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ABSTRACT

The Iterative Markovian Fitting (IMF) procedure, which iteratively projects onto
the space of Markov processes and the reciprocal class, successfully solves the
Schrodinger Bridge (SB) problem. However, an efficient practical implementation
requires a heuristic modification—alternating between fitting forward and back-
ward time diffusion at each iteration. This modification is crucial for stabilizing
training and achieving reliable results in applications such as unpaired domain
translation. Our work reveals a close connection between the modified version
of IMF and the Iterative Proportional Fitting (IPF) procedure—a foundational
method for the SB problem, also known as Sinkhorn’s algorithm. Specifically,
we demonstrate that the heuristic modification of the IMF effectively integrates
both IMF and IPF procedures. We refer to this combined approach as the Itera-
tive Proportional Markovian Fitting (IPMF) procedure. Through theoretical and
empirical analysis, we establish the convergence of the IPMF procedure under
various settings, contributing to developing a unified framework for solving SB
problems. Moreover, from a practical standpoint, the IPMF procedure enables a
flexible trade-off between image similarity and generation quality, offering a new
mechanism for tailoring models to specific tasks.

1 INTRODUCTION

Diffusion Bridge models inspired by the Schrodinger Bridge (SB) theory, which connects stochastic
processes with optimal transport, have recently become powerful approaches in biology (Tong et al.,
2024} |Bunne et al., [2023)), chemistry (Somnath et al., 2023} [gashov et al.; Kim et al., [2024), com-
puter vision (Liu et al.,[2023a}|Shi et al.|, 2023} [Ksenofontov & Korotin,[2025)) and speech processing
(Chen et al., [2023b). Most of these applications deal with either supervised domain translation, e.g.,
image super-resolution and inpainting (Liu et al., |2023a)) or with unpaired translation, e.g., image
style-transfer (Shi et al.| 2023)) or single-cell data analysis (Tong et al.l 2024)).
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Figure 1: Diagrams of IPF, IMF, and unified IPMF procedure. All procedures aim to converge to
the Schrodinger Bridge, i.e., a Markovian process in the reciprocal class, with marginals py and p; .

This work specifically focuses on unpaired domain translation (Zhu et al., 2017, Fig. 2). In this
setting, given two domains represented solely by unpaired samples, the goal is to transform a sample
from the input domain into a sample related to it in the target domain. In this context, researchers
usually use SB-based algorithms because they enforce two key properties: the optimality property,
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ensuring similarity between the input and the translated object, and the marginal matching property,
ensuring the translation of the input domain to the target domain. The motivation for relying on such
specialized methods, rather than general text-to-data models, is further discussed in Appx.[B]

Early works (De Bortoli et al.l [2021}; |Vargas et al., 2021} (Chen et al. [2021}; |Pavon et al [2021) on
using the SB for unpaired domain translation employed the well-celebrated Iterative Proportional
Fitting (IPF) procedure (Kullback, [1968), also known as the Sinkhorn algorithm (Cuturi & Doucet,
2014). The IPF procedure is initialized with a simple prior process satisfying the optimality prop-
erty. It then refines this process iteratively through optimality-preserving transformations until the
marginal matching property is achieved. In each iteration, IPF decreases the forward KL-divergence
KL(g*||q) between the current approximation ¢ and the ground-truth Schrédinger Bridge ¢*. How-
ever, in practice, approximation errors may cause IPF to suffer from the “prior forgetting”, where
the marginal matching property is achieved but optimality is lost (Vargas et al., 2024} [2021).

The Iterative Markovian Fitting (IMF) procedure (Shi et al.l 2023} [Peluchetti, [2023a} |Gushchin
et al.,2024) emerged as a promising competitor to IPF. Contrary to IPF, IMF starts from a stochastic
process satisfying the marginal matching property and iteratively achieving optimality. Each iter-
ation of IMF decreases the reverse KL-divergence KL(g||¢*) between the current approximation ¢
and the ground-truth Schrodinger Bridge ¢* (cf. with IPF). The approach generalizes rectified flows
(Liu et al.l [2022) to stochastic processes, which are employed (Liu et al.| [2023b; [Yan et al., 2024)
in modern foundational generative models such as Stable Diffusion 3 (Esser et al.,|2024). Like IPF,
IMF may also accumulate errors. Specifically, it may fail to approximate data distributions due to
an imperfect fit at each iteration, causing the marginal matching property to be lost.

In practice, to stabilize IMF training, prevent error accumulation and loss of marginal matching
property, practitioners use a heuristic modification of IMF. This is a bidirectional procedure alter-
nating between learning forward and backward processes, either by diffusion-based models in the
Diffusion Schrodinger Bridge Matching (DSBM) algorithm (Shi et al., |2023)) or GANs in Adver-
sarial Schrodinger Bridge Matching (ASBM) algorithm (Gushchin et al., [2024). In this work, we
investigate the properties of the heuristic modification of the IMF. Our contributions:

1. Theory. We show that the heuristic bidirectional IMF procedure used in practice is closely
related to IPF—in fact, it secretly uses IPF iterations. Therefore, we propose calling the bidi-
rectional IMF procedure Iterative Proportional Markovian Fitting (IPMF, §3.1). We prove
that the IPMF procedure exponentially converges for Gaussians under various settings. We also
guarantee that IPMF converges to ¢*, if py and p; have bounded supports and conjecture that
IPMF converges under very general settings, offering a promising way of developing a unified
framework for solving the SB problem (§3.2).

2. Practice I. We empirically validate our conjecture through a series of experiments, including the
Gaussian setup (§4)), toy 2D setups (§4.2)), the Schrodinger Bridge benchmark (84.3), setup with
real-world colored MNIST and CelebA image data (§4.4).

3. Practice II. Thanks to the proposed IPMF framework, we introduce a novel way to trade-off be-
tween generation quality and input-output similarity of Schrodinger Bridge solvers by designing
the starting coupling. Empirically, we demonstrate on real-world image data that the proposed
initializations outperform classical ones (§4.4).

These contributions demonstrate that the IPMF procedure has significant potential to unify a range of
previously introduced SB methods—including IPF and IMF-based ones—in both discrete (Gushchin
et al.,2024; De Bortoli et al.,|2021)) and continuous time (Shi et al., 2023; [Peluchettil [2023a} [Vargas
et al) [2021) settings, as well as their online versions (De Bortoli et al.l 2024} Peluchetti, 2025}
Karimi et al., [2024). Furthermore, the forward-backward IPMF framework could enable rectified
flows to avoid error accumulation, making them even more powerful in generative modeling.

Notations. Pg’ac(RD ) is a set of absolutely continuous distributions on RP with finite second
moment and finite entropy. We fix IV > 1 intermediate time moments and set 0 =ty < t; < --- <
ty <tyg1 =1 Letq € Pz,ac(RDX(N+2)) be an associated discrete stochastic process on this
grid. For any such g, we denote the density at (zo, z;,, . .., Ty, z1) € RPXWNV42) ag ¢z, zin, 1),
with zin = (2¢,,...,2¢y). W€ is a Wiener process with volatility e > 0 and initial distribution
N+1
po. Let p"" be its discretization, i.e., p"V (20, Zin, 21) = po(20) 1 N (ze, |ze, oy e(tn—tn—1)ID),
1

where A/(+]-) is a conditional Gaussian distribution. H (g) is the differential entropy of q.
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2 BACKGROUND

This section details the study’s key concepts; §2.1]introduces the Schrédinger Bridge (SB) problem,
§2.2] presents the Iterative Proportional Fitting (IPF), describes the Iterative Markovian Fitting
(IMF), §2.4]discusses the heuristic modification of the IMF (Bidirectional IMF).

Recall that the SB problem (Schrodinger,[1931), IPF, and IMF admit both discrete— and continuous—
time setups leading to the same problem solution. Moreover, the explicit formulas for IPF and IMF
in the discrete setting are expressed in terms of probability densities, which helps to convey the main
idea of our paper. Thus, for the sake of presentation flow, the main text focuses exclusively on the
discrete setup, while Appendix presents the continuous setup.

2.1 SCHRODINGER BRIDGE (SB) PROBLEM
The SB problem with a Wiener prior in the discrete-time setting (De Bortoli et al.,[2021)), given the
initial distribution po(20) and the final distribution p; (21), is stated as

min KL (q(z0, Zin, 21) 0" (20, Tin, 21)), (D
q€N (po,p1)

where Iy (po, 1) C Pa.ac(RP*N+2)) is the subset of discrete stochastic processes with marginals
q(z0) = po(xo), g(x1) = p1(x1). The objective function in (I)) admits a decomposition

KL (q(z0, in, 21)|[p"" (20, Tin, #1)) = KL(q(w0, 21)[[p" " (20, 21))
+/KL(Q(min|m0axl)HpWE(xinIanxl))Q(xmxl)dl'del-

All g(xin|zo, x1) can be chosen independently of q(xo,x1). Thus, we can consider q(zi,|zo, 1) =
P (winlzo, v1)and get KL(q (|0, 21)[[p"" (2|20, 21)) = 0.

This leads to the Static SB problem:

min KL( (xo,:v1)||pwe($o,$1)), 2)
q€Il(po.p1)

where TI(pg, p1) C Paac(RP*P) is the subset of joint distributions ¢(zo, 1) s.t. ¢(z0) = po(o),
q(x1) = p1(x1). Finally, the static SB objective can be expanded (Gushchin et al., 2023a, Eq. 7)

2
Koo a9 o,en)) = [0 dg(a0, ) — a0z 40 09

that is equivalent to the objective of the entropic optimal transport (EOT) problem with the quadratic
cost up to an additive constant (Cuturi, 2013} Peyré et al.l 2019} |Léonard, 2013} |Genevay, [2019).

2.2 ITERATIVE PROPORTIONAL FITTING (IPF)

Early works on SB (Vargas et al.,2021; De Bortoli et al., 2021} Tang et al., [2024)) propose computa-
tional methods based on the IPF procedure (Kullback, |1968). The IPF-based algorithm is started by
setting the process ¢° (20, Tin, 1) = po(20)p"" (%in, 21]0). Then, the algorithm alternates between
two types of IPF projections, proj; and proj,, given by (De Bortoli et al., 2021} Prop. 2):

N N
. . def
¢ = proj, (¢*F(z1) [[ ¢ (@rale,,n)) S pi(e) [] ¢ @l 4)
n=0 n=0
q%*(21)q?* (z0,zin|z1) a2k (zo,Tin|z1)
N+1 . N+1
. d
q2k+2 :pI’OJO( 2k+1 H q2k+1 (¢, |@e, 1)) épo(xo) H q%ﬂ(wtn\:ﬂtn_l). (5)
n=1 n=1
g2k +1(20)g?F 1 (@in,z1|20) g2kt (2,1 |20)

Thus, proj; and proj, replace marginal distributions ¢(x1) and g(zo) in ¢(xo, Zin, 1) by p1(z1) and
po(xo) respectively. The constructed sequence {q 2 converges to the solution of the SB problem
q* and causes the forward KL- d1vergence KL(¢*||¢") to decrease monotonically at each iteration.

In practice, since the prior process p"V" is used only for initialization, the imperfect fit may lead to
a deviation from the SB solution at some iteration. This problem is called “prior forgetting” and
was discussed in (Vargas et al., 2024, Appx. E.3). The authors of [Vargas et al.| (2021) consider a
continuous analog of the IPF procedure using inversions of diffusion processes (see Appx. .
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2.3 ITERATIVE MARKOVIAN FITTING (IMF)

The Iterative Markovian Fitting (IMF) procedure (Peluchetti, 2023a}; |Shi et al.l 2023} |Gushchin
et al., 2024) emerged as a strong competitor to the IPF procedure. In contrast to IPF, IMF does not
suffer from the “prior forgetting”. The procedure is initialized with any ¢° € Tl (po, p1). Then it
alternates between reciprocal projection proj, and Markovian projection proj  :

. def €
" = projr (¢°%) = ¢ (w0, 21)p" (win|w0, 1), (6)
N+1 N
. def
@2 = proju (¢ E ¢ wo) [T 2 )= ) [T 2 (nfen) )
n=1 n=0
forward representation backward representation

The reciprocal projection projp creates a new (in general, non-Markovian) process combin-
ing the distribution g(xo,21) and p"V* (xin|xo,21). The latter is called the discrete Brownian
Bridge. The Markovian projection proj,, uses the set of transitional densities {g(zy, |z, ,)}
or {q(xy,|x, )} to create a new Markovian process starting from ¢(xo) or q(x;) respectively.
Markovian projection keeps the marginal distributions at each timestep, but, in general, changes
the joint distributions between them. The sequence {g"} converges to the SB ¢* and causes the
reverse KL-divergence KL(¢"||¢*) to decrease monotonically at each iteration (cf. with IPF). The
authors of |Shi et al.|(2023)); Peluchetti| (2023a)) consider a continuous-time version of the IMF.

2.4 HEURISTIC BIDIRECTIONAL MODIFICATION OF IMF

The result of the Markovian projection admits both forward and backward representation. To
learn the corresponding transitional densities, one uses neural networks {qp (x4, |z, _,)} (forward
parametrization) or {q4(x,|z¢,,,)} (backward parametrization). The starting distributions are
as follows: gg(0) = po(xo) for the forward parametrization and g, (1) = p1 (1) for the backward
parametrization. In practice, the alternation between representations of Markovian processes is used
in both implementations of continuous-time IMF by DSBM algorithm (Shi et al 2023 Alg. 1)
based on diffusion models and discrete-time IMF by ASBM algorithm (Gushchin et al., 2024} Alg.
1) based on the GANSs. This bidirectional procedure can be described as follows:

N
gt = g (2o, 21)p" (@il w0, 1),  ¢**T* = p(a1) H a5 (@, ) ®)
proj (q1) n=0
backward parametrization
N+1
gt = ¢ 2 (20, 210)p" (|70, 21), ¢ = p(0) H ng+3(mtn,|xtn_1)' &)
projr (g4k+2) n=l
forward parametrization
Thus, only one marginal is fitted perfectly, e.g., qo(zo) = po(xo) in the case

of forward representation, while the other marginal is only learned, e.g., g¢o(z1) =
S po(@o) TTNZY go(@r, |ar,,,)dwodas - day = pa(ay).

