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ABSTRACT

Modular addition is, on its face, a simple operation: given N elements in Zq,
compute their sum modulo q. Yet, scalable machine learning solutions to this
problem remain elusive: prior work trains ML models that sum N ≤ 6 elements
mod q ≤ 1000. Promising applications of ML models for cryptanalysis—which
often involve modular arithmetic with large N and q—motivate reconsideration
of this problem. This work proposes three changes to the modular addition model
training pipeline: more diverse training data, an angular embedding, and a custom
loss function. With these changes, we demonstrate success with our approach for
N = 256, q = 3329, a case which is interesting for cryptographic applications, and
a significant increase in N and q over prior work. These techniques also generalize
to other modular arithmetic problems, motivating future work.

1 INTRODUCTION

Modular addition is an important operation commonly used in number theory and cryptography. The
operation is simple: given N elements [x1, x2...xN ], xi ∈ Zq , compute s =

∑N
i=1 xi mod q.

Despite its apparent simplicity, prior work has demonstrated that machine learning (ML) models
struggle to perform modular arithmetic (Palamas, 2017; Lauter et al., 2024; Stevens et al., 2024). This
is surprising because ML models can learn other complex math tasks such as symbolic regression,
linear algebra, and computing the greatest common divisor (GCD) (Charton et al., 2021; Charton,
2022; 2024). Modular arithmetic, on its face, seems easier, but scalable ML solutions remain elusive.

Improved ML performance on modular addition could aid ongoing research efforts and open new
research avenues. For example, modular arithmetic is a key component of many cryptographic hard
problems, including Learning with Errors (LWE), which is the basis for post-quantum cryptosystems
(PQC) standardized by NIST (Chen et al., 2022). ML models capable of modular arithmetic could aid
nascent efforts to use ML models for cryptanalysis of LWE (Wenger et al., 2022; Li et al., 2023a;b;
Stevens et al., 2024) or enable ML-powered cryptanalysis of other cryptosystems. Standardized LWE
systems typically involve adding hundreds of random elements modulo q.

Our Contribution. Motivated by these potential use cases, we propose new methods enabling ML
models to perform modular addition for a variety of N and q, up to N = 256 and q = 3329. Our
method significantly outperforms prior work, which summed N ≤ 6 elements mod q ≤ 1000, and
generalizes to other modular arithmetic operations. In developing our methods, we first identify
factors that limit models’ ability to learn modular arithmetic: (1) lack of diverse training data, (2)
lack of inductive bias for modular addition, and (3) unsuitable loss functions. We address these by:

• Constructing the training data distribution to ensure more diverse elements are represented.
• Introducing an angular embedding (inspired by Stevens et al. (2024)) that represents model inputs

and outputs as coordinates on the unit circle, improving inductive bias for modular addition.
• Designing a new loss function with penalty term discouraging model convergence at local minima.

The remainder of this paper proceeds as follows. §2 discusses related work on ML-enabled modular
arithmetic. §3 describes key limitations of prior work and our novel methods to overcome them.
§4 presents key results on modular arithmetic problems with varying N and q. §5 reports ablation
studies over the methodology changes we introduce. §6 applies our methods to other asymmetric
functions of interest, and §7 discusses future work.
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# Terms (N ) Mod (q) MSE % Accuracy τ = 0.5% Accuracy

20 257 0.04 · 10−4 99.9% 100.0%
20 769 0.03 · 10−4 98.2% 100.0%
20 3329 0.04 · 10−4 57.0% 100.0%

100 257 0.28 · 10−4 97.8% 99.9%
100 769 0.32 · 10−4 70.6% 99.8%
100 3329 0.42 · 10−4 20.7% 99.8%

256 257 1.68 · 10−4 95.8% 99.8%
256 769 0.63 · 10−4 52.8% 99.5%
256 3329 0.46 · 10−4 16.4% 99.6%

Table 1: Our methods enable ML models to add N ≤ 256 elements mod q ≤ 3329. All metrics are
computed on a held out test set. MSE is mean squared error, % Accuracy is percentage of predictions exactly
correct, τ = 0.5% Accuracy is percentage of predictions within 0.005q of right answer (see §3 for details).

2 RELATED WORK

Paper # Terms (N ) Mod (q) % Accuracy Model Type

Nanda et al. (2023) 2 53, 109, 113, 401 100 Transformer
Mohamadi et al. (2024) 2 433 100 2-layer MLP

Doshi et al. (2024) 6 11, 23 97.1 2-layer MLP
Gromov (2023) 2 97 100 2-layer MLP

Jelassi et al. (2023) 2 100, 1000 73 Encoder-only transformer
Abbe et al. (2024) 2 2 100 4-layer MLP

Table 2: Summary of prior work on ML-enabled modular addition. Best N and q are bold.

