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ABSTRACT

Visual navigation requires the agent to autonomously navigate to a specified goal
based on sequential visual perception. A key challenge is to achieve target local-
ization and optimize the path simultaneously. However, most existing frontier-
based methods rely on static navigation policies, which update the target frontiers
at fixed time intervals to guide the agent’s exploration. These approaches cannot
dynamically assess potential regions encountered during navigation, thereby pre-
venting timely policy adjustments. Moreover, the presence of multiple frontiers
within the same region often leads to repeated exploration of identical regions,
further exacerbating path redundancy and inefficiency. To address the above lim-
itations, we propose DP-Nav, a novel dynamic navigation framework driven by
the potential of semantic regions. Our approach first identifies distinct semantic
regions from sequential visual perception and treats an independent semantic re-
gion as a policy unit. Furthermore, we introduce a Scoring-Screening Mechanism
(SSM) that evaluates and filters these semantic regions based on their potential
utility. Then SSM assigns exploration priorities to different regions, selecting the
semantic region with the highest potential value for the agent’s subsequent explo-
ration. More significantly, we design a Dynamic Policy Trigger (DPT) module
that enables on-demand activation of the SSM, allowing the agent to dynamically
adapt its exploration policy in response to environmental changes and percep-
tual feedback, thereby addressing the rigidity of static policies. Extensive experi-
ments on Object Goal Navigation, Text Goal Navigation, and Instance Image Goal
Navigation across Gibson, HM3D, and MP3D datasets demonstrate that DP-Nav
achieves SOTA performance and improves path efficiency by about 7% ∼ 17%.

1 INTRODUCTION

As the foundation task of Embodied Navigation Das et al. (2018); Majumdar et al. (2024), visual
navigation enables the agent to autonomously explore unseen environments and locate specified
goals, typical task variants include Object Goal Navigation (ObjectNav) Chaplot et al. (2020a); Yin
et al. (2024), Text Goal Navigation (TextNav) Sun et al. (2024); Yin et al. (2025), and Instance
Image Goal Navigation (InstanceNav) Krantz et al. (2023); Lei et al. (2024). Despite different goal
specifications, they share the common challenge of guiding the agent to succeed in reaching the goal
while ensuring an efficient navigation path.

To achieve this objective, many current methods Yu et al. (2023b); Kuang et al. (2024); Yin et al.
(2025) adopt Frontier-based Exploration (FBE) Yamauchi (1997) policy. Central to these FBE
methods Zhou et al. (2023); Yokoyama et al. (2024); Long et al. (2024) is evaluating the seman-
tic relevance between frontiers and the specific goal, then selecting the frontier with the highest
relevance for exploration. While proven effective, they have two significant limitations. First, Cur-
rent navigation policies are mostly static. They update target frontiers at fixed time steps to guide
agent exploration. This approach differs significantly from how humans make decisions Treisman &
Gelade (1980). Humans adjust their search direction in real-time based on perception feedback and
environmental changes. Existing methods Zhang et al. (2024); Yokoyama et al. (2024); Yin et al.
(2025) cannot respond quickly to such information. As a result, the agent often misses promising
semantic regions along the path. For example, when looking for a chair, an agent might pass by
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Figure 1: The previous agent (Subfigure a) first explores Frontier F1 (Region A) at t1, then diverts
to Frontier F2 (Region B) at t2, and returns to Frontier F3 (Region A) at t3. This is because multiple
frontiers in a semantic region lead to region fragmentation, resulting in cross-region backtracking
and additional path redundancy. While our semantic region-aware exploration (Subfigure b) could
prevent re-exploration of the same region and dynamically adjust the policy to optimize the path.

a room. It can quickly check whether the target is inside with a minimal path cost. If not, going
back later would waste more travel distance. This weakness reduces overall exploration efficiency
and increases path cost. Second, existing FBE methods treat individual frontiers as decision units.
However, one semantic region often contains multiple frontiers. This may cause the agent to jump
inconsistently between different semantic regions. For instance, it may revisit the same region mul-
tiple times through different frontiers, as illustrated in the Figure 1 (a). Such behavior leads to
repeated coverage of the same region, which further reduces path efficiency.

To overcome the aforementioned limitations, this paper proposes DP-Nav—a dynamic exploration
framework driven by the potential of semantic regions. The method begins by extracting traversable
areas frame by frame from a real-time RGB-D sequence and recognizes semantic regions in the
current frame using a skeletonization algorithm Zhang & Suen (1984). Each semantic region is
represented as a region node. In contrast, locations connecting multiple semantic regions are repre-
sented as junction nodes, thereby forming a region-junction graph that encompasses the entire scene.
The edge weights in the graph represent the shortest traversable paths between nodes, computed us-
ing the A* algorithm Hart et al. (1968). This graph is online updated throughout the exploration
process as new perceptual information is acquired.

Since semantic regions serve as the decision-making units, the system stores a set of RGB frames
captured when each region node is recognized, which serve as representative perspectives for subse-
quent region potential evaluation. On this basis, we design a Scoring-Screening Mechanism (SSM)
that integrates the representative perspectives of all semantic regions and information about feasible
paths from the agent to each region to assess regional potential. This mechanism then selects the
highest-potential target region, thereby guiding the agent’s exploration.

Furthermore, to enable dynamic policy adaptation, we further introduce a Dynamic Policy Trig-
ger module. This module employs four triggers to continuously monitor several factors, including
changes in the representative perspectives of semantic regions, the current position of the agent in
the region-junction graph, and whether new regions are recognized, among others. It dynamically
activates the SSM to achieve adaptive adjustment of the exploration policy, as illustrated in Figure
1(b) and Figure 6.

Our contributions are presented as follows: (1)We propose DP-Nav, a dynamic navigation frame-
work driven by semantic region potential. This framework represents the entire scene as a region-
junction graph for path planning. (2)We introduce the Scoring-Screening Mechanism (SSM), which
evaluates and filters each semantic region based on its representative perspectives and the traversabil-
ity. Subsequently, it prunes the region-junction graph accordingly and allocates the semantic region
to navigate. (3) We designed a Dynamic Policy Trigger (DPT) module that employs four triggers to
continuously monitor the navigation status, thereby dynamically activating the SSM to enable on-
demand policy adaptation. (4) Experiments on ObjectNav, TextNav, and InstanceNav tasks across
Gibson, HM3D, and MP3D datasets demonstrate that DP-Nav achieves the SOTA performance.
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Figure 2: The pipeline of proposed DP-Nav. The detailed workflow is provided in the Overview
of the Method section. Notably, when SSM is activated during navigation, only region nodes with
representative perspectives updated since the last activation undergo list reallocation.

2 RELATED WORK

2.1 SCENE REPRESENTATION AND NAVIGATION POLICY FOR VISUAL NAVIGATION

The navigation policy depends on the scene representation. Recent work primarily employs maps
Chaplot et al. (2020a); Zhang et al. (2025) or graphs Gu et al. (2024); Yin et al. (2025) for scene
representation. On this basis, most zero-shot navigation policies are based on the frontier-based
exploration (FBE)Yamauchi (1997). Map-based methods like ESC Zhou et al. (2023) and L3MVN
Yu et al. (2023b) utilize semantic maps to select frontiers, while methods like VLFM Yokoyama
et al. (2024), OpenFMNavKuang et al. (2024) and InstructNav Long et al. (2024) employ different
value maps to represent the semantic association between different regions in the map and the target
object, thus guiding the selection of frontiers. Graph-based approaches mainly employ topological
maps Krantz et al. (2020); Chaplot et al. (2020b); Zhang et al. (2021); Wu et al. (2024) or construct
scene graphs like ConceptGraphs Gu et al. (2024), SG-Nav Yin et al. (2024), and UniGoal Yin et al.
(2025) for waypoint or frontier selection. Recent work, such as TriHelper Zhang et al. (2024), also
demonstrates “dynamic” capabilities, but its adaptability is manifested through the coordination of
three distinct functions: Collision, Exploration, and Detection. In contrast, our approach focuses on
policy self-adaptation in response to perceptual feedback and environmental changes.

