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ABSTRACT

The Iterative Markovian Fitting (IMF) procedure, which iteratively projects onto
the space of Markov processes and the reciprocal class, successfully solves the
Schrödinger Bridge (SB) problem. However, an efficient practical implementation
requires a heuristic modification—alternating between fitting forward and back-
ward time diffusion at each iteration. This modification is crucial for stabilizing
training and achieving reliable results in applications such as unpaired domain
translation. Our work reveals a close connection between the modified version
of IMF and the Iterative Proportional Fitting (IPF) procedure—a foundational
method for the SB problem, also known as Sinkhorn’s algorithm. Specifically,
we demonstrate that the heuristic modification of the IMF effectively integrates
both IMF and IPF procedures. We refer to this combined approach as the Itera-
tive Proportional Markovian Fitting (IPMF) procedure. Through theoretical and
empirical analysis, we establish the convergence of the IPMF procedure under
various settings, contributing to developing a unified framework for solving SB
problems. Moreover, from a practical standpoint, the IPMF procedure enables a
flexible trade-off between image similarity and generation quality, offering a new
mechanism for tailoring models to specific tasks.

1 INTRODUCTION

Diffusion Bridge models inspired by the Schrödinger Bridge (SB) theory, which connects stochastic
processes with optimal transport, have recently become powerful approaches in biology (Tong et al.,
2024; Bunne et al., 2023), chemistry (Somnath et al., 2023; Igashov et al.; Kim et al., 2024), com-
puter vision (Liu et al., 2023a; Shi et al., 2023; Ksenofontov & Korotin, 2025) and speech processing
(Chen et al., 2023b). Most of these applications deal with either supervised domain translation, e.g.,
image super-resolution and inpainting (Liu et al., 2023a) or with unpaired translation, e.g., image
style-transfer (Shi et al., 2023) or single-cell data analysis (Tong et al., 2024).

Figure 1: Diagrams of IPF, IMF, and unified IPMF procedure. All procedures aim to converge to
the Schrödinger Bridge, i.e., a Markovian process in the reciprocal class, with marginals p0 and p1.

This work specifically focuses on unpaired domain translation (Zhu et al., 2017, Fig. 2). In this
setting, given two domains represented solely by unpaired samples, the goal is to transform a sample
from the input domain into a sample related to it in the target domain. In this context, researchers
usually use SB-based algorithms because they enforce two key properties: the optimality property,
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ensuring similarity between the input and the translated object, and the marginal matching property,
ensuring the translation of the input domain to the target domain. The motivation for relying on such
specialized methods, rather than general text-to-data models, is further discussed in Appx. B.

Early works (De Bortoli et al., 2021; Vargas et al., 2021; Chen et al., 2021; Pavon et al., 2021) on
using the SB for unpaired domain translation employed the well-celebrated Iterative Proportional
Fitting (IPF) procedure (Kullback, 1968), also known as the Sinkhorn algorithm (Cuturi & Doucet,
2014). The IPF procedure is initialized with a simple prior process satisfying the optimality prop-
erty. It then refines this process iteratively through optimality-preserving transformations until the
marginal matching property is achieved. In each iteration, IPF decreases the forward KL-divergence
KL(q∗∥q) between the current approximation q and the ground-truth Schrödinger Bridge q∗. How-
ever, in practice, approximation errors may cause IPF to suffer from the “prior forgetting”, where
the marginal matching property is achieved but optimality is lost (Vargas et al., 2024; 2021).

The Iterative Markovian Fitting (IMF) procedure (Shi et al., 2023; Peluchetti, 2023a; Gushchin
et al., 2024) emerged as a promising competitor to IPF. Contrary to IPF, IMF starts from a stochastic
process satisfying the marginal matching property and iteratively achieving optimality. Each iter-
ation of IMF decreases the reverse KL-divergence KL(q∥q∗) between the current approximation q
and the ground-truth Schrödinger Bridge q∗ (cf. with IPF). The approach generalizes rectified flows
(Liu et al., 2022) to stochastic processes, which are employed (Liu et al., 2023b; Yan et al., 2024)
in modern foundational generative models such as Stable Diffusion 3 (Esser et al., 2024). Like IPF,
IMF may also accumulate errors. Specifically, it may fail to approximate data distributions due to
an imperfect fit at each iteration, causing the marginal matching property to be lost.

In practice, to stabilize IMF training, prevent error accumulation and loss of marginal matching
property, practitioners use a heuristic modification of IMF. This is a bidirectional procedure alter-
nating between learning forward and backward processes, either by diffusion-based models in the
Diffusion Schrödinger Bridge Matching (DSBM) algorithm (Shi et al., 2023) or GANs in Adver-
sarial Schrödinger Bridge Matching (ASBM) algorithm (Gushchin et al., 2024). In this work, we
investigate the properties of the heuristic modification of the IMF. Our contributions:

1. Theory. We show that the heuristic bidirectional IMF procedure used in practice is closely
related to IPF—in fact, it secretly uses IPF iterations. Therefore, we propose calling the bidi-
rectional IMF procedure Iterative Proportional Markovian Fitting (IPMF, M3.1). We prove
that the IPMF procedure exponentially converges for Gaussians under various settings. We also
guarantee that IPMF converges to q∗, if p0 and p1 have bounded supports and conjecture that
IPMF converges under very general settings, offering a promising way of developing a unified
framework for solving the SB problem (M3.2).

2. Practice I. We empirically validate our conjecture through a series of experiments, including the
Gaussian setup (M4), toy 2D setups (M4.2), the Schrödinger Bridge benchmark (M4.3), setup with
real-world colored MNIST and CelebA image data (M4.4).

3. Practice II. Thanks to the proposed IPMF framework, we introduce a novel way to trade-off be-
tween generation quality and input-output similarity of Schrödinger Bridge solvers by designing
the starting coupling. Empirically, we demonstrate on real-world image data that the proposed
initializations outperform classical ones (M4.4).

These contributions demonstrate that the IPMF procedure has significant potential to unify a range of
previously introduced SB methods—including IPF and IMF-based ones—in both discrete (Gushchin
et al., 2024; De Bortoli et al., 2021) and continuous time (Shi et al., 2023; Peluchetti, 2023a; Vargas
et al., 2021) settings, as well as their online versions (De Bortoli et al., 2024; Peluchetti, 2025;
Karimi et al., 2024). Furthermore, the forward-backward IPMF framework could enable rectified
flows to avoid error accumulation, making them even more powerful in generative modeling.

Notations. P2,ac(RD) is a set of absolutely continuous distributions on RD with finite second
moment and finite entropy. We fix N ≥ 1 intermediate time moments and set 0 = t0 < t1 < · · · <
tN < tN+1 = 1. Let q ∈ P2,ac(RD×(N+2)) be an associated discrete stochastic process on this
grid. For any such q, we denote the density at (x0, xt1 , . . . , xtN , x1) ∈ RD×(N+2) as q(x0, xin, x1),
with xin = (xt1 , . . . , xtN ). W ϵ is a Wiener process with volatility ϵ > 0 and initial distribution

p0. Let pW
ϵ

be its discretization, i.e., pW
ϵ

(x0, xin, x1)=p0(x0)
N+1∏
n=1

N (xtn |xtn−1
, ϵ(tn−tn−1)ID),

where N (·|·) is a conditional Gaussian distribution. H(q) is the differential entropy of q.
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2 BACKGROUND

This section details the study’s key concepts; M2.1 introduces the Schrödinger Bridge (SB) problem,
M2.2 presents the Iterative Proportional Fitting (IPF), M2.3 describes the Iterative Markovian Fitting
(IMF), M2.4 discusses the heuristic modification of the IMF (Bidirectional IMF).

Recall that the SB problem (Schrödinger, 1931), IPF, and IMF admit both discrete– and continuous–
time setups leading to the same problem solution. Moreover, the explicit formulas for IPF and IMF
in the discrete setting are expressed in terms of probability densities, which helps to convey the main
idea of our paper. Thus, for the sake of presentation flow, the main text focuses exclusively on the
discrete setup, while Appendix C presents the continuous setup.

2.1 SCHRÖDINGER BRIDGE (SB) PROBLEM

The SB problem with a Wiener prior in the discrete-time setting (De Bortoli et al., 2021), given the
initial distribution p0(x0) and the final distribution p1(x1), is stated as

min
q∈ΠN (p0,p1)

KL(q(x0, xin, x1)∥pW
ϵ

(x0, xin, x1)), (1)

where ΠN (p0, p1) ⊂ P2,ac(RD×(N+2)) is the subset of discrete stochastic processes with marginals
q(x0) = p0(x0), q(x1) = p1(x1). The objective function in (1) admits a decomposition

KL
(
q(x0, xin, x1)||pW

ϵ

(x0, xin, x1)
)
= KL

(
q(x0, x1)||pW

ϵ

(x0, x1)
)

+

∫
KL
(
q(xin|x0, x1)||pW

ϵ

(xin|x0, x1)
)
q(x0, x1)dx0dx1.

All q(xin|x0, x1) can be chosen independently of q(x0, x1). Thus, we can consider q(xin|x0, x1) =
pW

ϵ

(xin|x0, x1)and get KL(q(xin|x0, x1)||pW
ϵ

(xin|x0, x1)) = 0.

This leads to the Static SB problem:

min
q∈Π(p0,p1)

KL
(
q(x0, x1)||pW

ϵ

(x0, x1)
)
, (2)

where Π(p0, p1) ⊂ P2,ac(RD×D) is the subset of joint distributions q(x0, x1) s.t. q(x0) = p0(x0),
q(x1) = p1(x1). Finally, the static SB objective can be expanded (Gushchin et al., 2023a, Eq. 7)

KL(q(x0, x1)||pW
ϵ

(x0, x1)) =

∫
∥x1 − x0∥2

2ϵ
dq(x0, x1)−H(q(x0, x1)) + C, (3)

that is equivalent to the objective of the entropic optimal transport (EOT) problem with the quadratic
cost up to an additive constant (Cuturi, 2013; Peyré et al., 2019; Léonard, 2013; Genevay, 2019).

2.2 ITERATIVE PROPORTIONAL FITTING (IPF)
Early works on SB (Vargas et al., 2021; De Bortoli et al., 2021; Tang et al., 2024) propose computa-
tional methods based on the IPF procedure (Kullback, 1968). The IPF-based algorithm is started by
setting the process q0(x0, xin, x1) = p0(x0)p

W ϵ

(xin, x1|x0). Then, the algorithm alternates between
two types of IPF projections, proj1 and proj0, given by (De Bortoli et al., 2021, Prop. 2):

q2k+1 = proj1
(
q2k(x1)

N∏
n=0

q2k(xtn |xtn+1)︸ ︷︷ ︸
q2k(x1)q2k(x0,xin|x1)

) def
= p1(x1)

N∏
n=0

q2k(xtn |xtn+1)︸ ︷︷ ︸
q2k(x0,xin|x1)

, (4)

q2k+2 = proj0
(
q2k+1(x0)

N+1∏
n=1

q2k+1(xtn |xtn−1)︸ ︷︷ ︸
q2k+1(x0)q2k+1(xin,x1|x0)

) def
= p0(x0)

N+1∏
n=1

q2k+1(xtn |xtn−1)︸ ︷︷ ︸
q2k+1(xin,x1|x0)

. (5)

Thus, proj1 and proj0 replace marginal distributions q(x1) and q(x0) in q(x0, xin, x1) by p1(x1) and
p0(x0) respectively. The constructed sequence {qk} converges to the solution of the SB problem
q∗ and causes the forward KL-divergence KL(q∗∥qk) to decrease monotonically at each iteration.
In practice, since the prior process pW

ϵ

is used only for initialization, the imperfect fit may lead to
a deviation from the SB solution at some iteration. This problem is called “prior forgetting” and
was discussed in (Vargas et al., 2024, Appx. E.3). The authors of Vargas et al. (2021) consider a
continuous analog of the IPF procedure using inversions of diffusion processes (see Appx. C.2).
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2.3 ITERATIVE MARKOVIAN FITTING (IMF)
The Iterative Markovian Fitting (IMF) procedure (Peluchetti, 2023a; Shi et al., 2023; Gushchin
et al., 2024) emerged as a strong competitor to the IPF procedure. In contrast to IPF, IMF does not
suffer from the “prior forgetting”. The procedure is initialized with any q0 ∈ ΠN (p0, p1). Then it
alternates between reciprocal projection projR and Markovian projection projM:

q2k+1 = projR(q2k)
def
= q2k(x0, x1)p

W ϵ

(xin|x0, x1), (6)

q2k+2= projM(q2k+1)
def
= q2k+1(x0)

N+1∏
n=1

q2k+1(xtn |xtn−1)︸ ︷︷ ︸
forward representation

=q2k+1(x1)

N∏
n=0

q2k+1(xtn |xtn+1)︸ ︷︷ ︸
backward representation

(7)

The reciprocal projection projR creates a new (in general, non-Markovian) process combin-
ing the distribution q(x0, x1) and pW

ϵ

(xin|x0, x1). The latter is called the discrete Brownian
Bridge. The Markovian projection projM uses the set of transitional densities {q(xtn |xtn−1

)}
or {q(xtn |xtn+1

)} to create a new Markovian process starting from q(x0) or q(x1) respectively.
Markovian projection keeps the marginal distributions at each timestep, but, in general, changes
the joint distributions between them. The sequence {qk} converges to the SB q∗ and causes the
reverse KL-divergence KL(qk∥q∗) to decrease monotonically at each iteration (cf. with IPF). The
authors of Shi et al. (2023); Peluchetti (2023a) consider a continuous-time version of the IMF.

2.4 HEURISTIC BIDIRECTIONAL MODIFICATION OF IMF
The result of the Markovian projection (7) admits both forward and backward representation. To
learn the corresponding transitional densities, one uses neural networks {qθ(xtn |xtn−1

)} (forward
parametrization) or {qϕ(xtn |xtn+1

)} (backward parametrization). The starting distributions are
as follows: qθ(x0) = p0(x0) for the forward parametrization and qϕ(x1) = p1(x1) for the backward
parametrization. In practice, the alternation between representations of Markovian processes is used
in both implementations of continuous-time IMF by DSBM algorithm (Shi et al., 2023, Alg. 1)
based on diffusion models and discrete-time IMF by ASBM algorithm (Gushchin et al., 2024, Alg.
1) based on the GANs. This bidirectional procedure can be described as follows:

q4k+1 = q4k(x0, x1)p
W ϵ

(xin|x0, x1)︸ ︷︷ ︸
projR(q4k)

, q4k+2 = p(x1)

N∏
n=0

q4k+1
ϕ (xtn−1

|xtn)︸ ︷︷ ︸
backward parametrization

, (8)

q4k+3 = q4k+2(x0, x1)p
W ϵ

(xin|x0, x1)︸ ︷︷ ︸
projR(q4k+2)

, q4k+4 = p(x0)

N+1∏
n=1

q4k+3
θ (xtn |xtn−1

)︸ ︷︷ ︸
forward parametrization

. (9)

Thus, only one marginal is fitted perfectly, e.g., qθ(x0) = p0(x0) in the case
of forward representation, while the other marginal is only learned, e.g., qθ(x1) =∫
p0(x0)

∏N+1
n=1 qθ(xtn |xtn−1)dx0dx1 · · · dxN ≈ p1(x1).

3 ITERATIVE PROPORTIONAL MARKOVIAN FITTING

This section demonstrates that the heuristic bidirectional IMF (M2.4) is, in fact, the alternating imple-
mentation of IPF and IMF projections. M3.1 establishes that this heuristic defines the unified Iterative
Proportional Markovian Fitting (IPMF) procedure. M3.2 provides the analysis of the convergence of
the IPMF procedure under various settings, with the proofs provided in Appendix D.

3.1 BIDIRECTIONAL IMF IS IPMF
For a given Markovian process q, we recall that its IPF projections (proj0(q) (5) and proj1(q) (4))
replace the starting distribution q(x0) with p0(x0) and q(x1) with p1(x1), respectively. Further, the
process q4k+2 (8) is a result of a combination of the Markovian projection projM (7) in forward
parametrization and of the IPF projection proj1 (4):

q4k+2 = p(x1)

N∏
n=0

q4k+1(xtn |xtn+1
) = proj1

(
q4k+1(x1)

N∏
n=0

q4k+1(xtn |xtn+1
)
)

︸ ︷︷ ︸
proj1(projM(q4k+1))

.
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Next, the process q4k+4 (9) results from a combination of the Markovian projection projM (7) in
backward parametrization and of the IPF projection proj0 (5):

q4k+3 = p(x0)

N+1∏
n=1

q4k+3(xtn |xtn−1) = proj0
(
q4k+3(x0)

N+1∏
n=1

q4k+3(xtn |xtn−1)
)

︸ ︷︷ ︸
proj0(projM(q4k+3))

.

Thus, we can represent the heuristic bidirectional IMF given by (9) and (8) as follows:

Iterative Proportional Markovian Fitting (Discrete time)

q4k+1 = q4k(x0, x1)p
W ϵ

(xin|x0, x1)︸ ︷︷ ︸
projR(q4k)

, q4k+2 = p(x1)

N∏
n=0

q4k+1(xtn−1
|xtn)︸ ︷︷ ︸

proj1(projM(q4k+1))

,

q4k+3 = q4k+2(x0, x1)p
W ϵ

(xin|x0, x1)︸ ︷︷ ︸
projR(q4k+2)

, q4k+4 = p(x0)

N+1∏
n=1

q4k+3(xtn |xtn−1
)︸ ︷︷ ︸

proj0(projM(q4k+3))

.

The heuristic bidirectional IMF alternates between two IMF projections (projM(projR(·))) during
which the process “became more optimal” (step towards optimality property) and two IPF projec-
tions (proj0 and proj1) during which the marginal fitting improves (step towards marginal matching
property). We refer to this procedure as Iterative Proportional Markovian Fitting (IPMF). An
IPMF step consists of two IMF projections and two IPF projections. We hypothesize that IPMF
converges from any initial process q0(x0, xin, x1), unlike IPF and IMF, which require a specific
form of the starting process. We emphasize that IPMF reduces to IMF when the initial coupling has
the correct marginals p0 and p1 and has Brownian Bridge between the marginals. Similarly, if the
initial coupling is Markovian, is in the reciprocal class, and has the correct initial marginal p0 or p1,
then IPMF reduces to IPF. Fig. 1 visualizes these cases, clarifying the role of the initial coupling and
the iterative steps. A similar analysis for continuous-time IPMF is provided in Appx. C.3.