3 ITERATIVE PROPORTIONAL MARKOVIAN FITTING

This section demonstrates that the heuristic bidirectional IMF ( is, in fact, the alternating imple-
mentation of IPF and IMF projections. §3.T|establishes that this heuristic defines the unified Iterative
Proportional Markovian Fitting (IPMF) procedure. §3.2]provides the analysis of the convergence of
the IPMF procedure under various settings, with the proofs provided in Appendix @}

3.1 BIDIRECTIONAL IMF 1s IPMF

For a given Markovian process g, we recall that its IPF projections (projo(¢) (3) and proji(q) @)
replace the starting distribution q(z¢) with po(z¢) and g(z1) with p; (x1), respectively. Further, the
process ¢***2 is a result of a combination of the Markovian projection proja in forward
parametrization and of the IPF projection proj; (@):

N N
g* 2 = p(a) [ ¢ (@, |2t,.,,) = proj, (q‘“““(xl) I " (2, |xtn+1)) :
n=0 n=0

projy (proj u (g*+1))
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Next, the process ¢**+* (@) results from a combination of the Markovian projection proj in
backward parametrization and of the IPF projection projo (3)):

N+1 N+1
¢ = p(zo) H q4k+3($tn|$tn_1) = projj (q4k+3($0) H q4k+3(xtn fﬂtn_l)) .
n=1 n=1
proj (proj v (q*+2))

Thus, we can represent the heuristic bidirectional IMF given by (9) and (8) as follows:

Iterative Proportional Markovian Fitting (Discrete time)

N
gt = q4k($0,Il)pws(l‘in\xo,h% g+ = p(x1) H q4k+1($tn71 |¢,,),

. =0
proj (g4*) -
projy (proj pq (g4 +1))
N+1
4k+3 _  Ak+2 we dk+4 _ 4k+3
¢ = 2 (o, 20)p" (wilwo, 21), ¢ =p(ao) [ P (@e, 7, L)
proj (g4++2) n=l
projo (proj o (q*F+3))

The heuristic bidirectional IMF alternates between two IMF projections (proj ,,(projx (-))) during
which the process “became more optimal” (step towards optimality property) and two IPF projec-
tions (projo and proj;) during which the marginal fitting improves (step towards marginal matching
property). We refer to this procedure as Iterative Proportional Markovian Fitting (IPMF). An
IPMF step consists of two IMF projections and two IPF projections. We hypothesize that IPMF
converges from any initial process ¢°(xq, i, z1), unlike IPF and IMF, which require a specific
form of the starting process. We emphasize that IPMF reduces to IMF when the initial coupling has
the correct marginals py and p; and has Brownian Bridge between the marginals. Similarly, if the
initial coupling is Markovian, is in the reciprocal class, and has the correct initial marginal pg or py,
then IPMF reduces to IPF. Fig.[I] visualizes these cases, clarifying the role of the initial coupling and
the iterative steps. A similar analysis for continuous-time IPMF is provided in Appx.[C.3

3.2 THEORETICAL CONVERGENCE ANALYSIS IN VARIOUS CASES

Our first result introduces a novel approach to quantify the optimality property for a Gaussian plan.
We show that any 2D Gaussian distribution (D > 1) is an entropic OT plan between its marginals for
a certain transport cost. Let Q, S € RP*P be positive definite matrices (Q, S = 0) and P € RP*P
bes.t. Q — P(S)"'PT = 0. Define

2(P,.Q.9) % (ST PT(Q - P(S)PT) (10)
Theorem 3.1. Let q(xg, 1) be Gaussian with marginals p = N'(n,Q) and p = N (v, S),

o =((9.(5 1))

Let A=Z=(P,Q,S). Then q is the unique minimizer of

min { /(—x?AxO) -q' (0, z1)drodr) — H(q') } (11)
q'€l(p,p)
Problem (TT)) is the OT problem with the transport cost c4(xg,z1) := —x] Axg and entropy regu-

larization (with weight 1) (Cuturi, [2013}|Genevayl, 2019). In other words, for any 2D Gaussian dis-
tribution g, there exists a matrix A(q) € R”* that defines the cost function for which ¢ solves the
EOT problem. We name A(q) the optimality matrix. If ¢ is such that A(q) = ¢~'Ip, then the cor-
responding transport cost is ¢ (xo, 1) = —e !+ (1, ) which is equivalent to e 1 - |21 — x| /2.
Consequently, g is the static SB (2) between its go(x) and g1 (1) for the prior W€, recall (3).

Main result. We prove the exponential convergence of IPMF (w.r.t. the parameters) to the solution
q* of the static SB problem (2)) between py and p; under certain settings.
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Theorem 3.2 (Convergence of IPMF for Gaussians). Let pg = N (o, Xo) and py = N (u1,X1) be
D-dimensional Gaussians. Assume that we run IPMF with € > 0, starting from some 2D Gaussiarﬂ

Yo P
" (v, 1) =N ((Aff) , <P§ SE)) € Pa.ac(RP x RP).
We denote the distribution obtained after k IPMF steps by
def o P
¢ (zg,21) 2N ((52) ) (P]S S:)) € Pa.ac(RP x RP)

and Ay, & Z(Px, Yo, Sk). Then in the following settings
* D =1, discrete- or continuous-time IMF (N = 1), any € > 0;
e D > 1, discrete-time IMF;, ¢ > 0 (see Appendix ;
the following exponential convergence bounds hold:
155 #2180 % — Inlle < a5 22485 * — Iple,
120 % vk — )2 < @My 2o — ) los 1Ak — ¢ Mplla < 8| Ao — ¢ plla,  (12)

with o, < 1 and || - |2 being the spectral norm; «,f depend on IPMF type (discrete or
continuous), initial parameters Sy, vy, Py, marginal distributions pg,p1, and €. Consequently,

KL (¢*|g") , KL (¢*[|g**) "= 0.

Proofidea. An IPF step does not change the “copula”, i.e., the information about the joint distribu-
tion that is invariant w.r.t. changes in marginals py and p;. In the Gaussian case can be represented
by the optimality matrix Ay, (see Lemma[D.3). In contrast, an IMF iteration changes the copula but
preserves the marginals. Next, we analyze closed formulas for the IMF step in the Gaussian case
(Peluchetti, [2023a}; (Gushchin et al.| [2024) and show that the IMF step makes Aj, closer to e ' Ip.
Specifically, we verify the contractivity of each step w.r.t. Ay. O

Our next result shows that the convergence of IPMF holds far beyond the Gaussian setting.

Theorem 3.3 (Convergence of IPMF under boundness assumption). Assume po and py
have bounded supports. Then for both discrete-time and continuous-time IPMF it holds

q** (z0, 1) > q* (20, 1), where % denotes weak convergence.

General conjecture. Given our results, we believe that IPMF converges under very general settings
(beyond the Gaussian and bounded cases). Moreover, in the Gaussian case, we expect exponential
convergence for all € > 0, all D, and IMF types. We verify these claims experimentally ().

Related works and our novelty. Our work provides the first theoretical analysis of bidirectional
IMF, whereas prior studies analyzed only vanilla IMF. (Shi et al.}|2023|, Theorem 8) and (Gushchin
et al., 2024, Theorem 3.6) proved sublinear convergence of IMF in reverse KL divergence for con-
tinuous and discrete cases. For IPF, sublinear convergence in forward KL divergence under mild
assumptions, as well as geometric convergence for Gaussians, are shown in (De Bortoli et al., 2021},
Propositions 4 and 43). Previous results cannot be directly generalized to IPMF. First, IPF and IMF
converge in different divergence measures, and a decrease in one does not imply a reduction in the
other. Second, IPF updates marginals at each step, so IMF must optimize toward a moving target,
whereas pure IMF has a fixed optimum. Unlike (Shi et al., 2023), which proves convergence only
from the IPF starting coupling, our analysis applies to arbitrary starting couplings. We also view the
starting coupling as a tunable hyperparameter and examine its effect in the next section.

4 EXPERIMENTAL [LLUSTRATIONS

This section provides empirical evidence that IPMF converges under a more general setting—
specifically, from any starting process—unlike IPF and IMF. The first goal is to achieve the same or
similar results across all used starting couplings and for both discrete-time (ASBM) and continuous-

time (DSBM) solvers on illustrative setups (§4.1] g4.4). The second one is to highlight

"We assume that ¢°(0) = po(xo), i.e., the initial process starts at po at time ¢ = 0. This is reasonable, as
after the first IPMF round the process will satisfy this property thanks to the IPF projections involved.
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Figure 2: Convergence of IPMF procedure with different starting process ¢°.

that, while all initializations converge to qualitatively similar outcomes, in practice, some offer bet-
ter generation quality and others better input-output similarity on real-world data, due to different
starting points. This allows one to choose initializations based on specific task requirements (§4.4).

In §3.T)and Appx.[C]we show that the bidirectional IMF and the proposed IPMF differ only in the
initial starting process. Since both practical implementations of continuous-time IMF (Shi et al.,
2023| Alg. 1) and discrete-time IMF (Gushchin et al., 2024, Alg. 1) use the considered bidirectional
version, we use practical algorithms introduced in these works, i.e., Diffusion Schrodinger Bridge
Matching (DSBM) and Adversarial Schrodinger Bridge Matching (ASBM) respectively.

Experimental setups. We consider multivariate Gaussian distributions for which we have closed-
form IPMF update formulas, an illustrative 2D example, the Schrodinger Bridges Benchmark
(Gushchin et al.| 2023b) and real-life image data distributions, i.e., the colored MNIST dataset and
the CelebA dataset (Liu et al.,|2015b). All technical details can be found in the Appx. E}

Starting processes. We focus on running the IPMF procedure from various initializations, re-
ferred to as starting processes. The starting processes are constructed by selecting different cou-
plings ¢"(x¢, 1) and incorporating the Brownian Bridge process levo », (.e., W€ conditioned
on zg,71). In the discrete-time setup, for each selected coupling ¢°(zo,21) we construct the
starting process as ¢°(zo, Tin, 71) = ¢°(z0, 21)p" " (Tin|z0,71) and T° = fW\;O,mlqu(%vxl)
for the continuous-time case (see Appx. [C). We consider three “starting” scenarios: IMF-like
starting process of the form ¢%(zo,2z1) = po(zo)p1(z1), IPF-like starting process of the form
q°(z0,71) = po(xo)p" " (21]x0), and various starting processes which cannot be used to initial-
ize IMF or IPE. The latter demonstrates that IPMF converges under a more general setting.

The results of DSBM and ASBM with different starting processes are denoted as (D/A)SBM-
*coupling*, e.g., DSBM-IMF for DSBM with IMF as the starting process.

Remark. Notably, in practice, both the IPF and IMF procedures can be recovered through different
implementations. For example, IPF can be realized through (D/A)SBM with the IPF starting cou-
pling, or alternatively via DSB (De Bortoli et al., [2021). IMF, in turn, can be implemented using
(D/A)SBM with a one-directional parametrization. However, in practice, matching-based meth-
ods exhibit superior performance (Shi et al.| [2023). Furthermore, the authors of (Shi et al., 2023
Peluchetti, [2023a}; (Gushchin et al., [2024) observed that bidirectional IMF does not accumulate ap-
proximation errors, whereas relying solely on one direction parametrization leads to error accumu-
lation and eventual divergence (De Bortoli et al.l 2024, Appx. I). Therefore, we argue that a direct
comparison between the IPMF procedure and previous practical implementations is unnecessary.

4.1 HIGH DIMENSIONAL GAUSSIANS

This section experimentally validates the convergence of IPMF for the multivariate Gaussians (see
our General conjecture, §3.2). We use explicit formulas for the discrete IPF and IMF (Gushchin
et al.| 2024, Thm. 3.8) and follow the setup from (Gushchin et al.l |2023al Sec. 5.2). Specifically,
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e=0.1 e=1 =10
Algorithm Type D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128
Best algorithm on benchmark’ Varies  1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31
DSBM-IMF 1.21 4.61 9.81 19.8 0.68 0.63 5.8 29.5 0.23 5.45 68.9 362
DSBM-IPF 2.55 174 15.85 17.45 0.29 0.76 4.05 29.59 0.35 3.98 83.2 210
DSBM-Identity IPMF 1.23 18.86 24.71 21.39 0.26 0.69 7.46 29.5 0.13 3.99 88.2 347
ASBM-IMF' 0.89 8.2 13.5 53.7 0.19 1.6 5.8 10.5 0.13 0.4 1.9 4.7
ASBM-IPF 3.06 14.37 4435 32.5 0.18 1.68 9.25 20.47 0.13 0.36 2.28 4.97
ASBM-Identity 0.58 24.9 29.1 85.2 0.19 2.44 8.28 11.61 0.12 0.35 1.66 2.86
SF?M-Sink!  Bridge Matching  0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819

Table 1: Comparisons of CBWS-UVP 1 (%) between the static SB solution ¢* (z¢, 1) and the learned solution on the SB benchmark.
The best metric is bolded. Results marked with f are taken from (Gushchin et al.}|2024) and (Gushchin et al.}[2023b). The results of DSBM
and ASBM algorithms starting from different starting processes are denoted as (D/A)SBM-*name of starting process*

(@) x ~ po (b) DSBM-IMF (c) DSBM-Inverted 7 (d) ASBM-IMF (e) ASBM-Inverted 7

Figure 3: Samples from DSBM and ASBM learned with IPMF using IMF and ¢™” starting processes on
Colored MNIST 3—2 (32 x 32) translation for ¢ = 10.

we consider the Schrédinger Bridge (SB) problem with D = 128 and € = 0.3, where the marginal
distributions are Gaussian: pg = N(0,%0) and p; = N(3,%;), with 0 € R? denoting the vector
of all zeros and 3 € RP - the vector of all threes. The eigenvectors of ¥ and ¥, are sampled
from the uniform distribution on the unit sphere. Their eigenvalues are sampled from the loguniform
distribution on [— log 2, log 2]. We choose N = 3 intermediate time points uniformly between ¢ = 0
and ¢ = 1 and run 100 steps of the IPMF procedure, each consisting of two IPF projections and two
Markovian—Reciprocal projections (see . Denote as ¢** = ¢**(x¢, ;) the IPMF output at the
k-th step and let ¢* = ¢*(z0, z1) be the solution of the static SB. Fig.[2|shows that both the forward
KL (¢*||¢**) and reverse KL(q**||¢*) divergences converge. The quantities from (T2) converge
to zero exponentially, as expected. Note that particular starting processes can cause an immediate
match of the parameters: an IMF starting process that already has the required marginals converges
only in optimality, while IPF converges to the true marginals with the unchanged optimality matrix.

4.2 ILLUSTRATIVE 2D EXAMPLE

We consider the SB problem with ¢ = 0.1, py being a Gaussian distribution on R? and p; being
the Swiss roll. We train DSBM and ASBM algorithms using IMF and IPF starting processes. Ad-
ditionally, we consider Identity starting processes induced by ¢°(zg, x1) = po(x0)ds, (71), i.e. we
set 1 = xq after sampling 2y ~ p(zo). The purpose of testing the Identity coupling is to verify
that IPMF converges even when initialized with a naive coupling. Furthermore, we hypothesize that
this coupling is the best in terms of the optimality property. We present the starting processes and
the results in Fig.[7)in Appendix [E] In all the cases, we observe similar results.

4.3 EVALUATION ON THE SB BENCHMARK

We use the SB mixtures benchmark (Gushchin et al.| |2023b)) with the ground truth solution to the
SB problem to test ASBM and DSBM with IMF, IPF, and Identity (§4.2)) as the starting processes.
The benchmark provides continuous distribution pairs pg, p; for dimensions D € {2, 16,64, 128}
that have known SB solutions for volatility € € {0.1, 1,10}. To evaluate the quality of the recovered
SB solutions, we use the cBW%—UVP metric (Gushchin et al.| |2023b). Tab. [1| provides the results.
We also include the results of the standard baseline for Bridge Matching tasks called SF*M-Sink
(Gushchin et al.| 2023b). We provide training details and additional results in Appx. |El All starting
processes yield similar results within each solver type (DSBM or ASBM).