2.2 FOUNDATION MODELS FOR VISUAL NAVIGATION

Current zero-shot navigation frameworks predominantly integrate Large Foundation Models
(LFM)Li et al. (2022); Achiam et al. (2023); Bai et al. (2025) to support policy-making. These
approaches, such as L3MVN Yu et al. (2023b), ESC Zhou et al. (2023), Co-NavGPT Yu et al.
(2023a), and MCoCoNav Shen et al. (2025), convert environmental scene representations into tex-
tual descriptions and then leverage LFM for frontier selection. Others like VLFM Yokoyama et al.
(2024), OpenFMNav Kuang et al. (2024), and InstructNav Long et al. (2024) utilize LFMs to build
semantic relevance between frontiers and the goal based on the agent’s egocentric view. Additional
methods exemplified by PIVOT Nasiriany et al. (2024), SayPlan Rana et al. (2023), VLMnav Goet-
ting et al. (2024), WMNav Nie et al. (2025), and AO-Planner Chen et al. (2025) adopt end-to-end
paradigms to generate waypoints or navigation paths directly from sequential visual observation.

3 METHOD

3.1 VISUAL NAVIGATION

In visual navigation, the agent is randomly initialized in an unseen environment, perceiving sur-
roundings through an RGB-D sensor while navigating autonomously toward the specified goal.

3
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Figure 3: The example of Region-Junction Graph
constructing with time. For each timestep, the
depth image undergoes passable mask extraction,
preprocessing (Detailed in the Appendix A.2),
and skeletonization to extract region and junction
nodes. In the top-right matrix, values of 1 denote
traversable pixels while 0 indicates obstacle.

For ObjectNav, the agent receives an ob-
ject category and must locate any instance of
that category. For TextNav and InstanceNav,
the agent receives a description or a refer-
ence image of a specific object instance, re-
spectively, and must locate that particular in-
stance. The agent operates with four dis-
crete actions: move forward, turn left,
turn right, and stop. Navigation success
requires stopping within w meters of the corre-
sponding instance with limited m timesteps.

3.2 OVERVIEW

Our DP-Nav pipeline is shown in Figure 2.
During navigation, the system recognizes se-
mantic region nodes and junction nodes based
on the depth image at each step and updates the
graph online. Each semantic region node main-
tains a representative perspective set that continuously updates during navigation to support policy-
making with visual semantic understanding. During policy-making, the Scoring-Screening Mech-
anism (SSM) evaluates and filters region nodes based on their representative perspective sets and
the traversability to the agent. Then, the region nodes are allocated to the Progressing List (PL)
or Backtracking List (BL) by SSM. The Progressing (PL nodes exploration) and Backtracking (BL
nodes exploration) alternate based on whether the corresponding list is empty. The Progressing takes
precedence over Backtracking when both contain unexplored nodes. To enable dynamic policy ad-
justment, the triggers of the Dynamic Policy Trigger (DPT) module asynchronously activate the
SSM, continuously updating both PL and BL. Finally, the local policy Sethian (1996) is responsible
for low-level action to the allocated region.

3.3 REGION-JUNCTION GRAPH CONSTRUCTION

The scene is represented as a region-junction graph G = (V, E) for semantic region-aware dynamic
exploration, where V denotes the node set comprising region nodes R and junction nodes J . The
edge set E ⊆ (R × J ) ∪ (J × J ) captures shortest navigational pathways between these nodes.
Next, we elaborate on the region and junction node recognition method with a single-frame depth
image. Subsequently, introduce how to update the graph online.

3.3.1 GRAPH NODE RECOGNITION

At each time t, given the egocentric depth image Dt(x, y) of resolution W×H , the traversable mask
Mt is computed through sensor height hsen, threshold τ , and focal length f derived from horizontal
field-of-view θhfov and image width W :

Mt(x, y) = I [−(y −H/2) ·Dt(x, y)/f + hsen < τ ] (1)
f = W/(2 tan(θhfov/2)) (2)

Here, Mt(x, y) is the traversable mask where 1 indicates a navigable pixel, and 0 indicates an
obstacle pixel. The term− (y −H/2)·Dt(x, y)/f computes the relative height of each pixel relative
to the camera’s optical center, offset by the sensor height hsen above ground level. Please see Figure
3 for visualization. Due to depth noise compromises traversable mask Mt accuracy, necessitating
denoising and refinement (Detailed in the Appendix A.2) for the original traversable mask Mt to
Mcc. Then the thinning algorithm ξ(·) Zhang & Suen (1984) extracts a topologically equivalent
skeleton, after which redundant short branches are pruned to reinforce the core skeletal structure.

Spruned = ξ(Mcc) \ Dshort (3)
where Dshort represents the pruned burr branches (Pruning Detailed in Appendix A.3). Subse-
quently, Nodes are identified on Spruned via connectivity patterns:

J = {p ∈ Spruned | deg(p) ≥ 3} (4)
R = {p ∈ Spruned | deg(p) = 1} (5)
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Algorithm 1 Node and Graph Updating

Require: Nodes N = {n1, n2, ..., nk}, Graph
Gt−1, Radii Rr and Rj , Occupancy map
Mtocc

Ensure: Updated graph Gt

1: Gt ← Gt−1

2: for each recognized node n ∈ N do
3: Transform n to global coordinates
4: M ← ∅, r ← 0
5: if n is region node then
6: Rc ← Rr

7: for each region node r ∈ Gt−1 do
8: if ∥r − n∥ ≤ Rc then
9: M ←M ∪ {r}

10: end if
11: end for
12: else
13: Rc ← Rj

14: for each junction node j ∈ Gt−1 do
15: if ∥j − n∥ ≤ Rc then
16: M ←M ∪ {j}
17: end if
18: end for
19: end if
20: if M ̸= ∅ then
21: S ←M ∪ {n}
22: T ← traversable(Mtocc)
23: Pfus ← argminp∈T maxs∈S ∥p− s∥
24: Gt−1 ← Gt−1 \M
25: Gt−1 ← Gt−1 ∪ {Pfus}
26: Update edges: M → Pfus

27: else
28: Gt−1 ← Gt−1 ∪ {n}
29: end if
30: end for
31: return Gt ← Gt−1

where deg(p) =
∑

q∈N8(p)
1Spruned(q) repre-

sents the number of skeleton neighbors in its 8-
connected neighborhood. Junction nodes J are
defined at points with deg(p) ≥ 3, indicating in-
tersections of three or more navigable paths. Re-
gion nodes R correspond to deg(p) = 1 loca-
tions, which represent potential access points to
adjacent semantic regions.

At each timestep t, recognized nodes N are
transformed to global coordinates Chaplot et al.
(2020a). Then, differentiated matching is per-
formed based on the type of the newly recognized
node N : if n ∈ N is a junction node, the ex-
istence of any pre-existing junction node within
a radius Rj from junction node n triggers node
fusion by identifying them as the same physical
junction; if n ∈ N is a region node, the presence
of any pre-existing region node within a radius
Rr from region node n triggers node fusion by
classifying them as a homogeneous functional re-
gion. If no matching node exists within the spec-
ified search radius, node n ∈ N is updated into
the graph as a new node corresponding to its orig-
inally recognized type - either a region node or
junction node. For the details above, please refer
to Algorithm 1. Then the edge weights w(ni, nj)
between two nodes are updated as follows:

w(ni, nj) = LA∗(Pni
, Pnj

|Mtocc) (6)

Where w(ni, nj) denotes the shortest traversable
path calculated by the A* algorithmHart et al.
(1968) between ni ∈ V and nj ∈ V (i ̸= j) based
on the occupancy map Mtocc.