Prior work has investigated whether ML models can learn modular arithmetic operations (Palamas,
2017; Lauter et al., 2024; Gromov, 2023; Abbe et al., 2024; Mohamadi et al., 2024; Doshi et al.,
2024). Table 2 summarizes the best prior results on modular addition specifically. The best existing
methods train models that sum N ≤ 6 elements for moduli up to q = 1000.

We scale ML-enabled modular addition to tackle larger N and q, motivated by problems in number
theory and cryptography that involve addition of many elements mod large primes. Prior work has
laid groundwork for analytically understanding how models learn modular arithmetic (Gromov, 2023;
Doshi et al., 2024). Our methods build on three observations from prior work:

• Need for representative training data: Mohamadi et al. (2024) showed that models need to be
trained on a constant fraction of all possible modular arithmetic behaviors for a given N and q to
generalize. This implies that better designed training datasets could aid learning.

• Importance of appropriate model representations: Nanda et al. (2023) showed that transformers
trained to perform modular addition inherently learned to convert their inputs to polar coordinates,
combine them, and then decode them back into the resulting integer sum. This suggests that models
with inductive bias towards coordinate representations may perform better on this problem.

• Importance of loss functions: Several works attribute models’ failure to learn more complex
modular addition problems to the complexity of the loss space (Gromov, 2023; Jelassi et al., 2023).
Because 0 and q − 1 are “close” in a modular field, seemingly different elements must map to the
same loss region, making gradient descent difficult. A carefully designed loss function could help.

3 METHODOLOGY

Following prior work, we train models to add N elements mod q (fixed N and q for each model).
Here, we list proposed improvements to the training pipeline that address the limitations described in
§2. Then, we describe our end-to-end training procedure and evaluation metrics.
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3.1 PROPOSED IMPROVEMENTS

More Diverse Training Data to Improve Generalization. Most prior work trains models using
randomly generated (x, s) pairs, where x is drawn uniformly at random from ZN

q , i.e. x consists
of elements [x1, x2, . . . , xN ], xi ∈ Zq and s =

∑N
i=1 xi mod q (Jelassi et al., 2023; Doshi et al.,

2024). Building on observations about the importance of training data diversity, we generate our
training data using two distributions, f and g. These help the model generalize by presenting it with
simpler versions of the problem (f ) and ensuring the full data distribution is well represented (g).

Enabling gradual learning via f : We postulate that models may learn better when they see “simpler”
versions of the target operation, in this case modular sums with more zero elements. Seeing these
simplified problems may help models understand the modular arithmetic structure and learn better.
Thus, we propose adding additional sparse vectors to the training data, in which more coordinates of
x are 0. To generate these, we fix a probability density function (PDF) f : {0, 1, . . . , N} → [0, 1].
Then, to create a training instance, we:

• Sample a random variable z, representing the number of zeros in each vector, from distribution f .
• Then, sample N − z integers uniformly from the set {1, 2, . . . , q − 1}. These integers, along with
z zeros, are used to construct a vector of length N .

• Lastly, shuffle the vector to ensure randomness in element order.

We experiment with three fs: funi(z) = 1
N+1 (i.e. uniform density), finv_sqrt(z) ∝ 1√

z+1
and

finv(z) ∝ 1
z+1+

√
N

, where ∝ means the functions are rescaled by a constant such that the sum of f
over all z in its domain equals 1. We compare these to a baseline of fdefault, which is the PDF of the
number of zeros in x when x is drawn uniformly from ZN

q . Figure 1 shows the sparsity of examples
created using these four sample strategies with N = 20 and q = 257.

Representing distributional tails with g: Wenger et al. (2024) observe that the sum of N elements
from Zq follows the Irwin-Hall distribution, denoted as gdefault in Figure 2. Their analysis shows that
for N = 3 the sum mostly falls in the range [q, 2q], and models struggle predicting modulo q sums of
vectors x when their pre-modulo sum lies outside this range. To address this, we augment our training
dataset with more instances whose sums (or equivalently their averages µ = 1

N

∑N
i=1 xi since N is

fixed) are in the distribution tails. In particular, we fix a new PDF g : {0, 1, . . . , q − 1} → [0, 1] and
to create training instances from g we:

• Sample a random variable µ, representing the target rounded average, from distribution g.
• Sample N integers uniformly from the set {0, 1, . . . , q − 1}. If the rounded average of these

elements is exactly equal to µ we keep this sample, otherwise we repeat this step.

Again, we let gdefault be the PDF of µ(x) when x is drawn uniformly from ZN
q , pictured in Figure 2.

Next, we introduce ginterval, also pictured in Figure 2, a uniform PDF over a centered range of µs
and zero outside this range. Essentially, ginterval is designed to overweight somewhat rare µ values
from gdefault, but to exclude very rare ones since we find these are very hard/expensive to generate.
See Appendix A for a more formal definition.