4.4 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

To test IPMF on real data, we consider two unpaired image-to-image translation setups: colorized 3
— colorized 2 digits from the MNIST dataset with 32x32 resolution size and male— female faces
from the CelebA dataset with 64 x 64 resolution size.
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Initialisation (coupling) DSBM ASBM

DDPM  SD DDPM  SD DDPM  SD
IMF gpEdit SDEdit IMF SpEdit SDEdit IMF gpEdit SDEdit

FID|| 0.0 3523 2877 61.56 [13.65 14.84 22.65 33.11 [19.32 21.84 20.64 19.58
MSE(zo,z1)l|0.16 0.02  0.02 00 |[0.16 0.09 0.04 003 | 017 0.07 0.08 0.07

Identity Identity Identity

Table 2: Qualitative results on CelebA (64 x 64) for male—sfemale translation with ASBM and DSBM
across different starting processes. Generative quality (FID]) and similarity (MSE(zo, 1)) are reported on
the test set. Best and second-best values for solvers are marked in bold and underline, respectively.

Colored MNIST. We construct train and test sets by RGB colorization of MNIST digits from corre-
sponding train and test sets of classes “2” and “3”. We train ASBM and DSBM algorithms starting
from the IMF process. Additionally, we test a starting process induced by the independent cou-
pling of the distribution of colored digits of class “3” (po) and the distribution of colored digits
of class “7” with inverted RGB channels i“V7(:v1)). We refer to this process as Inverted 7, i.e.,
¢ (zg,z1) = po(zo)p™7(x1) (see Fig. @gj Appx. @contains further technical details. We learn
DSBM and ASBM on the train set of digits and visualize the translated zesr images (Fig. [3).

Both DSBM and ASBM algorithms starting from both IMF and Inverted 7 starting process fit the
target distribution of colored MNIST digits of class “2” and preserve the color of the input image
during translation. This supports that the limiting behavior of IPMF resembles the solution of SB.

CelebA. We consider the IMF-OT varia-
tion of the IMF starting process. It is in-
duced by a mini-batch optimal transport cou-
pling ¢9T (g, ) (Tong et al., [2024; [Poola-|
dian et al| [2023). We also test Identity
(§4.2) starting process. Additionally, we
test starting processes induced by DDPM
SDEdl[ and SD SDEdlt couplings, which (@) zo~po (b) DSBM-IMF-OT (c) ASBM-IMF-OT ~ (d) zlquo

is the SDEdit method (Meng et al) [2022)

used for male—female translation with (1)
DDPM (Ho et all [2020) model trained
on the female part of CelebA and (2)
Stable Diffusion v1.5 2022)
with designed text prompt, see Appx. [E.3
The aim of introducing such a coupling 15 t0
test the hypothesis that well-designed SDEdit
couplings can improve the metrics of both

properties. We use approximately the same
number of parameters for the DSBM and the
ASBM generators and 10% of images for
evaluation (see Appx.[E] other details).

We provide qualitative results in Fig. [ Ad-
ditionally, we report the final FID score (gen-
eration quality) and the Mean Squared Error

(MSE) between the input xy and the trans-
lated image Z; (input-output similarity) in
Table 2] Figure [] illustrates that the mod-
els (1) converge to the target distribution and
(2) preserve semantic alignment between in-
put and output (e.g., hair color, background).
Despite this, their outputs differ due to the in-
fluence of initialization on optimization tra-

jectories. For DSBM, our couplings (SD i
SDEdit, DDPM SDEdit, Identity) maintain Figure 4: Results of CelebA at 64 x 64 size for male— female
generation quality while greatly improving translation learned with ASBM and DSBM using various

similarity. For ASBM, they boost similar- starting processes for e = 1. Samples xo ~ po are samples

. . . . from the source marginal. Samples z; ~ ¢" are samples from
ity but slightly reduce quality. Results with ¢ ipitialization coupling ¢° (x1|20) for a given o from po.

(m) xg ~po (n) DSBM-Identity (0) ASBM-Identity ~ (p) x1 ~ qo
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—— DSBM-IMF —— DSBM-IMF
—— DSBM-SD SDEdit ~—— DSBM-SD SDEdit
—— DSBM-DDPM SDEdit —— DSBM-DDPM SDEdit 60

—— ASBM-IMF
—— ASBM-DDPM SDEdit
—— ASBM-SD SDEdit

—— ASBM-Identity
0100

30
0.075
30
0.050 20
20
0.025

o 2 4 6 8 10 12 14 16 18 o 2 4 6 8 10 12 14 16 18 o 2 4 6 8 10 12 14 16 18
IPMF PMF IPMF

(a) MSE(x0, 41) for (D/A)SBM (b) FID for DSBM (c) FID for ASBM

0.200

0175 71 DSBM-Identity

—— ASBM-IMF
0.150 7 — ASBM-DDPM SDEdit
~—— ASBM-SD SDEit
0.125 1 — ASBM-Identity

—— DSBM-Identity

L2 cost
FID

Figure 5: Test metrics in CelebA male—female (64 x 64) as a function of IPMF iteration for
various starting couplings.

(c) DSBM-Identity translation results.

Figure 6: Results of AFHQ at 512x 512 size for cat—wild translation learned with DSBM using various
starting processes for e = 1.
Identity couplings support our hypothesis (§4.2), whereas experiments with SDEdit offer only par-
tial validation and yield moderate FID.

Furthermore, in Figure[5|we present a quantitative study of IPMF convergence, reporting FID
sumana et al, [2024) and the Mean Squared Error (MSE) between the inputs and the translated
outputs as functions of the IPMF iteration. Both metrics are computed on the CelebA male— female
(64 x 64) test set. We observe a consistent pattern: the higher the similarity or generation quality of
the coupling, the better the model performs on the corresponding metric. For additional quantitative
results on CelebA 64 x 64, we refer the reader to Appendix[E.4]

AFHQ. For AFHQ (Choi et all [2020), we con- Counli FIDL MSEL CMMD
sider classes cat and wild with 512 x 512 reso- oupTng | v v v
DSBM-IMF-OT | 53.42 0.085 0.591

lution images. Each class contains approximatel :

5000 sam[?ies. We run DSBM with II)lE\)/[F-OT ang DSBM-Identity | 65.19 0.054 0.731
Identity couplings and present the results in Fig-
ure [] and Table [EZTO] We observe similar quality-
similarity tradeoff as Celeba setup. We provide
technical details for this setup in Appendix [E.10]

Table 3: Results of AFHQ at 512x512 size for
cat—wild translation learned with DSBM using
various starting processes for e = 1.

For a broader discussion of the potential implications and limitations of this work, see Appendix [A]

5 BROADER IMPACT

This paper presents work whose goal is to advance the field of Artificial Intelligence, Machine
Learning and Generative Modeling. There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.

10
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6 LLM USAGE

Large Language Models (LLMs) were used only to assist with rephrasing sentences and improving
the clarity of the text. All scientific content, results, and interpretations in this paper were developed
solely by the authors.
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A DISCUSSION

Potential impact. The IPMF procedure demonstrates a potential to overcome the error accumulation
problem observed in distillation methods—such as rectified flows (Liu et al., 2022} [2023b)—which
are used to accelerate foundational image generation models like StableDiffusion 3 in
[2024). These distillation methods are the limit of one-directional IMF procedure with € — 0. The
one-directional version accumulates errors, which may lead to the divergence (De Bortoli et al.,
[2024 Appx. I). The use of the bidirectional version (with e > 0) should correct the marginals and
make diffusion trajectories straighter to accelerate the inference of diffusion models. We believe
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Method View of bidirectional procedure Convergence guarantees Starting coupling
DSBM A heuristic approach for mitigat Only for one-directional continuous-time pro:
H ed” - - - P
(Shi et al }2023) ing error accumulation cedure with IMF and IPF starting couplings Only IMF and IPF
ASEM A heuristic approach for mitigat- Only for one-directional discrete-time proce-
(Gushchin et al1[2024) stic approac & y K . 5 P Only IMF
ing error accumulation dure with IMF starting couplings
A theoretically . groqnded 4" For Gaussian marginals in discrete and contin-
IPMF proach  for  mitigating error uous time (Theorem@) and convergence for
(our work) accumulation and managing the ) y & Arbitrary

bounded-support distributions in discrete and

trade-off between input—output . .
P P continuous time (Theorem[3:3).

similarity and generative quality

Table 4: Positioning of our IPMF framework relative to prior bidirectional SB heuristics.

that considering such distillation techniques from the IPMF perspective may help to overcome the
current limitations of these techniques.

Another potential impact of our contribution is the advancement of multi-marginal SB methods.
This direction has been explored only rarely in the literature (Chen et al., 2019} |2023a; [Shen et al.,
2025, |[Howard et al., 2025} [Lavenant et al.| 2021; Theodoropoulos et al.,|2025)), mainly because the
multi-marginal case is inherently difficult: it requires solving multiple two-marginal (classical) SB
instances. A notable examples are (Howard et al.,|2025; | Theodoropoulos et al.,[2025)), which extends
the IMF procedure to the multi-marginal setting. Within this context, our framework provides a way
to select a suitable starting coupling for initialization, thereby offering a potential route to reducing
the training burden. In this sense, our contribution may encourage more systematic and deeper
analysis of multi-marginal SB.

Limitations. While we show the proof of exponential convergence of the IPMF procedure in the
Gaussian case in various settings, and present a wide set of experiments supporting this procedure,
the proof of its convergence in the general case still remains a promising avenue for future work.

B MOTIVATION FOR SB OVER FOUNDATIONAL MODELS

At first glance, one might consider foundational models as potential baselines, since translation via
large text-to-image models trained on extensive image corpora may work adequately on the bench-
mark datasets we consider (CelebA, MNIST). However, they do not constitute a relevant baseline
for the unpaired translation task, because their training data may lack the domain-specific examples
required. In contrast, methods for solving the unpaired translation (including the SB) are designed
to address domain-specific tasks across various scientific fields (Schneider et al., [2022; |Singh et al.,
2024; |Shi et all 2023). Moreover, these methods successfully address non-image-related down-
stream tasks such as single-cell data analysis (Tong et al., 2024} Section 6), where large text-to-image
models are just irrelevant.

C CONTINUOUS-TIME SCHRODINGER BRIDGE SETUP

For considering the continuous version of Schrodinger Bridge we denote by P(C([0, 1]), R”) the
set of continuous stochastic processes with time ¢ € [0, 1], i.e., the set of distributions on continuous
trajectories f : [0,1] — RP. We use dW, to denote the differential of the standard Wiener process.
We denote by p” € P(RP*(N+2)) the discrete process which is the finite-dimensional projection
of T'to time moments 0 =tg < t; < --- <ty <tnyg1 = 1.

C.1 SCHRODINGER BRIDGE (SB) PROBLEM IN CONTINUOUS-TIME

This section covers the continuous-time formulation of SB as its IPF and IMF procedures. First,
we introduce several new notations to better align the continuous version with the discrete-time
version considered in the main text. Consider the Markovian process 7" defined by the corresponding
forward or backward (time-reversed) SDEs:

T :dwy = vT (4, t)dt + VedW;", 0 ~ polo),
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T :dry =v (w4, t)dt +VedW; , w1 ~ p1(x1),

where we additionally denote by Wt+ and W, the Wiener process in forward or backward time. We
say T, and T},, denotes the conditional process of T' fixing the marginals using delta functions,

i.e., setting po(zo) = 0z, (x) and p1(z1) = Iz, (2):
Ty : dy = 07 (2, t)dt + VedW,E, 3o ~ 04y (),
Ty, : dxy = v (x4, t)dt + VedW,, 21 ~ by, ().

Moreover, we use p(xo)7],, to denote the stochastic process which starts by sampling zo ~ p(zo)
and then moving this o according the SDE given by T},,, i.e., p(w0)T]s, is short for the process
J Tyzop(x0)dxo. Finally, we use the shortened notation of the process Tjo 1 (o, 21) conditioned
on its values at times 0 and 1, saying p” (o, 1)Tj0,1(z0, #1) = [ Tjo,1(%0, 21)p” (w0, x1)dwodas.
This links the following equations with the discrete-time formulation.

Schrodinger Bridge problem. Considering the continuous case, the Schrodinger Bridge problem
is stated using continuous stochastic processes instead of one with predefined timesteps. Thus,
the Schrodinger Bridge problem finds the most likely in the sense of Kullback-Leibler divergence
stochastic process 1" with respect to prior Wiener process W€, i.e.:

min  KL(T||[W¢), (13)
TeF(po,p1)

where F(po, p1) C P(C([0,1]),RP) is the set of all stochastic processes pinned by marginal dis-
tributions py and p; at times 0 and 1, respectively. The minimization problem (T3] has a unique
solution 7* which can be represented as forward or backward diffusion (Léonard, 2013):

T* : doy = v*F (24, t)dt + VedW,", 0 ~ pola0),

T* :dry = 0" (w4, t)dt + VedW;,  x1 ~ p1(z1),
where v** and v*~ are the corresponding drift functions.
Static Schrodinger Bridge problem. As in discrete-time, Kullback-Leibler divergence in (13)
could be decomposed as follows:

KL(T|[w*) =KL(pT(l“o,$1)|IPW€(£07$1))+/KL(T\zo,zl||W\Zo,m)dPT($o’$1)- (14)

It has been proved (Léonard, [2013) that for the solution 7™ it’s conditional process is given by

f;wl = VV‘;O’M. Thus, we can set 1), », = leom zeroing the second term in (14) and
minimize over processes with T}, », = VV‘;O =, - This leads to the equivalent Static formulation of
the Schrodinger Bridge problem:

min  KL(q(zo,21)|[p" " (z0,21)), (15)
q€II(po,p1)

where I1(po, p1) is the set of all joint distributions with marginals po and p;. Whether time is discrete
or continuous, the decomposition of SB leads to the same static formulation, which is closely related
to Entropic OT as shown in (3).

C.2 ITERATIVE PROPORTIONAL FITTING (IPF) FOR CONTINUOUS-TIME

Following the main text, we describe the IPF procedure for continuous-time setup using stochastic
processes. Likewise, IPF starts with setting 70 = po(xo)I/V‘;O and then it alternates betwethe

followinging projections:
. 2k def
T2+ — proi. (pT (1) T2 ) & p1 ()T, (16)

. 2k+1 def
T2k+2 _ proj, (pT (:Uomi’zﬂ) def po(xo)TQkH- (17)

|zo

As in the discrete-time case, these projections replace marginal distributions p” (z1) and p” () in
the processes p” (x1)T],, and p” (20)T]s, by p1(z1) and po(xo) respectively. Similarly to discrete-
time formulation, the sequence of T* converges to the solution of the Schrodinger Bridge problem
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T* implicitly decreasing the reverse Kullback-Leibler divergence KL(T*||T*) between the current
process T* and the solution to the SB problem T+. Additionally, it should be mentioned that existing
methods perform projections via numerical approximation of forward and time-reversed conditional
processes, 1|, and T}, , by learning their drifts via one of the methods: score matching (De Bortoli
et al.,[2021) or maximum likelihood estimation (Vargas et al., [ 2021)).