3.2 THEORETICAL CONVERGENCE ANALYSIS IN VARIOUS CASES

Our first result introduces a novel approach to quantify the optimality property for a Gaussian plan.
We show that any 2D Gaussian distribution (D ≥ 1) is an entropic OT plan between its marginals for
a certain transport cost. Let Q,S ∈ RD×D be positive definite matrices (Q,S ≻ 0) and P ∈ RD×D

be s.t. Q− P (S)−1P⊤ ≻ 0. Define

Ξ(P,Q, S)
def
= (S)−1P⊤(Q− P (S)−1P⊤)−1. (10)

Theorem 3.1. Let q(x0, x1) be Gaussian with marginals p = N (η,Q) and p̃ = N (ν, S),

q(x0, x1) = N
((

η
ν

)
,

(
Q P
P⊤ S

))
.

Let A = Ξ(P,Q, S). Then q is the unique minimizer of

min
q′∈Π(p,p̃)

{∫
(−x⊤

1 Ax0) · q′(x0, x1)dx0dx1 −H
(
q′
)}

. (11)

Problem (11) is the OT problem with the transport cost cA(x0, x1) := −x⊤
1 Ax0 and entropy regu-

larization (with weight 1) (Cuturi, 2013; Genevay, 2019). In other words, for any 2D Gaussian dis-
tribution q, there exists a matrix A(q) ∈ RD×D that defines the cost function for which q solves the
EOT problem. We name A(q) the optimality matrix. If q is such that A(q) = ϵ−1ID, then the cor-
responding transport cost is cA(x0, x1) = −ϵ−1 · ⟨x1, x0⟩ which is equivalent to ϵ−1 · ∥x1−x0∥2/2.
Consequently, q is the static SB (2) between its q0(x0) and q1(x1) for the prior W ϵ, recall (3).

Main result. We prove the exponential convergence of IPMF (w.r.t. the parameters) to the solution
q∗ of the static SB problem (2) between p0 and p1 under certain settings.

5
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Theorem 3.2 (Convergence of IPMF for Gaussians). Let p0 = N (µ0,Σ0) and p1 = N (µ1,Σ1) be
D-dimensional Gaussians. Assume that we run IPMF with ϵ > 0, starting from some 2D Gaussian1

q0(x0, x1) = N
((

µ0

ν

)
,

(
Σ0 P0

P0 S0

))
∈ P2,ac(RD × RD).

We denote the distribution obtained after k IPMF steps by

q4k(x0, x1)
def
= N

((
µ0

νk

)
,

(
Σ0 Pk

Pk Sk

))
∈ P2,ac(RD × RD)

and Ak
def
= Ξ(Pk,Σ0, Sk). Then in the following settings

• D = 1, discrete- or continuous-time IMF (N = 1), any ϵ > 0;

• D > 1, discrete-time IMF, ϵ ≫ 0 (see Appendix D.4);

the following exponential convergence bounds hold:

∥S− 1
2

k Σ1S
− 1

2

k − ID∥2 ≤ α2k∥S− 1
2

0 Σ1S
− 1

2
0 − ID∥2,

∥Σ− 1
2

1 (νk − µ1)∥2 ≤ αk∥Σ− 1
2

1 (ν0 − µ1)∥2, ∥Ak − ϵ−1ID∥2 ≤ β2k∥A0 − ϵ−1ID∥2, (12)

with α, β < 1 and ∥ · ∥2 being the spectral norm; α, β depend on IPMF type (discrete or
continuous), initial parameters S0, ν0, P0, marginal distributions p0, p1, and ϵ. Consequently,
KL
(
q4k∥q∗

)
,KL

(
q∗∥q4k

) k→∞→ 0.

Proof idea. An IPF step does not change the “copula”, i.e., the information about the joint distribu-
tion that is invariant w.r.t. changes in marginals p0 and p1. In the Gaussian case can be represented
by the optimality matrix Ak (see Lemma D.3). In contrast, an IMF iteration changes the copula but
preserves the marginals. Next, we analyze closed formulas for the IMF step in the Gaussian case
(Peluchetti, 2023a; Gushchin et al., 2024) and show that the IMF step makes Ak closer to ϵ−1ID.
Specifically, we verify the contractivity of each step w.r.t. Ak.

Our next result shows that the convergence of IPMF holds far beyond the Gaussian setting.

Theorem 3.3 (Convergence of IPMF under boundness assumption). Assume p0 and p1
have bounded supports. Then for both discrete-time and continuous-time IPMF it holds
q4k(x0, x1)

w→q∗(x0, x1), where w→ denotes weak convergence.

General conjecture. Given our results, we believe that IPMF converges under very general settings
(beyond the Gaussian and bounded cases). Moreover, in the Gaussian case, we expect exponential
convergence for all ϵ > 0, all D, and IMF types. We verify these claims experimentally (M4).

Related works and our novelty. Our work provides the first theoretical analysis of bidirectional
IMF, whereas prior studies analyzed only vanilla IMF. (Shi et al., 2023, Theorem 8) and (Gushchin
et al., 2024, Theorem 3.6) proved sublinear convergence of IMF in reverse KL divergence for con-
tinuous and discrete cases. For IPF, sublinear convergence in forward KL divergence under mild
assumptions, as well as geometric convergence for Gaussians, are shown in (De Bortoli et al., 2021,
Propositions 4 and 43). Previous results cannot be directly generalized to IPMF. First, IPF and IMF
converge in different divergence measures, and a decrease in one does not imply a reduction in the
other. Second, IPF updates marginals at each step, so IMF must optimize toward a moving target,
whereas pure IMF has a fixed optimum. Unlike (Shi et al., 2023), which proves convergence only
from the IPF starting coupling, our analysis applies to arbitrary starting couplings. We also view the
starting coupling as a tunable hyperparameter and examine its effect in the next section.

4 EXPERIMENTAL ILLUSTRATIONS

This section provides empirical evidence that IPMF converges under a more general setting—
specifically, from any starting process—unlike IPF and IMF. The first goal is to achieve the same or
similar results across all used starting couplings and for both discrete-time (ASBM) and continuous-
time (DSBM) solvers on illustrative setups (M4.1, M4.2, M4.3, M4.4). The second one is to highlight

1We assume that q0(x0) = p0(x0), i.e., the initial process starts at p0 at time t = 0. This is reasonable, as
after the first IPMF round the process will satisfy this property thanks to the IPF projections involved.
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(a) Forward KL-divergence during IPMF steps. (b) Reverse KL-divergence during IPMF steps.

(c) Convergence of matrix A. (d) Convergence of ν. (e) Convergence of S.

Figure 2: Convergence of IPMF procedure with different starting process q0.
that, while all initializations converge to qualitatively similar outcomes, in practice, some offer bet-
ter generation quality and others better input-output similarity on real-world data, due to different
starting points. This allows one to choose initializations based on specific task requirements (M4.4).

In M3.1 and Appx. C we show that the bidirectional IMF and the proposed IPMF differ only in the
initial starting process. Since both practical implementations of continuous-time IMF (Shi et al.,
2023, Alg. 1) and discrete-time IMF (Gushchin et al., 2024, Alg. 1) use the considered bidirectional
version, we use practical algorithms introduced in these works, i.e., Diffusion Schrödinger Bridge
Matching (DSBM) and Adversarial Schrödinger Bridge Matching (ASBM) respectively.
Experimental setups. We consider multivariate Gaussian distributions for which we have closed-
form IPMF update formulas, an illustrative 2D example, the Schrödinger Bridges Benchmark
(Gushchin et al., 2023b) and real-life image data distributions, i.e., the colored MNIST dataset and
the CelebA dataset (Liu et al., 2015b). All technical details can be found in the Appx. E.

Starting processes. We focus on running the IPMF procedure from various initializations, re-
ferred to as starting processes. The starting processes are constructed by selecting different cou-
plings q0(x0, x1) and incorporating the Brownian Bridge process W ϵ

|x0,x1
(i.e., W ϵ conditioned

on x0, x1). In the discrete-time setup, for each selected coupling q0(x0, x1) we construct the
starting process as q0(x0, xin, x1) = q0(x0, x1)p

W ϵ

(xin|x0, x1) and T 0 =
∫
W ϵ

|x0,x1
dq0(x0, x1)

for the continuous-time case (see Appx. C). We consider three “starting” scenarios: IMF-like
starting process of the form q0(x0, x1) = p0(x0)p1(x1), IPF-like starting process of the form
q0(x0, x1) = p0(x0)p

W ϵ

(x1|x0), and various starting processes which cannot be used to initial-
ize IMF or IPF. The latter demonstrates that IPMF converges under a more general setting.

The results of DSBM and ASBM with different starting processes are denoted as (D/A)SBM-
*coupling*, e.g., DSBM-IMF for DSBM with IMF as the starting process.

Remark. Notably, in practice, both the IPF and IMF procedures can be recovered through different
implementations. For example, IPF can be realized through (D/A)SBM with the IPF starting cou-
pling, or alternatively via DSB (De Bortoli et al., 2021). IMF, in turn, can be implemented using
(D/A)SBM with a one-directional parametrization. However, in practice, matching-based meth-
ods exhibit superior performance (Shi et al., 2023). Furthermore, the authors of (Shi et al., 2023;
Peluchetti, 2023a; Gushchin et al., 2024) observed that bidirectional IMF does not accumulate ap-
proximation errors, whereas relying solely on one direction parametrization leads to error accumu-
lation and eventual divergence (De Bortoli et al., 2024, Appx. I). Therefore, we argue that a direct
comparison between the IPMF procedure and previous practical implementations is unnecessary.

4.1 HIGH DIMENSIONAL GAUSSIANS

This section experimentally validates the convergence of IPMF for the multivariate Gaussians (see
our General conjecture, M3.2). We use explicit formulas for the discrete IPF and IMF (Gushchin
et al., 2024, Thm. 3.8) and follow the setup from (Gushchin et al., 2023a, Sec. 5.2). Specifically,
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ϵ = 0.1 ϵ = 1 ϵ = 10

Algorithm Type D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best algorithm on benchmark† Varies 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31

DSBM-IMF

IPMF

1.21 4.61 9.81 19.8 0.68 0.63 5.8 29.5 0.23 5.45 68.9 362
DSBM-IPF 2.55 17.4 15.85 17.45 0.29 0.76 4.05 29.59 0.35 3.98 83.2 210

DSBM-Identity 1.23 18.86 24.71 21.39 0.26 0.69 7.46 29.5 0.13 3.99 88.2 347
ASBM-IMF† 0.89 8.2 13.5 53.7 0.19 1.6 5.8 10.5 0.13 0.4 1.9 4.7

ASBM-IPF 3.06 14.37 44.35 32.5 0.18 1.68 9.25 20.47 0.13 0.36 2.28 4.97
ASBM-Identity 0.58 24.9 29.1 85.2 0.19 2.44 8.28 11.61 0.12 0.35 1.66 2.86

SF2M-Sink† Bridge Matching 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819

Table 1: Comparisons of cBW2
2-UVP ↓ (%) between the static SB solution q∗(x0, x1) and the learned solution on the SB benchmark.

The best metric is bolded. Results marked with † are taken from (Gushchin et al., 2024) and (Gushchin et al., 2023b). The results of DSBM
and ASBM algorithms starting from different starting processes are denoted as (D/A)SBM-*name of starting process*

(a) x ∼ p0 (b) DSBM-IMF (c) DSBM-Inverted 7 (d) ASBM-IMF (e) ASBM-Inverted 7

Figure 3: Samples from DSBM and ASBM learned with IPMF using IMF and qinv7 starting processes on
Colored MNIST 3→2 (32× 32) translation for ϵ = 10.

we consider the Schrödinger Bridge (SB) problem with D = 128 and ϵ = 0.3, where the marginal
distributions are Gaussian: p0 = N (0,Σ0) and p1 = N (3,Σ1), with 0 ∈ RD denoting the vector
of all zeros and 3 ∈ RD - the vector of all threes. The eigenvectors of Σ0 and Σ1 are sampled
from the uniform distribution on the unit sphere. Their eigenvalues are sampled from the loguniform
distribution on [− log 2, log 2]. We choose N = 3 intermediate time points uniformly between t = 0
and t = 1 and run 100 steps of the IPMF procedure, each consisting of two IPF projections and two
Markovian–Reciprocal projections (see M3.1). Denote as q4k = q4k(x0, x1) the IPMF output at the
k-th step and let q∗ = q∗(x0, x1) be the solution of the static SB. Fig. 2 shows that both the forward
KL
(
q∗∥q4k

)
and reverse KL(q4k∥q∗) divergences converge. The quantities from (12) converge

to zero exponentially, as expected. Note that particular starting processes can cause an immediate
match of the parameters: an IMF starting process that already has the required marginals converges
only in optimality, while IPF converges to the true marginals with the unchanged optimality matrix.

4.2 ILLUSTRATIVE 2D EXAMPLE

We consider the SB problem with ϵ = 0.1, p0 being a Gaussian distribution on R2 and p1 being
the Swiss roll. We train DSBM and ASBM algorithms using IMF and IPF starting processes. Ad-
ditionally, we consider Identity starting processes induced by q0(x0, x1) = p0(x0)δx0

(x1), i.e. we
set x1 = x0 after sampling x0 ∼ p(x0). The purpose of testing the Identity coupling is to verify
that IPMF converges even when initialized with a naive coupling. Furthermore, we hypothesize that
this coupling is the best in terms of the optimality property. We present the starting processes and
the results in Fig. 7 in Appendix E. In all the cases, we observe similar results.

4.3 EVALUATION ON THE SB BENCHMARK

We use the SB mixtures benchmark (Gushchin et al., 2023b) with the ground truth solution to the
SB problem to test ASBM and DSBM with IMF, IPF, and Identity (M4.2) as the starting processes.
The benchmark provides continuous distribution pairs p0, p1 for dimensions D ∈ {2, 16, 64, 128}
that have known SB solutions for volatility ϵ ∈ {0.1, 1, 10}. To evaluate the quality of the recovered
SB solutions, we use the cBW2

2-UVP metric (Gushchin et al., 2023b). Tab. 1 provides the results.
We also include the results of the standard baseline for Bridge Matching tasks called SF2M-Sink
(Gushchin et al., 2023b). We provide training details and additional results in Appx. E. All starting
processes yield similar results within each solver type (DSBM or ASBM).

4.4 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

To test IPMF on real data, we consider two unpaired image-to-image translation setups: colorized 3
→ colorized 2 digits from the MNIST dataset with 32×32 resolution size and male→female faces
from the CelebA dataset with 64×64 resolution size.
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Initialisation (coupling) DSBM ASBM

IMF
DDPM
SDEdit

SD
SDEdit

Identity IMF
DDPM
SDEdit

SD
SDEdit

Identity IMF
DDPM
SDEdit

SD
SDEdit

Identity

FID↓ 0.0 35.23 28.77 61.56 13.65 14.84 22.65 33.11 19.32 21.84 20.64 19.58

MSE(x0, x̂1)↓ 0.16 0.02 0.02 0.0 0.16 0.09 0.04 0.03 0.17 0.07 0.08 0.07

Table 2: Qualitative results on CelebA (64× 64) for male→female translation with ASBM and DSBM
across different starting processes. Generative quality (FID↓) and similarity (MSE(x0, x̂1)↓) are reported on

the test set. Best and second-best values for solvers are marked in bold and underline, respectively.

Colored MNIST. We construct train and test sets by RGB colorization of MNIST digits from corre-
sponding train and test sets of classes “2” and “3”. We train ASBM and DSBM algorithms starting
from the IMF process. Additionally, we test a starting process induced by the independent cou-
pling of the distribution of colored digits of class “3” (p0) and the distribution of colored digits
of class “7” with inverted RGB channels (pinv7(x1)). We refer to this process as Inverted 7, i.e.,
q0(x0, x1) = p0(x0)p

inv7(x1) (see Fig. 10). Appx. E contains further technical details. We learn
DSBM and ASBM on the train set of digits and visualize the translated test images (Fig. 3).

Both DSBM and ASBM algorithms starting from both IMF and Inverted 7 starting process fit the
target distribution of colored MNIST digits of class “2” and preserve the color of the input image
during translation. This supports that the limiting behavior of IPMF resembles the solution of SB.

(a) x0∼p0 (b) DSBM-IMF-OT (c) ASBM-IMF-OT (d) x1∼q0

(e)x0∼p0(f) DSBM-DDPM SDEdit (g) ASBM-DDPM SDEdit (h) x1∼q0

(i) x0∼p0 (j) DSBM-SD SDEdit (k) ASBM-SD SDEdit (l) x1∼q0

(m) x0∼p0 (n) DSBM-Identity (o) ASBM-Identity (p) x1∼q0

Figure 4: Results of CelebA at 64×64 size for male→female
translation learned with ASBM and DSBM using various

starting processes for ϵ = 1. Samples x0 ∼ p0 are samples
from the source marginal. Samples x1 ∼ q0 are samples from
the initialization coupling q0(x1|x0) for a given x0 from p0.

CelebA. We consider the IMF-OT varia-
tion of the IMF starting process. It is in-
duced by a mini-batch optimal transport cou-
pling qOT(x0, x1) (Tong et al., 2024; Poola-
dian et al., 2023). We also test Identity
(M4.2) starting process. Additionally, we
test starting processes induced by DDPM
SDEdit and SD SDEdit couplings, which
is the SDEdit method (Meng et al., 2022)
used for male→female translation with (1)
DDPM (Ho et al., 2020) model trained
on the female part of CelebA and (2)
Stable Diffusion v1.5 (Rombach et al., 2022)
with designed text prompt, see Appx. E.3.
The aim of introducing such a coupling is to
test the hypothesis that well-designed SDEdit
couplings can improve the metrics of both
properties. We use approximately the same
number of parameters for the DSBM and the
ASBM generators and 10% of images for
evaluation (see Appx. E, other details).

We provide qualitative results in Fig. 4. Ad-
ditionally, we report the final FID score (gen-
eration quality) and the Mean Squared Error
(MSE) between the input x0 and the trans-
lated image x̂1 (input-output similarity) in
Table 2. Figure 4 illustrates that the mod-
els (1) converge to the target distribution and
(2) preserve semantic alignment between in-
put and output (e.g., hair color, background).
Despite this, their outputs differ due to the in-
fluence of initialization on optimization tra-
jectories. For DSBM, our couplings (SD
SDEdit, DDPM SDEdit, Identity) maintain
generation quality while greatly improving
similarity. For ASBM, they boost similar-
ity but slightly reduce quality. Results with
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(a) MSE(x0, x̂1) for (D/A)SBM (b) FID for DSBM (c) FID for ASBM

Figure 5: Test metrics in CelebA male→female (64 × 64) as a function of IPMF iteration for
various starting couplings.