Dataset construction: To create the training dataset, we sample repeatedly from f and g as defined
above until we have sufficient training data. f data can be generated easily, with no rejection sampling,
but generating training samples from g is computationally expensive since it requires significant
rejection sampling. Because of this, we generate far fewer samples from g than f . The exact ratio
depends on N and q, but g samples typically compose less than 0.05% of the total dataset. During
evaluation, we evaluate models on examples drawn uniformly at random from ZN

q .

Inductive Bias via Transformer Model and Angular Embedding. We address our observed lack
of inductive bias towards modular arithmetic by adding an angular embedding for input and output
data and using an encoder-only transformer model. Stevens et al. (2024) first introduced the angular
embedding, which represents input integers mod q as points on the unit circle. The intuition is that
this better represents the structure of modular arithmetic, since on the unit circle 0 and 2π—which
corresponds to q—are close. Practically, the embedding encodes an integer a ∈ Zq as an angle
ϕ = 2π a

q and then as a point (cos(ϕ), sin(ϕ)) ∈ R2.
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Figure 1: Probability of number of zeros in each
training data element when N = 20 and q = 257
for our three sampling distributions, funi, finv, and
finv_sqrt, and default sampling distribution fdefault.
finv and finv_sqrt produce more training data elements
with N nonzero elements compared to funi.
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Figure 2: Probability of ρ(x) for each training
data element when N = 20 and q = 769 for our
two g sampling distributions: gdefault and ginterval.

Additionally, following Jelassi et al. (2023), we use an encoder-only transformer model, which pro-
vides two benefits. First, unlike MLPs used in much prior work on modular arithmetic, transformers
have a self-attention mechanism that can capture relationships between the input elements and help
the model learn to compute their sum. Second, an encoder-only transformer mirrors the structure of
the problem, since modular addition involves an an input sequence but a single output token (Li et al.,
2023b; Stevens et al., 2024; Jelassi et al., 2023), making it an appropriate choice.

Custom Loss Function to Prevent Collapse. Initially, we observed that the model would often
converge on local minima like the origin of the unit circle, preventing the model from learning.
To address this issue, we use a custom loss function during training that combines mean squared
error (MSE) loss with an extra term. Given a prediction of the form (x′, y′) and ground truth
(x = cosϕ, y = sinϕ), this loss takes the form:

ℓα = α

(
x′2 + y′2 +

1

x′2 + y′2

)
+ (1− α)

(
(x− x′)2 + (y − y′)2

)
, α = 0.01

The first term penalizes the model for predicting the origin by driving the loss to infinity if x′ =
0, y′ = 0. It also encourages the model to predict (x′, y′) on the unit circle (the first term is minimized
with x′2 + y′2 = 1). The second term is the standard MSE loss. After some training x′ and y′ are
close to the unit circle, therefore we can approximate x′ and y′ as cosϕ′ and sinϕ′. Under this
condition, the MSE loss function component becomes:

ℓ ≈(cosϕ− cosϕ′)2 + (sinϕ− sinϕ′)2

=cos2 ϕ− 2 cosϕ cosϕ′ + cos2 ϕ′ + sin2 ϕ− 2 sinϕ sinϕ′ + sin2 ϕ′

=2− 2 cos(ϕ− ϕ′)

This loss component will be minimized when cos(ϕ − ϕ′) ≈ 1, which occurs at ϕ − ϕ′ = 0 and
ϕ− ϕ′ = 2π. In the modular arithmetic setting, we want 0 and 2π to be understood as “close” in the
loss space, so this loss term correctly describes the desired behavior.

3.2 MODEL TRAINING AND EVALUATION

We implement the proposed changes and train models to sum N elements mod q.

Parameter Selection. We experiment with N = {20, 50, 100, 256} to identify trends as N increases.
Because we are interested in possible applications in cryptography, we use prime moduli, which are
commonly used in that setting. We also tested with non-prime modulus q = 1000 and obtained similar
results, as shown in Appendix D. We use q = {257, 769, 3329}, including one (q = 3329) used in a
real-world cryptosystem, CRYSTALS-KYBER (Avanzi et al., 2021). We select N = 20, q = 257
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as our base case for experiments because the sample space is large enough to ensure the model is
generalizing.

Training Procedure. All our experiments were implemented in Python with Pytorch. We train the
transformer models with a hidden dimension of 256, 4 attention heads, and 12 encoding layers on
batches of 256 examples, using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of
10−4, an initial linear warm-up phase of 1,000 optimization steps, and cosine scheduling. These
parameters were chosen based on an extensive hyperparameter search (see Appendix B for more
details). All experiments run on 8 V100 GPUs with 32 GB of memory. The models were trained for
30 epochs of 2.56 million examples per epoch per GPU. Training time is around 30 hours per GPU.

Evaluation Metrics. For evaluation, we generate a held-out test set Dtest of size 100,000 that is
distinct from the training set and contains examples drawn uniformly from ZN

q . To evaluate model
performance on Dtest, we take the final hidden state of the transformer and pass it through a linear
layer to produce an output of the form (x′, y′). We project this point onto the unit circle, producing
(cosϕ′, sinϕ′) = (cos 2π

q s′ sin 2π
q s′) where s′ ≈ s =

∑N
i=1 xi mod q. The model prediction is

then compared against the ground truth of (cos 2π
q s, sin 2π

q s).