C.3 ITERATIVE MARKOVIAN FITTING (IMF) FOR CONTINUOUS-TIME

IMF introduces new projections that alternate between reciprocal and Markovian processes starting
from any process T pinned by pg and p; at times 0 and 1, i.e., in T7° € F(po, p1):

2k+1 _ : 2k def 2k €
T2 = projg (T2%) = p* (w0, 20) W, 41 (18)
2k+2 _ : 2k-+1) def 2+l 2k+1 _  T2k+L 2k+1
T = proj, (T7*H) =p (xO)TIV[‘ZQ =p (‘Tl)TM|x1 . (19)
forward representation backward representation

where we denote by T, the Markovian projections of the processes 7', which can be represented as
the forward or backward time diffusion as follows (Gushchin et al., 2024, Section 2.1):

1-t¢
To — Ty
1—-1¢

This procedure converges to a unique solution, which is the Schrodinger bridge 7 (Léonard, [2013).
While reciprocal projection can be easily done by combining the joint distribution p! (xq, 21) of the
process 1" and Brownian bridge V[/fch «,» the Markovian projection is much more challenging and

must be fitted via Bridge matching (Shi et al.|[2023;; |Liu et al.; Peluchetti, 2023b).

+
T1—
Tar = da = v (xf, t)dt + VedW,T, w9 ~p'(x0), vip(zf,t) = / 2L T (g |2y )diry,

Tor - day = vy (g, )dt +VedW,, a1 ~p'(21), wvylzy,t) = / pT (w02 )dxo.

Since the result of the Markovian projection (I9) can be represented both by forward and back-
ward representation, in practice, neural networks v; (forward parametrization) or v; (backward
parametrization) are used to learn the corresponding drifts of the Markovian projections. In turn,
starting distributions are set to be pg(x¢) for forward parametrization and p; (z1) for the backward
parametrization. So, this bidirectional procedure can be described as follows:

4k+1 _ T € 4k+2 _ 4k+1
T =p (o, xl)Wla:o,xl’ T = p (xl)TMm , (20)
proj (T4%) backward parametrization
4k+3 _ T2 € 4k44 _ 4k+3
T =p (o, 21)Wgy 2 T = po(gco)T]VIlI0 . 21
—_—
proj (T4k+2) forward parametrization

C.4 ITERATIVE PROPORTIONAL MARKOVIAN FITTING (IPMF) FOR CONTINUOUS-TIME

Here, we analyze the continuous version of the heuristical bidirectional IMF. First, we recall, that
the IPF projections projo(7") and proj; (T') given by and of the Markovian process 7' is just
change the starting distribution from p” () to po(zo) and p” (z1) to p1 (z1).

Now we note that the process 74 *2 in (20) is obtained by using a combination of Markovian
projection proj a4 given by in backward parametrization and IPF projection proj; given by (17):

Ak+2 4k+1 .o ARt 4k+1
TH+2 = p, (xl)TMljc_l — proh(p (xl)TMl";l) .
projl(projM(T4k+1))

In turn, the process 744 in is obtained by using a combination of Markovian projection projaq
given by in forward parametrization and IPF projection projo given by (T6):

. 4k+3 )
T3 = po(ﬂfo)Tﬁﬁf = projy (p" (xo)T%;j’) :

proj (proj g (T4++2))
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Combining these facts we can rewrite bidirectional IMF in the following manner:

Iterative Proportional Markovian Fitting (Conitnious time setting)

T = g (w0, 2) Wy, o, TH = (@) T3 (22)
proj (T%) proj, (proj u, (T45+1))

T =g (g, 0) W 0y T = o) TS (23)
proj (T4k+2) projg (proj o (T4 +3))

Thus, we obtain the analog of the discrete-time IPMF procedure, which concludes our description
of the continuous setups.

D THEORETICAL ANALYSIS FOR GAUSSIANS

Here, we study behavior of IPMF with volatility ¢ between D-dimensional Gaussians pg =
N (po,%0) and p; = N(puy,%1). For various settings, we prove that the parameters of ¢** with
each step geometrically converge to desired values pg, (41, X0, 21, €. The steps are as follows:

1) In Appendix we reveal the connection between 2D-dimensional Gaussian distribution and
solution of entropic OT problem with specific transport cost, i.e., we prove our Theorem [3.1]

2) In Appendix we study the effect of IPF steps on the current process. We show that during
these steps, the marginals become close to py and p;, and the optimality matrix does not change.
We also prove that the spectral norms of the marginal matrices are bounded during the whole IPMF
procedure.

3) In Appendix [D.3] we study the effect of IMF step on the current process when D > 1. We show
that after a discrete IMF step, the distance between current optimality matrix and desired one can be
bounded by the scaled previous distance.

4) In Appendix [D.5] we study the effect of IMF step in a particular case D = 1. We show that after
IMF step (continuous or discrete with N = 1), marginals remain the same, and the intermediate
distribution becomes closer to the intermediate distribution of the static e-EOT solution between the
marginals.

5) Finally, in Appendices and we prove our main Theorem [3.2] for the case D > 1 and
D =1, respectively.

D.1 GAUSSIAN PLANS AS ENTROPIC OPTIMAL TRANSPORT PLANS

Proof of Theorem[3.1] The conditional distribution of ¢(xo|z1) has a closed form:
q(zolzr) = N (woln+ P(S) '(z1 —v),Q — P(S)"'PT)
= ZayZa, exp (20 (Q — P(S)"'PT) " P(S) 1)

= ZgyZz, €XP (xIAxO) , 24)
where factors Z,, and Z,, depend only on x and x4, respectively, and the matrix A is
A=(8)7'PT(Q-P(S)7'PT)L (25)

Theorem 3.2 from [Gushchin et al.[(2023b) states that if the conditional distribution g(x1|z¢) can be
expressed as:

q(zolz1) o< exp(—c(zo, 1) + fe(x0)), (26)

where ¢(zg, x1) is a lower bounded cost function, and the function f.(z() depends only on z, then
q solves 1-entropic OT with the cost function ¢(xg, x1). Equating the terms in (24) and which
depend on both z( and x;, we derive the formula for the cost function is ¢(zg, 1) = —zy Azy. We
denote it as c4 (g, z1) := —x Az to show the dependency on the optimality matrix A.

We only need to note that we can add any functions f(z¢) and g(x;) depending only on z or z1,
respectively, to the cost function c4 (g, z1) = —z{ Az, and the OT solution will not change. This
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is because the integrals of such functions over any transport plan will be constants, as they will
depend only on the marginals (which are given) but not on the plan itself. Thus, for any A € RP*P|
we can rearrange the cost term c4 (2o, 1) so that it becomes lower-bounded:

éa(zo, 1) = | Azol*/2 — @] Azo + ||a1|]?/2 = || Azo — 21[/2 2 0,

where ¢4 (z0, z1) is a lower bounded function. O

D.2 1IPF STEP ANALYSIS

We run IPMF with the desired volatility parameter e, between the desired distributions pg =

N(po, o) and py = N(u1,X1), starting with the process N <(L:/O> ) (%DO ];)) which has

the correlation matrix P .
One IPMF step can be decomposed into the following consecutive steps:
1. IMF step: projections proj ,(projy ), refining the current optimality matrix,
2. IPF step: projection proj;, changing final prior at time ¢ = 1 to p1 = M (1, 21),
3. IMF step: projections proj ,(projy ), refining the current optimality matrix,
4. IPF step: projection proj,, changing starting prior at time ¢t = 0 to pg = N (po, Xo).

We use the following notations for the covariance matrices changes during IPMF step:

So P\ mar (5 P 1pp Q P
PT S pPT g (PHT 3
wr ([ Q p wrp (%o P
I:,T 21 (P//>T S/ )

and for the means, the changes are:

(i) () 2 () 2 ) = (),
v 14 M1 M1 14

Lemma D.1 (Improvement after IPF steps). Consider an initial 2D-dimensional Gaussian joint

distribution N (<MO> , (ZO P)) € szac(RD xRP). We run IPMF step between distributions

v PT S
Yo P

N (o, X0) and N (111, 31) and obtain new joint distribution N ((Zﬁ) , ((P”)T S’))' Then,

the distance between ground truth 1,31 and the new joint distribution parameters decreases as:
I(8) 38182 = Ipllz < IPall3- [1PYIE - 1S3 5187% — Ip]lo, 27

1 N 1

1220 =)l < B Nz 1Pl - 11212 (v = ) 2, (28)
where P, = 251/2]55’1/2,P,§ = (Q)*%P’E;%7Pn = (Q)fl/zpﬁfl/2 and P! =

—1/2 _ . .
PN 2p/ '(8")~1/2 are normalized matrices whose spectral norms are not greater than 1.

Proof. During IPF steps, we keep the conditional distribution and change the marginal. For the first
IPF, we keep the inner part xq|x; for all 1 € RP:

N(GEQ“AO —|—15571(x1 - V),ZO —Psilp—r) :N(I0|T]—|—P/21_1(.I1 —,I.l,l),Q - P’El_l(P’)T) .

This is equivalent to the system of equations:

Yo—PSTIPT = Q-PxY(P)T, (29)
Pyt = pSTL (30)
po—PS~lv = n—P'Y M. (31)
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Similarly, after the second IPF step, we have equations:

¥, -PT(@Q7P = S — (PP, (32)
(Pt = P, (33)
pm-PQ)n = v — (PS5 ko (34)

Covariance matrices. Combining equations (30), (29) and (33), (32) together, we obtain:

So-Q = PSHI-%)S'PT, //29). @0) (39)
Ip — %o(Q)™! PSS - 9)STIPT(Q) 7Y, /1B (@) (36)
-5 PT(Q)(Ip —So(Q) 1P, //B2, B3 (37)
-§ = PT(Q)'PS™ 1( - S)STLPT(Q)"'P, //(36) insert to (B7)
Y-8 = (P)'s;'PS™ (21 S)S~IPTx;'P", //change using (33)
(S) ) —1p = () HP) Tyt ng s

(57251572 — ID) STEPTRSE nytpr(s)E.
The matrices (29) and (32) must be SPD to be covariance matrices:
Yo—PSTIPT =0 — Ip = 251/215571/2.571/2]51'251/2’
S (PSP =0 = Ip e SRSV ()2 (P T 2,

In other words, denoting matrices P, := 251/2]55*1/2 and P/ := 20_1/2]3”(5')’1/2, we can
bound their spectral norms as || P, |2 < 1 and || P ||z < 1. We write down the final transaction for
covariance matrices:

(S 25y (S") "2 —Ip=(P)T - P, (S72%,872 —Ip)- Pl - P/ (38)

Hence, the spectral norm of the difference between ground truth 31 and current S’ drops exponen-
tially as:

1(S)"321(S") "2 — Iplla < |Pull3 - |1PLIB - 1S™2%1S™% — Ip]lo.

Means. Combining equations (31), (30) and (34), (33) together, we obtain:

po—n = PST'w— PO =P (v — ), //GD, B0 (39

V- o= (P35 o —PT(Q) =P (Q) (ro—mn), //BD,3G3 (40)

V- = pT(Q)*lplEfl(l/ — 1), //insert (39) to (@0)
S ) = S PPTQ QPSR ).

The matrices (29) and (32) must be SPD to be covariance matrices:

QrPRNP)T = Ip=(@7PPET R (P (Q)
e (e e b T () AR (2) ey
1 -1 ~ A
Denoting matrices P’ := (Q)"2P'Y, 2 and P, := (Q)~Y/?2P¥%; /2 we can bound their spectral
norms as || P} ||z < 1and || P,||2 < 1. We use this to estimate the {2-norm of the difference between

the ground truth 1 and the current mean:

_1 A~ _1
SO ) = B PS5 (- ), (1)

_1 ~ _1
1202 (@ = gl < BT 2 [Pl 1151 % (v = ) -
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Lemma D.2 (Marginals norm bound during IPMF procedure). Consider an initial 2 D-dimensional

Gaussian joint distribution N Ho , E% P € Py QC(RD X RD). We run k
1Z0) PO So ’

IPMF step between distributions N (po,X0) and N'(u1,%1) and obtain new joint distribution

N (o), Epr Py . Then the norm ||Sk||2 can be bounded independently of k by:
Vi Pk Sk

X _ _1 _1 -~
IPale g, < max{hmae(Sy F RSy D, IS e 42)
min{)\mm(SO 22150 2), 1}

This statement also implies the invertibility of all matrices Sk.

[[Sklle <

For matrices Qy, the results are analogous.

1
Proof. Consider the last IPMF step. We denote symmetric matrices Ay = S, >¥15, * —

Ip. Aoy = Sp2S18 % — Ip and Amin(A) = min{0, Amin(A)}, Aman(A) =
max{0, Amaz(A)}. Next, we estimate spectral norm of Sy_1 as follows:

1 _1

Ap=8,2%8,° —Ip »
1 1

S, 2X15, 2 =

X =

)\mzn(Ak)ID = 5\min(Ak)IDa

Note, that by design we have Ay = —Ip = —1 < Xmin(Ak) <0=0< (S\mm(Ak) +1) <1
and can obtain

Z1 = ()‘mzn(Ak) + I)Sky
1
S X /X,
by
I1Skll2 < 1]} (43)

Similarly, we prove that

Sk

Y

1 .
1 =157 2 € Amaz(AR) + DIZ7 2
S (A 1 1S5 "l (Ar) + D=

Now, we prove that Xmin(Ak) > j\mm(Ak,l). We denote by P/ and P, normalized matrices after
the second IPF step and the first IMF step on the last iteration, respectively (see Lemma [D.T)). For
any x € RP ||z|l2 < 1, we calculate the bilinear form:

z Ay @ z (P . P, - (Sk__%lzlsk__% ~1Ip)-P, - Pz
= (P -Plx) Av (B - Pllw),

Xmln(Ak) min{(), min xTAkx}

lzll2=1

v

min {0, min (P - P"2)T Ap_1(P] - P/m/x)}

llzll2=1
1Py - Plla|3 - min {0, Apin (Ar—1)}
||Pn||2HPr/L/||2||$H§ “Amin(Bk-1) > Amin(Dk—1).

ALY

Hence, after each IPMF step Xmin(Ak) increases and can be lower bounded by the initial value

Xmin(Ak) > Xmin(Ao) using math induction. It implies the invertibility of all matrices Sy and
boundness of norms

1Slls i 1l o %l [1Z1]l2 '
B Arnin(Ak) +1 B )\mzn(AO) +1 min{)\min(SO_éﬁlSo_ﬁ), ].}
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Similarly, we prove that
5\'maw(Ak) < ;\mam(Ak—l) = ||Sk_1||2 < (;\nLax(AO) + 1)H21_1||2
_1 _1
max{Amaz(Sy * 215, ?), 1}||21_1||2-

A

O
Lemma D.3 (IPF step does not change optimality matrix A). Consider an initial 2D-
dimensional Gaussian joint distribution N ((/f/o) , (gg 1;)) € PQ’QC(RD X RD). We
run IPF step between distributions N (uo, Xo) and N (p1,31) and obtain new joint distribution

/
N ((lZ) , ( ( PC?)T g )) Then, IPF step does not change optimality matrix A, i.e.,
1

A=Z(P,%,S)=Z(P,Q,%).

For the second IPF step, the results are analogous.

Proof. The explicit formulas for 2(P, ¥, S) and E(P’, Q, %) are
2(P,%0,S) = S7'PT.(%y— PSIPT),
E(P,Q, %) SIHP)T Q=P (P,
The first terms are equal due to equation (30), and the second terms are equal due to (29).

We can prove this lemma in more general way. We derive the formula (25)) for A only from the shape
of the conditional distribution ¢(x¢|z1) (24). During IPF step, this distribution remains the same by

design, while parameters S, P change. Hence, IPF step has no effect on the optimality matrix.