(a) Input AFHQ cat images

(b) DSBM-IMF-OT translation results.

(c) DSBM-Identity translation results.

Figure 6: Results of AFHQ at 512×512 size for cat→wild translation learned with DSBM using various
starting processes for ϵ = 1.

Identity couplings support our hypothesis (M4.2), whereas experiments with SDEdit offer only par-
tial validation and yield moderate FID.

Furthermore, in Figure 5 we present a quantitative study of IPMF convergence, reporting FID (Jaya-
sumana et al., 2024) and the Mean Squared Error (MSE) between the inputs and the translated
outputs as functions of the IPMF iteration. Both metrics are computed on the CelebA male→female
(64 × 64) test set. We observe a consistent pattern: the higher the similarity or generation quality of
the coupling, the better the model performs on the corresponding metric. For additional quantitative
results on CelebA 64× 64, we refer the reader to Appendix E.4.

Coupling FID↓ MSE↓ CMMD↓
DSBM-IMF-OT 53.42 0.085 0.591
DSBM-Identity 65.19 0.054 0.731

Table 3: Results of AFHQ at 512×512 size for
cat→wild translation learned with DSBM using
various starting processes for ϵ = 1.

AFHQ. For AFHQ (Choi et al., 2020), we con-
sider classes cat and wild with 512 × 512 reso-
lution images. Each class contains approximately
5000 samples. We run DSBM with IMF-OT and
Identity couplings and present the results in Fig-
ure 6 and Table E.10. We observe similar quality-
similarity tradeoff as Celeba setup. We provide
technical details for this setup in Appendix E.10.

For a broader discussion of the potential implications and limitations of this work, see Appendix A.

5 BROADER IMPACT

This paper presents work whose goal is to advance the field of Artificial Intelligence, Machine
Learning and Generative Modeling. There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
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6 LLM USAGE

Large Language Models (LLMs) were used only to assist with rephrasing sentences and improving
the clarity of the text. All scientific content, results, and interpretations in this paper were developed
solely by the authors.
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A DISCUSSION

Potential impact. The IPMF procedure demonstrates a potential to overcome the error accumulation
problem observed in distillation methods—such as rectified flows (Liu et al., 2022; 2023b)—which
are used to accelerate foundational image generation models like StableDiffusion 3 in (Esser et al.,
2024). These distillation methods are the limit of one-directional IMF procedure with ϵ → 0. The
one-directional version accumulates errors, which may lead to the divergence (De Bortoli et al.,
2024, Appx. I). The use of the bidirectional version (with ϵ > 0) should correct the marginals and
make diffusion trajectories straighter to accelerate the inference of diffusion models. We believe
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Method View of bidirectional procedure Convergence guarantees Starting coupling

DSBM
(Shi et al., 2023) A heuristic approach for mitigat-

ing error accumulation
Only for one-directional continuous-time pro-
cedure with IMF and IPF starting couplings Only IMF and IPF

ASBM
(Gushchin et al., 2024) A heuristic approach for mitigat-

ing error accumulation
Only for one-directional discrete-time proce-
dure with IMF starting couplings Only IMF

IPMF
(our work)

A theoretically grounded ap-
proach for mitigating error
accumulation and managing the
trade-off between input–output
similarity and generative quality

For Gaussian marginals in discrete and contin-
uous time (Theorem 3.2), and convergence for
bounded-support distributions in discrete and
continuous time (Theorem 3.3).

Arbitrary

Table 4: Positioning of our IPMF framework relative to prior bidirectional SB heuristics.

that considering such distillation techniques from the IPMF perspective may help to overcome the
current limitations of these techniques.

Another potential impact of our contribution is the advancement of multi-marginal SB methods.
This direction has been explored only rarely in the literature (Chen et al., 2019; 2023a; Shen et al.,
2025; Howard et al., 2025; Lavenant et al., 2021; Theodoropoulos et al., 2025), mainly because the
multi-marginal case is inherently difficult: it requires solving multiple two-marginal (classical) SB
instances. A notable examples are (Howard et al., 2025; Theodoropoulos et al., 2025), which extends
the IMF procedure to the multi-marginal setting. Within this context, our framework provides a way
to select a suitable starting coupling for initialization, thereby offering a potential route to reducing
the training burden. In this sense, our contribution may encourage more systematic and deeper
analysis of multi-marginal SB.

Limitations. While we show the proof of exponential convergence of the IPMF procedure in the
Gaussian case in various settings, and present a wide set of experiments supporting this procedure,
the proof of its convergence in the general case still remains a promising avenue for future work.

B MOTIVATION FOR SB OVER FOUNDATIONAL MODELS

At first glance, one might consider foundational models as potential baselines, since translation via
large text-to-image models trained on extensive image corpora may work adequately on the bench-
mark datasets we consider (CelebA, MNIST). However, they do not constitute a relevant baseline
for the unpaired translation task, because their training data may lack the domain-specific examples
required. In contrast, methods for solving the unpaired translation (including the SB) are designed
to address domain-specific tasks across various scientific fields (Schneider et al., 2022; Singh et al.,
2024; Shi et al., 2023). Moreover, these methods successfully address non-image-related down-
stream tasks such as single-cell data analysis (Tong et al., 2024, Section 6), where large text-to-image
models are just irrelevant.

C CONTINUOUS-TIME SCHRÖDINGER BRIDGE SETUP

For considering the continuous version of Schrödinger Bridge we denote by P(C([0, 1]),RD) the
set of continuous stochastic processes with time t ∈ [0, 1], i.e., the set of distributions on continuous
trajectories f : [0, 1] → RD. We use dWt to denote the differential of the standard Wiener process.
We denote by pT ∈ P(RD×(N+2)) the discrete process which is the finite-dimensional projection
of T to time moments 0 = t0 < t1 < · · · < tN < tN+1 = 1.

C.1 SCHRÖDINGER BRIDGE (SB) PROBLEM IN CONTINUOUS-TIME

This section covers the continuous-time formulation of SB as its IPF and IMF procedures. First,
we introduce several new notations to better align the continuous version with the discrete-time
version considered in the main text. Consider the Markovian process T defined by the corresponding
forward or backward (time-reversed) SDEs:

T : dxt = v+(xt, t)dt+
√
ϵdW+

t , x0 ∼ p0(x0),

16
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T : dxt = v−(xt, t)dt+
√
ϵdW−

t , x1 ∼ p1(x1),

where we additionally denote by W+
t and W−

t the Wiener process in forward or backward time. We
say T|x0

and T|x1
denotes the conditional process of T fixing the marginals using delta functions,

i.e., setting p0(x0) = δx0
(x) and p1(x1) = δx1

(x):

T|x0
: dxt = v+(xt, t)dt+

√
ϵdW+

t , x0 ∼ δx0
(x),

T|x1
: dxt = v−(xt, t)dt+

√
ϵdW−

t , x1 ∼ δx1
(x).

Moreover, we use p(x0)T|x0
to denote the stochastic process which starts by sampling x0 ∼ p(x0)

and then moving this x0 according the SDE given by T|x0
, i.e., p(x0)T|x0

is short for the process∫
T|x0

p(x0)dx0. Finally, we use the shortened notation of the process T|0,1(x0, x1) conditioned
on its values at times 0 and 1, saying pT (x0, x1)T|0,1(x0, x1) =

∫
T|0,1(x0, x1)p

T (x0, x1)dx0dx1.
This links the following equations with the discrete-time formulation.

Schrödinger Bridge problem. Considering the continuous case, the Schrödinger Bridge problem
is stated using continuous stochastic processes instead of one with predefined timesteps. Thus,
the Schrödinger Bridge problem finds the most likely in the sense of Kullback-Leibler divergence
stochastic process T with respect to prior Wiener process W ϵ, i.e.:

min
T∈F(p0,p1)

KL(T ||W ϵ), (13)

where F(p0, p1) ⊂ P(C([0, 1]),RD) is the set of all stochastic processes pinned by marginal dis-
tributions p0 and p1 at times 0 and 1, respectively. The minimization problem (13) has a unique
solution T ∗ which can be represented as forward or backward diffusion (Léonard, 2013):

T ∗ : dxt = v∗+(xt, t)dt+
√
ϵdW+

t , x0 ∼ p0(x0),

T ∗ : dxt = v∗−(xt, t)dt+
√
ϵdW−

t , x1 ∼ p1(x1),

where v∗+ and v∗− are the corresponding drift functions.

Static Schrödinger Bridge problem. As in discrete-time, Kullback-Leibler divergence in (13)
could be decomposed as follows:

KL(T ||W ϵ) = KL(pT (x0, x1)||pW
ϵ

(x0, x1)) +

∫
KL(T|x0,x1

||W ϵ
|x0,x1

)dpT (x0, x1). (14)

It has been proved (Léonard, 2013) that for the solution T ∗ it’s conditional process is given by
T ∗
|x0,x1

= W ϵ
|x0,x1

. Thus, we can set T|x0,x1
= W ϵ

|x0,x1
zeroing the second term in (14) and

minimize over processes with T|x0,x1
= W ϵ

|x0,x1
. This leads to the equivalent Static formulation of

the Schrödinger Bridge problem:

min
q∈Π(p0,p1)

KL(q(x0, x1)||pW
ϵ

(x0, x1)), (15)

where Π(p0, p1) is the set of all joint distributions with marginals p0 and p1. Whether time is discrete
or continuous, the decomposition of SB leads to the same static formulation, which is closely related
to Entropic OT as shown in (3).

C.2 ITERATIVE PROPORTIONAL FITTING (IPF) FOR CONTINUOUS-TIME

Following the main text, we describe the IPF procedure for continuous-time setup using stochastic
processes. Likewise, IPF starts with setting T 0 = p0(x0)W

ϵ
|x0

and then it alternates betwethe
followinging projections:

T 2k+1 = proj1
(
pT

2k

(x1)T
2k
|x1

)
def
= p1(x1)T

2k
|x1

, (16)

T 2k+2 = proj0
(
pT

2k+1

(x0)T
2k+1
|x0

)
def
= p0(x0)T

2k+1
|x0

. (17)

As in the discrete-time case, these projections replace marginal distributions pT (x1) and pT (x0) in
the processes pT (x1)T|x1

and pT (x0)T|x0
by p1(x1) and p0(x0) respectively. Similarly to discrete-

time formulation, the sequence of T k converges to the solution of the Schrödinger Bridge problem

17
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T ∗ implicitly decreasing the reverse Kullback-Leibler divergence KL(T k||T ∗) between the current
process T k and the solution to the SB problem T∗. Additionally, it should be mentioned that existing
methods perform projections via numerical approximation of forward and time-reversed conditional
processes, T|x0

and T|x1
, by learning their drifts via one of the methods: score matching (De Bortoli

et al., 2021) or maximum likelihood estimation (Vargas et al., 2021).

C.3 ITERATIVE MARKOVIAN FITTING (IMF) FOR CONTINUOUS-TIME

IMF introduces new projections that alternate between reciprocal and Markovian processes starting
from any process T 0 pinned by p0 and p1 at times 0 and 1, i.e., in T 0 ∈ F(p0, p1):

T 2k+1 = projR
(
T 2k

) def
= pT

2k

(x0, x1)W
ϵ
|x0,x1

, (18)

T 2k+2 = projM
(
T 2k+1

) def
= pT

2k+1

(x0)T
2k+1
M |x0︸ ︷︷ ︸

forward representation

= pT
2k+1

(x1)T
2k+1
M |x1︸ ︷︷ ︸

backward representation

. (19)

where we denote by TM the Markovian projections of the processes T , which can be represented as
the forward or backward time diffusion as follows (Gushchin et al., 2024, Section 2.1):

TM : dx+
t = v+M (x+

t , t)dt+
√
ϵdW+

t , x0 ∼ pT (x0), v+M (x+
t , t) =

∫
x1 − x+

t

1− t
pT (x1|xt)dx1,

TM : dx−
t = v−M (x−

t , t)dt+
√
ϵdW−

t , x1 ∼ pT (x1), v−M (x−
t , t) =

∫
x0 − x−

t

1− t
pT (x0|xt)dx0.

This procedure converges to a unique solution, which is the Schrödinger bridge T ∗ (Léonard, 2013).
While reciprocal projection can be easily done by combining the joint distribution pT (x0, x1) of the
process T and Brownian bridge W ϵ

|x0,x1
, the Markovian projection is much more challenging and

must be fitted via Bridge matching (Shi et al., 2023; Liu et al.; Peluchetti, 2023b).

Since the result of the Markovian projection (19) can be represented both by forward and back-
ward representation, in practice, neural networks v+θ (forward parametrization) or v−ϕ (backward
parametrization) are used to learn the corresponding drifts of the Markovian projections. In turn,
starting distributions are set to be p0(x0) for forward parametrization and p1(x1) for the backward
parametrization. So, this bidirectional procedure can be described as follows:

T 4k+1 = pT
4k

(x0, x1)W
ϵ
|x0,x1︸ ︷︷ ︸

projR(T 4k)

, T 4k+2 = p1(x1)T
4k+1
M |x1︸ ︷︷ ︸

backward parametrization

, (20)

T 4k+3 = pT
4k+2

(x0, x1)W
ϵ
|x0,x1︸ ︷︷ ︸

projR(T 4k+2)

, T 4k+4 = p0(x0)T
4k+3
M |x0︸ ︷︷ ︸

forward parametrization

. (21)

C.4 ITERATIVE PROPORTIONAL MARKOVIAN FITTING (IPMF) FOR CONTINUOUS-TIME

Here, we analyze the continuous version of the heuristical bidirectional IMF. First, we recall, that
the IPF projections proj0(T ) and proj1(T ) given by (16) and (17) of the Markovian process T is just
change the starting distribution from pT (x0) to p0(x0) and pT (x1) to p1(x1).

Now we note that the process T 4k+2 in (20) is obtained by using a combination of Markovian
projection projM given by (19) in backward parametrization and IPF projection proj1 given by (17):

T 4k+2 = p1(x1)T
4k+1
M |x1

= proj1
(
pT

4k+1

(x1)T
4k+1
M |x1

)︸ ︷︷ ︸
proj1(projM(T 4k+1))

.

In turn, the process T 4k+4 in (21) is obtained by using a combination of Markovian projection projM
given by (19) in forward parametrization and IPF projection proj0 given by (16):

T 4k+3 = p0(x0)T
4k+3
M |x0

= proj0
(
pT

4k+3

(x0)T
4k+3
M |x0

)︸ ︷︷ ︸
proj0(projM(T 4k+3))

.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Combining these facts we can rewrite bidirectional IMF in the following manner:

Iterative Proportional Markovian Fitting (Conitnious time setting)

T 4k+1 = pT
4k

(x0, x1)W
ϵ
|x0,x1︸ ︷︷ ︸

projR(T 4k)

, T 4k+2 = p1(x1)T
4k+1
M |x1︸ ︷︷ ︸

proj1(projM(T 4k+1))

(22)

T 4k+3 = pT
4k+2

(x0, x1)W
ϵ
|x0,x1︸ ︷︷ ︸

projR(T 4k+2)

, T 4k+4 = p0(x0)T
4k+3
M |x0︸ ︷︷ ︸

proj0(projM(T 4k+3))

. (23)

Thus, we obtain the analog of the discrete-time IPMF procedure, which concludes our description
of the continuous setups.

D THEORETICAL ANALYSIS FOR GAUSSIANS

Here, we study behavior of IPMF with volatility ϵ between D-dimensional Gaussians p0 =
N (µ0,Σ0) and p1 = N (µ1,Σ1). For various settings, we prove that the parameters of q4k with
each step geometrically converge to desired values µ0, µ1,Σ0,Σ1, ϵ. The steps are as follows:

1) In Appendix D.1, we reveal the connection between 2D-dimensional Gaussian distribution and
solution of entropic OT problem with specific transport cost, i.e., we prove our Theorem 3.1.

2) In Appendix D.2, we study the effect of IPF steps on the current process. We show that during
these steps, the marginals become close to p0 and p1, and the optimality matrix does not change.
We also prove that the spectral norms of the marginal matrices are bounded during the whole IPMF
procedure.

3) In Appendix D.3, we study the effect of IMF step on the current process when D > 1. We show
that after a discrete IMF step, the distance between current optimality matrix and desired one can be
bounded by the scaled previous distance.

4) In Appendix D.5, we study the effect of IMF step in a particular case D = 1. We show that after
IMF step (continuous or discrete with N = 1), marginals remain the same, and the intermediate
distribution becomes closer to the intermediate distribution of the static ϵ-EOT solution between the
marginals.

5) Finally, in Appendices D.4 and D.6, we prove our main Theorem 3.2 for the case D > 1 and
D = 1, respectively.

D.1 GAUSSIAN PLANS AS ENTROPIC OPTIMAL TRANSPORT PLANS

Proof of Theorem 3.1. The conditional distribution of q(x0|x1) has a closed form:

q(x0|x1) = N
(
x0|η + P (S)−1(x1 − ν), Q− P (S)−1P⊤)

= Zx0Zx1 exp
(
x⊤
0 (Q− P (S)−1P⊤)−1P (S)−1x1

)
= Zx0

Zx1
exp

(
x⊤
1 Ax0

)
, (24)

where factors Zx0
and Zx1

depend only on x0 and x1, respectively, and the matrix A is

A = (S)−1P⊤(Q− P (S)−1P⊤)−1. (25)

Theorem 3.2 from Gushchin et al. (2023b) states that if the conditional distribution q(x1|x0) can be
expressed as:

q(x0|x1) ∝ exp (−c(x0, x1) + fc(x0)) , (26)

where c(x0, x1) is a lower bounded cost function, and the function fc(x0) depends only on x0, then
q solves 1-entropic OT with the cost function c(x0, x1). Equating the terms in (24) and (26) which
depend on both x0 and x1, we derive the formula for the cost function is c(x0, x1) = −x⊤

0 Ax1. We
denote it as cA(x0, x1) := −x⊤

0 Ax1 to show the dependency on the optimality matrix A.

We only need to note that we can add any functions f(x0) and g(x1) depending only on x0 or x1,
respectively, to the cost function cA(x0, x1) = −x⊤

1 Ax0, and the OT solution will not change. This
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is because the integrals of such functions over any transport plan will be constants, as they will
depend only on the marginals (which are given) but not on the plan itself. Thus, for any A ∈ RD×D,
we can rearrange the cost term cA(x0, x1) so that it becomes lower-bounded:

c̃A(x0, x1) = ∥Ax0∥2/2− x⊤
1 Ax0 + ∥x1∥2/2 = ∥Ax0 − x1∥2/2 ≥ 0,

where c̃A(x0, x1) is a lower bounded function.