To get a complete picture of model performance, we compute the following metrics: Mean Squared
Error (MSE) of angle predictions, % accuracy (correct/incorrect answer), and % accuracy with a
margin of error (τ ) relative to q. MSE and % accuracy help us to evaluate the model’s performance
in terms of closeness between the predicted and ground truth angles (MSE) and predicted integer
correctness (% accuracy). τ -accuracy enables us to measure whether the model learns the approximate
function behavior, even if exact accuracy is low. The formulae for these metrics are below:

MSE =
1

|D|
∑
x∈D

(
(cosϕ− cosϕ′)2 + (sinϕ− sinϕ′)2

)
Accuracy =

1

|D|
∑
x∈D

1s′=s

τ -accuracy =
1

|D|
∑
x∈D

1∥s′−s∥≤τq

4 KEY RESULTS

Our methods enable models to learn modular addition of N up to 256 elements mod q up to 3329.
We present best results across a range of N and q values in Table 3. All results are obtained from
encoder-only transformer models with angular embeddings trained with the finv_sqrt + ginterval
training data distribution and our custom loss function.

Overall, the MSE is near 0 across N and q, showing that the model converges and learns well.
Notably, τ = 0.5% accuracy is near 100% for all models. This means that in almost all cases, an
“incorrect” model prediction is still within 0.5% of q. For q = 3329, this means nearly all predictions
are within ±16 of the correct answer. % accuracy declines as N and q increase. This decline is more
notable when q increases but N is constant, suggesting that model performance is more tied to the
magnitude of q than that of N .

Comparison to Prior Work. We compare our results to a representative sample of prior work (Gro-
mov, 2023; Doshi et al., 2024; Jelassi et al., 2023). Gromov (2023) and Doshi et al. (2024) train
a multi-layer perceptron (MLP) and observe that the model learns modular addition via grokking
(i.e. generalization occurs long after memorization), while Jelassi et al. (2023) use an encoder-only
transformer similar to ours, but without our tweaks to data distribution, embedding, and loss function.

We implemented their approaches and trained models on N = 20, q = 257 data (our base case) with
the same number of training data samples as we used. Table 4 reports results. We found that all three
approaches had MSEs of 1.0 and % accuracies of less than 1%. In other words, the model does not
learn the task at all. In comparison, our methods achieve 99.9% on the same problem.

Unlike Gromov (2023) and Doshi et al. (2024), we do not observe grokking in our models because
we use a very small fraction of data from the possible sample space (3.89 · 10−40 when N = 20 and
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# Terms (N ) Mod (q) MSE % Accuracy τ = 0.3% Accuracy τ = 0.5% Accuracy

20 257 0.04 · 10−4 99.9% 99.9% 100.0%
20 769 0.03 · 10−4 98.2% 100.0% 100.0%
20 3329 0.04 · 10−4 57.0% 99.9% 100.0%

50 257 0.13 · 10−4 99.5% 99.5% 100.0%
50 769 0.13 · 10−4 88.5% 99.8% 100.0%
50 3329 0.11 · 10−4 35.2% 99.8% 100.0%

100 257 0.28 · 10−4 97.8% 97.8% 99.9%
100 769 0.32 · 10−4 70.6% 99.4% 99.8%
100 3329 0.42 · 10−4 20.7% 99.1% 99.8%

256 257 1.68 · 10−4 95.8% 95.8% 99.8%
256 769 0.63 · 10−4 52.8% 98.2% 99.5%
256 3329 0.46 · 10−4 16.4% 98.5% 99.6%

Table 3: Our methods perform consistently well adding N ∈ [20, 50, 100, 256] elements mod q ∈
[257, 769, 3329]. All metrics are computed on a held out test set. MSE is mean squared error, % Accuracy is
percentage of predictions exactly correct, τ = 0.3% Accuracy is percentage of predictions within 0.003q of
right answer, and τ = 0.5% Accuracy is percentage of predictions within 0.005q of right answer (see §3). The
models perform with consistently low MSE and very high τ -accuracies, but the exact accuracy declines with
increasing q.

q = 257). As such, our models gradually learn with a standard training loss behavior and do not
overfit.

Method MSE % Accuracy τ = 0.3% Accuracy τ = 0.5% Accuracy

Gromov (2023) 1.0 0.4% 0.9% 1.2%
Doshi et al. (2024) 1.0 0.5% 0.9% 1.3%
Jelassi et al. (2023) 1.0 0.3% 0.7% 0.9%

Ours 0.04 · 10−4 99.9% 99.9% 100.0%

Table 4: Our methods significantly outperform prior work for N = 20, q = 257. We implemented
the approaches described in previous work and evaluated all approaches with the same held out test set for
N = 20, q = 257. MSE is mean squared error, % Accuracy is percentage of predictions exactly correct,
τ = 0.3% Accuracy is percentage of predictions within 0.003q of right answer, and τ = 0.5% Accuracy is
percentage of predictions within 0.005q of right answer (see §3 for details).