For the second IPF step, the proof is similar. O

D.3 DISCRETE IMF STEP ANALYSIS: MULTIDIMENSIONAL CASE FOR LARGE €

Q P
PT S
step consisting of reciprocal and Markovian projections with [V intermediate timesteps 0 = 9 <
t) < --- <ty <ty41 = 1and volatility parameter e.

Consider a 2D-dimensional Gaussian distribution N <(2) , ( )) . We run a discrete IMF

Following (Gushchin et al.l [2024), we have an explicit formula for the reciprocal step. For any
0 <+4,7 < N + 1, we have marginal covariance Y, ;, at time moment ¢; and joint covariance Et“tj
between time moments ¢; and ¢;:

St = Q—t)1—t)Q+ (1 —t)t; P+ (1 —t)t:PT +t;4;8 + t:(1 — t;)e
= (1-t)1—t;)Q+ (1 —t)t;QY?*P,SY? + (1 —t;)t,5' /2P Q'/?
+ ;S 4 (1 —t)e,
Yoo, = (1—=t)?Q+t;(1—t;)(P+P") + 28 +t;(1 —t;)e
= (1-t)2Q+t;:(1 —t;)(QY2P,SY2 + SY2PTQY?) + 125 + t;(1 — t;)e,
Yo, = (1—t)Q+tP=(1-t)Q+tQY*P,8'?
Siva = tnS+(1—ty)P=txS+(1—tn)QY2P,SY2,

where P, := Q_%PS_%. Marginals 3o o = @ and ¥,
covariance Y, ¢, = P do not change.

tnp1 = S at time moments 0 and 1 and

For the Markovian step, we write down an analytical formula for the new correlation P in the

resulting process N’ ((Z) ) ( ]~§2T g) > , namely:

N

D . —1 _ —1 —1
P = E0-,0 : H (Zti,tiztiyti+l) - Eoytlztl,tlztlatQ cee EtN,tNZtN,l'
=0
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- - 1. 1
For the normalized correlation P, = ()~ 3PS~3 = 20,3 PZM2 , we can simplify the formula:

1 1
5 _ . v % —1/2 —1/2 -1/2 «—1/2 —1/2  —1/2 -3
Pn - f(Pn) - E0,0 207t12t1,t1 ) Etl,tl Etlat2zt2,t2 ! Etl,tl e EtN,tN : ZtN,tNEtNalle
N N
_ —1/2 —1/2 _
- H <Et ti Et tz+12ti+1,ti+1> - H (En§ti7ti+1) ) (44)
i=0 i=0
-1/2 -1/2 . . :
where Xt 1,00 = Xy, ¢ Bt b0 2, 1., denotes normalized correlation between marginals at

time moments ¢; and ¢, and satisfies || X, ¢,,,[[2 < 1.
Lemma D.4 (IMF step correlation transition properties). Let matrices @, S > 0 be the marginals of

2D-dimensional Gaussian distribution N' ((Z) , ( PQT g)) The function f from [@4) defined

on the ball {P, : || P, |, < 1} transforms the normalized correlation P, = Q 2PS" % 10 a new
one after a discrete IMF step. Then f(P,,) is Lipschitz on the unit ball Wlth constant

1@l S* [ [1lQ I | fenliS—HIB fodissa £ (1 biin)i
’S’€ = +
(@, S €) NG 1—t) (1—ty) Z \/et tir1 (1 — ) (1 = tip1)
45

Moreover,
tltN(l - tl)(l - tN)e

~(IQY2llz + 151212 + Vo)

1f(Pn)lly < (46)

Proof. We differentiate f(P,,) w.r.t. P,, and obtain

N
v (28{()2 ’ H (Et_i»ltiztt’ti'i-l) : 21—*}/2>

=0

I1<i J>i

—1/2 -1/2
H(En;tz,tz+1) ’ (Z / A%y, t1+12ti+{1ti+l) ’ H(Zn;t.wtﬁl)

1<i i>i

1
M= M= 11

Il
=)

[[Cnn.) - (37,2480, 0,50 17 - [IEnt500)

i I<i j>i

Since all normalized correlations are bounded by ||, +.,, [l2 < 1, we can also bound df by

N
—1 2 —1 2 —1/2 —1 2
ldfll: < S (S 2 dS e 0 S 2 Ml + 195 2d50 0, 50,2 )12)
1=0
N
—1/2 —1/2 —-1/2 —-1/2
< Y=Y ten IS e+ 1125, )
1=0

Since Xy, ¢, = t;(1—t;)el, Vi € 1, N, we get estimate ||E;1t{2H2 < 1/4/t;(1 — t;)e. For differential
dXy; t;,,» we have explicit formula and bound
A% 40, = (1—t)ti1Q'2dPS'Y? + (1 —ti41)t;S"/?dPT Q"2
1dSh el < (1= t)ties + (1 — )8 [Q2]l3 ||sl/2|| |dPl.

In total, we can bound ||df||2 < v(Q, S, €)||dP,||2 where v(Q, S, €)

1/2 1 1 -1 —1 -1
E0,0 ’ H(Etl,tlztzmu) ’ (Eti,tidztiyti+l - Eti,tidztiatizti,tiztivti+l) ’ H(Et]‘,tj Etj,tj-H) ’

1/2),1151/2 —ti)tiv1 + (1 —tip1)ts
@ ||2</ 0l s / N 3 Ut + (Ll

\/et tir1(I—t)(1 —tiq1)

24
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Now we prove ([@6). We bound the norm of f using formula (44)

N N
1F Pz = 1] Cntetii) 2 < T (8nstitiis 12) < 1Snstonallz - [Snstntnll2
1=0 1=0

< QY2806 B Rl - 1S Sew 1S 722
= (A= t)Q? + t1 PS8, 2o 19002 (tnSY2 + (1 = t3) QY2 P
We note that I — P[P, %= 0,1 — P,P,] = 0 and
(Q7?204,) T (Q7V?S04,) = (1—t)QY?+t:S"?P1) (1 - 11)Q"* +,P,S/?)
= (1-t)%Q+t38Y2p] p,s'/?

+ t(1-0)[SY2P] QY2 + QY2 P,SY)
= N4, —2SY2I - PIP,)SY2 — (1 —ty)el
'\< Zthtl —tl(l —tl)el.

Similarly, we have
(EtNJSil/z)(EtN,1S71/2)T = EtNﬂfN - (1 - tN)le/z(I - PHPJ)Ql/z - tN(l - tN)GI
% EtN,thtN(lftN)ej-

Next, we consider

(1= t)QY2 + 1, PSS 213 = 15521 = 1)QY2 + 61 PuSY) T (1 - 11)QY? + 11 P, S8
= =02 (S o — B3SY2(1 - PIP)SY? — (1 - t)e)s; L2
< I3 S — (1 - t)eS,
= |[T—t:(1—t1)eX [l < 1T —t1(1 = t1)edmin(S5 1))
< 1= t1(1 = 11)e/Amaz (Bt 1) = 1= t1(1 = t1)e/[[ St 1, [2-

We also can see that
< (1=t)?1Qll2 + 2t:(1 — ) |Q 2|2/ 2|2 + 2(|S ]2 + ti(1 — t;)e
< (1 =t)IQY?]2 + t:]ISY?]|2)? + (1 — t;)e.

Thus, we conclude that

_ t (1 —tl)e
1-t)QY? + 11 PSS 213 < 1 '
I =)@TrabSHRwnT = 1 e, + als Ry + 60 - ).
tl(l—tl)e

< 1-

- (IQY2ll2 + [IS'2[l2 + V/e)
Similarly, we have
tN(l 7251\/)6

2:1/2 51/2+ 1—t¢ 1/2P 2<17 .
I (tn ( N)@Q Mz < (1Q172]|5 + [|S1/2]|5 + /e)2

tN,EN

The final result follows:
—1/2 —-1/2
PPl < (= 12)QY2 + 1 PuS ), 2 o - 150 (tv SV + (1 = ta) QY2 P) |2
tltN(l — tl)(l — tN)G

< 1- :
B (@212 + 15122 + /e)?

O

Next, we switch from tracking the changes of normalized correlation matrices to tracking
the changes of the optimality matrices. Recall that, for a 2D-dimensional Gaussian process

N ((Z) ; < gT g) ) , the optimality matrix A from the definition (I0) is calculated as

A(P)=E(P,Q,5) = (S)"'PT(Q - P(S)"'PT)™!
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Functions 2(P,,,Q, S) and A(P,) can take the normalized correlation P, := Q~2 PS~= as the
first argument. In this case, the formulas and notations are

En(Po,@Q,8) := ST2PT (I - P,P]) " QY2 A(P,) = E,(Pn, Q. 5). (48)
Lemma D.5 (Optimality matrix map properties). Let matrices @), S > 0 be the marginals of a

2D-dimensional Gaussian distribution N ((Z) ) < ]gg‘r ]SD

P, = Q_%PS =3, Then the map from normalized correlations to optimality matrices A(P,) =
S=Y2pT (I — P,PT) ™" Q /2 is bi-Lipschitz on the set {P, € RP*P : ||P, ||, < VI —w} for
any 0 < w < 1. Specifically, for any P,, and P, from this set, the following inequalities hold

L”Pn - pn||2 < HA(PH) - A(pn)Hz < Mw”Pn - P~n||2»

)) with the normalized correlation

where
1

L= :
V2D|S]y% - 1Qlly?

Before proving the lemma, we introduce some notations. Let h be a scalar function. For any diagonal
matrix A = diag(A1,...,Ap), we define

h(A) = diag(h(M1),. .., h(Ap)).

_11/2 _ag1/2 (1 2
= s (2 2.

Next, given a symmetric matrix B € R”*P with spectral decomposition B = ZAZ T, we set
h(B) = Zh(A)Z".
Proof. To estimate M, we differentiate A(P,) w.r.t. P, that
dA = S7V2PT(1—P,P) " (dP,P] + P,dP]) (I - P,P]) " Q '/
+ SY2P] (1-P,P]) T Q2 (49)

By the conditions of the lemma, 0 < P,P,] < (1 — w)I, hence ||(I — PnPJ)leQ < Land
| Pn||, < 1. Thus,

1 2
—1/2 —1/2
Jdll, < I5721,1Q 720, (2 + 5 ) 1Pl

Since the ball {P,, : [|P,||, < v/1—w} is convex, this yields the bound M, on the Lipschitz
constant.

To estimate L, we define B = S1/2AQ'/? = P (I - PTLPJ)f1 and note that

B'B=(I-P,P]) PP (I-P,P)) ' =(I-P,P)) "= (I-P,P])".

Next, we define h(z) = ﬁ, x> 0,s0that h~1(y) = y=2 —y~1, 0 < y < 1. Therefore, we
have
I-P,P =h(B'B), (50)

P! =B(I-P,P))=Bh(B'B).

For now, consider B such that its singular values are positive and distinct (note that the set of such
matrices is dense in RP*?). Then the SVD map B + (U, A, V) such that B = UAV* is differen-
tiable at B (see Magnus & Neudecker, 2019, Section 3.8.8), thus so is the polar decomposition map
B+ (Q,S) such that B = KC, where K is orthogonal and C' is PSD matrices. As

P, = Bh(B'B) = KCh(C?) = UAR(A?)V*
and xh(x?) is differentiable, we obtain that

dP,] = dKCh(S?) 4+ Kd(Ch(S5?)).
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Furthermore, 0 < h(z) < 1 and (zh(2?)) = T 1+452) ——= € (0,1], hence 0 < h(S?) < I

and Ch(C?) is 1-Lipschitz w.r.t. the Frobenius norm (Wihler, 2009, Thm. 1.1). Note that
|KdC||% = Tr[(KdC)"dKC] = Tr[(CdC)(K "dK)] = 0 since K 'dK is skew-symmetric.
It can be shown from the orthogonality of K:

I=K'K = 0=dl=dK" K+K'dKk = dK'" K=-K'dK.

Thus, we have
|dB|[3 = |dKC + KdC|7 = |dKC|[3 + [|KdC|| 5 = |[dKC|[3 + [|dC| 5.
Therefore,
[dP.]lz = [dKCh(C?) + Kd(Ch(C?))|x < [dKC||pl|R(C?)|l, + [d(CR(C?))|
|dKC| p + 1dC| < V2[|dB]| . Gh

IN

In particular,
ldPally < APl < V2[ldB|lp < V2D||dB|, < V2D||S*2 (|| Q" ,/IdAll-
By continuity of the SVD and thus of the map Bh(B T B), this yields that
L™ = V2D||S 2|, Q2.
O

Now we can show that the function, changing the optimality matrix during IMF step, is Lipschitz.
This function is constructed as follows: first, it transforms optimality matrix into the normalized
correlation via =, L then it makes an IMF step to obtain new normalized correlation via f from
(44)), finally it transforms new correlation back to new optimality matrix via =,,.

Corollary D.6 (IMF step optimality matrix transition properties). Let matrices ), S > 0 be the

marginals of a 2D-dimensional Gaussian distribution N ((Z) , ( ]97 ];)) with the optimality

matrix A defined in @8). Set the function g(A) := Z,(f(2,1(4,Q,5)),Q,S), where Z,, and f

—n

defined in [@8) and [@4), and =, (+; Q, S) denotes the inverse map of Z,, w.r.t. the first argument.
é"hen gis fipschitz continuous with constant X<~ on the set {A| |Z;1(A)|, < VI —w} for any
<w < L

Proof. Lipschitz constant of the functions composition is the product of Lipschitz constants of the
combined functions. From Lemma we know that the constant for =, is M,,, for = ! is 1/L as
inverse of =,,. For transition function f, the constant 7y comes from Lemma|D.4] O

We also prove the upper bound for the normalized correlation for further proofs.
Corollary D.7 (Bound for || P,||3). Let matrices Q,S > 0 be the marginals of a 2D-dimensional

Gaussian distribution N ((W) , ( @ P)) with optimality matrix A = Z(P, Q, S) and normal-

v PT S
ized correlation P, = Q*%PS ~2. Then the following bound holds true:
2
P53 <1 (52)

1+ T+ 4]Q:[STIAT3

Proof. We recall the explicit formula (50) connecting P,, and A:
I-P,P] =h(B"B), (53)

where matrix B := S'/2AQ'/? and scalar function h(z) := ﬁ,x > 0. Givena D x D

symmetric positive definite matrix C' with spectral decomposition C = UAU*, we set h(C) =
Uh(A)U*. We start with estimate

Amin(R(BTB)) = Apin(I = PaP)) =1 = Mpau(PoP)) =1 — || P13 (54)
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Since function h is monotonously decreasing on [0, +oc) and matrix BT B has non-negative eigen-
values, we have Ay, (h(BT B)) = h(Amaz (BT B)) and continue with:

Amin(h(BTB)) = h()‘mar(BTB)):h(”BTan)

; .
(Al l1=121%,)
2

L4 \/1+ 41Q, 151114112

V

Combining bounds together, we conclude:
2

L+ \/1+ 41QIL ST, AL

2
[Pnlly <1~

O

Finally, we are ready to demonstrate convergence of the optimality matrix to the desired solution
A* = e~ 11 after an IMF step.