D.2 IPF STEP ANALYSIS

We run IPMF with the desired volatility parameter ϵ∗ between the desired distributions p0 =

N (µ0,Σ0) and p1 = N (µ1,Σ1), starting with the process N
((

µ0

ν

)
,

(
Σ0 P
P S

))
which has

the correlation matrix P .

One IPMF step can be decomposed into the following consecutive steps:

1. IMF step: projections projM(projR), refining the current optimality matrix,

2. IPF step: projection proj1, changing final prior at time t = 1 to p1 = N (µ1,Σ1),

3. IMF step: projections projM(projR), refining the current optimality matrix,

4. IPF step: projection proj0, changing starting prior at time t = 0 to p0 = N (µ0,Σ0).

We use the following notations for the covariance matrices changes during IPMF step:(
Σ0 P
P⊤ S

)
IMF
=⇒

(
Σ0 P̃

P̃⊤ S

)
IPF
=⇒

(
Q P ′

(P ′)⊤ Σ1

)
IMF
=⇒

(
Q P̂

P̂⊤ Σ1

)
IPF
=⇒

(
Σ0 P ′′

(P ′′)⊤ S′

)
,

and for the means, the changes are:(
µ0

ν

)
IMF
=⇒

(
µ0

ν

)
IPF
=⇒

(
η
µ1

)
IMF
=⇒

(
η
µ1

)
IPF
=⇒

(
µ0

ν′

)
.

Lemma D.1 (Improvement after IPF steps). Consider an initial 2D-dimensional Gaussian joint

distribution N
((

µ0

ν

)
,

(
Σ0 P
P⊤ S

))
∈ P2,ac(RD×RD). We run IPMF step between distributions

N (µ0,Σ0) and N (µ1,Σ1) and obtain new joint distribution N
((

µ0

µ′′

)
,

(
Σ0 P ′′

(P ′′)⊤ S′

))
. Then,

the distance between ground truth µ1,Σ1 and the new joint distribution parameters decreases as:

∥(S′)−
1
2Σ1(S

′)−
1
2 − ID∥2 ≤ ∥P̃n∥22 · ∥P ′′

n ∥22 · ∥S− 1
2Σ1S

− 1
2 − ID∥2, (27)

∥Σ− 1
2

1 (ν′ − µ1)∥2 ≤ ∥P̂⊤
n ∥2 · ∥P ′

n∥2 · ∥Σ
− 1

2
1 (ν − µ1)∥2, (28)

where P̃n := Σ
−1/2
0 P̃S−1/2, P ′

n := (Q)−
1
2P ′Σ

− 1
2

1 , P̂n := (Q)−1/2P̂Σ
−1/2
1 and P ′′

n :=

Σ
−1/2
0 P ′′(S′)−1/2 are normalized matrices whose spectral norms are not greater than 1.

Proof. During IPF steps, we keep the conditional distribution and change the marginal. For the first
IPF, we keep the inner part x0|x1 for all x1 ∈ RD:

N
(
x0|µ0 + P̃S−1(x1 − ν),Σ0 − P̃S−1P̃⊤

)
= N

(
x0|η + P ′Σ−1

1 (x1 − µ1), Q− P ′Σ−1
1 (P ′)⊤

)
.

This is equivalent to the system of equations:

Σ0 − P̃S−1P̃⊤ = Q− P ′Σ−1
1 (P ′)⊤, (29)

P ′Σ−1
1 = P̃S−1, (30)

µ0 − P̃S−1ν = η − P ′Σ−1
1 µ1. (31)
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Similarly, after the second IPF step, we have equations:

Σ1 − P̂⊤(Q)−1P̂ = S′ − (P ′′)⊤Σ−1
0 P ′′, (32)

(P ′′)⊤Σ−1
0 = P̂⊤(Q)−1, (33)

µ1 − P̂⊤(Q)−1η = ν′ − (P ′′)⊤Σ−1
0 µ0. (34)

Covariance matrices. Combining equations (30), (29) and (33), (32) together, we obtain:

Σ0 −Q = P̃S−1(S − Σ1)S
−1P̃⊤, //(29), (30) (35)

ID − Σ0(Q)−1 = P̃S−1(Σ1 − S)S−1P̃⊤(Q)−1, //(35) · (Q)−1 (36)

Σ1 − S′ = P̂⊤(Q)−1(ID − Σ0(Q)−1)P̂ , //(32), (33) (37)

Σ1 − S′ = P̂⊤(Q)−1P̃S−1(Σ1 − S)S−1P̃⊤(Q)−1P̂ , //(36) insert to (37)

Σ1 − S′ = (P ′′)⊤Σ−1
0 P̃S−1(Σ1 − S)S−1P̃⊤Σ−1

0 P ′′, //change using (33)

(S′)−
1
2Σ1(S

′)−
1
2 − ID = (S′)−

1
2 (P ′′)⊤Σ

− 1
2

0 · Σ− 1
2

0 P̃S− 1
2

· (S− 1
2Σ1S

− 1
2 − ID) · S− 1

2 P̃⊤Σ
− 1

2
0 · Σ− 1

2
0 P ′′(S′)−

1
2 .

The matrices (29) and (32) must be SPD to be covariance matrices:

Σ0 − P̃S−1P̃⊤ ⪰ 0 =⇒ ID ⪰ Σ
−1/2
0 P̃S−1/2 · S−1/2P̃⊤Σ

−1/2
0 ,

S′ − (P ′′)⊤Σ−1
0 P ′′ ⪰ 0 =⇒ ID ⪰ Σ

−1/2
0 P ′′(S′)−1/2 · (S′)−1/2(P ′′)⊤Σ

−1/2
0 .

In other words, denoting matrices P̃n := Σ
−1/2
0 P̃S−1/2 and P ′′

n := Σ
−1/2
0 P ′′(S′)−1/2, we can

bound their spectral norms as ∥P̃n∥2 ≤ 1 and ∥P ′′
n ∥2 ≤ 1. We write down the final transaction for

covariance matrices:

(S′)−
1
2Σ1(S

′)−
1
2 − ID = (P ′′

n )
⊤ · P̃n · (S− 1

2Σ1S
− 1

2 − ID) · P̃⊤
n · P ′′

n . (38)

Hence, the spectral norm of the difference between ground truth Σ1 and current S′ drops exponen-
tially as:

∥(S′)−
1
2Σ1(S

′)−
1
2 − ID∥2 ≤ ∥P̃n∥22 · ∥P ′′

n ∥22 · ∥S− 1
2Σ1S

− 1
2 − ID∥2.

Means. Combining equations (31), (30) and (34), (33) together, we obtain:

µ0 − η = P̃S−1ν − P ′Σ−1
1 µ1 = P ′Σ−1

1 (ν − µ1), //(31), (30) (39)

ν′ − µ1 = (P ′′)⊤Σ−1
0 µ0 − P̂⊤(Q)−1η = P̂⊤(Q)−1(µ0 − η), //(34), (33) (40)

ν′ − µ1 = P̂⊤(Q)−1P ′Σ−1
1 (ν − µ1), //insert (39) to (40)

Σ
− 1

2
1 (ν′ − µ1) = Σ

− 1
2

1 P̂⊤(Q)−
1
2 · (Q)−

1
2P ′Σ

− 1
2

1 · Σ− 1
2

1 (ν − µ1).

The matrices (29) and (32) must be SPD to be covariance matrices:

Q ⪰ P ′Σ−1
1 (P ′)⊤ =⇒ ID ⪰ (Q)−

1
2P ′Σ

− 1
2

1 · Σ− 1
2

1 (P ′)⊤(Q)−
1
2 ,

Σ1 ⪰ P̂⊤(Q)−1P̂ =⇒ ID ⪰ Σ
−1/2
1 P̂⊤(Q)−1/2 · (Q)−1/2P̂Σ

−1/2
1 .

Denoting matrices P ′
n := (Q)−

1
2P ′Σ

− 1
2

1 and P̂n := (Q)−1/2P̂Σ
−1/2
1 , we can bound their spectral

norms as ∥P ′
n∥2 ≤ 1 and ∥P̂n∥2 ≤ 1. We use this to estimate the ℓ2-norm of the difference between

the ground truth µ1 and the current mean:

Σ
− 1

2
1 (ν′ − µ1) = P̂⊤

n · P ′
n · Σ− 1

2
1 (ν − µ1), (41)

∥Σ− 1
2

1 (ν′ − µ1)∥2 ≤ ∥P̂⊤
n ∥2 · ∥P ′

n∥2 · ∥Σ
− 1

2
1 (ν − µ1)∥2.
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Lemma D.2 (Marginals norm bound during IPMF procedure). Consider an initial 2D-dimensional

Gaussian joint distribution N
((

µ0

ν0

)
,

(
Σ0 P0

P⊤
0 S0

))
∈ P2,ac(RD × RD). We run k

IPMF step between distributions N (µ0,Σ0) and N (µ1,Σ1) and obtain new joint distribution

N
((

µ0

νk

)
,

(
Σ0 Pk

P⊤
k Sk

))
. Then the norm ∥Sk∥2 can be bounded independently of k by:

∥Sk∥2 ≤ ∥Σ1∥2
min{λmin(S

− 1
2

0 Σ1S
− 1

2
0 ), 1}

, ∥S−1
k ∥2 ≤ max{λmax(S

− 1
2

0 Σ1S
− 1

2
0 ), 1}∥Σ−1

1 ∥2. (42)

This statement also implies the invertibility of all matrices Sk.

For matrices Qk, the results are analogous.

Proof. Consider the last IPMF step. We denote symmetric matrices ∆k := S
− 1

2

k Σ1S
− 1

2

k −
ID,∆k−1 := S

− 1
2

k−1Σ1S
− 1

2

k−1 − ID and λ̂min(∆) := min{0, λmin(∆)}, λ̂max(∆) :=
max{0, λmax(∆)}. Next, we estimate spectral norm of Sk−1 as follows:

∆k = S
− 1

2

k Σ1S
− 1

2

k − ID ⪰ λmin(∆k)ID ⪰ λ̂min(∆k)ID,

S
− 1

2

k Σ1S
− 1

2

k ⪰ (λ̂min(∆k) + 1)ID,

Σ1 ⪰ (λ̂min(∆k) + 1)Sk

Note, that by design we have ∆k ⪰ −ID ⇒ −1 ≤ λ̂min(∆k) ≤ 0 ⇒ 0 ≤ (λ̂min(∆k) + 1) ≤ 1
and can obtain

Σ1 ⪰ (λ̂min(∆k) + 1)Sk,

Sk ⪯ 1

λ̂min(∆k) + 1
Σ1,

∥Sk∥2 ≤ ∥Σ1∥2
λ̂min(∆k) + 1

. (43)

Similarly, we prove that

Sk ⪰ 1

λ̂max(∆k) + 1
Σ1 ⇒ ∥S−1

k ∥2 ≤ (λ̂max(∆k) + 1)∥Σ−1
1 ∥2.

Now, we prove that λ̂min(∆k) ≥ λ̂min(∆k−1). We denote by P ′′
n and P̃n normalized matrices after

the second IPF step and the first IMF step on the last iteration, respectively (see Lemma D.1). For
any x ∈ RD, ∥x∥2 ≤ 1, we calculate the bilinear form:

x⊤∆kx
(38)
= x⊤(P ′′

n )
⊤ · P̃n · (S− 1

2

k−1Σ1S
− 1

2

k−1 − ID) · P̃⊤
n · P ′′

nx

= (P̃⊤
n · P ′′

nx)
⊤∆k−1(P̃

⊤
n · P ′′

nx),

λ̂min(∆k) = min

{
0, min

∥x∥2=1
x⊤∆kx

}
≥ min

{
0, min

∥x∥2=1
(P̃⊤

n · P ′′
nx)

⊤∆k−1(P̃
⊤
n · P ′′

nx)

}
≥ ∥P̃⊤

n · P ′′
nx∥22 ·min {0, λmin(∆k−1)}

≥ ∥P̃n∥2∥P ′′
n ∥2∥x∥22 · λ̂min(∆k−1) ≥ λ̂min(∆k−1).

Hence, after each IPMF step λ̂min(∆k) increases and can be lower bounded by the initial value
λ̂min(∆k) ≥ λ̂min(∆0) using math induction. It implies the invertibility of all matrices Sk and
boundness of norms

∥Sk∥2
(43)
≤ ∥Σ1∥2

λ̂min(∆k) + 1
≤ ∥Σ1∥2

λ̂min(∆0) + 1
=

∥Σ1∥2
min{λmin(S

− 1
2

0 Σ1S
− 1

2
0 ), 1}

.
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Similarly, we prove that

λ̂max(∆k) ≤ λ̂max(∆k−1) ⇒ ∥S−1
k ∥2 ≤ (λ̂max(∆0) + 1)∥Σ−1

1 ∥2

≤ max{λmax(S
− 1

2
0 Σ1S

− 1
2

0 ), 1}∥Σ−1
1 ∥2.

Lemma D.3 (IPF step does not change optimality matrix A). Consider an initial 2D-

dimensional Gaussian joint distribution N
((

µ0

ν

)
,

(
Σ0 P̃

P̃⊤ S

))
∈ P2,ac(RD × RD). We

run IPF step between distributions N (µ0,Σ0) and N (µ1,Σ1) and obtain new joint distribution

N
((

η
µ1

)
,

(
Q P ′

(P ′)⊤ Σ1

))
. Then, IPF step does not change optimality matrix A, i.e.,

A = Ξ(P̃ ,Σ0, S) = Ξ(P ′, Q,Σ1).

For the second IPF step, the results are analogous.

Proof. The explicit formulas for Ξ(P̃ ,Σ0, S) and Ξ(P ′, Q,Σ1) are

Ξ(P̃ ,Σ0, S) = S−1P̃⊤ · (Σ0 − P̃S−1P̃⊤),

Ξ(P ′, Q,Σ1) = Σ−1
1 (P ′)⊤ · (Q− P ′Σ−1

1 (P ′)⊤).

The first terms are equal due to equation (30), and the second terms are equal due to (29).

We can prove this lemma in more general way. We derive the formula (25) for A only from the shape
of the conditional distribution q(x0|x1) (24). During IPF step, this distribution remains the same by
design, while parameters S, P̃ change. Hence, IPF step has no effect on the optimality matrix.

For the second IPF step, the proof is similar.

D.3 DISCRETE IMF STEP ANALYSIS: MULTIDIMENSIONAL CASE FOR LARGE ϵ

Consider a 2D-dimensional Gaussian distribution N
((

η
ν

)
,

(
Q P
P⊤ S

))
. We run a discrete IMF

step consisting of reciprocal and Markovian projections with N intermediate timesteps 0 = t0 <
t1 < · · · < tN < tN+1 = 1 and volatility parameter ϵ.

Following (Gushchin et al., 2024), we have an explicit formula for the reciprocal step. For any
0 ≤ i, j ≤ N +1, we have marginal covariance Σti,ti at time moment ti and joint covariance Σti,tj
between time moments ti and tj :

Σti,tj = (1− ti)(1− tj)Q+ (1− ti)tjP + (1− tj)tiP
⊤ + titjS + ti(1− tj)ϵ

= (1− ti)(1− tj)Q+ (1− ti)tjQ
1/2PnS

1/2 + (1− tj)tiS
1/2P⊤

n Q1/2

+ titjS + ti(1− tj)ϵ,

Σti,ti = (1− ti)
2Q+ ti(1− ti)(P + P⊤) + t2iS + ti(1− ti)ϵ

= (1− ti)
2Q+ ti(1− ti)(Q

1/2PnS
1/2 + S1/2P⊤

n Q1/2) + t2iS + ti(1− ti)ϵ,

Σ0,t1 = (1− t1)Q+ t1P = (1− t1)Q+ t1Q
1/2PnS

1/2,

ΣtN ,1 = tNS + (1− tN )P = tNS + (1− tN )Q1/2PnS
1/2,

where Pn := Q− 1
2PS− 1

2 . Marginals Σ0,0 = Q and ΣtN+1,tN+1
= S at time moments 0 and 1 and

covariance Σt0,tN+1
= P do not change.

For the Markovian step, we write down an analytical formula for the new correlation P̃ in the

resulting process N
((

η
ν

)
,

(
Q P̃

P̃⊤ S

))
, namely:

P̃ := Σ0,0 ·
N∏
i=0

(
Σ−1

ti,tiΣti,ti+1

)
= Σ0,t1Σ

−1
t1,t1Σt1,t2 . . .Σ

−1
tN ,tNΣtN ,1.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

For the normalized correlation P̃n = Q− 1
2 P̃S− 1

2 = Σ
− 1

2
0,0 P̃Σ

− 1
2

1,1 , we can simplify the formula:

P̃n = f(Pn) =: Σ
− 1

2
0,0 Σ0,t1Σ

−1/2
t1,t1 · Σ−1/2

t1,t1 Σt1,t2Σ
−1/2
t2,t2 · Σ−1/2

t1,t1 . . .Σ
−1/2
tN ,tN · Σ−1/2

tN ,tNΣtN ,1Σ
− 1

2
1,1

=

N∏
i=0

(
Σ

−1/2
ti,ti Σti,ti+1Σ

−1/2
ti+1,ti+1

)
=

N∏
i=0

(
Σn;ti,ti+1

)
, (44)

where Σn;ti,ti+1
:= Σ

−1/2
ti,ti Σti,ti+1

Σ
−1/2
ti+1,ti+1

denotes normalized correlation between marginals at
time moments ti and ti+1 and satisfies ∥Σn;ti,ti+1

∥2 ≤ 1.

Lemma D.4 (IMF step correlation transition properties). Let matrices Q,S ≻ 0 be the marginals of

2D-dimensional Gaussian distribution N
((

η
ν

)
,

(
Q P
P⊤ S

))
. The function f from (44) defined

on the ball {Pn : ∥Pn∥2 ≤ 1} transforms the normalized correlation Pn := Q− 1
2PS− 1

2 to a new
one after a discrete IMF step. Then f(Pn) is Lipschitz on the unit ball with constant

γ(Q,S, ϵ) :=
∥Q 1

2 ∥2∥S
1
2 ∥2√

ϵ

√ t1∥Q− 1
2 ∥22

(1− t1)
+

√
tN∥S− 1

2 ∥22
(1− tN )

+

N−1∑
i=1

(1− ti)ti+1 + (1− ti+1)ti√
ϵtiti+1(1− ti)(1− ti+1)

 .