5 WHICH FACTORS MOST HELP MODELS LEARN MODULAR ARITHMETIC?

Next, we explore how our individual methods—diverse training data distribution, transformer model
with angular embedding, and custom loss function—affect models’ ability to learn modular arithmetic.
Our goal is to understand performance gains provided by each relative to their combined effect.

5.1 EFFECT OF TRAINING DATA DISTRIBUTION

Sparsity is Critical. As described in §3, we construct more diverse training datasets by sampling
elements defined by PDFs f and g. Here, we explore how different sparsity PDFs (fdefault, finv,
finv_sqrt, and funi, see §3) combined with ginterval affect model performance. We report two metrics:
% accuracy of models (exact accuracy) and the Kullback–Leibler (KL) divergence between the
training and testing datasets. KL divergence quantifies the similarity between training dataset Dtrain,
constructed using functions f and ginterval, and Dtest, sampled from the set ZN

q uniformly at random,
i.e. fdefault. The results are in Table 5.

As Table 5 shows, the accuracy difference between models trained with the default sampling (fdefault)
and any other distribution f is stark. The exact same architecture has 0% accuracy if we do not
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modify the training dataset sparsity distribution and achieves over 85% when we do. This strongly
indicates that these models need to see sparse training examples to generalize.

# Terms (N ) Mod (q) Training Data f % Accuracy KL divergence

20 257 fdefault 0.4% 0.0
finv 99.6% 29.9

finv_sqrt 99.9% 31.4
funi 94.5% 44.4

50 257 fdefault 0.4% 0.0
finv 97.2% 69.9

finv_sqrt 99.5% 77.0
funi 86.2% 112.3

20 769 fdefault 0.1% 0.0
finv 93.5% 37.8

finv_sqrt 98.2% 39.6
funi 85.1% 55.3

Table 5: Sampling the training data from finv_sqrt produces the best accuracy results across N and q.
% Accuracy is percentage of predictions exactly correct, KL divergence is the level of similarity between the
training and testing datasets. With default sampling fdefault, the model does not learn at all. Distributions with a
KL divergence that is not too high or too low enable the model to perform best.

Dtrain/Dtest KL Divergence Impacts Accuracy. We observe that models trained on f that produce
very low (≈ 0) or very high Dtrain/Dtest KL divergence generalize worse than f with mid-range KL
divergence. Models trained with the default fdefault distribution have 0 Dtrain/Dtest KL divergence,
since the train/test distributions are almost identical, and model accuracy is 0%. On the other hand, the
uniform sparsity function funi diverges too far from the test distribution, resulting in lower accuracy.
Distributions with fewer sparse training elements, like finv and finv_sqrt, perform best.

Simple Examples Learned First. Next, we validate our assumption that these models initially learn
on simpler data (like sparse training examples) before learning the full task. To do this, we train a
model on N = 20, q = 257 and monitor its performance on a dataset Dval drawn from the same
distribution as Dtrain. Figure 3 shows model accuracy on samples with 1 to 20 nonzero elements
over 30 training epochs. Here, we see that the model initially performs better on sparse examples
(e.g. 1 non-zero element) and then becomes accurate on more complex examples in later epochs.
This suggests that these models first learn simpler sums and build on that knowledge to learn more
complex sums, supporting our use of sparsity sampling in creating training data.
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Figure 3: The model learns to sum fewer nonzero
elements earlier than more complex examples.
Model accuracy (N = 20, q = 257) after each epoch
on unseen test set stratified by number of nonzero ele-
ments. As the number of nonzero elements increases,
it takes longer for the accuracy to reach 100%.
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µ (N = 20, q = 769). Adding 0.02% of data
from ginterval significantly enhances the model’s perfor-
mance across both the tails and the central region of
the µ(x) distribution.
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Importance of g Data. We also evaluate how the inclusion of training samples generated from g
affects model performance. As Table 6 shows, using training data from finv_sqrt + ginterval improves
performance by 48% on average compared to training data from finv_sqrt only. In contrast, training
using data from fdefault + ginterval causes model performance to drop to 0%, emphasizing the need
for sparse data. Figure 4 shows that models trained on finv_sqrt mainly struggle to classify elements
in the tails of the µ distribution, but models trained on finv_sqrt + ginterval perform much better on
these samples. Together, these results show that accuracy on the distributional tails can be greatly
improved if a tiny amount (less than 0.05%) of data from distributional tails is added to the training
set (similar to the priming technique from Jelassi et al. (2023)).