3.4 DYNAMIC EXPLORATION
DRIVEN BY SEMANTIC REGION POTENTIAL

3.4.1 REPRESENTATIVE PERSPECTIVE

During navigation, the same region node r can be recognized from various viewpoints. To en-
hance region node evaluation for subsequent dynamic policy, an online updating representative
perspectives set Vr is maintained for each region node r. Specifically, upon recognizing r at
timestep t, the system records three key elements from the current perspective: (1) traversable
area At of node r in current view, (2) corresponding RGB view It, (3) agent’s current pose
Qt = (Pt, θt)(position, orientation). Through continuous screening, the system retains the top K
perspectives satisfying conditions C1 and C2, while maximizing the total traversable area. Specifi-
cally C1 denotes ∥Pi − Pj∥ > δpos, C2 denotes min(|θi − θj |, 360◦ − |θi − θj |) > δang. C1 and C2

drive the agent to sample from multiple locations and angles, enhancing the comprehensiveness of
representative perspectives. The updating is formalized as:

Vr = {(Ai, Ii, Pi) | r recognized} (7)

V∗
r = argmax

S⊆Vr, |S|≤k, C1∨C2

∑
s∈S

As (8)

Here, S is a candidate perspectives subset, and As is the traversable area of perspective s. This gen-
erates a compact visual summary V∗

r of region node r for the subsequent semantic region evaluation.

3.4.2 PROGRESSING AND BACKTRACKING

5
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Figure 4: The example of the Scoring-Screening
Mechanism evaluates region nodes. The top right
subfigure visualizes Eq.11, with light gray regions
indicating Backtracking nodes and remaining ar-
eas representing Progressing nodes.

At the task beginning, two lists are initialized:
Progressing List P (PL) and Backtracking List
B (BL) to cache the screened results of re-
gion nodes by the following Scoring-Screening
Mechanism(SSM). We define PL-node explo-
ration as Progressing and BL-node exploration
as Backtracking. PL-nodes are prioritized for
exploration. When PL is empty, Backtracking;
when BL is empty, Progressing. Alternate the
two until goal discovery. The episode termi-
nates if both are empty. SSM dynamically real-
locates PL / BL for environmental changes and
perception feedback.

3.4.3 SCORING-SCREENING MECHANISM

The SSM has two core functions: Scoring and
Screening. During the policy-making phase,
the system first prompts the VLM to assign a score VLM(V∗

r ) for each region node r ∈ R based
on its representative perspectives V∗

r . Subsequently, the shortest navigable distance D(Pa, Pr) =
A∗(Pagent, Pr,Mtocc) between the agent and each region node is computed via the A* algorithm with
the current occupancy map Mtocc. Then, BL and PL are obtained through Screening. Specifically,
region nodes proximal to the agent but with low VLM scores are assigned to BL Bt via Eq.9. The
difference set between all region nodesRt and BL then yields PL Pt (Eq.10).

Bt = {r ∈ R | D(Pa, Pr) < ϕ ∧ VLM(V∗
r ) < ζ} (9)

Pt = Rt \ Bt (10)
Subsequently, the Scoring works for getting preference scoresPSr of PL nodes via Eq. 11, selecting
the highest-scoring node as the next exploration region.

PSr = γ · VLM(V∗
r ) + (1− γ)e−λD(Pagent,Pr) (11)

The preference score of each region node combines the VLM score and path length. Where γ ∈ [0, 1]
controls the preference weighting, balancing the VLM score against distance sensitivity. λ is the
distance decay coefficient. For example of SSM scoring and filtering, please refer to Figure 4.

3.4.4 DYNAMIC POLICY TRIGGER MODULE

To address the dynamic policy self-adaptation challenge, we designed four simple yet effective trig-
gers to asynchronously activate the SSM for on-demand adjustment of the region node to navigate,
as detailed below.

Region-Discovery Trigger: This trigger activation occurs through two distinct phases: (1) Initial-
ization phase: At episode beginning, due to the agent’s lack of familiarity with the specific envi-
ronment, it executes a full-circumference scan to establish preliminary situational awareness and
construct the initial region-junction graph. Trigger activation follows immediately post-observation.
(2) Dynamic navigation phase: During locomotion, evolving vantage points drive representative
perspectives update for region nodes, which induces a dynamic change of relative importance across
region nodes. The discovery of new region nodes serves as the activation catalyst, triggering a
re-evaluation of the semantic region nodes.

Perspective-Update Trigger: During navigation, persistent agent movement induces progressive
evolution of representative perspectives for region nodes; the cognitive depth toward each region
node undergoes continuous refinement. To quantify this evolving perceptual enrichment, we com-
pute the following metric:

ηt =
1

K|Rt|
∑
r∈Rt

|∆Vr| (12)

where ηt ∈ [0, 1] denotes the normalized update intensity; Rt comprises region nodes with updated
representative perspectives since the last policy step, and |∆Vr| measures newly updated perspec-
tives for each region node r. Furthermore, we define φpug as policy update gate, when ηt > φpug ,

6
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this trigger is activated. Note that the size of policy update gate φpug is negatively correlated to the
occurrence of this trigger. The correlation between magnitude φpug and navigation performance is
explicated in subsection 4.3.1.

Junction-Pass Trigger: Junctions are critical points connecting different regions. However, our
policy does not deliberately target junctions. Instead, when an agent goes by a junction node while
navigating towards an allocated region, it pauses movement to observe its left and right. This pause
facilitates the concurrent update of the region-junction graph and the representative perspectives of
relevant nodes, and subsequently, this trigger is activated for policy refinement.

Region-Reached Trigger: When the agent reaches the allocated region, its perception of the current
region may be incomplete. At this point, the agent observes the left and the right to: (1) confirm
whether the goal is present in the current region; (2) update the region-junction graph and represen-
tative perspectives of relevant semantic region nodes; If the goal is seen, navigate to it. Or leverage
the updated representative perspectives of the current region to prompt the VLM on whether deeper
region exploration is required. If the VLM recommends deeper exploration, set a sub-goal within
the region and navigate to it. If the goal remains undetected upon sub-goal arrival, activate SSM.
If deeper exploration is deemed unnecessary, immediately activate SSM. This trigger’s details are
listed in Appendix A.4.

The above dynamic triggers persist throughout the entire navigation episode until the agent executes
stop command or the maximum timesteps are exhausted. When multiple triggers are met simul-
taneously, they are prioritized as follows: region-reached, region-discovery, perspective-update, and
junction-pass. Note that during SSM working, nodes retaining unchanged representative perspec-
tives directly reuse their VLM scores from the previous SSM to reduce computational overhead.

4 EXPERIMENTS

4.1 SETUP AND IMPLEMENTATION DETAILS

Based on the Habitat platform Savva et al. (2019), we evaluate DP-Nav on ObjectNav across Gibson
Xia et al. (2018), HM3D Ramakrishnan et al. (2021), and MP3D Chang et al. (2017) datasets, with
TextNav and InstanceNav validated on HM3D. Navigation performance is measured by Success
Rate (SR) and Success weighted by Path Length (SPL): SR = 1/N

∑
I, SPL = 1/N

∑
I ·

min (1, ℓ∗/ℓ) where I is the success indicator, ℓ∗ is the optimal path length, and ℓ is the actual path
length. SR measures task completion rate, while SPL considers both success and path efficiency.

Our DP-Nav employs Qwen2.5-VL-3B-Instruct Bai et al. (2025) as VLM. The navigation is limited
to 500 steps, with a success radius of 0.1 m. The hyperparameters, the processing for different goal
specifications, and VLM prompts are provided in the Appendix A.7 A.8 and A.11, respectively.