(45)
Moreover,

∥f(Pn)∥2 ≤ 1− t1tN (1− t1)(1− tN )ϵ

(∥Q1/2∥2 + ∥S1/2∥2 +
√
ϵ)2

. (46)

Proof. We differentiate f(Pn) w.r.t. Pn and obtain

df = d

(
Σ

1/2
0,0 ·

N∏
i=0

(
Σ−1

ti,tiΣti,ti+1

)
· Σ−1/2

1,1

)

=

N∑
i=0

Σ
1/2
0,0 ·

∏
l<i

(Σ−1
tl,tl

Σtl,tl+1
) · (Σ−1

ti,tidΣti,ti+1
− Σ−1

ti,tidΣti,tiΣ
−1
ti,tiΣti,ti+1

) ·
∏
j>i

(Σ−1
tj ,tjΣtj ,tj+1

) · Σ−1/2
1,1


=

N∑
i=0

∏
l<i

(Σn;tl,tl+1
) · (Σ−1/2

ti,ti dΣti,ti+1
Σ

−1/2
ti+1,ti+1

) ·
∏
j>i

(Σn;tj ,tj+1
)


−

N∑
i=0

∏
l<i

(Σn;tl,tl+1
) · (Σ−1/2

ti,ti dΣti,tiΣ
−1/2
ti,ti ) ·

∏
j≥i

(Σn;tj ,tj+1
)

 .

Since all normalized correlations are bounded by ∥Σn;ti,ti+1
∥2 ≤ 1, we can also bound df by

∥df∥2 ≤
N∑
i=0

(∥Σ−1/2
ti,ti dΣti,ti+1

Σ
−1/2
ti+1,ti+1

∥2 + ∥Σ−1/2
ti,ti dΣti,tiΣ

−1/2
ti,ti ∥2)

≤
N∑
i=0

(∥Σ−1/2
ti,ti ∥2∥dΣti,ti+1

∥2∥Σ−1/2
ti+1,ti+1

∥2 + ∥Σ−1/2
ti,ti ∥2∥dΣti,ti∥2∥Σ

−1/2
ti,ti ∥2).

Since Σti,ti ≽ ti(1−ti)ϵI, ∀i ∈ 1, N , we get estimate ∥Σ−1/2
ti,ti ∥2 ≤ 1/

√
ti(1− ti)ϵ. For differential

dΣti,ti+1
, we have explicit formula and bound

dΣti,ti+1
= (1− ti)ti+1Q

1/2dPS1/2 + (1− ti+1)tiS
1/2dP⊤Q1/2,

∥dΣti,ti+1
∥2 ≤ ((1− ti)ti+1 + (1− ti+1)ti)∥Q1/2∥2∥S1/2∥2∥dP∥2.

In total, we can bound ∥df∥2 ≤ γ(Q,S, ϵ)∥dPn∥2 where γ(Q,S, ϵ) =

∥Q1/2∥2∥S1/2∥2√
ϵ

(√
t1

(1− t1)
∥Q−1/2∥2 +

√
tN

(1− tN )
∥S−1/2∥2 +

N−1∑
i=1

(1− ti)ti+1 + (1− ti+1)ti√
ϵtiti+1(1− ti)(1− ti+1)

)
.
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Now we prove (46). We bound the norm of f using formula (44)

∥f(Pn)∥2 = ∥
N∏
i=0

(
Σn;ti,ti+1

)
∥2 ≤

N∏
i=0

(
∥Σn;ti,ti+1

∥2
)
≤ ∥Σn;t0,t1∥2 · ∥Σn;tN ,tN+1

∥2

≤ ∥Q−1/2Σ0,t1Σ
−1/2
t1,t1 ∥2 · ∥Σ

−1/2
tN ,tNΣtN ,1S

−1/2∥2
= ∥((1− t1)Q

1/2 + t1PnS
1/2)Σ

−1/2
t1,t1 ∥2 · ∥Σ

−1/2
tN ,tN (tNS1/2 + (1− tN )Q1/2P )∥2.

We note that I − P⊤
n Pn ≽ 0, I − PnP

⊤
n ≽ 0 and

(Q−1/2Σ0,t1)
⊤(Q−1/2Σ0,t1) = ((1− t1)Q

1/2 + t1S
1/2P⊤

n )((1− t1)Q
1/2 + t1PnS

1/2)

= (1− t1)
2Q+ t21S

1/2P⊤
n PnS

1/2

+ t1(1− t1)[S
1/2P⊤

n Q1/2 +Q1/2PnS
1/2]

= Σt1,t1 − t21S
1/2(I − P⊤

n Pn)S
1/2 − t1(1− t1)ϵI

≼ Σt1,t1 − t1(1− t1)ϵI.

Similarly, we have

(ΣtN ,1S
−1/2)(ΣtN ,1S

−1/2)⊤ = ΣtN ,tN − (1− tN )2Q1/2(I − PnP
⊤
n )Q1/2 − tN (1− tN )ϵI

≼ ΣtN ,tN − tN (1− tN )ϵI.

Next, we consider

∥((1− t1)Q
1/2 + t1PnS

1/2)Σ
−1/2
t1,t1 ∥

2
2 = ∥Σ−1/2

t1,t1 ((1− t1)Q
1/2 + t1PnS

1/2)⊤((1− t1)Q
1/2 + t1PnS

1/2)Σ
−1/2
t1,t1 ∥2

= ∥Σ−1/2
t1,t1 (Σt1,t1 − t21S

1/2(I − P⊤
n Pn)S

1/2 − t1(1− t1)ϵ)Σ
−1/2
t1,t1 ∥2

≤ ∥Σ−1/2
t1,t1 (Σt1,t1 − t1(1− t1)ϵ)Σ

−1/2
t1,t1 ∥2

= ∥I − t1(1− t1)ϵΣ
−1
t1,t1∥2 ≤ 1− t1(1− t1)ϵλmin(Σ

−1
t1,t1)

≤ 1− t1(1− t1)ϵ/λmax(Σt1,t1) = 1− t1(1− t1)ϵ/∥Σt1,t1∥2. (47)

We also can see that

∥Σti,ti∥2 ≤ (1− ti)
2∥Q∥2 + 2ti(1− ti)∥Q1/2∥2∥S1/2∥2 + t2i ∥S∥2 + ti(1− ti)ϵ

≤ ((1− ti)∥Q1/2∥2 + ti∥S1/2∥2)2 + ti(1− ti)ϵ.

Thus, we conclude that

∥((1− t1)Q
1/2 + t1PnS

1/2)Σ
−1/2
t1,t1 ∥

2
2 ≤ 1− t1(1− t1)ϵ

((1− t1)∥Q1/2∥2 + t1∥S1/2∥2)2 + t1(1− t1)ϵ

≤ 1− t1(1− t1)ϵ

(∥Q1/2∥2 + ∥S1/2∥2 +
√
ϵ)2

Similarly, we have

∥Σ−1/2
tN ,tN (tNS1/2 + (1− tN )Q1/2P )∥22 ≤ 1− tN (1− tN )ϵ

(∥Q1/2∥2 + ∥S1/2∥2 +
√
ϵ)2

.

The final result follows:

∥f(Pn)∥2 ≤ ∥((1− t1)Q
1/2 + t1PnS

1/2)Σ
−1/2
t1,t1 ∥2 · ∥Σ

−1/2
tN ,tN (tNS1/2 + (1− tN )Q1/2P )∥2

≤ 1− t1tN (1− t1)(1− tN )ϵ

(∥Q1/2∥2 + ∥S1/2∥2 +
√
ϵ)2

.

Next, we switch from tracking the changes of normalized correlation matrices to tracking
the changes of the optimality matrices. Recall that, for a 2D-dimensional Gaussian process

N
((

η
ν

)
,

(
Q P
P⊤ S

))
, the optimality matrix A from the definition (10) is calculated as

A(P ) = Ξ(P,Q, S) = (S)−1P⊤(Q− P (S)−1P⊤)−1.
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Functions Ξ(Pn, Q, S) and A(Pn) can take the normalized correlation Pn := Q− 1
2PS− 1

2 as the
first argument. In this case, the formulas and notations are

Ξn(Pn, Q, S) := S−1/2P⊤
n

(
I − PnP

⊤
n

)−1
Q−1/2, A(Pn) = Ξn(Pn, Q, S). (48)

Lemma D.5 (Optimality matrix map properties). Let matrices Q,S ≻ 0 be the marginals of a

2D-dimensional Gaussian distribution N
((

η
ν

)
,

(
Q P
P⊤ S

))
with the normalized correlation

Pn := Q− 1
2PS− 1

2 . Then the map from normalized correlations to optimality matrices A(Pn) =

S−1/2P⊤
n

(
I − PnP

⊤
n

)−1
Q−1/2 is bi-Lipschitz on the set {Pn ∈ RD×D : ∥Pn∥2 ≤

√
1− ω} for

any 0 < ω < 1. Specifically, for any Pn and P̃n from this set, the following inequalities hold

L∥Pn − P̃n∥2 ≤ ∥A(Pn)−A(P̃n)∥2 ≤ Mω∥Pn − P̃n∥2,

where

L =
1

√
2D∥S∥1/22 · ∥Q∥1/22

, Mω = ∥S−1∥1/22 · ∥Q−1∥1/22

(
1

ω
+

2

ω2

)
.

Before proving the lemma, we introduce some notations. Let h be a scalar function. For any diagonal
matrix Λ = diag(λ1, . . . , λD), we define

h(Λ) = diag
(
h(λ1), . . . , h(λD)

)
.

Next, given a symmetric matrix B ∈ RD×D with spectral decomposition B = ZΛZ⊤, we set

h(B) = Zh(Λ)Z⊤.

Proof. To estimate Mω , we differentiate A(Pn) w.r.t. Pn that

dA = S−1/2P⊤
n

(
I − PnP

⊤
n

)−1
(dPnP

⊤
n + PndP

⊤
n )
(
I − PnP

⊤
n

)−1
Q−1/2

+ S−1/2dP⊤
n

(
I − PnP

⊤
n

)−1
Q−1/2. (49)

By the conditions of the lemma, 0 ≼ PnP
⊤
n ≼ (1 − ω)I , hence ∥

(
I − PnP

⊤
n

)−1∥
2
≤ 1

ω and
∥Pn∥2 ≤ 1. Thus,

∥dA∥2 ≤ ∥S−1/2∥2∥Q
−1/2∥2

(
1

ω
+

2

ω2

)
∥dPn∥2.

Since the ball {Pn : ∥Pn∥2 ≤
√
1− ω} is convex, this yields the bound Mω on the Lipschitz

constant.

To estimate L, we define B = S1/2AQ1/2 = P⊤
n

(
I − PnP

⊤
n

)−1
and note that

B⊤B =
(
I − PnP

⊤
n

)−1
PnP

⊤
n

(
I − PnP

⊤
n

)−1
=
(
I − PnP

⊤
n

)−2 −
(
I − PnP

⊤
n

)−1
.

Next, we define h(x) = 2
1+

√
1+4x

, x ≥ 0, so that h−1(y) = y−2 − y−1, 0 < y ≤ 1. Therefore, we
have

I − PnP
⊤
n = h(B⊤B), (50)

P⊤
n = B

(
I − PnP

⊤
n

)
= Bh(B⊤B).

For now, consider B such that its singular values are positive and distinct (note that the set of such
matrices is dense in RD×D). Then the SVD map B 7→ (U,Λ, V ) such that B = UΛV ∗ is differen-
tiable at B (see Magnus & Neudecker, 2019, Section 3.8.8), thus so is the polar decomposition map
B 7→ (Q,S) such that B = KC, where K is orthogonal and C is PSD matrices. As

P⊤
n = Bh(B⊤B) = KCh(C2) = UΛh(Λ2)V ∗

and xh(x2) is differentiable, we obtain that

dP⊤
n = dKCh(S2) +Kd(Ch(S2)).
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Furthermore, 0 < h(x) ≤ 1 and (xh(x2))′ = 2
(1+

√
1+4x2)

√
1+4x2

∈ (0, 1], hence 0 ≺ h(S2) ≼ I

and Ch(C2) is 1-Lipschitz w.r.t. the Frobenius norm (Wihler, 2009, Thm. 1.1). Note that
∥KdC∥2F = Tr[(KdC)⊤dKC] = Tr[(CdC)(K⊤dK)] = 0 since K⊤dK is skew-symmetric.
It can be shown from the orthogonality of K:

I = K⊤K ⇒ 0 = dI = dK⊤ ·K +K⊤dK ⇒ dK⊤ ·K = −K⊤dK.

Thus, we have

∥dB∥2F = ∥dKC +KdC∥2F = ∥dKC∥2F + ∥KdC∥2F = ∥dKC∥2F + ∥dC∥2F .

Therefore,

∥dPn∥F = ∥dKCh(C2) +Kd(Ch(C2))∥F ≤ ∥dKC∥F ∥h(C
2)∥2 + ∥d(Ch(C2))∥F

≤ ∥dKC∥F + ∥dC∥F ≤
√
2∥dB∥F . (51)

In particular,

∥dPn∥2 ≤ ∥dPn∥F ≤
√
2∥dB∥F ≤

√
2D∥dB∥2 ≤

√
2D∥S1/2∥2∥Q

1/2∥2∥dA∥2.

By continuity of the SVD and thus of the map Bh(B⊤B), this yields that

L−1 =
√
2D∥S1/2∥2∥Q

1/2∥2.

Now we can show that the function, changing the optimality matrix during IMF step, is Lipschitz.
This function is constructed as follows: first, it transforms optimality matrix into the normalized
correlation via Ξ−1

n , then it makes an IMF step to obtain new normalized correlation via f from
(44), finally it transforms new correlation back to new optimality matrix via Ξn.
Corollary D.6 (IMF step optimality matrix transition properties). Let matrices Q,S ≻ 0 be the

marginals of a 2D-dimensional Gaussian distribution N
((

η
ν

)
,

(
Q P
P⊤ S

))
with the optimality

matrix A defined in (48). Set the function g(A) := Ξn(f(Ξ
−1
n (A,Q, S)), Q, S), where Ξn and f

defined in (48) and (44), and Ξ−1
n (·;Q,S) denotes the inverse map of Ξn w.r.t. the first argument.

Then g is Lipschitz continuous with constant Mω

L γ on the set {A| ∥Ξ−1
n (A)∥2 ≤

√
1− ω} for any

0 < ω < 1.

Proof. Lipschitz constant of the functions composition is the product of Lipschitz constants of the
combined functions. From Lemma D.5, we know that the constant for Ξn is Mω , for Ξ−1

n is 1/L as
inverse of Ξn. For transition function f , the constant γ comes from Lemma D.4.

We also prove the upper bound for the normalized correlation for further proofs.
Corollary D.7 (Bound for ∥Pn∥22). Let matrices Q,S ≻ 0 be the marginals of a 2D-dimensional

Gaussian distribution N
((

η
ν

)
,

(
Q P
P⊤ S

))
with optimality matrix A = Ξ(P,Q, S) and normal-

ized correlation Pn = Q− 1
2PS− 1

2 . Then the following bound holds true:

∥Pn∥22 ≤ 1− 2

1 +
√
1 + 4∥Q∥2∥S∥2∥A∥22

. (52)

Proof. We recall the explicit formula (50) connecting Pn and A:

I − PnP
⊤
n = h(B⊤B), (53)

where matrix B := S1/2AQ1/2 and scalar function h(x) := 2
1+

√
1+4x

, x ≥ 0. Given a D × D

symmetric positive definite matrix C with spectral decomposition C = UΛU∗, we set h(C) =
Uh(Λ)U∗. We start with estimate

λmin(h(B
⊤B)) = λmin(I − PnP

⊤
n ) = 1− λmax(PnP

⊤
n ) = 1− ∥Pn∥22. (54)
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Since function h is monotonously decreasing on [0,+∞) and matrix B⊤B has non-negative eigen-
values, we have λmin(h(B

⊤B)) = h(λmax(B
⊤B)) and continue with:

λmin(h(B
⊤B)) = h(λmax(B

⊤B)) = h(∥B⊤B∥2)
≥ h(∥A∥22∥Σ∥2∥Σ̃∥2)

=
2

1 +
√

1 + 4∥Q∥2∥S∥2∥A∥22
.

Combining bounds together, we conclude:

∥Pn∥22 ≤ 1− 2

1 +
√
1 + 4∥Q∥2∥S∥2∥A∥22

.

Finally, we are ready to demonstrate convergence of the optimality matrix to the desired solution
A∗ = ϵ−1Id after an IMF step.
Lemma D.8. IMF step convergence Let matrices Q,S ≻ 0 be the marginals of a 2D-dimensional

Gaussian distribution N
((

η
ν

)
,

(
Q P
P⊤ S

))
with the optimality matrix A. Then after IMF step,

we obtain a new optimality matrix Ã = g(A) (see Corollary D.6), satisfying the inequality

∥Ã− ϵ−1Id∥2 ≤ Mω

L
γ(Q,S, ϵ)∥A− ϵ−1Id∥2,

where

γ =
∥Q 1

2 ∥2∥S
1
2 ∥2√

ϵ

√ t1∥Q− 1
2 ∥22

(1− t1)
+

√
tN∥S− 1

2 ∥22
(1− tN )

+

N−1∑
i=1

(1− ti)ti+1 + (1− ti+1)ti√
ϵtiti+1(1− ti)(1− ti+1)

 ,

ω = min

{
1− ∥Pn∥22, 1−

t1tN (1− t1)(1− tN )ϵ

(∥Q1/2∥2 + ∥S1/2∥2 +
√
ϵ)2

}
,

L−1 =
√
2D∥S1/2∥2∥Q

1/2∥2,

Mω = ∥S−1∥1/22 · ∥Q−1∥1/22

(
1

ω
+

2

ω2

)
.

Proof. The IMF method with volatility parameter ϵ can be viewed as an iterative application of the
transition function g. Since IMF converges to A∗ = ϵ−1Id, it follows that A∗ is a stationary point
of g, i.e., g(A∗) = A∗. Hence, we apply Corollary D.6 to get

∥Ã−A∗∥2 = ∥g(A)− g(A∗)∥2 ≤ Mω

L
γ∥A−A∗∥2,

where explicit values for γ and ω,Mω, L are taken from Lemmas D.4 and D.5, respectively. We
only need to satisfy condition on ω from Corollary D.6 for matrices A, Ã, A∗:

∥Ξ−1
n (A)∥2 ≤

√
1− ω.

