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Abstract

In this paper, we propose Selection and Pool-001
ing with Large Language Models (SPILL), an002
intuitive, zero-shot method for intent cluster-003
ing without fine-tuning. Existing embeddings-004
based clustering methods rely on a few labeled005
examples or unsupervised fine-tuning to opti-006
mize results for each new dataset, which makes007
them less generalizable to multiple datasets.008
Our goal is to make these existing embedders009
more generalizable to new domain datasets010
without further fine-tuning. Inspired by our011
theoretical derivation and simulation results on012
the effectiveness of sampling and pooling tech-013
niques, we view the clustering task as a small-014
scale selection problem. A good solution to015
this problem is associated with better cluster-016
ing performance. Accordingly, we propose a017
two-stage approach: First, for each utterance018
(referred to as the seed), we derive its embed-019
ding using an existing embedder. Then, we020
apply a distance metric to select a pool of can-021
didates close to the seed. Because the embed-022
der is not optimized for new datasets, in the023
second stage, we use an LLM to further select024
utterances from these candidates that share the025
same intent as the seed. Finally, we pool these026
selected candidates with the seed to derive a027
refined embedding for the seed. We found that028
our method generally outperforms directly us-029
ing an embedder, and it achieves comparable030
results to other state-of-the-art studies, even031
those that use much larger models and require032
fine-tuning, showing its strength and efficiency.033
Our results indicate that our method enables ex-034
isting embedders to be further improved with-035
out additional fine-tuning, making them more036
adaptable to new domain datasets. Addition-037
ally, viewing the clustering task as a small-scale038
selection problem gives the potential of using039
LLMs to customize clustering tasks according040
to the user’s goals.1041

1The source code is available: https://anonymous.
4open.science/r/paper_review-5168/README.md

1 Introduction 042

Intent detection is a fundamental component in 043

task-oriented dialogue (TOD) systems, aimed at 044

classifying user utterances into pre-defined intent 045

categories (Ni et al., 2023). Although some re- 046

search has focused on addressing data scarcity (Sid- 047

dique et al., 2021; Lin et al., 2024), pre-defined 048

intent labels are insufficient for addressing all user 049

requests, as new intents emerge with growing com- 050

plexity of customer requirements and appearance 051

of novel domains on the business front. While the 052

progress of transformer-based models has greatly 053

enhanced intent detection performance, the identi- 054

fication of emerging intents in task-based conver- 055

sational agents continues to present a challenge 056

(Zhou et al., 2023; Rodriguez et al., 2024). 057

To address this issue, the majority of research 058

aims to develop embedding models that group unla- 059

beled utterances into clusters based on a labeled or 060

unlabeled in-domain dataset (Zhang et al., 2021b; 061

Mou et al., 2022a; Zhang et al., 2023a; Liang and 062

Liao, 2023). The goal of these approaches is to en- 063

able the embedder to learn a robust representation 064

of user utterances while aligning with the cluster 065

objective. Contrastive learning is commonly em- 066

ployed for this purpose, aiming to learn a represen- 067

tation through comparison (Le-Khac et al., 2020). 068

The clustering objective is achieved through the de- 069

sign of a cluster loss function (Zhang et al., 2021a; 070

Mou et al., 2022b; Du et al., 2023). Although these 071

approaches yield good results, they require fine- 072

tuning for each dataset. (Zhang et al., 2021a). 073

In recent years, advancements in generative large 074

language models (LLMs) (Touvron et al., 2023; 075

Team, 2024a) have facilitated improvements in in- 076

tent clustering. Zhang et al. (2023b) and Liang 077

et al. (2024) used LLMs to guide the fine-tuning of 078

embedders, aiming to align the embeddings’ clus- 079

tering outcomes with LLMs’ interpretations. Al- 080

though these studies achieve state-of-the-art results, 081
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they face two primary challenges: First, modifying082