Training data f Training data g % Accuracy % Accuracy % Accuracy
# Terms (N ) (Dataset size) (Dataset size) Mod q = 257 Mod q = 769 Mod q = 3329

20 fdefault (614.3M) ginterval (0.1M) 0.4% 0.1% 0.0%
finv_sqrt (614.4M) N/A 99.5% 93.0% 31.7%
finv_sqrt (614.3M) gdefault (0.1M) 99.4% 93.0% 31.5%
finv_sqrt (614.3M) ginterval (0.1M) 99.9% 98.2% 57.0%

50 fdefault (614.2M) ginterval (0.2M) 0.4% 0.1% 0.0%
finv_sqrt (614.4M) N/A 97.1% 64.2% 17.8%
finv_sqrt (614.2M) gdefault (0.2M) 96.9% 64.3% 17.2%
finv_sqrt (614.2M) ginterval (0.2M) 99.5% 88.5% 35.2%

100 fdefault (614.1M) ginterval (0.3M) 0.4% 0.1% 0.0%
finv_sqrt (614.4M) N/A 89.7% 39.0% 9.2%
finv_sqrt (614.3M) gdefault (0.3M) 89.5% 39.0% 9.0%
finv_sqrt (614.1M) ginterval (0.3M) 97.8% 70.6% 20.7%

Table 6: Adding a tiny portion of data from a different distribution boosts the overall performances. Test
dataset is drawn uniformly from ZN

q . % Accuracy is percentage of predictions exactly correct. See §3.1 for
definitions of f and g.

More Data Improves Performance. Finally, we consider whether models can learn from fewer
samples. We train models on N = 20, q = 257 with 1,000, 10,000, 100,000, 614.4M and 1,024M
samples from the finv_sqrt sampling distribution only, with no data sampled from g. We arrive at the
614.4M and 1,024M cases because we generate data on the fly for each step and train for a fixed
number of steps. In the other cases, we train the model over the fixed number of samples. As Table 7
shows, accuracy is highest in the 614.4M case, but results on limited data are encouraging. Even
with 10, 000 samples, models can still sum elements with relatively high accuracy. We also see that
having significantly more than 614M samples actually results in a decline in performance. We use
the 614.4M samples for the rest of the experiments, unless otherwise noted.

N = 20, q = 257 N = 50, q = 257 N = 20, q = 769
Dataset Size % Accuracy % Accuracy % Accuracy

1,000 39.2% 6.5% 16.6%
10,000 96.7% 90.5% 73.5%
100,000 99.2% 95.0% 91.0%

614,400,000 (i.e. 614.4M) 99.5% 97.1% 93.0%
1,024,000,000 (i.e. 1,024M) 99.1% 94.8% 91.4%

Table 7: The model performs best when trained on 614.4M training examples. We train the models with
different numbers of examples (all with the finv_sqrt distribution and no g distribution, angular embedding, and
custom loss) and evaluate on the same test set for all. % Accuracy is percentage of predictions exactly correct.

5.2 EFFECT OF ANGULAR EMBEDDING

To understand the effect of the angular embedding on model performance, we evaluate models
under four conditions: no angular embedding for input or outputs, input-only angular embedding,
output-only angular embedding, and angular embedding for both input and output. When angular
embeddings are not used for inputs, the model is trained on N -long integer sequences. When it is not
used for outputs, the model predicts single integers. Experiments are run with varying N and q.
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As Table 8 shows, we achieve best results when the angular embedding is used for both the input
and output. This table also shows that the output angular embedding more strongly impacts model
accuracy than the input angular embedding. We hypothesize that this is because the model can learn
the angular representation of inputs on its own, without the embedding (see Figure 7 in Appendix).
In contrast, an integer (token) output overlooks the continuity from q − 1 to 0, making it difficult for
the model to learn the problem structure on its own. Using an angular embedding output of (x, y), a
position on the unit circle, implies that the output integer is in Zq and makes learning easier.

N = 20, q = 257 N = 50, q = 257 N = 20, q = 769
Embedding (Input) Embedding (Output) % Accuracy % Accuracy % Accuracy

Angular Angular 99.9% 99.5% 98.2%
Integer Angular 99.6% 97.6% 92.8%
Angular Integer 82.5% 72.3% 56.3%
Integer Integer 73.2% 9.1% 0.5%

Table 8: Models perform better when trained with angular embeddings for both the inputs and outputs.
Models trained on the best settings identified in §5.1 and §5.3 and evaluated on the same test set for all. %
Accuracy is percentage of predictions exactly correct.

5.3 EFFECT OF CUSTOM LOSS FUNCTION

Next, we consider the effect of our custom loss function on model performance. To do this, we train
several models with varying N and q and two versions of the loss function given in §3.1: one with
α = 0.01, activating our additional term, and one with α = 0.0, which is standard MSE loss. Table 9
reports our findings, averaged over 4 trials per setting.