In terms of normalized correlations Pn, P̃n = f(Pn) from (44) and P ∗
n = Ξ−1

n (A∗) from (48), the
conditions are

1− ∥Pn∥22 ≥ ω, 1− ∥P̃n∥22 ≥ ω. (55)

For the second inequality in (55), we use bound (46) from Lemma (D.4) for the result of applying
f :

1− ∥P̃n∥22 = 1− ∥f(Pn)∥22 ≥ t1tN (1− t1)(1− tN )ϵ

(∥Q1/2∥2 + ∥S1/2∥2 +
√
ϵ)2

.

Finally, we combine all the bounds under the single minimum.
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D.4 PROOF OF D-IPMF CONVERGENCE THEOREM 3.2, D > 1

Proof. We denote by Q0 marginal matrix at t = 0 after the first IPF step. First, we note that all
marginal matrices Q at t = 0 and S at t = 1 emerging during IPMF procedure are bounded by the
initial ones (Lemma D.2):

∥S∥2 ≤ ∥Σ1∥2
min{λmin(S

− 1
2

0 Σ1S
− 1

2
0 ), 1}

=: uS , ∥S−1∥2 ≤ max{λmax(S
− 1

2
0 Σ1S

− 1
2

0 ), 1}∥Σ−1
1 ∥2 =: rS ,(56)

∥Q∥2 ≤ ∥Σ0∥2
min{λmin(Q

− 1
2

0 Σ0Q
− 1

2
0 ), 1}

=: uQ, ∥Q−1∥2 ≤ max{λmax(Q
− 1

2
0 Σ0Q

− 1
2

0 ), 1}∥Σ−1
0 ∥2 =: rQ.(57)

Optimality convergence and condition on ϵ. Consider any IMF step during IPMF procedure which
we denote by (

Q P
P⊤ S

)
IMF
=⇒

(
Q P̃

P̃⊤ S

)
, Pn := Q− 1

2PS− 1
2 .

We want to find such ϵ that new optimality matrix Ã = Ξ(P,Q, S) becomes close to solution
A∗ = ϵ−1ID than starting A = Ξ(P,Q, S). This transition from A to Ã satisfies (Lemma D.8):

∥Ã−A∗∥2 ≤
(√

2D

(
1

ω
+

2

ω2

)
· κ(Q 1

2 )κ(S
1
2 )

)
γ(Q,S, ϵ)∥A−A∗∥2, (58)

γ is defined in (45),

ω = min

{
1− ∥Pn∥22, 1−

t1tN (1− t1)(1− tN )ϵ

(∥Q1/2∥2 + ∥S1/2∥2 +
√
ϵ)2

}
, (59)

where κ(·) is condition number of a matrix.

Estimate ω. The second term of ω in (59) can be lower bounded by

1− t1tN (1− t1)(1− tN )ϵ

(∥Q1/2∥2 + ∥S1/2∥2 +
√
ϵ)2

≥ 1− t1tN (1− t1)(1− tN ). (60)

To estimate 1− ∥Pn∥22 in the second term, we use lower bound (Corollary D.7):

1− ∥Pn∥22 ≥ 2

1 +
√
1 + 4∥Q∥2∥S∥2∥A∥22

≥ 1√
1 + 4∥Q∥2∥S∥2∥A∥22

.

Hence, we have lower bound for ω:

ω ≥ min

{
1√

1 + 4∥Q∥2∥S∥2∥A∥22
, 1− t1tN (1− t1)(1− tN )

}
≥ (1− t1tN (1− t1)(1− tN ))√

1 + 4∥Q∥2∥S∥2∥A∥22
.

The change of difference norm after one IMF step is

∥A′ −A∗∥2 ≤ 6
√
D · κ(Q 1

2 )κ(S
1
2 ) · (1 + 4∥Q∥2∥S∥2∥A∥22)

(1− t1tN (1− t1)(1− tN ))2
· γ(Q,S, ϵ)︸ ︷︷ ︸

:=l(Q,S,∥A∥2,ϵ)

· ∥A−A∗∥2. (61)

Now we need to make this map contractive, i.e., bound the coefficient l(Q,S, ∥A∥2, ϵ) < 1 for all
matrices Q,S,A appearing during IPMF procedure.

Universal bounds (57) and (56) state that matrices Q and S lie on matrix compacts BQ := {Q ≻
0|∥Q∥2 ≤ uQ, ∥Q−1∥2 ≤ rQ} and BS := {S ≻ 0|∥S∥2 ≤ uS , ∥S−1∥2 ≤ rS}, respectively.
Moreover, the function l(Q,S, ∥A∥2, ϵ) is continuous w.r.t. all its parameters on these compacts.
Hence, we can get rid of Q,S dependency, since the following maximum is attained

l(∥A∥2, ϵ) = max
Q∈BQ,S∈BS

l(Q,S, ∥A∥2, ϵ).

∥A∥2 dependency. IPF steps do not change optimality matrices (Lemma D.3), hence, we consider
only IMF steps here. We prove by induction that if at the first IMF step with initial optimality matrix
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A0 coefficient l(∥A0∥2+2ϵ−1, ϵ) < 1 is less than 1, then all optimality matrices {Ai} during IPMF
procedure will be bounded by

∥Ai∥2 ≤ ∥A0∥2 + 2ϵ−1, ∥Ai −A∗∥2 ≤ ∥A0 −A∗∥2.

First, we note that the coefficient l(∥A∥2, ϵ) is increasing w.r.t. ∥A∥2. As the base, we show that
after the first IMF step new matrix A1 is bounded:

∥A1∥2 ≤ ∥A1 −A∗∥2 + ∥A∗∥2 ≤ l(∥A0∥2, ϵ)∥A0 −A∗∥2 + ∥A∗∥2
≤ l(∥A0∥2 + 2ϵ−1, ϵ)∥A0 −A∗∥2 + ∥A∗∥2 ≤ ∥A0 −A∗∥2 + ∥A∗∥2
≤ ∥A0∥2 + 2∥A∗∥2 ≤ ∥A0∥2 + 2ϵ−1.

Moreover, we have
∥A1 −A∗∥2 ≤ ∥A0 −A∗∥2.

Assume that the bounds ∥Ai∥2 ≤ ∥A0∥2 + 2ϵ−1 and ∥Ai − A∗∥2 ≤ ∥A0 − A∗∥2 hold for the i-th
matrix, then, for the next matrix Ai+1, we prove:

∥Ai+1 −A∗∥2 ≤ l(∥Ai∥2, ϵ)∥Ai −A∗∥2 ≤ l(∥A0∥2 + 2ϵ−1, ϵ)∥Ai −A∗∥2
≤ ∥Ai −A∗∥2 ≤ ∥A0 −A∗∥2,

∥Ai+1∥2 ≤ ∥Ai+1 −A∗∥2 + ∥A∗∥2 ≤ ∥A0 −A∗∥2 + ∥A∗∥2 ≤ ∥A0∥2 + 2ϵ−1.

Thus, we take maximal possible norm among all matrices ∥Ai∥2 ≤ ∥A0∥2 + 2ϵ−1 to upper bound
the coefficient l(∥Ai∥2, ϵ) ≤ l(∥A0∥2 + 2ϵ−1, ϵ) < 1.

The final condition (62) on ϵ is

β(Q0, S0, P0, ϵ) := max
Q∈BQ,S∈BS

[
6
√
D · κ(Q 1

2 )κ(S
1
2 ) · (1 + 4∥Q∥2∥S∥2(∥A0∥2 + 2ϵ−1)2)

(1− t1tN (1− t1)(1− tN ))2
· γ(Q,S, ϵ)

]
< 1.

We can see from the definition

γ(Q,S, ϵ) :=
∥Q 1

2 ∥2∥S
1
2 ∥2√

ϵ

√ t1∥Q− 1
2 ∥22

(1− t1)
+

√
tN∥S− 1

2 ∥22
(1− tN )

+

N−1∑
i=1

(1− ti)ti+1 + (1− ti+1)ti√
ϵtiti+1(1− ti)(1− ti+1)


that the largest value of γ is achieved when ∥Q1/2∥2, ∥S1/2∥2, ∥Q−1/2∥2, ∥S−1/2∥2 are the largest.
Since these values are bounded by ∥Q1/2∥2 ≤ √

uQ, ∥S1/2∥2 ≤ √
uS and ∥Q−1/2∥2 ≤

√
rQ, ∥S−1/2∥2 ≤ √

rQ, we can estimate the maximum and get lower bound for ϵ:

β(Q0, S0, P0, ϵ) ≤ 6
√
D · uQrQuSrS · (1 + 4uQuS(∥A0∥2 + 2ϵ−1)2)

(1− t1tN (1− t1)(1− tN ))2

·
√
uQuS√
ϵ

(√
t1rQ

(1− t1)
+

√
tNrS

(1− tN )
+

N−1∑
i=1

(1− ti)ti+1 + (1− ti+1)ti√
ϵtiti+1(1− ti)(1− ti+1)

)
≤ 1,

ϵ = O
(
D · r2Qr2S · u4

Qu
4
S · ∥A0∥42

)
. (62)

If the above ϵ-condition (62) holds true, then Ak exponentially converges to A∗ (square appears
since IPMF step includes two IMF steps):

∥Ak −A∗∥2 ≤ β(Q0, S0, P0, ϵ)
2k∥A0 −A∗∥2.

Marginals convergence. Furthermore, we prove that marginals converge to ground truth Σ1 as well.

We note that, during any condition
(

Q P
P⊤ S

)
of IPMF procedure, the norm of the normalized

matrix Pn = Q− 1
2PS− 1

2 is bounded:

∥Pn∥22 ≤ 1− 2

1 +
√
1 + 4∥Q∥2∥S∥2∥A∥22

.

Since ∥Q∥2 ≤ uQ holds from (57), ∥S∥2 ≤ uS holds from (56) and ∥A∥2 ≤ ∥A0∥2 + 2ϵ−1 (due to
contractivity of A), we can upper bound the normalized correlation

∥Pn∥22 ≤ 1− 2

1 +
√
1 + 4uQuS(∥A0∥2 + 2ϵ−1)2

=: α(Q0, S0, P0, ϵ)
2 < 1.
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Finally, we apply bounds from IPF steps Lemma D.1 at k-th step and put maximal norm value
α(Q0, S0, P0, ϵ)

2:

∥S− 1
2

k Σ1S
− 1

2

k − ID∥2 ≤ α(Q0, S0, P0, ϵ)
2 · ∥S− 1

2
0 Σ1S

− 1
2

0 − ID∥2,

∥Σ− 1
2

1 (νk − µ1)∥2 ≤ α(Q0, S0, P0, ϵ)
2 · ∥Σ− 1

2
1 (ν0 − µ1)∥2.

D.5 IMF STEP ANALYSIS IN 1D

Preliminaries. In case D = 1, we change notation from matrices to scalars:(
q ρ
ρ s

)
IMF
=⇒

(
q ρ̃
ρ̃ s

)
, ρn := ρ/

√
sq, ρ̃n := ρ̃/

√
sq.

Using these notations, formula (48) for optimality coefficient χ ∈ R (instead of matrix A) can be
expressed as

Ξn(ρn, q, s) =
ρn√

sq(1− ρ2n)
= χ ∈ (−∞,+∞). (63)

The function Ξn is monotonously increasing w.r.t. ρn ∈ (−1, 1) and, thus, invertible, i.e., there
exists a function Ξ−1

n : (−∞,+∞)× R+ × R+ → (−1, 1) such that

Ξ−1
n (χ, s, q) =

√
χ2sq + 1/4− 1/2

χ
√
sq

. (64)

The inverse function is calculated via solving quadratic equation w.r.t. ρn.

In our paper, we consider both discrete and continuous IMF. By construction, IMF step does change
marginals of the process it works with. Moreover, for both continuous and discrete IMF, the new
correlation converges to the correlation of the ϵ-EOT between marginals.
Lemma D.9 (Correlation improvement after (D)IMF step). Consider a 2-dimensional Gaussian
distribution with marginals N (η, q) and N (ν, s) and normalized correlation ρn ∈ (−1, 1) between
its components. After continuous IMF or DIMF with single time point t, we obtain normalized
correlation ρ̃n. The distance between ρ̃n and EOT correlation ρ∗n = Ξ−1

n (1/ϵ, q, s) decreases as:

|ρ̃n − ρ∗n| ≤ γ · |ρn − ρ∗n|,
where factor γ for continuous and discrete IMF (with N = 1) is, respectively,

γc(q, s) =

∣∣∣∣∣ 2ϵ2qs · f(0)
(ϵ2 − 4q2s2)

3
2

(
tanh−1

(
ϵ− 2q2√
ϵ− 4q2s2

)
+ tanh−1

(
ϵ− 2s2√
ϵ− 4q2s2

)
−
√
ϵ2 + 4q2s2

ϵ

)∣∣∣∣∣ ,(65)

γd(q, s, t) =
1

1 + t2(1−t)2qs+t(1−t)(t2s+(1−t)2q)ϵ+t2(1−t)2ϵ2

(1−t)2((1−t)q+t
√
qs)2+t2(ts+(1−t)

√
qs)2+t(1−t)((1−t)

√
q+t

√
s)2ϵ

. (66)

Proof. Continuous case. Following (Peluchetti, 2023a, Eq. 42), we have the formula for ρ̃n:

ρ̃n = f(ρn) = exp

−ϵ
tanh−1

(
c1
c3

)
+ tanh−1

(
c2
c3

)
c3

 > 0, (67)

c1 = ϵ+ 2s(ρnq − s), c3 =
√
(ϵ+ 2(ρn + 1)qs)(ϵ+ 2(ρn − 1)qs),

c2 = ϵ+ 2q(ρns− q).

Note that the function f(ρn) is positive and concave on (−1, 1), i.e., its derivative is decreasing on
(−1, 1). Hence, in negative segment (−1, 0], the distance until the fixed point ρ∗n > 0 is decreasing
faster, than in positive segment, and we need to deal only with the positive segment [0, 1). We will
show that the function f has a derivative norm bounded by 1 on [0, 1), and, hence, it is contrac-
tive. Due to concavity, its derivative is decreasing on [0, 1), and we can check the bound only for
derivative at the point ρn = 0. Direct calculation gives us:

f ′(0) =
f(0) · 2ϵqs

(ϵ2 − 4q2s2)2

(
ϵ
√
ϵ− 4q2s2

[
tanh−1

(
ϵ− 2q2√
ϵ− 4q2s2

)
+ tanh−1

(
ϵ− 2s2√
ϵ− 4q2s2

)]
− ϵ2 + 4q2s2

)
,
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γc(q, s) =: |f ′(0)| < 1.

Thus, we can bound |f ′(ρn)| ≤ γc(q, s), ∀ρn ∈ [0, 1) and get on the whole interval (−1, 1)

|ρ̃n − ρ∗n| = |f(ρn)− f(ρ∗n)| ≤ γc(q, s)|ρn − ρ∗n|.

Discrete case (N = 1). We use explicit formula (44) for a new correlation ρ̃n = f(ρn) after D-IMF
step from (Gushchin et al., 2024) provided in the beginning of Section D.3.

In the case of single point t = t1 (N = 1), we prove that the function f(ρn) is a contraction
map. The sufficient condition for the map to be contraction is to have derivative’s norm bounded by
γd < 1. First, we can write down the simplified formula f(ρn):

f(ρn) =
((1− t)

√
q + tρn

√
s)(t

√
s+ (1− t)ρn

√
q)

(1− t)q + 2t(1− t)ρn
√
sq + t2s+ t(1− t)ϵ

. (68)

Next, we simplify derivative f ′(ρn):

σ0,t = (1− t) · q + t · ρ,
σt,1 = t · s+ (1− t) · ρ,
σt,t = (1− t)2 · q + 2(1− t)t · ρ+ t2 · s+ t(1− t)ϵ = (1− t) · σ0,t + t · σt,1 + t(1− t)ϵ,

f ′(ρn) =
(1− t)σ0,t

σt,t
+

tσt,1

σt,t
− 2 · tσt,1 · (1− t)σ0,t

σt,t · σt,t
.

We define new variables σ̂0,t
def
= (1− t)σ0,t, Σ̂t,1

def
= tσt,1, ϵ̂ = t(1− t)ϵ and restate f ′ as:

f ′ =
σ̂0,t

σ̂0,t + σ̂1,t + ϵ̂
+

σ̂1,t

σ̂0,t + σ̂1,t + ϵ̂
− 2σ̂0,tσ̂1,t

(σ̂0,t + σ̂1,t + ϵ̂)2
(69)

=
(σ̂0,t + σ̂1,t)(σ̂0,t + σ̂1,t + ϵ̂)− 2σ̂0,tσ̂1,t

(σ̂0,t + σ̂1,t + ϵ̂)2

=
σ̂2
0,t + σ̂2

1,t + (σ̂0,t + σ̂1,t)ϵ̂

(σ̂0,t + σ̂1,t + ϵ̂)2
(70)

=
σ̂2
0,t + σ̂2

1,t + (σ̂0,t + σ̂1,t)ϵ̂

σ̂2
0,t + 2σ̂0,tσ̂1,t + σ̂2

1,t + 2(σ̂0,t + σ̂1,t)ϵ̂+ ϵ̂2
(71)

=
1

1 +
2σ̂0,tσ̂1,t+(σ̂0,t+σ̂1,t)ϵ̂+ϵ̂2

σ̂2
0,t+σ̂2

1,t+(σ̂0,t+σ̂1,t)ϵ̂

. (72)

We note that all terms in (70) are greater than 0 and, thus, f is monotone:

0 < f ′(ρn), ρn ∈ (−1, 1). (73)

In the negative segment ρn ∈ (−1, 0], the derivative norm |f ′| is greater than in the positive segment
[0, 1), and value of the function is always larger than its argument. Thus, in negative segment, the
distance until the fixed point ρ∗n > 0 is decreasing faster, than in positive segment.

For ρn ∈ [0, 1), we can bound the fraction in denominator of (72) by taking its numerator’s minimum
at ρn = 0 and its denominator’s maximum at ρn = 1, i.e,

0 < f ′ ≤ γd(q, s, t) < 1,

γd(q, s, t) =
1

1 + t2(1−t)2qs+t(1−t)(t2s+(1−t)2q)ϵ+t2(1−t)2ϵ2

(1−t)2((1−t)q+t
√
qs)2+t2(ts+(1−t)

√
qs)2+t(1−t)((1−t)

√
q+t

√
s)2ϵ

.

