 128, 128, 128, \text{dim}]$ number of hidden neurons, `torch.nn.SiLU` activation functions, residual connections between 2nd/4th and 4th/6th layers and Sinusoidal Positional Embedding has been used.

E.7 SB BENCHMARK DETAILS

Scrödinger Bridges/Entropic Optimal Transport Benchmark (Gushchin et al., 2023b) and cBW_2^2 -UVP, BW_2^2 -UVP metric implementation was taken from the official code repository:

<https://github.com/ngushchin/EntropicOTBenchmark>

Conditional plan metric cBW_2^2 -UVP, see Table 1, was calculated over predefined test set and conditional expectation per each test set sample estimated via Monte Carlo integration with 1000 samples. Target distribution fitting metric, BW_2^2 -UVP, see Table 6, was estimated using Monte Carlo method and 10000 samples.

ASBM. The same architecture and optimizer have been used as in toy experiments E.6, but without the scheduler.

DSBM. MLP with $[\text{dim} + 12, 128, 128, 128, 128, 128, \text{dim}]$ number of hidden neurons, `torch.nn.SiLU` activation functions, residual connections between 2nd/4th and 4th/6th layers and Sinusoidal Positional Embedding has been used.

E.8 CMNIST DETAILS

Working with the MNIST dataset, we use a regular train/test split with 60000 images and 10000 images respectively. We RGB color train and test digits of classes “2” and “3”. Each sample is resized to 32×32 and normalized by 0.5 mean and 0.5 std. **ASBM.** The cMNIST setup mainly differs by the architecture used. The generator model is built upon the NCSN++ architecture (Song et al.), following the approach in (Xiao et al.) and (Gushchin et al., 2024). We use 2 residual and attention blocks, 128 base channels, and $(1, 2, 2, 2)$ feature multiplications per corresponding resolution level. The dimension of the latent vector has been set to 100. Following the best practices of time-dependent neural networks sinusoidal embeddings are employed to condition on the integer time steps, with a dimensionality equal to $2 \times$ the number of initial channel, resulting in a 256-dimensional embedding. The discriminator adopts ResNet-like architecture with 4 resolution levels.

2214
 2215 The same optimizer with the same parameters as in toy E.6 and SB benchmark E.7 experiments have
 2216 been used except ones that are presented in Table 9. No scheduler has been applied. Additionally,
 2217 R1 regularization is applied to the discriminator with a coefficient of 0.02, in line with (Xiao et al.)
 2218 and (Gushchin et al., 2024).

2219 **DSBM.** The model is based on the U-Net architecture
 2220 (Ronneberger et al., 2015) with attention blocks, 2 residual
 2221 blocks per level, 4 attention heads, 128 base channels,
 2222 $(1, 2, 2, 2)$ feature multiplications per resolution level.
 2223 Training was held by Adam (Kingma & Ba, 2014) optimizer.

2225 E.9 CELEBA DETAILS

2228 Test FID, see Figure 5 is calculated using pytorch-fid
 2229 package, test CMMD is calculated using unofficial im-
 2230 plementation in PyTorch. Working with CelebA dataset
 2231 (Liu et al., 2015b), we use all 84434 male and 118165 fe-
 2232 male samples (90% train, 10% test of each class). Each
 2233 sample is resized to 64×64 and normalized by 0.5 mean
 2234 and 0.5 std.

2235 **ASBM.** As in cMNIST experiments E.8 the generator model is built upon the NCSN++ architecture
 2236 (Song et al.) but with small parameter changes. The number of initial channels has been lowered
 2237 to 64, but the number of resolution levels has been increased with the following changes in fea-
 2238 ture multiplication, which were set to $(1, 1, 2, 2, 4)$. The discriminator also has been upgraded by
 2239 growing the number of resolution levels up to 6. No other changes were proposed.

2240 **DSBM.** Following Colored MNIST translation experiment exactly the same neural network and
 2241 optimizer was used.

2242 **SDEdit coupling.** DDPM (Ho et al., 2020) was trained on CelebA female train part processed in
 2243 the same way as for other CelebA experiments. Number of diffusion steps is equal to 1000 with
 2244 linear β_t noise schedule, number of training steps is equal to 1M, UNet (Ronneberger et al., 2015)
 2245 was used as neural network with 78M parameters, EMA was used during training with rate 0.9999.
 2246 The DDPM code was taken from the official DDIM (Song et al., 2021) github repository:

2247
 2248 <https://github.com/ermongroup/ddim>
 2249

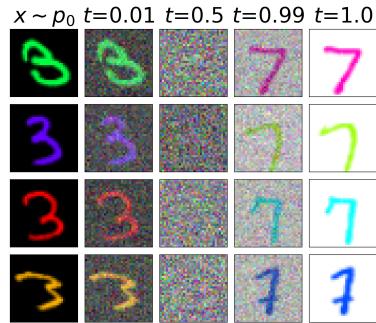
2250 The SDEdit method (Meng et al., 2022) for DDPM model was used with 400 steps of noising and
 2251 400 steps of denoising. The code for SDEdit method was taken from the official github repository:

2252
 2253 <https://github.com/ermongroup/SDEdit>
 2254

2255 The Stable Diffusion V1.5 (Rombach et al., 2022) model was taken from the Huggingface (Wolf
 2256 et al., 2020) model hub with the tag “*runwayml/stable-diffusion-v1-5*”. The text prompt used is
 2257 “*A female celebrity from CelebA*”. The SDEdit method implementation for the SDv1.5 model was
 2258 taken from the Huggingface library (Wolf et al., 2020), i.e. “*StableDiffusionImg2ImgPipeline*”, with
 2259 hyperparameters: *strength* 0.75, *guidance scale* 7.5, *number of inference steps* 50. The output of
 2260 SDEdit pipeline has been downsampled from 512×512 size to 64×64 size using bicubic interpolation.

2263 E.10 AFHQ DETAILS

2264 We first pretrain the networks using Bridge Matching for 100000 steps, then run DSBM for 20
 2265 iterations with 25000 steps per outer iteration. We follow (Shi et al., 2023) and use the same U-Net
 2266 architecture. The batch size is 4, and the EMA rate is 0.999. We choose $\sigma^2 = 5$, and again we use
 2267 100 sampling steps with constant stepsizes.



2225 Figure 10: *Inverted 7* starting process, i.e.,
 2226 process in the reciprocal class with
 2227 marginals p_0 and p^{inv7} , visualization.

2268 E.11 COMPUTATIONAL RESOURCES
2269

2270 The experiment on CelebA for each of the starting processes takes approximately 5 days and 7
2271 days on Nvidia A100 for DSBM and ASBM, respectively. Experiments with Colored MNIST take
2272 less than 2 days of training on an A100 GPU for ASBM or DSBM, and for each starting process.
2273 Illustrative 2D examples and Schrödinger Bridge benchmark experiments take several hours on GPU
2274 A100 each for ASBM or DSBM and for each starting process.

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321