the loss function adds complexity, as it involves083

designing different loss functions and tuning ad-084

ditional hyperparameters, such as the weight of085

each loss term. This makes optimization more dif-086

ficult. Second, building a new embedder requires087

optimization for each dataset, which limits general-088

izability.089

In this paper, we propose a theoretical frame-090

work for clustering, grounded by formal proofs,091

and an intuitive and effective approach to address092

these challenges. Our approach has three key goals:093

easy implementation, no need for fine-tuning, and094

the ability to adapt to unseen datasets. Our ap-095

proach stays close to a theoretical rationale and we096

confirm its potential by simulation analysis. The097

key idea is that if we can identify a few utterances098

that share the same cluster as the seed utterance099

from a randomly selected subset, pooling the seed100

utterance with these selected utterances will bring101

them closer to the cluster centroid. Based on this102

premise, we can see a clustering task as a small-103

scale selection problems.104

Our approach consists of two stages: In the first105

stage, for each utterance (referred to as the "seed106

utterance"), we use an existing embedder (a tra-107

ditional encoder or a decoder-only LLM) to gain108

a larger pool of similar utterances. In the second109

stage, we use LLMs to further select utterances that110

share the same intent cluster as the seed utterance.111

Note that our proposed approach is not intended112

to compete with other embedders. Instead, it is113

designed to complement most existing approaches114

and can strengthen each of the existing models.115

With our experiments, we show that our method116

can boost performance on the clustering task irre-117

spective of the used embedder. In summary, we118

make four contributions: (1) we provide a theoreti-119

cal framework supported by formal proofs and sim-120

ulations, which frame the clustering task as a small-121

scale selection problem, providing both theoretical122

and empirical contributions to the task. (2) We pro-123

pose a novel and easy-to-implement approach that124

is generalizable, regardless of the embedders used125

and does not require fine-tuning and can operate126

with low computational resources; (3) We show our127

method enables domain adaptation in clustering for128

unseen datasets, achieving state-of-the-art results129

on four benchmark collections.130

2 Related Work 131

Intent clustering with contrastive learning 132

Grouping user utterances and identifying new in- 133

tents is essential in TOD systems (Zhang et al., 134

2021a,b; Mou et al., 2022a; Liang and Liao, 2023; 135

Du et al., 2023). Most research has focused on 136

developing embedding models to create strong rep- 137

resentations of user utterances. For instance, Zhang 138

et al. (2021b) pretrained a model with little la- 139

belled data and use k-means to produce cluster 140

assignments as pseudo labels. They learn the in- 141

tent representations under the supervision of the 142

aligned pseudo-labels. Zhang et al. (2021a) pro- 143

pose a method that optimizes both the contrastive 144

loss and clustering loss together to build a sen- 145

tence embedding model. To prevent overfitting on 146

in-domain data during contrastive loss optimiza- 147

tion, Mou et al. (2022a) limit the comparison to 148

k-nearest neighbors instead of considering all pos- 149

sible neighbors. As earlier research focused on 150

contrastive learning without fully accounting for 151

the semantic meanings of labels, Liang and Liao 152

(2023) use two-level contrastive learning to learn 153

representations. This approach first aligns embed- 154

dings with several contrastive objectives, including 155

their proposed label semantic alignment, then ap- 156

plies soft prompting to enhance the use of semantic 157

knowledge in intent discrimination. 158

Sentence embeddings with LLM feedback 159

With the advancement of LLMs, research is in- 160

creasingly using their capabilities to improve em- 161

bedding. Zhang et al. (2023b) introduce a method 162

that constructs multiple triplet questions, each con- 163

sisting of an anchor data point and two candidate 164

points. The triplets are initially selected from dif- 165

ferent clusters using a smaller embedder, and the 166

LLM is then tasked with identifying the positive 167

pair for the anchor point. After fine-tuning the em- 168

bedder, they perform an initial clustering using the 169

updated embeddings and then leverage the LLM 170

to refine the clustering granularity. Their results 171

show substantially better performance than tradi- 172

tional embedding methods like SCCL (Zhang et al., 173

2021a) while using less data for training. Liang 174

et al. (2024) leverage LLMs to derive intent descrip- 175

tors. They then design contrastive loss functions to 176

optimize a smaller embedder, synergizing LLMs 177

and smaller language models for intent recognition. 178

Instead of fine-tuning an embedder, Viswanathan 179

et al. (2024) use LLMs to improve the utterances 180
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by having them generate key phrases for each sen-181