4.2 EXPERIMENT RESULTS AND ANALYSIS

4.2.1 COMPARISON WITH BASELINES

Experimental results in Table 1 demonstrate that our DP-Nav outperforms previous SOTA zero-shot
baselines like ApexNav and UniGoal across all three evaluated tasks. Specifically, for the critical
HM3D dataset of the ObjectNav task, our DP-Nav outperforms UniGoal by +8% in SR and +10.5%
in SPL. For TextNav on HM3D, our DP-Nav surpasses previous SOTA, UniGoal, by +5.4% in SR
and +8.1 in SPL. Meanwhile, in the more challenging InstanceNav compared to GOAT and PSL,
our DP-Nav exceeds +28.3, +42.7% in SR, and +14.4%, +19.1% in SPL, respectively. Moreover,
DP-Nav even surpasses training-based methods on specific datasets, such as SemExp, PONI, GOAT,
and Mod-IIN. The performance improvement of DP-Nav could be attributed to the semantic region-
aware exploration and on-demand policy adjustment, which avoids ineffective exploration and cross-
region backtracking to optimize the path. Furthermore, it saves timesteps to explore more valuable
regions, thereby further enhancing the SR. For average improvement compared to the baselines and
qualitative analysis, please refer to Figure 5 and Figure 6, respectively.

4.3 ABLATION STUDY
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Method Zero-shot

ObjectNav TextNav InstanceNav
Gibson HM3D MP3D HM3D HM3D

SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑
SemExp Chaplot et al. (2020a) ✗ 65.7 33.9 – – 36.0 14.4 – – – –
PONI Ramakrishnan et al. (2022) ✗ 73.6 41.0 – – 31.8 12.1 – – – –
IIN-RL-BaselineKrantz et al. (2022) ✗ – – – – – – – – 8.3 3.5
Mod-IIN Krantz et al. (2023) ✗ – – – – – – – – 56.1 23.3
IEVE Lei et al. (2024) ✗ – – – – – – – – 70.2 25.2
PSL Lei et al. (2024) ✗ – – 42.4 19.2 – – 16.5 7.5 23.0 11.4
GOAT Lei et al. (2024) ✗ – – 50.6 24.1 – – 17.0 8.8 37.4 16.1

L3MVN Yu et al. (2023b) ✓ 76.9 38.8 54.2 25.5 – – – – – –
VoroNav Wu et al. (2024) ✓ – – 42.0 26.0 – – – – – –
OpenFMNav Kuang et al. (2024) ✓ – – 52.5 24.1 37.2 15.7 – – – –
VLFM Yokoyama et al. (2024) ✓ 84.0 52.2 52.5 30.4 36.4 17.5 – – – –
SG-Nav Yin et al. (2024) ✓ – – 54.0 24.9 40.2 16.0 – – – –
TriHelper Zhang et al. (2024) ✓ 85.2 43.1 56.5 25.3 – – – – – –
UniGoal Yin et al. (2025) ✓ – – 54.5 25.1 41.0 16.4 20.2 11.4 60.2 23.7
ApexNav Zhang et al. (2025) ✓ – – 59.6 33.0 39.2 17.8 – – – –

DP-Nav (Ours) ✓ 88.6 62.3 62.5 35.6 45.8 25.3 25.6 19.5 65.7 30.5

Table 1: Comparison of ObjectNav, TextNav, and InstanceNav across Gibson, HM3D, and MP3D
datasets. The results demonstrate that our DP-Nav achieves SOTA performance in both path effi-
ciency(SPL) and success rate(SR) compared with baselines.

Rep. Persp.

Policy Update Gate φpug

0.10 0.20 0.30 0.40 0.50 0.60
SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

3 53.2 27.8 56.2 28.5 58.0 30.1 59.1 30.6 59.0 29.1 58.1 30.3
4 54.3 28.3 56.3 30.7 58.7 32.8 59.6 31.1 59.6 30.8 58.4 29.7
5 55.4 30.6 56.8 31.3 59.2 33.1 61.2 31.9 60.5 31.2 58.7 30.4
6 56.3 31.1 58.3 33.4 60.7 34.6 62.5 35.6 61.1 33.8 59.3 31.5

Table 2: Comprehensive parameters ablation on representative perspectives and the policy update
gate φpug based on the ObjectNav task of the HM3D dataset.

ObjectNav
(Gibson)

0.0
ObjectNav

(HM3D)
ObjectNav
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(HM3D)
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8.81
9.28
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8.10
6.80

5.50

SR Average Improvement (%)

Figure 5: The average improvement in SR and
SPL of DP-Nav compared to zero-shot baselines.

Using the ObjectNav task on HM3D as our
ablation baseline, we demonstrate the effec-
tiveness of the representative perspective (RP),
SSM, and DPT, and investigate the impact of
different pipeline ablations on the failure cases.

4.3.1 THE
IMPACT OF REPRESENTATIVE PERSPECTIVE

To investigate how the representative perspec-
tive (RP) quantity and perspective-update trig-

ger frequency affect navigation performance, we configure the maximum RP per region node as {3,
4, 5, 6} while varying the Policy Update Gate φpug of perspective-update trigger (PUT) across {0.1,
0.2, 0.3, 0.4, 0.5, 0.6}. Based on the results in Table 2, we could derive the following preliminary
conclusions: (1) The quantity of RP per region node correlates positively with navigation perfor-
mance, where more viewpoints enhance semantic region assessment robustness while mitigating
local observation biases. (2) The φpug requires careful balancing: Excessively low values cause
frequent triggering, leading to agent action oscillation and performance drops; whereas excessively
high values result in insufficient triggering, inducing agent policy lag and path redundancy.

4.3.2 PIPELINE ABLATION AND FAILURE CASE ANALYSIS

We conducted ablation studies on the DPT module and SSM of DP-Nav, with the results pre-
sented in Table 3. Notably, since the agent must determine the next region to navigate upon
reaching a region, and the Scoring of SSM is necessary for evaluating the semantic region,
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Figure 6: A successful ObjectNav episode by our DP-Nav. The top row depicts the evolving ex-
plored environment and corresponding region-junction graph updates throughout navigation. The
middle row illustrates policy adaptation with time, while the bottom row displays the agent’s trajec-
tory in the occupancy map.

Dynamic Policy Trigger Screening SR↑ SPL↑
Regi-Dis Pers-Update Junc-Pass

✗ ✓ ✓ ✓ 55.7 29.1
✗ ✓ ✓ ✗ 53.8 27.6

✓ ✗ ✓ ✓ 57.0 29.0
✓ ✗ ✓ ✗ 56.1 27.8

✓ ✓ ✗ ✓ 57.9 32.4
✓ ✓ ✗ ✗ 56.2 30.8

✗ ✗ ✗ ✓ 53.4 29.8
✗ ✗ ✗ ✗ 52.3 27.6.

✓ ✓ ✓ ✗ 59.5 32.2

✓ ✓ ✓ ✓ 62.5 35.6

Table 3: The performance of DP-Nav with dif-
ferent ablations. The “Screening” denotes the
Screening mechanism of SSM.