Lemma D.8. IMF step convergence Let matrices Q,S — 0 be the marginals of a 2D-dimensional
Gaussian distribution N <(2) , < Ig f;)) with the optimality matrix A. Then after IMF step,
we obtain a new optimality matrix A= g(A) (see Corollary , satisfying the inequality

_ M, _
HA_6 1Id||2 S T’V(QaSaG)HA_E 1IElHZ’

where
1 1 _1 N—-1
= 1Q=[2][5%]]2 4@ §||§Jr tn IS~ H%+Z (I —t)tiv1 + (L = tiy)ti
Ve (1—1ty) (1—tn) — Vetitiz1(1—t;)(1 — tis1)
. tltN(]. — tl)(l — tN)G }
w = minl-||P, 2,1— ,
VIR~ A s, e

L™t = V2D|SY2[,1Q"2,,
1n1/2 1n1/2 2
Is78 e (2 + ).
Proof. The IMF method with volatility parameter € can be viewed as an iterative application of the

transition function g. Since IMF converges to A* = ¢~ '1, it follows that A* is a stationary point
of g, i.e., g(A*) = A*. Hence, we apply Corollary[D.6to get

S
|

1 * * Mw *
14 = A%[l2 = llg(4) = g(A%)]l2 < =74 = A7z,

where explicit values for v and w, M,,, L are taken from Lemmas [D.4] and [D.5] respectively. We
only need to satisfy condition on w from Corollary - for matrices A, A, A*:

I=5 (Al < VI-w.

In terms of normalized correlations P, P,, = f(P,) from and P} = =1 (A*) from (@), the
conditions are

L= |1Pall} 2w, 1= [|Pa3 > w. (55)
For the second inequality in (33), we use bound from Lemma (D.4) for the result of applying
f:
titn (1 —t1)(1 —tn)e
QY22 + [15T/2]l2 + Ve)*

Finally, we combine all the bounds under the single minimum. O

L= [|Pall =1 = IF(P)lI3 >
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D.4 PROOF OF D-IPMF CONVERGENCE THEOREM[3.2] D > 1

Proof. We denote by Qg marginal matrix at ¢ = 0 after the first IPF step. First, we note that all
marginal matrices @) at ¢t = 0 and S at t = 1 emerging during IPMF procedure are bounded by the
initial ones (Lemma[D.2):

3 _1 _1
I < ——— Bl sy < ma A (S; TS5 ), 15T s = s6)
min{A,in (Sy 2215, 2),1}
by _ 1 1 B
Q. < o]l — ug. Q2 < max{Amas (Qp F£0Q0 H). 1} 125 2 =:(63)

1 _1
min{)\min(Qo 2 ZOQO 2 )a 1}
Optimality convergence and condition on e. Consider any IMF step during IPMF procedure which

we denote by
Q P\imur[Q P e -ipo-i
(PT S — PT S B Pn = Q PS .

We want to find such e that new optimality matrix A = Z(P,Q,S) becomes close to solution

A* = ¢ !Ip than starting A = Z(P, Q, S). This transition from A to A satisfies (Lemma :

i-ale = (VaD(L+ %) w@insh ) v@si0la- Al o)

v is defined in (@3),
. tltN(l—tl)(l—tN)é }
w = mindl—|P,]>*1- 7 (59)
{1t~ g, e, 5 v
where £(-) is condition number of a matrix.
Estimate w. The second term of w in (39) can be lower bounded by
titn (1 —t1)(1 —t)e
-t = 6)(1 —t) 5> 1 —titn(1—t)(1 - ty). (60)

QY212 + 1151/2[l2 + V)
To estimate 1 — || P, ||3 in the second term, we use lower bound (Corollary [D.7):
2 S 1 .
L+ 1+ 4QI:AIST=MIAN5 — 1+ 41QI:lIS211All3
Hence, we have lower bound for w:

mein{ 1 271_t1tN(1—t1)(1—tN)}2 (1—t1tN(1—t1)(1—t1\2/))'
VI 4]QI:(ISTI= AT N REEEE

The change of difference norm after one IMF step is

(1 +4]Qll2[IS[2]1A113) y
(I =titn (1 —t1)(1 —tn))?
=U(Q, S, |All2.0)

L= P2

|A" = Au)l2 < 6VD - K(Q?)K(S?) -

(Q7S7 6) : ||A - A*”Q- (61)

Now we need to make this map contractive, i.e., bound the coefficient I(Q, S, ||A||2,€) < 1 for all
matrices @, S, A appearing during IPMF procedure.

Universal bounds and (56) state that matrices () and S lie on matrix compacts B := {Q >
01Qll2 < ug, |Q 2 < ro} and Bs := {S = 0]||S|l2 < us,||S7t2 < rs}, respectively.
Moreover, the function I(Q, S, || A||2, €) is continuous w.r.t. all its parameters on these compacts.
Hence, we can get rid of (), S dependency, since the following maximum is attained

l(||A||276) = QEBIE(?%{EBS Z(Q,S, ||A||2v6)

||Al|2 dependency. IPF steps do not change optimality matrices (Lemma [D.3)), hence, we consider
only IMF steps here. We prove by induction that if at the first IMF step with initial optimality matrix
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Ay coefficient [(|| Ag||2 +2€e 1, €) < 1is less than 1, then all optimality matrices { A; } during IPMF
procedure will be bounded by

14|z < [l Aollz + 267, [|4; — A%[|2 < [|Ag — A%
First, we note that the coefficient I(||A||2, €) is increasing w.r.t. || Al|2. As the base, we show that
after the first IMF step new matrix A; is bounded:
([ Axll2 A1 = A%[l2 + [[Asl2 < I([| Aoll2, €) | Ao — A" |2 + [|A™[|2
[ A0]l2 + 2671, €)| Ag — A*[l2 + [[A*[|2 < || Ao — A*[|2 + [|A*]|2
140]l2 + 2] A2 < [|Ao]l2 + 267"

IA A IA

Moreover, we have

A1 — A% [|l2 < [[Ag — A [|2.
Assume that the bounds || 4;||2 < || Aoll2 + 2¢! and ||A; — A*||]2 < || Ao — A*||2 hold for the i-th
matrix, then, for the next matrix A4; 1, we prove:

[Aiv1 — A%l 1([[Aill2, )| Ai = A*[|l2 < U([|Aoll2 + 267, €) [ Ai — A*[|2
[4; — A™[2 < [|[Ao — A7l2,
[Aitilla < Aigr = A2 + [ A"]l2 < [[Ag — A*[l2 + | A*[l2 < [|Aoll2 + 267

Thus, we take maximal possible norm among all matrices || A;||2 < [|Agl|2 + 2¢~! to upper bound
the coefficient I(|| A; |2, €) < 1(]| Aol + 2671, €) < 1.

The final condition (62) on ¢ is

N INIA

(1L +4]Ql2[1Sll2(llAol2 +2¢7")?)
1 —titn (1 —t1)(1 —ty))?

B(Qo, So, Py, €) :=  max [Gf K(Q?)K(S?) - (Q, S, €)

QEBQ7SEBS

We can see from the definition

1 1 1 1

25|52 tQ 2|13 ty]|S~z2]3 ti)t; 1 —tip1)t;
(@50 1Q3LISH: [ [l07HE | fonls~E Z ti + (1~ ti)

\ﬁ (l_tl) 1_tN) \/Gt tz+1 l—t (1_ti+1)

that the largest value of +y is achieved when ||Q/2||a, | S*/2 ||, [|Q /2|2, || S~1/?|| are the largest.
Since these values are bounded by Q%2 < \/ug,[|S"?|: < us and [|Q7'/?|,
VTQs IS “12), < /TQ> We can estimate the maximum and get lower bound for e:
(1 + duqus([[Aol2 +2¢71)?)
(1—t1tN(1—t1)(1—tN))2

VUQus hre | _tNTs Z ti)tiv1 + (1 —tiy1)t; <1,
Ve (1-t) (1—tn) \/615 i1 (1 =) (1 = tit1)

e = O (D . rér% . u%u% . ||A0||2) . (62)

If the above e-condition holds true, then Ay exponentially converges to A* (square appears
since IPMF step includes two IMF steps):

| Ax — A*|l2 < B(Qo, So, Po, €)% || Ag — A*||2.

B(Qo, S0, Po,e) < 64/D-ugrqusrs -

Marginals convergence. Furthermore, we prove that marginals converge to ground truth 33, as well.
We note that, during any condition < ISQT g) of IPMF procedure, the norm of the normalized
matrix P, = Q2 PS~? is bounded:

2
L+ /1 +4[QILIIST2 ][ AT
Since [|Q||2 < < ug holds from (36) and || A2 < || Aol|2 + 2¢ ! (due to

contractivity of A), we can upper bound the normalized correlation

2
N a(Qo, So, Po,€)* < 1.
1+ /1 + duqus(][Agll2 + 267 1)2 | )

1Pa3 <1~

1Pal3 <
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Finally, we apply bounds from IPF steps Lemma at k-th step and put maximal norm value
a(QO7 SOa P07 6)2:

_1 _1 _1 _1
1S, 2215, * — Ipll2 a(Qo, So, Po,€)? - [|Sg 25150 2 — Ipll,
_ 1 _ 1
1572 (e —pa)llz < @(Qo, S0, Po,€)* - |57 2 (vo — p1)]f2-

IN

N

D.5 IMF STEP ANALYSIS IN 1D

Preliminaries. In case D = 1, we change notation from matrices to scalars:
IMF 0 - -
(Z §) = (g g) s Pn = p/NSG P = P)A/Sq

Using these notations, formula for optimality coefficient x € R (instead of matrix A) can be

expressed as
Pn

Va1 —p7)
The function Z,, is monotonously increasing w.r.t. p, € (—1,1) and, thus, invertible, i.e., there
exists a function =, : (=00, +00) x Ry x Ry — (—1,1) such that

VX3sqg+1/4—1/2
Wi . (64)

The inverse function is calculated via solving quadratic equation w.r.t. p,,.

En(ﬂm q, 8) = =X € (_007 +OO) (63)

. (. 8,q) =

In our paper, we consider both discrete and continuous IMF. By construction, IMF step does change
marginals of the process it works with. Moreover, for both continuous and discrete IMF, the new
correlation converges to the correlation of the e-EOT between marginals.

Lemma D.9 (Correlation improvement after (D)IMF step). Consider a 2-dimensional Gaussian
distribution with marginals N (n, q) and N (v, s) and normalized correlation p,, € (—1,1) between
its components. After continuous IMF or DIMF with single time point t, we obtain normalized
correlation p,,. The distance between p,, and EOT correlation p}, = =,,1(1/e, q, s) decreases as:

1w =Pl < v lon — Pyl
where factor +y for continuous and discrete IMF (with N = 1) is, respectively,

velg,s) = 200 JO) (o (6220 ) [ 22 ) Ve AT )
o (2 — 4g252)3 Ve —4qg2s? Ve —4q¢°s? €
1
na(g, 8,t) = t2(1—t)2gs+t(1—t) (st (1—1)2q)e+12(1—1)2e2 (66)

Lt @ attvas)? 120t -0 vas P+ -1~ vaT Ve

Proof. Continuous case. Following (Peluchetti, 2023a, Eq. 42), we have the formula for p,,:

tanh ™! (g—;) + tanh ™! ("—2)

Cc3

Pn = f(pn) = exXpgy —€ c3 > 0, (67)
G = €+ 2S(pnq - S)a C3 = \/(6 + Q(pn + l)qS)(G =+ 2(pn - l)qs),
2 = €+2q(pns—q).

Note that the function f(p,,) is positive and concave on (—1, 1), i.e., its derivative is decreasing on
(—1,1). Hence, in negative segment (—1, 0], the distance until the fixed point p} > 0 is decreasing
faster, than in positive segment, and we need to deal only with the positive segment [0, 1). We will
show that the function f has a derivative norm bounded by 1 on [0, 1), and, hence, it is contrac-
tive. Due to concavity, its derivative is decreasing on [0, 1), and we can check the bound only for
derivative at the point p,, = 0. Direct calculation gives us:

€ —4q

0)-2 _ —2¢% _ — 252
o = % ev/e —4¢2s2 [tanh™! 67(]22 + tanh™* 67822 — 2 +4¢%57 |,
(2 — 4¢?%s?) s
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Yelg:8) = [f(0)] <1
Thus, we can bound | f/(pn)| < 7.(q, s), Vpn € [0, 1) and get on the whole interval (—1,1)
|Pn = prl = £ (pn) = F(o7)] < 7e(a, 8)lon — prl-
Discrete case (N = 1). We use explicit formula (@4)) for a new correlation p,, = f(p,,) after D-IMF
step from (Gushchin et al., 2024) provided in the beginning of Section

In the case of single point t = t; (N = 1), we prove that the function f(p,,) is a contraction
map. The sufficient condition for the map to be contraction is to have derivative’s norm bounded by
~va < 1. First, we can write down the simplified formula f(p, ):

(1 =)y +tpny/s)(tVs + (1 = )pn\/q)
(1—t)g+2t(1 — t)pp/5q +t2s + (1 —t)e’

Next, we simplify derivative f'(p,):

flpn) =

(68)

oo = (1—=t)-q+t-p,
o1 = t-s+(1—t)-p
oy = (1—1)?%- q+2(1—t)t pH+t-s+t(l—the=(1—1t) 00 +t-op1 +t(1—t)e,
, (l—t)O'ot tO’tl tO’tl . (1—t)00t
= LA - 9. o A /7O
F(pn) Ot Ot Ottt Ot

We define new variables 6 ; & (1—1t)oo, f]t,l & toy1,€ =t(1 — t)e and restate f’ as:

o o 200.t0
fl= —2F 2 TR (69)
Gop+014+€ Gor+01c+€  (Gor+01:+€)
(6ot +61.¢)(Got +G1.t +€) — 2604014
(6o, + G101+ €)?

/\2 /\2 ~ ~ ~
6o+ 074+ (6o +014)é

- ’ 70
(6o, + 61,0 + €)2 (70)
_ G2, + 62, + (6o, + G1,0)¢ o
6(2)7t + 260,101, + &%,t +2(60,t + 61,1)€ + €2
1
- (72)

1+ 200 £61,t+(50,6+01,¢)é+€>
65 +67 1 +(50,6+61,0)€

‘We note that all terms in @ are greater than 0 and, thus, f is monotone:

0< f/(pn)a Pn € (715 1)' (73)

In the negative segment p,, € (—1, 0], the derivative norm | f’| is greater than in the positive segment
[0, 1), and value of the function is always larger than its argument. Thus, in negative segment, the
distance until the fixed point p;, > 0 is decreasing faster, than in positive segment.

For p,, € [0, 1), we can bound the fraction in denominator of (72)) by taking its numerator’s minimum
at p,, = 0 and its denominator’s maximum at p,, = 1, i.e,
0< f <ralgs,t) <1,

1
Ya(g, s,t) = 14 t2(1—t)2gs+t(1—t)(t2s+(1—t)2q)e+t2(1—t)2€2 ’
(1-8)2((A—t)g+ty/qs)?+12 (ts+(1—1)/g5) 2+t (1—t) (1) /G +t/5)2e

We note that v,4(qg, s, t) is increasing function w.r.t. g, s.