(Best / Average / Worst) case Accuracy
# Terms (N ) Mod (q) α = 0.01 (Custom Loss) α = 0.0 (Standard MSE Loss)

20 257 99.9% / 99.8% / 99.8% 96.5% / 77.2% / 53.8%
50 257 99.5% / 99.2% / 98.9% 93.0% / 68.7% / 53.0%
20 769 98.2% / 97.9% / 97.3% 84.2% / 73.5% / 65.8%

Table 9: Model consistently perform better when trained with our custom loss. We train the models with
the best training data parameters identified in §5.1 with angular embeddings and evaluate on the same test set for
all. % Accuracy is percentage of predictions exactly correct.

Our custom loss function (lα=0.01) improves best case accuracy by 9% across all N , q settings. Even
more notably, it improves average case accuracy by 35%, compared to the standard MSE loss. The
primary advantage of the custom loss is that it prevents model collapse, ensuring that the model
consistently reaches high accuracy on every training run.

5.4 VISUALIZING LEARNED REPRESENTATIONS

Finally, we analyze the model’s internal layers to understand how it represents output predictions.
This helps us understand whether the model has conceptually “grasped” the problem. To do this,
we pass input sequences to the model and extract their representations at different model layers.
We perform Principal Component Analysis (PCA) with k = 2 components on the representation
and plot them, coloring them based on the sum s mod q of the input sequence. Figure 5 presents
this analysis for three models trained with q = 257 and the following settings: N = 10 with the
default fdefault training data distribution; N = 20 with the fdefault distribution; and N = 20 with
the finv_sqrt distribution.

As Figure 5 shows, the N = 10 model with fdefault and N = 20 model with finv_sqrt both represent
output predictions as points on a circle, indicating that they “understand” the problem. However, for
the N = 20 setting without the custom distribution, the model fails to learn, and the representations
are visually meaningless. This implies that for small N , the custom data distribution is not as
important, likely because the problem is simpler, but for larger N , the custom distribution enables
generalization.
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(a) N = 10, q = 257, fdefault (b) N = 20, q = 257, fdefault (c) N = 20, q = 257, finv_sqrt

Figure 5: Internal model representations for different N and data distributions show that successful
models learn the circular structure of the problem. Plots show the first two PCA features for the model’s
internal representation after the output layer. Points with the same color have the same modular sum (i.e. they
should be close together in representation). See Appendix C for more analysis.

6 BEYOND MODULAR ADDITION

Finally, we explore whether our methods enable ML models to learn other modular arithmetic
functions beyond addition. Doshi et al. (2024) conjectured that two-layers MLPs can only learn
functions that can be represented as h(g1(a1), g2(a2), . . . , gN (aN )) and cannot extend beyond this
class. We introduce a class of functions h : ZN

q → Zq outside the aforementioned class, where

hj,k =
(∑N

i=1 a
j
i

)2

+ ak1 , to show that our approach helps models learn other modular arithmetic
functions. We train models to predict outputs from these functions, using the same setup as before:
encoder-only transformer model with modified data distribution, input angular embedding, and
custom loss. We also use a positional embedding in the transformer since these functions depend on
input sequence positions.

Our results in Table 10 show that for N = 20 and q = 257, we achieve an accuracy exceeding 90%+
for these functions. This suggests that our methods can be applied to modular arithmetic in general,
opening the door for further investigation.

Function % Accuracy

hj=1,k=1 = (a1 + a2 + . . .+ aN )2 + a1
1 mod q 90.3%

hj=1,k=3 = (a1 + a2 + . . .+ aN )2 + a3
1 mod q 91.0%

hj=2,k=1 =
(
a2
1 + a2

2 + . . .+ a2
N

)2
+ a1

1 mod q 90.5%

Table 10: With our methods, models can learn other modular arithmetic functions with good accuracy
(N = 20, q = 257). % Accuracy is percentage of predictions exactly correct.

7 DISCUSSION AND CONCLUSION

This work introduces novel techniques to help ML models learn modular addition. These tech-
niques—varying the diversity of training data, using an angular embedding for model inputs and
outputs, and introducing a regularized loss function—enable ML models to add hundreds of elements
mod a large q with high accuracy, a significant improvement over prior work. Our methods also
enable models to learn other modular arithmetic functions, indicating their generalizability.

Several interesting directions remain for future work. First, as modulus size q increases, our models
have lower exact accuracy but consistently high τ = 0.5% accuracy—above 99.5%. This motivates
future work to understand this disconnect and improve performance as q scales. Second, transferring
our techniques to other settings (such as ML-enabled cryptanalysis) remains an open challenge. While
our method achieves success on q used in real cryptosystems and N close to real-world use cases
(N = 512 is used in practice (Avanzi et al., 2021)), transferring general modular addition knowledge
to specific cryptanalysis tasks is nontrivial. Possible approaches include pretraining on this task and
fine-tuning on specific application settings, but future research should consider creative approaches.
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A FORMAL DEFINITION OF ginterval

Here, we provide a more formal definition of ginterval(µ), introduced in §3.1.