We note that γd(q, s, t) is increasing function w.r.t. q, s.

If we put into the function f argument ρ∗n corresponding to the ϵ-EOT correlation, DIMF does not
change it. Hence, ρ∗n is the fixed point of f(ρn), and we have

|ρ̃n − ρ∗n| = |f(ρn)− f(ρ∗n)| ≤ γd(q, s, t)|ρn − ρ∗n|.
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Lemma D.10 (χ improvement after (D)IMF step). Consider a 2-dimensional Gaussian distribution
with marginals N (η, q) and N (ν, s) and normalized correlation ρn ∈ (−1, 1) between its compo-
nents. After continuous IMF or DIMF with a single time point t, we obtain new correlation ρ̃n, such
that |ρ̃n − ρ∗n| ≤ γ|ρn − ρ∗n| where ρ∗n = Ξ−1

n (1/ϵ, q, s) and γ < 1 is from (65) for IMF and from
(66) for DIMF. We have bound in terms of χ = Ξn(ρn, q, s) and χ̃ = Ξn(ρ̃n, q, s):

|χ̃− 1/ϵ| ≤ l(ρn, ρ
∗
n, γ) · |χ− 1/ϵ|, (74)

l(ρn, ρ
∗
n, γ) =

[
1− (1− γ)

(1−max{ρ∗n, |ρn|}2)2

1 + max{ρ∗n, |ρn|}2

]
< 1.

Proof. Monotone. The function f(ρn) from (67) for continuous IMF and from (68) for DIMF is
monotonously increasing on (−1, 1). The monotone means that the value ρ̃n always remains from
the same side from ρ∗n: {

ρn > ρ∗n =⇒ f(ρn) > ρ∗n,

ρn ≤ ρ∗n =⇒ f(ρn) ≤ ρ∗n,
(75)

The same inequalities hold true for χ = Ξn(ρn, q, s), χ̃ = Ξ(ρ̃n, q, s) and χ∗ = 1/ϵ as well: if
χ < χ∗, then χ̃ < χ∗ and vice versa, since Ξn(ρn, q, s) is monotonously increasing w.r.t. ρn.

Ξn Properties. In this proof, we omit arguments q, s of Ξ−1
n (χ, q, s) and Ξn(ρn, q, s), because they

do not change during IMF step. The second derivative of the function Ξn(ρn) is

d2Ξn

dρ2n
(ρn) =

2ρn(3 + ρ2n)√
sq(1− ρ2n)

3
.

Hence, we have d2Ξ
dρ2

n
(ρn) ≤ 0 for ρn ∈ (−1, 0] and d2Ξ

dρ2
n
(ρn) ≥ 0 for ρn ∈ [0, 1). It means that the

function Ξn(ρn) is concave on (−1, 0] and convex on [0, 1).

The function Ξn(ρn) is monotonously increasing w.r.t. ρn, thus, decreasing of the radius h
def
=

|ρn − ρ∗n| around ρ∗n causes the decreasing of |χ− χ∗| around χ∗. We consider two cases: χ > χ∗
and χ < χ∗.

Case χ > χ∗. We have ρn = ρ∗n + h, χ = Ξn(ρ
∗
n + h) = Ξn(ρn) and Ξn(ρ

∗
n + γh) ≥ χ̃. We

compare the difference using convexity on [0, 1):

χ− χ̃ ≥ Ξn(ρ
∗
n + h)− Ξn(ρ

∗
n + γh) ≥ (ρ∗n + h− (ρ∗n + hγ)) · dΞn

dρn
(ρ∗n + γh)

= (1− γ)h · dΞn

dρn
(ρ∗n + γh).

Since the derivative of Ξn is always positive, we continue the bound:

Ξn(ρ
∗
n + h)− Ξn(ρ

∗
n + γh) ≥ min

ρ′
n∈[ρ∗

n,ρ
∗
n+h]

∣∣∣∣dΞn

dρn
(ρ′n)

∣∣∣∣ (1− γ)|ρn − ρ∗n|.

Next, we use Lipschitz property of Ξn, i.e.,

|χ− χ∗| = |Ξn(ρn)− Ξn(ρ
∗
n)| ≤ max

ρ′
n∈[ρ∗

n,ρ
∗
n+h]

∣∣∣∣dΞn

dρn
(ρn)

∣∣∣∣ |ρn − ρ∗n|,

and combine it with the previous bound

χ− χ̃ ≥ Ξn(ρ
∗
n + h)− Ξn(ρ

∗
n + γh) ≥

min
ρ′
n∈[ρ∗

n,ρn]

∣∣∣dΞn

dρn
(ρ′n)

∣∣∣
max

ρ′
n∈[ρ∗

n,ρn]
|dΞn

dρn
(ρ′n)|

(1− γ)|χ− χ∗|.

Case χ < χ∗. We have ρn = ρ∗n −h, χ = Ξn(ρ
∗
n −h) = Ξn(ρn) and Ξn(ρ

∗
n − γh) ≤ χ̃. There are

three subcases for χ, χ̃ positions around 0:

1. For positions χ∗ > χ̃ ≥ Ξn(ρ
∗
n − γh) > χ ≥ 0, we use convexity of Ξn on [0, 1) and

obtain

χ̃− χ ≥ Ξn(ρ
∗
n − γh)− Ξn(ρ

∗
n − h) ≥ (1− γ)h · dΞn

dρn
(ρ∗n − h)
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≥ min
ρ′
n∈[ρ∗

n−h,ρ∗
n]

∣∣∣∣dΞn

dρn
(ρ′n)

∣∣∣∣ (1− γ)|ρn − ρ∗n|.

2. For positions χ∗ > 0 ≥ χ̃ ≥ Ξn(ρ
∗
n − γh) > χ and χ∗ ≥ χ̃ ≥ 0 ≥ Ξn(ρ

∗
n − γh) > χ, we

use concavity of Ξn on (−1, 0] and obtain

χ̃− χ ≥ Ξn(ρ
∗
n − γh)− Ξn(ρ

∗
n − h) ≥ (1− γ)h · dΞn

dρn
(ρ∗n − γh)

≥ min
ρ′
n∈[ρ∗

n−h,ρ∗
n]

∣∣∣∣dΞn

dρn
(ρ′n)

∣∣∣∣ (1− γ)|ρn − ρ∗n|.

3. For positions χ∗ > χ̃ ≥ Ξn(ρ
∗
n − γh) > 0 > χ, we use concavity of Ξn on (−1, 0] and

convexity of Ξn on [0, 1) and obtain

χ̃− χ ≥ Ξn(ρ
∗
n − γh)− Ξn(ρ

∗
n − h) = [Ξn(ρ

∗
n − γh)− Ξn(0)] + [Ξn(0)− Ξn(ρ

∗
n − h)]

≥ (ρ∗n − γh) · dΞn

dρn
(0) + (h− ρ∗n) ·

dΞn

dρn
(0) = (1− γ)h · dΞn

dρn
(0)

≥ min
ρ′
n∈[ρ∗

n−h,ρ∗
n]

∣∣∣∣dΞn

dρn
(ρ′n)

∣∣∣∣ (1− γ)|ρn − ρ∗n|.

Overall, we make the bound

χ̃− χ ≥ min
ρ′
n∈[ρ∗

n−h,ρ∗
n]

∣∣∣∣dΞn

dρn
(ρ′n)

∣∣∣∣ (1− γ)|ρn − ρ∗n|

≥
min

ρ′
n∈[ρn,ρ∗

n]
|dΞn

dρn
(ρ′n)|

max
ρ′
n∈[ρn,ρ∗

n]
|dΞn

dρn
(ρ′n)|

(1− γ)|χ− χ∗|.

For the function Ξn(ρn) =
ρn√

sq(1−ρ2
n)

, the centrally symmetrical derivative is

dΞn

dρn
(ρn) =

1 + ρ2n√
sq(1− ρ2n)

2
.

The derivative dΞn

dρn
has its global minimum at ρn = 0. It grows as ρn → ±1, hence, the maximum

value is achieved at points which are farthest from 0:

max
ρ′
n∈[ρ∗

n,ρn]

∣∣∣∣dΞn

dρn
(ρ′n)

∣∣∣∣ ≤ dΞn

dρn
(ρn),

max
ρ′
n∈[ρn,ρ∗

n]

∣∣∣∣dΞn

dρn
(ρ′n)

∣∣∣∣ ≤ max

{
dΞn

dρn
(ρ∗n),

dΞn

dρn
(|ρn|)

}
,

min
ρ′
n∈[−1,+1]

∣∣∣∣dΞn

dρn
(ρ′n)

∣∣∣∣ ≥ 1
√
sq

.

Thus, we prove the bound

|χ− χ∗| − |χ̃− χ∗| = |χ̃− χ| ≥ (1−max{ρ∗n, |ρn|}2)2

1 + max{ρ∗n, |ρn|}2
(1− γ)|χ− χ∗|.

|χ̃− χ∗| ≤
[
1− (1− γ)

(1−max{ρ∗n, |ρn|}2)2

1 + max{ρ∗n, |ρn|}2

]
|χ− χ∗|.
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D.6 PROOF OF IPMF CONVERGENCE THEOREM 3.2, D = 1

Proof. Notations. We introduce the notations for a k-th IPMF step in terms of scalars(
σ0 ρk
ρk sk

)
IMF
=⇒

(
σ0 ρ̃k
ρ̃k sk

)
IPF
=⇒

(
qk ρ′k
ρ′k σ1

)
IMF
=⇒

(
qk ρ̂k
ρ̂k σ1

)
IPF
=⇒

(
σ0 ρk+1

ρk+1 sk+1

)
,

and means (
µ0

νk

)
IMF
=⇒

(
µ0

νk

)
IPF
=⇒

(
ηk
µ1

)
IMF
=⇒

(
ηk
µ1

)
IPF
=⇒

(
µ0

νk+1

)
.

We denote the variance of the 0-th marginal after the k-th IPMF step as qk. For the first one, we have
formula (35) q0 = σ0 − σ0ρ̃

2
n,0

(
1− σ1

s0

)
, where ρ̃n,0 = ρ0/

√
σ0s0 is the normalized correlation

after the first IMF step. More explicitly, ρ̃n,0
def
= f(ρn,0), where ρ̃n,0 is taken from (67) for contin-

uous IMF and from (68) for DIMF. We denote optimality coefficients χk
def
= Ξn(

ρk√
σ0sk

, σ0, sk) and
χ∗ = 1/ϵ.

Ranges. We note that IMF step keeps qk, sk, ηk, νk, while IPF keeps χk. Due to con-
tractive update equations for χk (75) and for sk (38), the parameters sk, χk remain on
the same side from σ1,

1
ϵ , respectively. Namely, we have ranges for the variances sk ∈

[min{σ1, s0},max{σ1, s0}]
def
= [σmin

1 , σmax
1 ], qk ∈ [min{σ0, q0},max{σ0, q0}]

def
= [σmin

0 , σmax
0 ]

and parameters χk ∈ [min{χ∗, |χ0|},max{χ∗, |χ0|}]
def
= [χmin, χmax].

Update bounds. We use update bounds for χ (74) twice, for s (38) and for ν (41), however, we
need to limit above the coefficients |Ξ−1

n (χ, q, s)| and l(Ξ−1
n (χ, q, s),Ξ−1

n (χ∗, q, s), γ(q, s)) over the
considered ranges of the parameters q ∈ [σmin

0 , σmax
0 ], s ∈ [σmin

1 , σmax
1 ] and χ ∈ [χmin, χmax].

The functions Ξ−1
n , l, γ are defined in (64), (74), (65) (or (66) with fixed t), respectively.

Since the function |Ξ−1
n (χ, q, s)| is increasing w.r.t. q, s′ and χ (growing symmetrically

around 0 for χ), we take maximal values σmax
0 , σmax

1 and χmax. Similarly, the function
l(Ξ−1

n (χ, q, s),Ξ−1
n (χ∗, q, s), γ(q, s)) is increasing w.r.t. all arguments symmetrically around 0.

Hence, we maximize the function |Ξ−1
n | and the function γ, which is also increasing w.r.t. q and s.

Final bounds. The final bound after k step of IPMF are:

|s2k − σ2
1 | ≤ α2k|s20 − σ2

1 |,
|νk − µ1| ≤ αk|ν0 − µ1|,
|χk − 1/ϵ| ≤ β2k|χ0 − 1/ϵ|,

where β
def
= l(Ξ−1

n (χmax, σmax
0 , σmax

1 ),Ξ−1
n (χ∗, σ

max
0 , σmax

1 ), γ(σmax
0 , σmax

1 )) and α
def
=

Ξ−1
n (χmax, σmax

0 , σmax
1 ) taking l from (74), γ from (65) for continuous IMF and from (66) with

fixed t for discrete IMF.

D.7 PROOF OF IPMF GENERAL CONVERGENCE THEOREM 3.3

Proof. We split the proof into two parts. First, consider the discrete case.

Discrete case. Let k ≥ 1. Note that the transition probabilities q4k+1(xt1 |x0) can be bounded
from below with αµ(xt1), where α ∈ (0, 1) and µ depend only on t1, ϵ and supports of p0 and p1.
Thus, we can bound q4k+1(x1|x0) ≥ αµ′(x1), with µ′(x1) depending on q4k+1

0,1 ,

projM[q4k+1](x1|x0) =

∫
projM[q4k+1](x1|xt1)q(xt1 |x0)dxt1

≥ α

∫
projM[q](x1|xt1)dµ(xt1) =: αµ′(x1). (76)
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Similar statement holds for q4k+3
0,1 . Thus, the IPMF step is contracting. Specifically,

∥q4k+2
0 − p0∥TV ≤ (1− α)∥q4k1 − p1||TV ,

∥q4k+4
1 − p1∥TV ≤ (1− α)∥q4k+2

0 − p0∥TV .,

where TV denotes Total Variation distance. Thus,

q4k0
TV→ p0, q4k+2

1
TV→ p1. (77)

Since p0 and p1 have compact supports, Prokhorov’s theorem ensures the existence of a weakly
converging subsequence q

4kj

0,1
w−→ q̃0,1. Moreover, (77) ensures that q̃0,1 ∈ Π(p0, p1).

Let IMF[q] be the result of the IMF-step applied to q, and let IPMF[q] be the result of IPMF-step
applied to q. Note that the IMF step is continuous w.r.t. weak convergence, since all intermediate
steps have smooth transition (i.e., conditional) densities. Combining the above results, we get that

IPMF[q4kj

0,1 ]
w−→j IPMF[q̃0,1] = IMF[IMF[q̃0,1]] (78)

The equality holds due to q̃0,1 ∈ Π(p0, p1). Note that we also use the fact that convergence in TV is
stronger than weak convergence.

Recall that q4kj+4
0,1 = IPMF[q4kj

0,1 ]. (78) ensures that for any fixed n > 0 it holds q
4kj+4n
0,1

w−→j

IMF2n[q̃0,1]. Moreover, by Theorem 3.6 in [ASBM], it holds that IMF 2n[q̃0,1]
w−→n q∗0,1.

Thus, there exists a weakly converging subsequence

q4li0,1
w−→ q∗0,1. (79)

Finally, we argue by contradiction: if q4k0,1
w↛ q∗0,1, we can select a weakly converging subsequence

q4li0,1
w−→ q′0,1 ̸= q∗0,1. But by (79) q′0,1 = q∗0,1. This finishes the proof.

Continious case. We now explain how to extend the above argument to the continuous-time set-
ting. The key point is to verify a Doeblin minorization condition for the Markovian process obtained
after the projection step (see, e.g., Section 2 in Stroock (2005)).

Fix some δ ∈ (0, 1/2). For each k ∈ N, let (X4k+2
t )t∈[0,1] denote the Markov diffusion correspond-

ing to the law q4k+2, and let

Pk(x,A) := P
(
X4k+2

1 ∈ A
∣∣X4k+2

0 = x
)
, x ∈ RD, A ∈ B(RD),

be its transition kernel from time 0 to time 1. We decompose the evolution on [0, 1] into three
subintervals [0, δ], [δ, 1− δ] and [1− δ, 1]. Accordingly, we write

Pk = K
(0→δ)
k K

(δ→1−δ)
k K

(1−δ→1)
k ,

where K
(s→t)
k denotes the Markovian transition kernel from time s to t.

Recall that, by construction of the Markovian projection, the drift on [δ, 1 − δ] is Lipschitz and
dissipative, and the diffusion coefficient is constant. In particular, for each fixed radius R > 0 there
exists βR > 0 and a probability measure νR on RD such that the small set condition holds:

P
(
X4k+2

1 ∈ A
∣∣X4k+2

δ = x
)

≥ βR νR(A), x ∈ BR, A ∈ B(RD), (80)

for all k ∈ N, where BR := {x ∈ RD : ∥x∥ ≤ R}. Here βR and νR may depend on R, but are
independent of k.

Next, we control the distribution of X4k+2
δ uniformly in k. By the definition of the reciprocal

projection, the segment [0, 1] between X0 and X1 is (conditionally on (X0, X1)) distributed as a
Brownian bridge with variance parameter σ2 = ε2δ(1 − δ). Hence, the marginal at time δ is a
mixture of Gaussian laws with covariance matrix σ2ID and mean

mδ(x0, x1) = (1− δ)x0 + δx1,
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where (x0, x1) ranges over the support of the endpoint coupling. Since the supports of p0 and p1 are
bounded, there exists R0 > 0 such that ∥mδ(x0, x1)∥ ≤ R0 for all (x0, x1) in this support. Standard
Gaussian tail bounds then imply that, for any η ∈ (0, 1), we can choose R > 0 large enough so that

sup
k∈N

sup
x∈supp(p0)

P
(
X4k+2

δ /∈ BR

∣∣X4k+2
0 = x

)
≤ η.

Equivalently,

P
(
X4k+2

δ ∈ BR

∣∣X4k+2
0 = x

)
≥ 1− η, x ∈ supp(p0), k ∈ N. (81)

Combining (80) and (81), we obtain, for x ∈ supp(p0) and any measurable A ⊂ RD,

Pk(x,A) = E
[
P
(
X4k+2

1 ∈ A
∣∣X4k+2

δ

) ∣∣∣X4k+2
0 = x

]
≥ E

[
P
(
X4k+2

1 ∈ A
∣∣X4k+2

δ

)
1{X4k+2

δ ∈BR}

∣∣∣X4k+2
0 = x

]
≥ βRνR(A)P

(
X4k+2

δ ∈ BR

∣∣X4k+2
0 = x

)
≥ βR(1− η) νR(A).