Ablation Exploration Error
(%)↓

Detection Error
(%) ↓

Planning Error
(%)↓

SR
(%)↑

w/o DPT 14.3 24.6 7.7 53.4

w/o Regi-Dis 12.3 22.3 9.7 55.7
w/o Pers-Update 11.4 21.6 10 57.0
w/o Junc-Pass 10.8 22.8 8.5 57.9

w/o Screening 10.2 23.4 6.9 59.5

DP-Nav 6.5 20.4 10.6 62.5

Table 4: The failure case quantitative analysis
with different ablations. Detection error: miss-
ing a visible goal or falsely detecting an absent
one. Planning error: failing the task after correct
detection, or being stuck within 1m for ≥ 400
steps without goal detection. Exploration error:
never locating the goal, without being stuck or
false detection. The exploration error rate mea-
sures navigation ability toward the goal.

the region-reach trigger and Scoring of SSM
are excluded from ablation studies. When
the Screening is ablated, the PL/BL distinc-
tion is removed, and the region node with the
highest score from the Scoring will be ex-
plored. Comparing the Triggers ablation with
the full pipeline, the SR and SPL typically
decrease by -4.6%∼-6.8%, and -3.2%∼-6.5%,
respectively. Further, comparing (1) remov-
ing both three triggers and Screening, and (2)
removing only Screening. We can see that
Screening significantly boosts both SR and
SPL. Crucially, the ablation of screening along-
side the region-discovery trigger causes the
most SR and SPL fluctuation(-8.7% SR, -8%
SPL). This is because, without Screening, pri-
oritizing nearby low-probability regions wastes
timesteps. Moreover, ablating all three triggers
and Screening reduces SR by -10.2% and SPL
by -7%. Retaining screening alongside abla-
tion improves SR by +1.1% and SPL by +2.2%.
The above ablation studies demonstrate that:
(1) The Screening enhances SPL and further
improves SR by excluding low-relevance prox-
imal regions; (2) Triggers in DPT effectively
coordinate with SSM to adapt policy to envi-
ronmental changes and perception feedback.

Failure Case Analysis: To analyze DP-Nav’s
failure cases and the impact of different com-
ponents on navigation failures, we defined three
types of errors. The experiment results and analysis are presented in Table 4 and Appendix A.9.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce DP-Nav, a dynamic navigation framework driven by semantic region
potential, to improve the path optimization limitations of previous methods’ static policies and the
problem of cross-region backtracking. Future research will aim for a more flexible navigation policy,
more precise semantic region recognition, and more efficient path planning for visual navigation.

9
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6 ETHICS STATEMENT

6.1 INFORMED CONSENT

Informed consent was obtained from all individual participants involved in this study. The consent
process ensured that participants were fully aware of the research purposes, procedures, potential
risks, and benefits.

6.2 DATA ANONYMITY AND PRIVACY

We implemented strict measures to protect the privacy and anonymity of all participants. All person-
ally identifiable information has been removed or anonymized during data processing and analysis.
The data presented in this paper have been aggregated to prevent the identification of any individual
participant.

6.3 DATA SOURCE AND USAGE

The data utilized in this study were public. The use of this data for research purposes is compliant
with the terms of use specified by the data provider and relevant data protection regulations. No
unauthorized data collection or usage occurred during this research.

6.4 CONFLICT OF INTEREST

The authors of this paper have no financial or non-financial conflicts of interest that might be con-
strued to influence the results or interpretation of the research reported. No funding organization has
influenced the design, conduct, analysis, or presentation of this study.

6.5 AUTHORSHIP AND ORIGINALITY

We confirm that this manuscript is the original work of the authors and has not been published
elsewhere nor is it currently under consideration for publication in any other venue. All authors
have contributed significantly to the work and have approved the final version for submission.

6.6 BROADER IMPACT STATEMENT

This research aims to advance the field of Embodied Navigation. We have considered the potential
societal impacts of our work. While we believe the primary outcomes are beneficial, we acknowl-
edge the importance of ongoing monitoring and discussion regarding the ethical deployment of such
technologies to mitigate any potential misuse.

7 REPRODUCIBILITY STATEMENT

7.1 ALGORITHMIC DETAILS

We provide a comprehensive description of the proposed algorithm, including its core mechanics and
theoretical foundations. The paper contains a conceptual outline and pseudocode for the main al-
gorithm to facilitate understanding and re-implementation by other researchers. Key design choices
and their justifications are discussed in the manuscript. For a complete, executable implementation
of the algorithm and all experiments, please refer to our code in the supplementary materials.

7.2 CODE AVAILABILITY

The source code necessary to reproduce all experimental results, including data preprocessing,
model training, and evaluation scripts, will be public.
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A APPENDIX

A.1 USE OF LLMS

LLMs were employed solely as writing aids to polish the language and improve the clarity of expres-
sion. They were not used for generating research ideas, designing methods, conducting experiments,
or analyzing results. All scientific contributions and substantive content of this work are the sole re-
sponsibility of the authors. This use has been disclosed in accordance with the ICLR 2026 policy on
LLM usage.

A.2 TRAVERSABLE MASK PREPROCESSING

Given the initial traversable mask Mt ∈ {0, 1}H×W from Eq.1, the obtained traversable mask
requires preprocessing before skeletonization due to the presence of noise in the depth image and the
possibility of multiple independent traversable areas in a single frame. The preprocessing pipeline
incorporates structural regularization and selective component retention to enhance path topology
while suppressing noise artifacts.

13
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To consolidate fragmented regions and fill small structural gaps while preserving boundary topology,
morphological closure is applied:

Mc = φ(Mt;Ke) (13)
where φ denotes the morphological closing operator, and Ke represents an elliptical structuring
element defined over integer spatial coordinates (x, y) as:

Ke(x, y) = I
[
x2

a2
+

y2

b2
≤ 1

]
with a = b = 3 (14)

where I[·] is the indicator function. Then, Discrete traversable regions are identified through con-
nected component decomposition using 8-connectivity:

C = {C1, . . . , Cn} = CC8(Mc) (15)

where CC8 denotes 8-connected component labeling, and each Ck ⊆ {1, . . . ,H} × {1, . . . ,W}
represents a distinct region with area Ak = |Ck|. Subsequently, Component areas are sorted in
descending order:

A(1) ≥ A(2) ≥ · · · ≥ A(n) (16)
yielding ordered components C(1), . . . , C(n). The filtered mask Mcc is constructed by:

Mcc =
⋃
k∈I

C(k) (17)

where the selection index set I is defined with area threshold Amin = 100:

I =


∅ if n = 0

{1} if n = 1 ∧A(1) ≥ Amin

{k ∈ {1, 2} | A(k) ≥ Amin} if n ≥ 2

(18)

This strategy preserves: (a) no regions when n = 0; (b) the largest valid region when n = 1; or (c)
the two largest valid regions when n ≥ 2.

The preprocessed binary mask Mcc then serves as input to skeletonization, having consolidated
primary traversable regions while removing noise artifacts.

A.3 PRUNING DETAILS AFTER SKELETONIZATION

After obtaining the initial skeleton from the traversable region, we apply a two-stage pruning process
to enhance skeleton quality. The first stage (Refer to algorithm 2) focuses on removing redundant
edges at junction points to eliminate circular paths that do not contribute to navigation. The second
stage (Refer to algorithm 3) extends skeleton endpoints to ensure complete coverage of traversable
boundaries. Figure. 8 visualizes the comparison before and after pruning.