First, we fix N and q. In order to define ginterval(µ), let gdefault(µ) be the probability density function

that follows from µ(x) =
1

N

N∑
i=1

xi when x is drawn uniformly from ZN
q .

Let ε be a real number. Given the gdefault distribution is centered at
q − 1

2
, we build a symmet-

rical interval I =

[
q − 1

2
− kε,

q − 1

2
+ kε

]
where kε is the smallest positive integer such that∑

ρ∈I

gdefault(µ) ≥ 1− ε.

We finally let

ginterval(µ) =


1

2kε + 1
if µ ∈ I

0 if µ /∈ I

We choose ε = 10−5 for sampling reasons because generating samples for extremely rare µ takes too
many rejection turns.

B ARCHITECTURE ABLATION

In §4, we report results using a transformer with 12 encoder layers and a hidden dimension of 256.
We also train smaller models with 8 encoder layers and a hidden dimension of 256, as well as larger
models with 12 encoder layers and a hidden dimension of 512. In Table 11, we report these results.
Results are in line with those of §4. We select the architecture with 12 layers and a hidden dimension
of 256 for all other experiments as it consistently produces high accuracy while training much faster
than the model with 12 layers and a hidden dimension of 512.

8 layers 12 layers 12 layers
256 hidden dim 256 hidden dim 512 hidden dim

# Terms (N ) Mod (q) % Accuracy % Accuracy % Accuracy

20 257 99.7% 99.9% 99.8%
20 769 95.2% 98.2% 97.3%

50 257 94.0% 99.5% 99.6%
50 769 76.7% 88.5% 91.2%

100 257 79.5% 97.8% 98.1%
100 769 64.6% 70.6% 65.2%

256 257 78.2% 95.8% 95.4%
256 769 43.9% 52.8% 56.1%

Table 11: Accuracy results for different transformer architectures across N and q. Results with N ∈
[20, 50, 100, 256] elements mod q ∈ [257, 769] for (a) smaller model, i.e. 8 layers and 256 hidden dimension,
(b) chosen model, i.e. 12 layers and 256 hidden dimension and (c) larger model, i.e. 12 layers and 512 hidden
dimension. % Accuracy is percentage of predictions exactly correct.

C INTERNAL MODEL REPRESENTATION

We show the output predictions as well as the internal model representations in Figure 6.
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Transformer Layer 10 Transformer Layer 11 Transformer Layer 12

Norm Layer Pooled Layer Output Layer

(a) N = 10, q = 257, fdefault distribution

Transformer Layer 10 Transformer Layer 11 Transformer Layer 12

Norm Layer Pooled Layer Output Layer

(b) N = 20, q = 257, fdefault distribution

Transformer Layer 10 Transformer Layer 11 Transformer Layer 12

Norm Layer Pooled Layer Output Layer

(c) N = 20, q = 257, finv_sqrt distribution

Figure 6: Internal model representations for different N and data distributions show that successful
models learn the circular structure of the problem. Plots show the first two PCA features for the model’s
internal representation after each layer. Points with the same color have the same modular sum (i.e. they should
be close together in representation).
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D ADDITIONAL RESULTS

We report additional results using our approach in Table 12 for N ∈ [150, 384] and for a non-prime
q = 1000. We see similar trends as Table 3.

# Terms (N ) Mod (q) MSE % Accuracy τ = 0.3% Accuracy τ = 0.5% Accuracy

20 1000 0.04 · 10−4 95.1% 100.0% 100.0%
50 1000 0.18 · 10−4 80.1% 99.7% 99.9%
100 1000 0.41 · 10−4 57.2% 99.4% 99.8%
256 1000 0.43 · 10−4 50.8% 99.3% 99.8%

150 257 1.21 · 10−4 97.1% 97.1% 99.9%
150 769 0.44 · 10−4 65.8% 99.3% 99.8%
150 1000 0.33 · 10−4 57.4% 99.4% 99.9%
150 3329 0.37 · 10−4 18.5% 98.9% 99.8%

384 257 2.80 · 10−4 75.2% 75.2% 98.2%
384 769 1.56 · 10−4 35.2% 94.2% 97.7%
384 1000 1.52 · 10−4 33.7% 94.6% 97.5%
384 3329 1.80 · 10−4 8.6% 90.7% 98.1%

Table 12: Ablation for non-prime q and N ∈ [150, 384] elements. All metrics are computed on a held
out test set. MSE is mean squared error, % Accuracy is percentage of predictions exactly correct, τ = 0.3%
Accuracy is percentage of predictions within 0.003q of right answer, and τ = 0.5% Accuracy is percentage of
predictions within 0.005q of right answer (see §3 for details).

E ADDITIONAL PLOTS

We show in Figure 7 the angular and the token (integer) PCA embedding representations with N = 20
and q = 257. These plots suggest that even without the angular embedding, the model is somewhat
able to learn the circular representation on its own.

Figure 7: PCA decomposition on angular (left) and token (right) embedding on trained model with
N = 20 and q = 257
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