Thus, for all x ∈ supp(p0) and all k ∈ N,

Pk(x, ·) ≥ αµ(·) with α := βR(1− η) ∈ (0, 1), µ := νR.

That is, the family of kernels (Pk)k satisfies a uniform Doeblin minorization on supp(p0).

It is well known that such a minorization implies total-variation contraction: for any probability
measures λ, λ′ on supp(p0),

∥λPk − λ′Pk∥TV ≤ (1− α) ∥λ− λ′∥TV, k ∈ N.

Applying this with λ = q4k+1
0 and λ′ = p0 yields

∥q4k+1
1 − p1∥TV = ∥q4k+1

0 Pk − p0Pk∥TV ≤ (1− α) ∥q4k+1
0 − p0∥TV.

The convergence q4k+1
0 →TV p0 is shown by the same argument applied backward in time (inter-

changing the roles of p0 and p1), and we conclude that

q4k+1
1

TV−−−−→
k→∞

p1.

In particular, the continuous-time analogue of (77) holds.

Next, we notice that for any t ∈ (0, 1) the marginal densities q(xt) are smooth and continuously
depend on q4k+2

0,1 . Note that the IPF step returns the smooth transport plan. Thus, the drift bt (see
Silveri et al. (2025)) is smooth and dissipative. Since IMF is symmetric and does not depend on the
direction, we can consider transitions (0, 1/2) and (1, 1/2). The corresponding Markovian kernels
are smooth. So the joint distribution qi+1(x0, x1/2, x1) depends continuously on qi(x0, x1/2, x1).
So, IMF is weakly continuous w.r.t the weak convergence.

The rest of the proof is similar to the discrete case.

E EXPERIMENTAL SUPPLEMENTARY

E.1 ILLUSTRATIVE 2D EXAMPLE VISUALIZATION.

We provide the visualization of the starting processes and corresponding learned processes for Gaus-
sian→Swiss roll translation in Fig. 7. One can visually observe that all the particle trajectories or
relatively straight and therefore close to the Schrödinger Bridge problem solution.
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Table 5: Datasets and code used in our work along with their licenses.

Name URL Citation License

Colored MNIST GitHub Link Gushchin et al. (2023b) MIT
CelebA Dataset Link Liu et al. (2015a) Non-commercial research only
SB Benchmark GitHub Link Gushchin et al. (2023b) MIT
ASBM Code GitHub Link Gushchin et al. (2024) MIT
DSBM Code GitHub Link Shi et al. (2023) MIT

ϵ = 0.1 ϵ = 1 ϵ = 10

Algorithm Type D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best algorithm on benchmark† Varies 0.016 0.05 0.25 0.22 0.005 0.09 0.56 0.12 0.01 0.02 0.15 0.23

DSBM-IMF

IPMF

0.1 0.14 0.44 3.2 0.13 0.1 0.91 6.67 0.1 5.17 66.7 356
DSBM-IPF 0.35 0.6 0.6 1.62 0.01 0.18 0.91 6.64 0.2 3.78 81 206

DSBM-Identity 0.13 0.64 2.67 7.12 0.1 0.12 2 6.67 0.02 3.8 86.4 343
ASBM-IMF† 0.016 0.1 0.85 11.05 0.02 0.34 1.57 3.8 0.013 0.25 1.7 4.7

ASBM-IPF 0.05 0.73 32.05 10.67 0.02 0.53 4.19 10.11 0.002 0.18 2.2 5.08
ASBM-Identity 0.12 2.65 4.59 40.3 0.04 0.45 2.02 4.76 0.03 0.2 1.43 2.71

SF2M-Sink† Bridge Matching 0.04 0.18 0.39 1.1 0.07 0.3 4.5 17.7 0.17 4.7 316 812

Table 6: Comparisons of BW2
2-UVP ↓ (%) between the ground truth static SB solution pT (x0, x1) and the learned solution on the SB

benchmark. The best metric over is bolded. Results marked with † are taken from (Gushchin et al., 2024) or (Gushchin et al., 2023b).

E.2 SB BENCHMARK BW2
2-UVP

We additionally study how well implementations of IPMF procedure starting from different starting
processes map initial distribution p0 into p1 by measuring the metric BW2

2-UVP also proposed by
the authors of the benchmark (Gushchin et al., 2023b). We present the results in Table 6. One can
observe that DSBM initialized from different starting processes has quite close results and so is the
case for ASBM experiments with ϵ ∈ {1, 10}, but with ϵ = 0.1 one can notice that ASBM starting
from IPF and Identity experience a decline in BW2

2-UVP metric.

E.3 CELEBA SDEDIT STARTING PROCESSES DESCRIPTION

The IPMF framework does not require the starting process to have p0, p1 marginals or to be a
Schrödinger bridge. One can then try other starting processes that would improve the practical
performance of the IPMF algorithm. Properties of the starting process that would be desirable are
(1) q(x0) = p0(x0) and marginal q(x1) to be close to p1(x1) and (2) q(x0, x1) to be close to SB.
In the IMF or IPF, we had to choose one of these properties because we can not easily satisfy them
both.

We propose to take a basic image-to-image translation method and use it as a coupling to induce
a starting process for the IPMF procedure. Such a coupling could provide the two properties men-
tioned above. We use SDEdit (Meng et al., 2022) which requires an already trained diffusion model
(SDE prior). Given an input image x, SDEdit first adds noise to the input and then denoises the
resulting image by the SDE prior to make it closer to the target distribution of the SDE prior. Vari-
ous models can be used as an SDE prior. We explore two options: trainable and train-free. As the
first option, we train the DDPM (Ho et al., 2020) model on the CelebA 64×64 size female only
part. As the second option we take an already trained Stable Diffusion (SD) V1.5 model (Rombach
et al., 2022) with text prompts conditioned on which model generates 512×512 images similar to
the CelebA female part. We then apply SDEdit with the CelebA male images as input to produce
similar female images using trainable DDPM and train-free SDv1.5 approaches, we call the starting
processes generated by these SDEdit induced couplings DDPM-SDEdit and SD-SDEdit. Hyperpa-
rameters of SDEdit, DDPM and SDv1.5 are provided in Appendix E.9.

The visualization of the DSBM and ASBM implementations of the IPMF procedure starting from
DDPM-SDEdit and SD-SDEdit processes is in Figure 4.

E.4 CELEBA EXPERIMENT ADDITIONAL QUANTITATIVE STUDY

In Table 8, we report the final CMMD (Jayasumana et al., 2024) values for IPMF, while Figure 9
illustrates how this metric evolves over IPMF iterations. Both evaluations are performed on the
same test set as in M4.4. Notably, the resulting CMMD curve closely mirrors the behavior observed
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(a) x0 ∼ p0, x1 ∼ p1. (b) IMF starting process (c) IPF starting process (d) Identity

(e) x0 ∼ p0. (f) DSBM-IMF (g) DSBM-IPF (h) DSBM-Identity

(i) x1 ∼ p1. (j) ASBM-IMF (k) ASBM-IPF (l) ASBM-Identity

Figure 7: Visualization of learned processes with DSBM and ASBM solvers for Gaussian→Swiss roll
translation using IMF, IPF, Identity starting processes for ϵ = 0.1.

(a) x ∼ p0 (b) DSBM-Identity (c) ASBM-Identity

Figure 8: Results on the CelebA dataset for the male → female translation task, where x0 ∼ p0 represents
samples from the source distribution. DSBM-Identity and ASBM-Identity refers to the outputs generated

using trained DSBM/ASBM with the Identity initialization. The model was trained with ϵ = 10.

for FID in Figure 5. Additionally, Figure 8 and Table 7 present results obtained using DSBM and
ASBM with the Identity initialization process on the CelebA dataset, with ϵ = 10.

E.5 GENERAL EXPERIMENTAL DETAILS

Authors of ASBM (Gushchin et al., 2024) kindly provided us the code for all the experiments. All
the hyperparameters including neural networks architectures were chosen as close as possible to the
ones used by the authors of ASBM in their experimental section. Particularly, as it is described in
(Gushchin et al., 2024, Appendix D), authors used DD-GAN (Xiao et al.) with Brownian Bridge
posterior sampling instead of DDPM’s one and implementation from:
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Initialisation (coupling) DSBM ASBM

IMF
DDPM
SDEdit

SD
SDEdit

Identity IMF
DDPM
SDEdit

SD
SDEdit

Identity
Identity
ϵ=10 IMF

DDPM
SDEdit

SD
SDEdit

Identity
Identity
ϵ=10

FID↓ 0.0 35.23 28.77 61.56 13.65 14.84 22.65 33.11 65.50 19.32 21.84 20.64 19.58 27.47

MSE(x0, x̂1)↓ 0.16 0.02 0.02 0.0 0.16 0.09 0.04 0.03 0.16 0.17 0.07 0.08 0.07 0.11

Table 7: Extended for ϵ = 10 qualitative results on CelebA (64× 64) for male→female translation with
ASBM and DSBM across different starting processes. Generative quality (FID↓) and similarity

(MSE(x0, x̂1)↓) are reported on the test set. Best and second-best values for solvers are marked in bold and
underline, respectively.

Initialisation (coupling) DSBM ASBM

IMF
DDPM
SDEdit

SD
SDEdit

Identity IMF
DDPM
SDEdit

SD
SDEdit

Identity IMF
DDPM
SDEdit

SD
SDEdit

Identity

CMMD↓ 0.0 0.31 0.69 0.84 0.32 0.46 0.34 0.33 0.28 0.42 0.32 0.51

Table 8: Qualitative results on CelebA (64× 64) for male→female translation with ASBM and DSBM
across different starting processes. Generative quality (CMMD↓) is reported on the test set. Best and

second-best values for solvers are marked in bold and underline, respectively.

(a) CMMD for DSBM with various couplings. (b) CMMD for ASBM with various couplings.

Figure 9: CMMD metric in CelebA male→female (64 × 64) as a function of IPMF iteration for
various starting couplings.

https://github.com/NVlabs/denoising-diffusion-gan

DSBM (Shi et al., 2023) implementation is taken from the official code repository:

https://github.com/yuyang-shi/dsbm-pytorch

Sampling on the inference stage is done by Euler Maryama SDE numerical solver (Kloeden, 1992)
with indicated in Table 9 NFE.

The Exponential Moving Average (EMA) has been used to enhance generator’s training stability
of both ASBM and DSBM. The parameters of the EMA are provided in Table 9, in case the EMA
decay is set to “N/A” no averaging has been applied.

E.6 ILLUSTRATIVE 2D EXAMPLES DETAILS

ASBM. For toy experiments the MLP with hidden layers [256, 256, 256] has been chosen for both
discriminator and generator. The generator takes vector of (dim+1+2) length with data, latent vari-
able and embedding (a simple lookup table torch.nn.Embedding) dimensions, respectively.
The networks have torch.nn.LeakyReLU as activation layer with 0.2 angle of negative slope.
The optimization has been conducted using torch.optim.Adam with running averages coef-
ficients 0.5 and 0.9. Additionally, the CosineAnnealingLR scheduler has been used only at
pretraining iteration with minimal learning rate set to 1e-5 and no restarting. To stabilize GAN
training R1 regularizer with coefficient 0.01 (Mescheder et al., 2018) has been used.
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Model Dataset Start process IPMF iters IPMF-0 Grad Updates IPMF-k Grad Updates

ASBM CelebA All 20 200,000 20,000
DSBM CelebA All 20 100,000 20,000
ASBM Swiss Roll All 20 400,000 40,000
DSBM Swiss Roll All 20 20,000 20,000
ASBM cMNIST All 20 75,000 38,000
DSBM cMNIST All 20 100,000 20,000
ASBM SB Bench All 20 133,000 67,000
DSBM SB Bench All 20 20,000 20,000

Model Dataset Start process NFE EMA decay Batch size D/G opt ratio Lr G Lr D

ASBM CelebA All 4 0.999 32 1:1 1.6e-4 1.25e-4
DSBM CelebA All 100 0.999 64 N/A 1e-4 N/A
ASBM Swiss Roll All 4 0.999 512 1:1 1e-4 1e-4
DSBM Swiss Roll All 100 N/A 128 N/A 1e-4 N/A
ASBM cMNIST All 4 0.999 64 2:1 1.6e-4 1.25e-4
DSBM cMNIST All 30 0.999 128 N/A 1e-4 N/A
ASBM SB Bench All 32 0.999 128 3:1 1e-4 1e-4
DSBM SB Bench All 100 N/A 128 N/A 1e-4 N/A

Table 9: Hyperparameters of models from CelebA (M4.4), SwissRoll (M4.2), cMNIST (M4.4) and Benchmark
(M4.3) experiments. In “Start process”, the column “All” states for all the used options. “N/A” corresponds to

either not used or not applicable, the corresponding option.

DSBM. MLP with [dim + 12, 128, 128, 128, 128, 128, dim] number of hidden neurons,
torch.nn.SiLU activation functions, residual connections between 2nd/4th and 4th/6th layers
and Sinusoidal Positional Embedding has been used.

E.7 SB BENCHMARK DETAILS

Scrödinger Bridges/Entropic Optimal Transport Benchmark (Gushchin et al., 2023b) and
cBW2

2-UVP, BW2
2-UVP metric implementation was taken from the official code repository:

https://github.com/ngushchin/EntropicOTBenchmark

Conditional plan metric cBW2
2-UVP , see Table 1, was calculated over predefined test set and condi-

tional expectation per each test set sample estimated via Monte Carlo integration with 1000 samples.
Target distribution fitting metric, BW2

2-UVP, see Table 6, was estimated using Monte Carlo method
and 10000 samples.

ASBM. The same architecture and optimizer have been used as in toy experiments E.6, but without
the scheduler.

DSBM. MLP with [dim + 12, 128, 128, 128, 128, 128, dim] number of hidden neurons,
torch.nn.SiLU activation functions, residual connections between 2nd/4th and 4th/6th layers
and Sinusoidal Positional Embedding has been used.

E.8 CMNIST DETAILS

Working with the MNIST dataset, we use a regular train/test split with 60000 images and 10000
images respectively. We RGB color train and test digits of classes “2” and “3”. Each sample is
resized to 32 × 32 and normalized by 0.5 mean and 0.5 std. ASBM. The cMNIST setup mainly
differs by the architecture used. The generator model is built upon the NCSN++ architecture (Song
et al.), following the approach in (Xiao et al.) and (Gushchin et al., 2024). We use 2 residual
and attention blocks, 128 base channels, and (1, 2, 2, 2) feature multiplications per corresponding
resolution level. The dimension of the latent vector has been set to 100. Following the best practices
of time-dependent neural networks sinusoidal embeddings are employed to condition on the integer
time steps, with a dimensionality equal to 2× the number of initial channel, resulting in a 256-
dimensional embedding. The discriminator adopts ResNet-like architecture with 4 resolution levels.
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The same optimizer with the same parameters as in toy E.6 and SB benchmark E.7 experiments have
been used except ones that are presented in Table 9. No scheduler has been applied. Additionally,
R1 regularization is applied to the discriminator with a coefficient of 0.02, in line with (Xiao et al.)
and (Gushchin et al., 2024).

Figure 10: Inverted 7 starting process, i.e.,
process in the reciprocal class with

marginals p0 and pinv7, visualization.

DSBM. The model is based on the U-Net architecture
(Ronneberger et al., 2015) with attention blocks, 2 resid-
ual blocks per level, 4 attention heads, 128 base channels,
(1, 2, 2, 2) feature multiplications per resolution level.
Training was held by Adam (Kingma & Ba, 2014) op-
timizer.

E.9 CELEBA DETAILS

Test FID, see Figure 5 is calculated using pytorch-fid
package, test CMMD is calculated using unofficial im-
plementation in PyTorch. Working with CelabA dataset
(Liu et al., 2015b), we use all 84434 male and 118165 fe-
male samples (90% train, 10% test of each class). Each
sample is resized to 64× 64 and normalized by 0.5 mean
and 0.5 std.

ASBM. As in cMNIST experiments E.8 the generator model is built upon the NCSN++ architecture
(Song et al.) but with small parameter changes. The number of initial channels has been lowered
to 64, but the number of resolution levels has been increased with the following changes in fea-
ture multiplication, which were set to (1, 1, 2, 2, 4). The discriminator also has been upgraded by
growing the number of resolution levels up to 6. No other changes were proposed.

DSBM. Following Colored MNIST translation experiment exactly the same neural network and
optimizer was used.

SDEdit coupling. DDPM (Ho et al., 2020) was trained on CelebA female train part processed in
the same way as for other CelebA experiments. Number of diffusion steps is equal to 1000 with
linear βt noise schedule, number of training steps is equal to 1M, UNet (Ronneberger et al., 2015)
was used as neural network with 78M parameters, EMA was used during training with rate 0.9999.
The DDPM code was taken from the official DDIM (Song et al., 2021) github repository:

https://github.com/ermongroup/ddim

The SDEdit method (Meng et al., 2022) for DDPM model was used with 400 steps of noising and
400 steps of denoising. The code for SDEdit method was taken from the official github repository:

https://github.com/ermongroup/SDEdit

The Stable Diffusion V1.5 (Rombach et al., 2022) model was taken from the Huggingface (Wolf
et al., 2020) model hub with the tag “runwayml/stable-diffusion-v1-5”. The text prompt used is
“A female celebrity from CelebA”. The SDEdit method implementation for the SDv1.5 model was
taken from the Huggingface library (Wolf et al., 2020), i.e. “StableDiffusionImg2ImgPipeline”, with
hyperparameters: strength 0.75, guidance scale 7.5, number of inference steps 50. The output of
SDEdit pipeline has been downscaled from 512×512 size to 64×64 size using bicubic interpolation.

E.10 AFHQ DETAILS

We first pretrain the networks using Bridge Matching for 100000 steps, then run DSBM for 20
iterations with 25000 steps per outer iteration. We follow (Shi et al., 2023) and use the same U-Net
architecture. The batch size is 4, and the EMA rate is 0.999. We choose σ2 = 5, and again we use
100 sampling steps with constant stepsizes.
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E.11 COMPUTATIONAL RESOURCES

The experiment on CelebA for each of the starting processes takes approximately 5 days and 7
days on Nvidia A100 for DSBM and ASBM, respectively. Experiments with Colored MNIST take
less than 2 days of training on an A100 GPU for ASBM or DSBM, and for each starting process.
Illustrative 2D examples and Schrödinger Bridge benchmark experiments take several hours on GPU
A100 each for ASBM or DSBM and for each starting process.
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