A.4 DETAILS OF REGION-REACHED TRIGGER

Upon reaching a semantic region allocated by the Scoring-Screening Mechanism (SSM), the agent
first conducts observation by rotating its view left and right to collect N = 3 frames from the re-
gion. These images are labeled as {I1, I2, I3} in sequential order based on the perspective from left
to right. The VLM is then prompted to determine whether deep region exploration is necessary based
on these images I = {Ii}3i=1, and is required to provide justification for its decision. If the VLM de-
termines that deep exploration is needed, it returns the index i∗ of the image containing the optimal
exploration direction among the three annotated images. If the VLM determines that deep explo-
ration is unnecessary, the Scoring-Screening Mechanism is directly activated to proceed to the next
stage according to the established pipeline. When the VLM confirms the need for deep exploration
and returns the optimal exploration direction corresponding to image index i∗, the system extracts
the traversable region mask Ti∗ corresponding to image Ii∗ based on the depth image and performs
preprocessing operations that remain consistent with the node recognition phase. Then, we employ
a uniform sampling strategy to select M ≤ 6 candidate points {pj}Mj=1 within the traversable area
of the image, with each corresponding position marked with a numerical identifier. Subsequently,
the annotated image Iannotatedi∗ along with the previous two original images, are input to the VLM
with the designed prompts. Then VLM selects the optimal annotated point p∗ from the M candidate

14
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Algorithm 2 Redundant Edge Removal at Junctions

Require: skeleton: initial skeleton image
Ensure: clean skeleton: skeleton with redundant edges removed

1: junctions← FINDJUNCTIONS(skeleton)
2: clean skeleton← skeleton.copy()
3: for each (jx, jy) ∈ junctions do
4: branches← []
5: visited← ZEROSLIKE(skeleton, dtype = bool)
6: for (dx, dy) ∈ {(−1,−1), (−1, 0), . . . , (1, 1)} \ {(0, 0)} do
7: (nx, ny)← (jx + dx, jy + dy)
8: if ISVALID(nx, ny) ∧ skeleton[ny, nx] > 0 ∧ ¬visited[ny, nx] then
9: branch← []

10: queue← DEQUE([(nx, ny)])
11: visited[ny, nx]← true
12: while queue ̸= ∅ do
13: (cx, cy)← queue.POPLEFT()
14: branch.APPEND((cx, cy))
15: neighbors← 0
16: for (ddx, ddy) ∈ {(−1,−1), . . . , (1, 1)} \ {(0, 0)} do
17: (nnx, nny)← (cx + ddx, cy + ddy)
18: if ISVALID(nnx, nny) ∧ skeleton[nny, nnx] > 0 then
19: if ¬visited[nny, nnx] then
20: neighbors← neighbors+ 1
21: queue.APPEND((nnx, nny))
22: visited[nny, nnx]← true
23: end if
24: end if
25: end for
26: if neighbors = 0 then
27: break
28: end if
29: end while
30: branches.APPEND(branch)
31: end if
32: end for
33: if |branches| > 2 then
34: shortest branch← argminb∈branches |b|
35: for i← 1 to |shortest branch| − 1 do
36: (x, y)← shortest branch[i]
37: clean skeleton[y, x]← 0
38: end for
39: end if
40: end for
41: return clean skeleton

points based on the content features exhibited by these images. The selected point is projected onto
the global map, and then the local policy executes navigation to it. If the goal remains undetected
after reaching the point and scanning the surroundings, SSM activates for subsequent navigation
phases.

However, the above-mentioned process requires calling VLM twice, which increases the time and
computational costs. In the specific experiment, we combined the two steps into one; that is, before
prompting the VLM, we sampled each image and labeled the corresponding points for the VLM to
reason. Please see the Figure.7 for an example. VLM Prompts subsection A.11.
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Algorithm 3 Skeleton Extension from Endpoints

Require: skeleton: cleaned skeleton image
Require: traversable mask: binary traversable region mask
Require: max extension: maximum extension distance
Ensure: extend skeleton: skeleton with extended endpoints

1: endpoints← FINDENDPOINTS(skeleton)
2: extend skeleton← skeleton.copy()
3: for each (x, y) ∈ endpoints do
4: SKNEI = GETSKELETONNEIGHBORS(x, y, skeleton)
5: neighbors← SKNEI
6: if |neighbors| = 1 then
7: (dx, dy)← neighbors[0]
8: (ext dx, ext dy)← (−dx,−dy)
9: for i← 1 to max extension do

10: (nx, ny)← (x+ ext dx · i, y + ext dy · i)
11: if ¬ISVALID(nx, ny) ∨ traversable mask[ny, nx] = 0 then
12: end point← (x+ ext dx · (i− 1), y + ext dy · (i− 1))
13: DRAWLINE(extend skeleton, (x, y), end point)
14: break
15: end if
16: end for
17: end if
18: end for
19: return extend skeleton

Image 1: Shows the entrance area, part of the floor, and the front of
the sofa. There is no visible black leather sofa. The exploration
directions mostly lead toward the kitchen or the area behind the sofa,
making it less likely to find the target.
Image 2: Offers a main view of the living room, showing most of
the sofa area and the window side. All seats appear to be fabric-
covered, with no sign of a black leather armchair. The exploration
directions point toward the window or wall, so the likelihood is low.
Image 3: Displays a corner with the TV stand and the area near the
window. In the bottom right corner, near the end of the TV stand,
there appears to be a partially hidden space which is impossible for
existing the target sofa.
In conclusion, it is confirmed that there is no target sofa in the
current region
But, the point 5 of image 1 leads to unexplored area and is the most
promising for finding the black leather single-seater sofa.
json:{“image no”: 1,“ explorationpoint”: 5 }

You are a senior indoor navigation expert currently performing a Text Goal Navigation
task…navigate autonomously to a specific object instance described by a piece of text…
**Intrinsic_attributes**: The sofa is made of leather, and the color is black.,
**Extrinsic_attributes**:There are three pillows on the sofa, a carpet, and a wall art.
You have now reached a region and collected three images of it. These three images are
numbered in sequence from left to right in terms of perspective (the numbers are in the upper
left corner of each image), and six or less points are sampled in each image. Please determine
whether the current region is worth in-depth exploration based on the following thinking.
…
…
Finally, please determine whether this region is worth in-depth exploration. If it is, please return
which specific point in which image is the most worth exploring, strictly in **JSON** format,
such as {“image no”:the_image_no,“exploration point”: the point that you choose}. If it is not
worth exploring in depth, directly return “no” in **JSON** format like{"answer":no}

1 2 3

1
2
3 4

5

1

3

2
1

2
4

Figure 7: The example(TextNav) of prompting the VLM to determine if deeper exploration is re-
quired after the agent reached the region allocated by the Scoring-Screening Mechanism. If the
VLM deems that the current region requires in-depth exploration, it will return the pre-annotated
number in the corresponding perspective. Then, we map this number to the global occupancy map,
and the local policy is responsible for reaching the point. If the VLM deems that the region does
not require in-depth exploration, then the next stage will be carried out according to our DP-Nav
pipeline; that is, the SSM will allocate the next region to navigate.

A.5 DATASETS DETAILS

ObjectNav: We conduct experiments on three scene datasets: Gibson (5 scenes with 1,000 episodes
covering 6 object categories), MP3D (11 scenes with 2,195 episodes covering 21 categories), and
HM3D (20 scenes with 2,000 episodes covering 6 categories). InstanceNav: The InstanceNav
datasets based on HM3D have 795 unique instances in 1000 test episodes. Each episode in the
InstanceNav datasets corresponds to a unique goal object instance. TextNav: The TextNav dataset
extends the InstanceNav dataset, containing 795 distinct instances across 20 scenes. Each instance
is annotated through dual attribute categories: (1) Intrinsic Attributes describing inherent object
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properties (e.g., shape, color, material); (2) Extrinsic Attributes capturing environmental context,
enabling precise differentiation between instances sharing similar intrinsic features.

A.6 BASELINES DETAILS

The Frontier-Based Exploration (FBE) policy, pioneered by Yamauchi (1997), focuses on identi-
fying environmental frontiers — boundaries between known and unknown regions — to guide the
agent in incrementally exploring unmapped spaces. Recent research has optimized exploration effi-
ciency through diversified frontier selection algorithms. The following baselines are typical methods
based on FBE.

• L3MVN Yu et al. (2023b): L3MVN leverages a semantic map to extract object categories
near frontiers. It then employs a large language model to infer semantic relationships be-
tween these categories and the target object, ultimately selecting the frontier with the high-
est semantic relevance for agent exploration.

• OpenFMNav Kuang et al. (2024): OpenFMNav integrates multiple foundation models to
generate a Versatile Semantic Score Map (VSSM). This map dynamically encodes object
semantics with confidence scores. The system evaluates semantic relevance between fron-
tiers and goal objects through VSSM, enabling optimal frontier selection for exploration.