If we put into the function f argument p;, corresponding to the e-EOT correlation, DIMF does not
change it. Hence, p7, is the fixed point of f(p,,), and we have

n = Pl = 1F(pn) = F(P)| < va(g, 5, 8)pn = p7]-
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Lemma D.10 (y improvement after (D)IMF step). Consider a 2-dimensional Gaussian distribution
with marginals N'(n, q) and N (v, s) and normalized correlation p,, € (—1,1) between its compo-
nents. After continuous IMF or DIMF with a single time point t, we obtain new correlation p,,, such
that |p, — pi| < Y|pn — pi| where pf, = 2.1 (1/e, q, s) and v < 1 is from (63)) for IMF and from
(66) for DIMF. We have bound in terms of X = Z,,(pn, q,5) and X = Zp,(pn, q, $)-

IX = Yel < Upn,pp,v) - IxX — Yel, (74)
. (1 — max{p}, |pnl}?)?
Upn, pr:v) = [1— 1—v - <1
(b 2n:7) O =) (o, [onl 2

Proof. Monotone. The function f(p,,) from for continuous IMF and from for DIMF is
monotonously increasing on (—1,1). The monotone means that the value p,, always remains from
the same side from p;:
{pn > py = flen) > P}, (75)
pn < Py = flpn) < prs
The same inequalities hold true for x = Z,,(pn,q,$), X = Z(Pn,q,s) and x« = /e as well: if
X < X« then X < x. and vice versa, since Z,,(pn, ¢, s) is monotonously increasing w.r.t. p,,.

Z,, Properties. In this proof, we omit arguments ¢, s of =,,1(x, ¢, s) and Z,,(p,, g, 5), because they
do not change during IMF step. The second derivative of the function E,,(p,,) is

d?En( - 2pn(3 + p7)

ag " T Rl = )
3225 (pn) < 0 for p, € (—1,0] and d = (pn) > 0 for p,, € [0,1). It means that the
function =, (p,,) is concave on (—1, 0] and convex on [0, 1).

L . . . def
The function Z,,(p,,) is monotonously increasing w.r.t. p,, thus, decreasing of the radius h = =

|on, — pi| around p} causes the decreasing of |y — x.| around y.. We consider two cases: x > Y
and x < xs.

Case x > x.. We have p,, = p;, + h,x = E,(p;, + h) = En(pn) and E,(p;, + vh) > X. We
compare the difference using convexity on [0, 1

o — * * dE'n *
= (-h d:"< 4 9h)
= Nh- o Pt ).
Since the derivative of =,, is always positive, we continue the bound:
Enlpy +h) = Enlpy +yh) > min == (o)) (1= 7)|pn — Pl
PR €lps Pt +h] dpn
Next, we use Lipschitz property of Z,,, i.e.,
= Xx| = |20 n_En:LS max =n Za
Xl = Ealpn) =)l €, _mas (o) |pu = g
and combine it with the previous bound
, Juin oo (pib)‘
X=X 2 En(pp +h) = Enlop +7h) = ——= (=X = x|

=
max n
P Elpt pnl |dp"( Y

Case x < x.. We have p,, = p —h,x = Z,(p5 — h) = E,,(pn) and 2, (p}, — vh) < x. There are
three subcases for y, x positions around 0:

1. For positions x. > X > E,(pi — vh) > x > 0, we use convexity of E,, on [0,1) and
obtain

d=,

dpn,

X=X = Enlpy—7h) —Enlpp —h)> (1 —=7)h- (py, —h)
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—_
—

=, ,
o (Pn)

v

(L =7)|pn — pyl-

min
o€l —h,p]

2. For positions x. > 0 > x > E,(p} —vh) > xand x. > X > 0> =Z,(p5 — vh) > x, we
use concavity of Z,, on (—1, 0] and obtain

X=X = Enlph—7h) —Enlpy —h) > (1 —7)h- ;”(pil—vh)

d=,, .
> E( W (L= )pn — Pl

min
prElPr—h.p]

3. For positions x. > X > Z,(pf —~vh) > 0 > x, we use concavity of =, on (—1,0] and
convexity of Z,, on [0, 1) and obtain

X=X = Enlpy —7h) = Znlpy —h) = [En(py, = h) = En(0)] + [E4(0) — Enlp), — h)]
d= d= d=
> * —~h) - "0 h—pf)- 20)=(1=~)h- —2(0
> (pn—h) dpn()+( Pn) dpn() (1-7) dpn(>
in %= (= )lon — )
min —(pl, — n— Pl
phElpt—hpz] | dpn P e r
Overall, we make the bound
—xo= i R =)l — gl
— min — n — P,
Xxmx o= Ph€lpr—h.pzl | dpn P Vipr =P
: A=, (
min -
i (Pl
> @(p,)l(l—v)lx—x*lo
Ph€lpmpy] o T
For the function =Z,,(p,,) = W, the centrally symmetrical derivative is
=, 1+ p?
) = =g
Pn V3a(l —p3)

dEn

The derivative o has its global minimum at p,, = 0. It grows as p,, — =1, hence, the maximum
value is achieved at points which are farthest from 0:

dZ, , , d=,
max ——(Pn S n)
PhElpsoponl | dpn (o) dpn (pn)
d=, , , {dEn = }
max g, \Fn S max n's ;. n ’
ph€lpn.ps] | dpn (Pn) dpn, (pn) dpn(‘p )
d=, 1
min S=0(p)) > —.
Phel=1.+1] | dpn N

Thus, we prove the bound

(1 — max{p;,, |pn|}?)*
1+ max{py, |pn|}?

IX = x| = IX = x| =X — x| = (1 =7)x = x|
(1 — max{p}, |pn|}?)?

5 . < 17 1i
IX — x| < (1-=7) 1+ max{p;, |pn|}?
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D.6 PROOF OF IPMF CONVERGENCE THEOREM[3.2] D =1

Proof. Notations. We introduce the notations for a k-th IPMF step in terms of scalars
o0 pr\ IMF (o0 P\ 1PE (ax p,
Pk Sk Pk Sk Pr 01
e gk P er (00 Prtl
Pr 01 Pk+1  Sk+1
Po ) IME (fio\ LPL (Mg | IME (M) IPE( flo )
Vi Vi H1 H1 Vi+1

We denote the variance of the 0-th marginal after the k-th IPMF step as g;. For the first one, we have
formula (33) qo = 00 — 00/ o (1 — Z—é) where p,.0 = po/+/0050 is the normalized correlation

and means

after the first IMF step. More explicitly, p,, o def f(pn,0), where py, o is taken from @) for contin-
uous IMF and from (68) for DIMF. We denote optimality coefficients Xk = Hn( \/(‘;(Tk 09, Sk ) and

=1/,

Ranges. We note that IMF step keeps qx, Sk, Nk, Vi, while IPF keeps xi. Due to con-
tractive update equations for xp (73) and for s, (38), the parameters sj,x) remain on
the same side from oy, %, respectively. Namely, we have ranges for the variances s, €

[min{oy, so}, max{oy, so}] & [0, |,qx € [min{og, qo}, max{oo,qo}] & [ofin,

and parameters Yy € [min{x., |xo|}, max{x«, |xo|}] def [x™in, xmae].,

Update bounds. We use update bounds for x (74) twice, for s (38) and for v {#I)), however, we
need to limit above the coefficients |Z,1(x, ¢, s)| and [(Z; 1 (X, ¢, 5), =5 (X«, ¢, 8),Y(q, 8)) over the
considered ranges of the parameters ¢ € [0, 0], s € [o7"", 07" and x € [\™™", x™*].
The functions =1, [, are defined in (64), (74), (65) (or (66) with fixed t), respectively.

Since the function |=!(x,q,s)| is increasing w.rt. ¢,s’ and y (growing symmetrically
around 0 for x) we take maximal values oy**",o"** and x™**. Similarly, the function
1(E4(x, ¢, 8), 27 (X, 4, 8),7(q, 8)) is increasing w.r.t. all arguments symmetrically around 0.

Hence we max1mlze the function |, 1| and the function -, which is also increasing w.r.t. ¢ and s.

Final bounds. The final bound after k step of IPMF are:

max

01 maw]

0o

sk —otl < o®|s§ il

v — pul,
/82k|X0_1/5‘7

where g8 & L(Z (™ ggraz gnae) Z-Y(y,, oftat o) v (of®, o)) and « &f

=1 (e et o TTL”“"”) taking [ from (74), ~ from (63) for continuous IMF and from (66) with
fixed ¢ for discrete IMF. O

vk — g

<
Ixk — el <

D.7 PROOF OF IPMF GENERAL CONVERGENCE THEOREM 3.3

Proof. We split the proof into two parts. First, consider the discrete case.

Discrete case. Let k > 1. Note that the transition probabilities ¢****(z;,|zo) can be bounded

from below with au(zy, ), where a € (0, 1) and p depend only on ¢, € and supports of py and p;.

Thus, we can bound ¢***+! (2 |z0) > ay/ (21), with 1/ (1) depending on g3’

4k+1}( 4k+1](

projmlq ri|zo) = [ projmle x1l@e, )q(xe, |x0)day,

> a/pij [q)(z1]ze, ) dp(y, ) =2 ap’(x1). (76)
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Similar statement holds for q§ﬁ+3. Thus, the IPMF step is contracting. Specifically,

125" % = pollov < (1 = @)llgt* — pallzv,
g = prllov < (1= a)llgg"™ = pollrv -,
where TV denotes Total Variation distance. Thus,
TV TV
%" = po, "= pr (77)

Since py and p; have compact supports, Prokhorov’s theorem ensures the existence of a weakly
. 4k; - -
converging subsequence q,'; — Go,1. Moreover, (77) ensures that Go.1 € II(po, p1).-

Let IMF[q] be the result of the IMF-step applied to g, and let IPMF]g] be the result of IPMF-step
applied to q. Note that the IMF step is continuous w.r.t. weak convergence, since all intermediate
steps have smooth transition (i.e., conditional) densities. Combining the above results, we get that

IPMF[q,"] % ; IPMF[go,1] = IMF[IMF[go,1]] (78)

The equality holds due to Go 1 € II(po, p1). Note that we also use the fact that convergence in TV is
stronger than weak convergence.

ecall that = 1. ensures that for any fixed n > 0 it holds jran 4,
Recall that ¢57 " = IPMF[gy’} hat for any fixed 0 it holds g7 " %,

IMF?" [@o,1]. Moreover, by Theorem 3.6 in [ASBM], it holds that I M F*"[gy 1] & 4.1

Thus, there exists a weakly converging subsequence

@i g5 (79)

Finally, we argue by contradiction: if qé‘ﬁ it 45,1, We can select a weakly converging subsequence
@i > by # a1 Butby ) ¢f ; = g - This finishes the proof.

Continious case. We now explain how to extend the above argument to the continuous-time set-
ting. The key point is to verify a Doeblin minorization condition for the Markovian process obtained

after the projection step (see, e.g., Section 2 in[Stroockl (2005)).

Fix some 0 € (0,1/2). Foreach k € N, let (X?kw)te[o,l] denote the Markov diffusion correspond-
ing to the law ¢***2, and let

Pu(z, A) =P(X{*? e A| Xg"? =2), 2eRP, AeBRP),

be its transition kernel from time 0 to time 1. We decompose the evolution on [0, 1] into three
subintervals [0,0], [0, 1 — ¢] and [1 — ¢, 1]. Accordingly, we write

P, = KIEO—NS) K}gé—ﬂ—é) K]gl—é—ﬂ)

)

where K| ,(f_”) denotes the Markovian transition kernel from time s to £.

Recall that, by construction of the Markovian projection, the drift on [§, 1 — ] is Lipschitz and
dissipative, and the diffusion coefficient is constant. In particular, for each fixed radius R > 0 there
exists B > 0 and a probability measure vz on R¥ such that the small set condition holds:

P(X{**? € A| XM =12) > Brvr(A),  z € Bg, AcBRP), (80)

for all k € N, where B := {z € RP : ||z|| < R}. Here 3 and vg may depend on R, but are
independent of k.

Next, we control the distribution of X;”H'Q uniformly in k. By the definition of the reciprocal
projection, the segment [0, 1] between X and X is (conditionally on (X, X)) distributed as a
Brownian bridge with variance parameter 02 = £2§(1 — §). Hence, the marginal at time § is a
mixture of Gaussian laws with covariance matrix o21p and mean

mes(xo,x1) = (1 — §)xg + o1,
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where (xg, x1) ranges over the support of the endpoint coupling. Since the supports of py and p; are
bounded, there exists Ry > 0 such that ||ms (o, x1)|| < Ro for all (g, x1) in this support. Standard
Gaussian tail bounds then imply that, for any 1 € (0, 1), we can choose R > 0 large enough so that

sup sup P(X;*? ¢ By | X2 = z) < .
kEN zesupp(po)

Equivalently,

]P’(XgU€+2 € Bgr ‘ Xg}”z = x) > 1-n, x € supp(pp), k € N. (81)

Combining and (81), we obtain, for z € supp(po) and any measurable A C R?,
Pe(z, 4) = E[P(X{F2 € 4| xJ2) | xgh+2 = o

> E[P(X{** € A| X1 sy | X2 = o
s

ebnt|
> Brup(A)P(X? € Br| Xg"? = 2)
> Br(l —n)vr(A).
Thus, for all z € supp(pp) and all k € N,
P(w,) > ap() with a:=Br(l—n) € (0,1), p:=vp.
That is, the family of kernels (P ), satisfies a uniform Doeblin minorization on supp(po).

It is well known that such a minorization implies total-variation contraction: for any probability
measures A, A" on supp(po),

||/\Pk_/\/Pk||TV < (1—0{) ||/\—/\IHT\/, k eN.

Applying this with A\ = ¢5¥* and X' = py yields
4 —Dpilltv = |49 k —PolklTv = — @) |9y — PollTV-
g7+ | lgg" P Pillrv < (1-a) g™ |
4k+1

The convergence g, —1v Ppo 1S shown by the same argument applied backward in time (inter-
changing the roles of py and p; ), and we conclude that

4k+1 TV
qq — D1.

k—o0
In particular, the continuous-time analogue of (77) holds.

Next, we notice that for any ¢ € (0,1) the marginal densities g(z;) are smooth and continuously
depend on qgk'l”. Note that the IPF step returns the smooth transport plan. Thus, the drift b; (see
Silveri et al.| (2025))) is smooth and dissipative. Since IMF is symmetric and does not depend on the
direction, we can consider transitions (0,1/2) and (1,1/2). The corresponding Markovian kernels
are smooth. So the joint distribution ¢*** (g, #1 /2, 1) depends continuously on ¢* (o, 12, 1).
So, IMF is weakly continuous w.r.t the weak convergence.

The rest of the proof is similar to the discrete case.

E EXPERIMENTAL SUPPLEMENTARY

E.1 ILLUSTRATIVE 2D EXAMPLE VISUALIZATION.
We provide the visualization of the starting processes and corresponding learned processes for Gaus-

sian — Swiss roll translation in Fig. [/] One can visually observe that all the particle trajectories or
relatively straight and therefore close to the Schrédinger Bridge problem solution.
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Table 5: Datasets and code used in our work along with their licenses.