• VLFM Yokoyama et al. (2024): VLFM constructs a language-grounded value map by com-
puting semantic correlations between sequential RGB observations and the goal object us-
ing the BLIP-2 Li et al. (2022) language model. Navigation decisions are made by selecting
frontiers exhibiting maximal semantic alignment with the goal within this map.

• SG-Nav Yin et al. (2024) and UniGoal Yin et al. (2025): SG-Nav and UniGoal both em-
ploy 3D scene graphs to model environmental object relationships. During navigation, they
compute semantic similarity between sub-graphs near frontiers and the goal category, sub-
sequently guiding the agent toward frontiers with the strongest semantic correspondence.

• Trihelper Zhang et al. (2024): Trihelper dynamically integrates three dedicated helpers to
address collisions, inefficient exploration, and target misidentification in object goal nav-
igation. Specifically, a Collision Helper that uses clustering to redirect the agent from
trapped positions; An Exploration Helper that monitors goal proximity to trigger ex-
ploratory behavior when progress stalls; A Detection Helper that leverages vision-language
models to verify target objects and reduce false positives.

• ApexNavZhang et al. (2025): ApexNav proposes an adaptive exploration strat-
egy—dynamically leveraging semantic or geometric cues based on environmental seman-
tics—and a target-centric semantic fusion method for accurate object identification under
noisy detections.

A.7 HYPERPARAMETERS

The hyperparameters of our DP-Nav could be found in Table 5. Note that, except for the parameter
ablation experiments, all other experiments are based on these hyperparameters.

A.8 PROCESSING OF DIFFERENT GOAL SPECIFICATION

We conduct experiments on three goal-oriented tasks: Object Goal Navigation (ObjectNav), Text
Goal Navigation (TextNav), and Instance Image Goal Navigation (InstanceNav). In ObjectNav,
the agent is required to navigate to any instance of a specified object category. For TextNav and
InstanceNav, the agent is provided with a textual description of the goal instance and its surrounding
layout or an image containing a specific goal instance, respectively, and must navigate to that specific
instance.

The goal specification of the above three tasks involves two modalities (text and visual). For the
convenience of unified processing, we directly combine the goal text (ObjectNav, TextNav) or im-
age(InstanceNav) with the designed prompt to guide the VLM to score each region node based on the
corresponding representative perspectives. The designed prompts could be found in the following
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Parameter Value
camera-relative traversable distance τ 0.8749m
region node matching radius Rr 0.65m
junction node matching radius Rr 1.2m
The number of RP K 6
Policy Update Gate φ 0.4
RP update location change δpos 0.5m
RP update orientation difference δang 30°
region node screening path length ϕ 3m
region node screening VLM score ζ 0.4
preference score weight γ 0.6
preference score distance decay coefficient λ 0.1
RGB-D sensor height hsen 0.88m
agent radius 0.18m
horizontal field-of-view θhfov 79
allow sliding false
frame height 480
frame width 640

Table 5: Hyperparameters of our DP-Nav for experiments. RP denotes Representative Perspective
of each region node.

A.9 FAILURE CASE ANALYSIS

To analyze DP-Nav’s failure cases and the impact of different components on navigation failures, we
defined three types of errors. Detection error: missing a visible goal or falsely detecting an absent
one. Planning error: failing the task after correct detection, or being stuck within 1m for ≥ 400
steps without goal detection. Exploration error: never locating the goal, without being stuck or false
detection. The exploration error rate measures navigation ability toward the goal. As illustrated in
Table 4, the removal of individual triggers in the Dynamic Policy Trigger (DPT) module results in
increased exploration errors of +8% and +9%, whereas abolishing the entire DPT module causes the
most significant degradation, with exploration error rising to 14.3% (Compared to DP-Nav’s 6.5%).
This unequivocally validates the effectiveness of our dynamic exploration policy. Moreover, DP-Nav
exhibits a detection error 21% ∼ 25%, which remains higher than the exploration error. The primary
reason lies in DP-Nav’s key innovation: a semantic region potential-driven dynamic navigation
framework designed to overcome inherent issues in prior approaches, including rigidity in static
policies and inefficient backtracking across regions, ultimately improving navigation performance
and path efficiency.

A.10 MORE EXPERIMENTAL VISUALIZATION

We visualize three episodes for each task, respectively. Please see the Figure. 9 (ObjectNav), Figure.
10 (TextNav), Figure. 11 (Instancenav). In addition, we have compiled navigation videos for the
three goal-oriented navigation tasks, which can be found in the supplementary materials.

A.11 VLM PROMPTS

We mainly call VLM in the following two situations. The first is to prompt the VLM to score
the region node based on the corresponding representative perspective and goal specification. This
Prompt is called Score Prompt. The second is in the Region-Reached Trigger of Dynamic Policy
Trigger module. When the agent reaches a region node assigned by the Scoring-Screening Mecha-
nism, based on the corresponding observations of the reached region, we prompt the VLM to deter-
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mine whether deeper exploration is required in this region. We call this prompt Advice Prompt. The
details of Score Prompt and Advise Prompt could be found in the Figure. 12 (ObjectNav), Figure.
13 (TextNav), and Figure. 14 (InstanceNav).

Pruning

...

...

1 2 n

1 2 n

Region-Junction 
Graph

Figure 8: After obtaining the depth image at each time step T= 1,2...n, the traversable area is ex-
tracted, preprocessed, skeletonized, and finally pruned. The pruning operations mainly remove
excess burrs and shorter branches to highlight the main topological structure. This image shows the
comparison before and after pruning, as well as the online updated region-junction graph.
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Figure 9: A Successful navigation episode of ObjectNav by our DP-Nav.
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Region-Junction GraphText Goal Navigation 3(Toilet)Text Goal Navigation 2(Chair)Text Goal Navigation 1(Bed)

intrinsic_attributes: The toilet in this
picture is white, and it looks like a regular
porcelain-made toilet.
extrinsic_attributes: The white toilet is
surrounded by a white-gray floor, a wood-
en cabinet , a transparent glass shower stall.

intrinsic_attributes: The chair in this
image is black. It has a slightly damaged
appearance, with some parts of the fabric
torn or missing, but it still looks relatively
complete.
extrinsic_attributes: This picture shows a
black chair placed in front of a gray desk.
On the left side of the image, there is a
white-framed fireplace with some burning
wood inside. The floor behind the chair is
brownish-yellow, and on the right side,
there are two silver electrical sockets, one
of which has its plug pulled out.

intrinsic_attributes: In this image, there is
a bed with a white blanket and patterned
sheets. The colors of the sheet are beige
and light yellow, complementing each other.
extrinsic_attributes: In the picture, there
is a bed in the center and two drawers on
both sides. The floor is covered with
carpets or furry rugs, which are placed next
to each drawer. On top of one of the
drawers, there is a desk lamp, and above it
are two paintings hanging on the wall.
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Figure 10: A Successful navigation episode of TextNav by our DP-Nav.