Name URL Citation License
Colored MNIST |GitHub Link| |Gushchin et al.|(2023b) MIT
CelebA Dataset Link| |[Liu et al.[(2015a) Non-commercial research only

SB Benchmark GitHub Link,  |Gushchin et al.[(2023b) MIT
ASBM Code GitHub Link!  |Gushchin et al.| (2024) MIT
DSBM Code GitHub Link  [Shi et al.[(2023) MIT

e=0.1 e=1 e=10
Algorithm Type D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best algorithm on benchmark! Varies  0.016 0.05 0.25 0.22 0.005 0.09 0.56 0.12 0.01 0.02 0.15 0.23
DSBM-IMF 0.1 0.14 0.44 3.2 0.13 0.1 0.91 6.67 0.1 5.17 66.7 356

DSBM-IPF 0.35 0.6 0.6 1.62 0.01 0.18 0.91 6.64 0.2 3.78 81 206

DSBM-Identity M 013 0.64 2.67 7.12 0.1 0.12 2 6.67 0.02 3.8 86.4 343

ASBM-IMFf 0.016 0.1 0.85 11.05 0.02 0.34 1.57 3.8 0.013 0.25 1.7 4.7

ASBM-IPF 0.05 0.73 32.05 10.67 0.02 0.53 4.19 10.11  0.002 0.18 2.2 5.08

ASBM-Identity 0.12 2.65 4.59 40.3 0.04 0.45 2.02 4.76 0.03 0.2 1.43 2.71

SF?M-Sink"  Bridge Matching ~ 0.04 0.18 0.39 1.1 0.07 0.3 4.5 17.7 0.17 4.7 316 812

Table 6: Comparisons of BW%»UVP 1 (%) between the ground truth static SB solution pT (2o, z1) and the learned solution on the SB
benchmark. The best metric over is bolded. Results marked with | are taken from (Gushchin et al.}2024) or (Gushchin et al.}[2023b).

E.2 SB BENCHMARK BW2-UVP

We additionally study how well implementations of IPMF procedure starting from different starting
processes map initial distribution pg into p; by measuring the metric BW2-UVP also proposed by
the authors of the benchmark (Gushchin et al., [2023b)). We present the results in Table @ One can
observe that DSBM initialized from different starting processes has quite close results and so is the
case for ASBM experiments with ¢ € {1, 10}, but with ¢ = 0.1 one can notice that ASBM starting
from IPF and Identity experience a decline in BW3-UVP metric.

E.3 CELEBA SDEDIT STARTING PROCESSES DESCRIPTION

The IPMF framework does not require the starting process to have pg,p; marginals or to be a
Schrodinger bridge. One can then try other starting processes that would improve the practical
performance of the IPMF algorithm. Properties of the starting process that would be desirable are
(1) q(xo) = po(xo) and marginal g(x1) to be close to pi(x1) and (2) g(xo,x1) to be close to SB.
In the IMF or IPF, we had to choose one of these properties because we can not easily satisfy them
both.

We propose to take a basic image-to-image translation method and use it as a coupling to induce
a starting process for the IPMF procedure. Such a coupling could provide the two properties men-
tioned above. We use SDEdit (Meng et al., 2022) which requires an already trained diffusion model
(SDE prior). Given an input image x, SDEdit first adds noise to the input and then denoises the
resulting image by the SDE prior to make it closer to the target distribution of the SDE prior. Vari-
ous models can be used as an SDE prior. We explore two options: trainable and train-free. As the
first option, we train the DDPM (Ho et al., [2020) model on the CelebA 64 x64 size female only
part. As the second option we take an already trained Stable Diffusion (SD) V1.5 model (Rombach
et al., 2022) with text prompts conditioned on which model generates 512x512 images similar to
the CelebA female part. We then apply SDEdit with the CelebA male images as input to produce
similar female images using trainable DDPM and train-free SDv1.5 approaches, we call the starting
processes generated by these SDEdit induced couplings DDPM-SDEdit and SD-SDEdit. Hyperpa-
rameters of SDEdit, DDPM and SDv1.5 are provided in Appendix

The visualization of the DSBM and ASBM implementations of the IPMF procedure starting from
DDPM-SDEdit and SD-SDEdit processes is in Figure

E.4 CELEBA EXPERIMENT ADDITIONAL QUANTITATIVE STUDY

In Table @ we report the final CMMD (Jayasumana et al.| [2024) values for IPMF, while Figure E]
illustrates how this metric evolves over IPMF iterations. Both evaluations are performed on the
same test set as in Notably, the resulting CMMD curve closely mirrors the behavior observed
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Figure 7: Visualization of learned processes with DSBM and ASBM solvers for Gaussian— Swiss roll
translation using IMF, IPF, Identity starting processes for € = 0.1.

9

(@) x ~ po (b) DSBM-Identity (c) ASBM-Identity

Figure 8: Results on the CelebA dataset for the male — female translation task, where xo ~ po represents
samples from the source distribution. DSBM-Identity and ASBM-Identity refers to the outputs generated
using trained DSBM/ASBM with the Identity initialization. The model was trained with € = 10.

for FID in Figure[5} Additionally, Figure [§] and Table [7] present results obtained using DSBM and
ASBM with the Identity initialization process on the CelebA dataset, with e = 10.

E.5 GENERAL EXPERIMENTAL DETAILS

Authors of ASBM (Gushchin et al, 2024) kindly provided us the code for all the experiments. All
the hyperparameters including neural networks architectures were chosen as close as possible to the
ones used by the authors of ASBM in their experimental section. Particularly, as it is described in

(Gushchin et all, 2024, Appendix D), authors used DD-GAN (Xiao et al.) with Brownian Bridge

posterior sampling instead of DDPM’s one and implementation from:
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Initialisation (coupling) DSBM ASBM

DDPM  SD DDPM  SD .. Identity DDPM  SD ... Identity
IMF gpEdic SDEdit IMF gppdic spEdic 9" e—10 | ™MF SpEdic spEdit MY =10
FIDL| 00 3523 2877 6156 |13.65 1484 2265 3311 6550 |1932 2184 2064 1958 2747
MSE(z0,71)L|0.16 002 002 00 |006 009 004 003 016 | 017 007 008 007 0.1

Identity

Table 7: Extended for ¢ = 10 qualitative results on CelebA (64 x 64) for male— female translation with
ASBM and DSBM across different starting processes. Generative quality (FID]) and similarity
(MSE(zo, Z1)J) are reported on the test set. Best and second-best values for solvers are marked in bold and
underline, respectively.

Initialisation (coupling) DSBM ASBM

DDPM  SD DDPM  SD DDPM _ SD
IMF SpEdit SDEdit IMF §pEdit SDEdit IMF spEdit SDEdit

CMMDJ | 0.0 0.31 0.69 0.84 1032 046 034 033 (028 042 032 051

Identity Identity Identity

Table 8: Qualitative results on CelebA (64 x 64) for male— female translation with ASBM and DSBM
across different starting processes. Generative quality (CMMDJ) is reported on the test set. Best and
second-best values for solvers are marked in bold and underline, respectively.

—— DSBM-IMF —— ASBM-IMF
1.0 DSBM-SD SDEdit 1.0 1 ASBM-DDPM SDEdit
—— DSBM-DDPM SDEdit —— ASBM-SD SDEdit
0.9 —— DSBM-Identity 0.9 4 —— ASBM-Identity
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(a) CMMD for DSBM with various couplings. (b) CMMD for ASBM with various couplings.

Figure 9: CMMD metric in CelebA male— female (64 x 64) as a function of IPMF iteration for
various starting couplings.

https://github.com/NVlabs/denoising-diffusion—gan

DSBM 2023) implementation is taken from the official code repository:
https://github.com/yuyang-shi/dsbm-pytorch

Sampling on the inference stage is done by Euler Maryama SDE numerical solver
with indicated in Table Q| NFE.

The Exponential Moving Average (EMA) has been used to enhance generator’s training stability
of both ASBM and DSBM. The parameters of the EMA are provided in Table[9] in case the EMA
decay is set to “N/A” no averaging has been applied.

E.6 ILLUSTRATIVE 2D EXAMPLES DETAILS

ASBM. For toy experiments the MLP with hidden layers [256, 256, 256] has been chosen for both
discriminator and generator. The generator takes vector of (dim-+1-+2) length with data, latent vari-
able and embedding (a simple lookup table torch.nn.Embedding) dimensions, respectively.
The networks have torch.nn.LeakyReLU as activation layer with 0.2 angle of negative slope.
The optimization has been conducted using torch.optim.Adam with running averages coef-
ficients 0.5 and 0.9. Additionally, the CosineAnnealingLR scheduler has been used only at
pretraining iteration with minimal learning rate set to le-5 and no restarting. To stabilize GAN
training R1 regularizer with coefficient 0.01 (Mescheder et al.,[2018)) has been used.
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Model  Dataset Start process IPMF iters IPMF-0 Grad Updates IPMF-k Grad Updates
ASBM  CelebA All 20 200,000 20,000
DSBM  CelebA All 20 100,000 20,000
ASBM SwissRoll All 20 400,000 40,000
DSBM  SwissRoll Al 20 20,000 20,000
ASBM  cMNIST All 20 75,000 38,000
DSBM  cMNIST All 20 100,000 20,000
ASBM SBBench All 20 133,000 67,000
DSBM SBBench Al 20 20,000 20,000
Model  Dataset Start process NFE EMA decay Batchsize D/Goptratio LrG LrD
ASBM  CelebA All 4 0.999 32 1:1 1.6e-4 1.25e-4
DSBM  CelebA All 100 0.999 64 N/A le-4 N/A
ASBM  SwissRoll All 4 0.999 512 1:1 le-4 le-4
DSBM  Swiss Roll  All 100 N/A 128 N/A le-4 N/A
ASBM  cMNIST All 4 0.999 64 2:1 1.6e-4 1.25e-4
DSBM cMNIST All 30 0.999 128 N/A le-4 N/A
ASBM SBBench Al 32 0.999 128 3:1 le-4 le-4
DSBM SBBench All 100 N/A 128 N/A le-4 N/A

Table 9: Hyperparameters of models from CelebA (84.4), SwissRoll (§4.2), cMNIST ( and Benchmark
(84.3) experiments. In “Start process”, the column “All” states for all the used options. “N/A” corresponds to
either not used or not applicable, the corresponding option.

DSBM. MLP with [dim + 12,128,128,128,128,128,dim] number of hidden neurons,
torch.nn.SiLU activation functions, residual connections between 2nd/4th and 4th/6th layers
and Sinusoidal Positional Embedding has been used.

E.7 SB BENCHMARK DETAILS

Scrodinger Bridges/Entropic Optimal Transport Benchmark (Gushchin et al| [2023b) and
cBW3-UVP, BW3-UVP metric implementation was taken from the official code repository:

https://github.com/ngushchin/EntropicOTBenchmark

Conditional plan metric cBW2-UVP, see Table was calculated over predefined test set and condi-
tional expectation per each test set sample estimated via Monte Carlo integration with 1000 samples.
Target distribution fitting metric, BW32-UVP, see Table @ was estimated using Monte Carlo method
and 10000 samples.

ASBM. The same architecture and optimizer have been used as in toy experiments [E.6| but without
the scheduler.

DSBM. MLP with [dim + 12,128,128,128,128,128,dim] number of hidden neurons,
torch.nn.SiLU activation functions, residual connections between 2nd/4th and 4th/6th layers
and Sinusoidal Positional Embedding has been used.

E.8 CMNIST DETAILS

Working with the MNIST dataset, we use a regular train/test split with 60000 images and 10000
images respectively. We RGB color train and test digits of classes “2” and “3”. Each sample is
resized to 32 x 32 and normalized by 0.5 mean and 0.5 std. ASBM. The cMNIST setup mainly
differs by the architecture used. The generator model is built upon the NCSN++ architecture (Song
et al.), following the approach in (Xiao et al) and (Gushchin et all [2024). We use 2 residual
and attention blocks, 128 base channels, and (1, 2,2, 2) feature multiplications per corresponding
resolution level. The dimension of the latent vector has been set to 100. Following the best practices
of time-dependent neural networks sinusoidal embeddings are employed to condition on the integer
time steps, with a dimensionality equal to 2x the number of initial channel, resulting in a 256-
dimensional embedding. The discriminator adopts ResNet-like architecture with 4 resolution levels.
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The same optimizer with the same parameters as in toy[E.6|and SB benchmark [E7]experiments have
been used except ones that are presented in Table[9] No scheduler has been applied. Additionally,
R1 regularization is applied to the discriminator with a coefficient of 0.02, in line with (Xiao et al.)

and (Gushchin et al, 2024).

DSBM. The model is based on the U-Net architecture
(Ronneberger et al., 2015) with attention blocks, 2 resid-
ual blocks per level, 4 attention heads, 128 base channels,
(1,2,2,2) feature multiplications per resolution level.

Training was held by Adam (Kingma & Ba, [2014) op-
timizer.

X~ po t=0.01

t=0.99 t=1.0

E.9 CELEBA DETAILS

Test FID, see Figure [3] is calculated using pytorch-fid
package, test CMMD is calculated using [unofficial im- Figure 10: Inverted 7 starting process, i.c.,
plementation in PyTorch. Working with CelabA dataset process in the reciggcal_ class with
2015b)), we use all 84434 male and 118165 fe- marginals po and p™, visualization.
male samples (90% train, 10% test of each class). Each

sample is resized to 64 x 64 and normalized by 0.5 mean

and 0.5 std.

ASBM. As in cMNIST experiments [E-§|the generator model is built upon the NCSN++ architecture
Song et al.) but with small parameter changes. The number of initial channels has been lowered
to 64, but the number of resolution levels has been increased with the following changes in fea-
ture multiplication, which were set to (1,1,2,2,4). The discriminator also has been upgraded by
growing the number of resolution levels up to 6. No other changes were proposed.

DSBM. Following Colored MNIST translation experiment exactly the same neural network and
optimizer was used.

SDEdit coupling. DDPM was trained on CelebA female train part processed in
the same way as for other CelebA experiments. Number of diffusion steps is equal to 1000 with
linear (3; noise schedule, number of training steps is equal to 1M, UNet (Ronneberger et al.| 2015)
was used as neural network with 78M parameters, EMA was used during training with rate 0.9999.
The DDPM code was taken from the official DDIM 2021) github repository:

https://github.com/ermongroup/ddim

The SDEdit method (Meng et al.} 2022) for DDPM model was used with 400 steps of noising and
400 steps of denoising. The code for SDEdit method was taken from the official github repository:

https://github.com/ermongroup/SDEdit

The Stable Diffusion V1.5 (Rombach et all, [2022) model was taken from the Huggingface
model hub with the tag “runwayml/stable-diffusion-vI-5”. The text prompt used is
“A female celebrity from CelebA”. The SDEdit method implementation for the SDv1.5 model was
taken from the Huggingface library 2020), i.e. “StableDiffusionlmg2ImgPipeline”, with
hyperparameters: strength 0.75, guidance scale 1.5, number of inference steps 50. The output of
SDEdit pipeline has been downscaled from 512 x 512 size to 64 x 64 size using bicubic interpolation.

E.10 AFHQ DETAILS

We first pretrain the networks using Bridge Matching for 100000 steps, then run DSBM for 20
iterations with 25000 steps per outer iteration. We follow and use the same U-Net
architecture. The batch size is 4, and the EMA rate is 0.999. We choose ¢2 = 5, and again we use
100 sampling steps with constant stepsizes.
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E.11 COMPUTATIONAL RESOURCES

The experiment on CelebA for each of the starting processes takes approximately 5 days and 7
days on Nvidia A100 for DSBM and ASBM, respectively. Experiments with Colored MNIST take
less than 2 days of training on an A100 GPU for ASBM or DSBM, and for each starting process.
Ilustrative 2D examples and Schrodinger Bridge benchmark experiments take several hours on GPU
A100 each for ASBM or DSBM and for each starting process.
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