Region-Junction GraphPredicted Occupancy  MapLast Step ObservationInstance Image

Goal: Bed

Goal: Chair

Goal: Sofa

Figure 11: A successful navigation episode of InstanceNav by our DP-Nav.
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You are a senior indoor navigation expert currently performing an Object Goal Navigation task. Your starting
position is randomly initialized in an unfamiliar environment. The goal category **bed** has been specified.
You are required to perceive the environment using RGB visual inputs and autonomously navigate to any
instance of the **bed** category.
Now RGB observations from a candidate region are provided. Based on the visual information, evaluate the
goal presence probability. You should consider but not be limited to :
1. **Don’t just focus on whether the goal object appears in the picture, you should consider co-occurrence
probability between goal object and other objects**
2. **Deduce region type from visual features to evaluate goal presence likelihood **
3. **Assess exploration worthiness if the region is only partially visible**
4. **Other information and principles that you consider useful**
5. **Assign higher probability when goal object appear in view**
Finally, return a probability score within **[0,1]** (1 indicates highest likelihood) in strict **JSON ** format:
{"score": your_float_score}

Score Prompt

You are a senior indoor navigation expert currently performing an Object Goal Navigation task. Your starting
position is randomly initialized in an unfamiliar environment. The goal category**bed** has been specified.
You are required to perceive the environment using RGB visual inputs and autonomously navigate to any
instance of the **bed** category.
You have now reached a region and collected three images of it. These three images are numbered in sequence
from left to right in terms of perspective (the numbers are in the upper left corner of each image), and six or less
points are sampled in each image. Please determine whether the current region is worth in-depth exploration
based on the following thinking.
Decision-making should consider but not be limited to:
1. ** Don’t just focus on whether the goal object appears in the picture , you also should consider co-occurrence
probability between goal objects and other objects**
2. **Deduce region type from visual features to evaluate goal presence likelihood**
3. ** Select candidate exploration point closest to goal when visible **
4. ** If goal not visible but passages exist, evaluate if they may lead to potential goal areas **
5. ** Other beneficial principles or information **
Finally, please determine whether this region is worth in-depth exploration. If it is, please return which specific
point in which image is the most worth exploring, strictly in **JSON** format, such as {“image
no”:the_image_no,“exploration point”: the point that you choose}. If it is not worth exploring in depth, directly
return “no” in **JSON** format like {"answer":no}

Advice Prompt

Figure 12: The example prompt of ObjectNav for finding a bed.
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Score Prompt
You are a senior indoor navigation expert currently performing a Text Goal Navigation task. Your starting position is randomly
initialized in an unfamiliar environment. Your task is to perceive the environment through RGB information and navigate
autonomously to a specific object instance described by a piece of text. It should be noted that this object instance must exist in
this environment. The current task’s goal instance is a bed, and the description of this specific bed has the following two aspects:
“**1. Intrinsic attributes**: there is a bed with a white blanket and patterned sheets. The colors of the sheet are beige and light
yellow, complementing each other; **2. Extrinsic_attributes**: there is a bed in the center and two drawers on both sides. The
floor is covered with carpets or furry rugs, which are placed next to each drawer. On top of one of the drawers, there is a desk
lamp, and above it are two paintings hanging on the wall.”
Now RGB observations from a candidate region are provided. Based on the visual information of the candidate region, evaluate
the goal presence probability in the candidate region. You should consider but not be limited to :
1. **You should not only focus on the goal object bed itself, but also pay attention to the environmental layout around the bed as
described above, as well as the attributes of the goal object and its surroundings such as color and material**.
2. **Don’t just focus on whether the goal object appears in the picture, you should consider co-occurrence probability between
goal object and other objects**
3. **Deduce region type from visual features to evaluate goal presence likelihood **
4. **Assess exploration worthiness if the region is only partially visible**
5. **Other information and principles that you consider useful**
Finally, return a probability score within **[0,1]** (1 indicates highest likelihood) in strict **JSON ** format: {"score":
your_float_score}

You are a senior indoor navigation expert currently performing an Text Goal Navigation task. Your starting position is randomly
initialized in an unfamiliar environment. Your task is to perceive the environment through RGB information and autonomously
navigate to a specific object instance described by a piece of text. It should be noted that this object instance must exist in this
environment. The current task’s goal category is **bed**, and the description of this specific bed has the following two aspects:
“**1. Intrinsic attributes**: there is a bed with a white blanket and patterned sheets. The colors of the sheet are beige and light
yellow, complementing each other; **2. Extrinsic_attributes**: there is a bed in the center and two drawers on both sides. The
floor is covered with carpets or furry rugs, which are placed next to each drawer. On top of one of the drawers, there is a desk
lamp, and above it are two paintings hanging on the wall.”
You have now reached a region and collected three images of it. These three images are numbered in sequence from left to right
in terms of perspective (the numbers are in the upper left corner of each image), and six or less points are sampled in each image.
Please determine whether the current region is worth in-depth exploration based on the following thinking.
Decision-making should consider but not be limited to:
1.You should not only consider the specific object instance, but also take into account the environmental layout around the object
described above.
2. **Don’t just focus on whether the goal object appears in the picture, you should consider co-occurrence probability between
goal object and other objects.**
3. **Deduced region type from visual features to evaluate goal presence likelihood.**
4. ** Select candidate exploration point closest to specific goal instance when you are sure the the specific bed instance appear.
**
5. ** If the specific goal instance is not visible but passages exist, evaluate if they may lead to potential goal areas.**
6. ** Other beneficial principles or information.**
Finally, please determine whether this region is worth in-depth exploration. If it is, please return which specific point in which
image is the most worth exploring, strictly in **JSON** format, such as {“image no”:the_image_no,“exploration point”: the
point that you choose}. If it is not worth exploring in depth, directly return “no” in **JSON** format like{"answer":no}

Advice Prompt

Figure 13: The example prompt of TextNav for a specific bed instance.
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Score Prompt
You are a senior indoor navigation expert currently performing an Insance ImageGoal Navigation task. Your starting position is
randomly initialized in an unfamiliar environment. Your task is to perceive the environment through RGB information and
navigate autonomously to a specific object instance specified by a goal image. This picture shows a specific instance of an object
in this environment. It should be noted that this object instance must exist in this environment. In this task, the object instance is a
**bed**, and the **instance goal image** has been given to you.
Now RGB observations from a candidate region are provided. Based on the visual information of the candidate region, evaluate
the goal presence probability in the candidate region. You should consider but not be limited to :
1. **You should not only focus on the goal object bed itself, but also pay attention to the environmental layout around the bed as
described in the goal image, as well as the attributes of the goal instance and its surroundings such as color and material**.
2. **Don’t just focus on whether the goal object appears in the picture, you should also consider co-occurrence probability
between goal object and other objects**
3. **Deduce region type from visual features to evaluate goal presence likelihood **
4. **Assess exploration worthiness if the region is only partially visible**
5. **Other information and principles that you consider useful**
Finally, return a probability score within **[0,1]** (1 indicates highest likelihood) in strict **JSON ** format: {"score":
your_float_score}

You are a senior indoor navigation expert currently performing a Insance ImageGoal Navigation task. Your starting position is
randomly initialized in an unfamiliar environment. Your task is to perceive the environment through RGB information and
navigate autonomously to a specific object instance specified by a goal image. This picture shows a specific instance of an
object in this environment. It should be noted that this object instance must exist in this environment. In this task, the object
instance is a **bed**, and the **instance goal image** has been given to you.
You have now reached a region and collected three images of it. These three images are numbered in sequence from left to right
in terms of perspective (the numbers are in the upper left corner of each image), and six or less points are sampled in each image.
Please determine whether the current region is worth in-depth exploration based on the following thinking.
Decision-making should consider but not be limited to:
1.You should not only consider the specific object instance, but also take into account the environmental layout around the
object described above.
2. **Don’t just focus on whether the goal object appears in the picture, you should consider co-occurrence probability between
goal object and other objects.**
3. **Deduced region type from visual features to evaluate goal presence likelihood.**
4. ** Select candidate exploration point closest to specific goal instance when you are sure the the specific bed instance appear.
**
5. ** If the specific goal instance is not visible but passages exist, evaluate if they may lead to potential goal areas.**
6. ** Other beneficial principles or information.**
Finally, please determine whether this region is worth in-depth exploration. If it is, please return which specific point in which
image is the most worth exploring, strictly in **JSON** format, such as {“image no”:the_image_no,“exploration point”: the
point that you choose}. If it is not worth exploring in depth, directly return “no” in **JSON** format like{"answer":no}

Advice Prompt

Figure 14: The example prompt of InstanceNav for a specific bed instance.
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