tence, which are then added to the sentence and182

encoded into embeddings. De Raedt et al. (2023)183

select prototypical utterances, generate labels for184

non-prototypical ones using LLMs, and encode185

both utterances and labels together.186

Sentence embeddings in LLMs While previous187

research has focused on methods that rely on pre-188

trained contrastive loss embedders with feedback189

from LLMs, recent studies have shown that directly190

extracting embeddings from LLMs can also be ef-191

fective. Jiang et al. (2023) propose an in-context192

learning approach to improve embeddings by in-193

troducing a "one word limitation". The idea is to194

instruct LLMs to summarize the input sentence into195

a single word. They found that this approach can196

still achieve good performance without fine-tuning.197

Springer et al. (2024) propose the echo embedding198

approach. Because auto-regressive embeddings do199

not capture context from later tokens, they pass200

the sentence through the model twice and pool em-201

beddings only from the second occurrence. Their202

experiment shows that this method outperforms203

traditional pooling. Lei et al. (2024) propose a204

meta-task prompting method with a ‘one-word lim-205

itation.’ The embeddings are created using a series206

of carefully designed prompts that cover different207

aspects of meaning, using the ‘one-word limitation’208

to improve the embeddings.209

3 Theoretical framework210

In this section, we introduce our theoretical deriva-211

tion, followed by validations through empirical sim-212

ulations.213

3.1 Problem formulation214

We cast the problem of identifying emerging intents215

to a clustering task, where conversation utterances216

are grouped into clusters, with each cluster corre-217

sponding to a newly identified intent. Consider a218

collection of data points D = {xi}Ni=1, where each219

data point xi ∈ D corresponds to an utterance, and220

N is the total number of data points. The task is221

to partition D into cluster sets {Ŝl}M̂l=1, where M̂222

is the number of the unique clusters. Note that223 ∑M̂
l=1 |Ŝl| = N . The objective is to ensure that the224

clustering results {Ŝl}M̂l=1 are as close as possible225

to the true partition {Sl}Ml=1, where M is the num-226

ber of unique clusters in the ground truth. Similarly,227 ∑M
l=1 |Sl| = N .228

3.2 Theoretical grounding and proof 229

For simplicity in the theoretical development, we 230

assume sampling is performed with replacement. 231

Consider cluster S ∈ {Sl}Ml=1, containing NS data 232

points such that S = {xi}NS
i=1. For each data point 233

xi, we derive a d dimensional vector representation 234

zi ∈ Rd from an embedder. This results in the set 235

{zi}NS
i=1. We denote σ2

h and µh as the variance and 236

mean of the cluster for the h-th dimension of our 237

d-dimensional space. µh is also the cluster cen- 238

troid in h-th dimension. If we randomly select one 239

utterance from the cluster S, denoted as Zi,2 then 240

we randomly select k elements with replacement 241

Zi1,Zi2, ...,Zik from {zi}NS
i=1 to derive its pooling 242

version
∗
Zi, defined as follow: 243

∗
Zi :=

Zi +
∑k

m=1 Zim

1 + k
(1) 244

Based on this, we formally prove the following 245

inequality holds (a detailed proof is provided in 246

Appendix A): 247

d∑
h=1

E[(
∗
Zih − µh)

2]− E[(Zih − µh)
2] < 0, (2) 248

where Zih ∈ R and
∗
Zih ∈ R represent elemnts of 249

the h-th dimension of Zi and
∗
Zi, respectively. 250

This inequality suggests that using this sampling 251

and pooling approach, the samples are closer to 252

the cluster centroid, which implies that clustering 253

can be approached as a small-scale selection task. 254

Specifically, instead of identifying all similar utter- 255

ances at once, we only need to determine whether 256

a randomly chosen subset of utterances belongs to 257

the same cluster as the seed utterance. The idea 258

based on the inequality is that if we can perform se- 259

lection perfectly on the subset of data points, then 260

any cluster will show reduced variance when each 261

data point is pooled with randomly selected points 262

from the same cluster, compared to the variation 263

in the original points. We examine the relationship 264

between variance and clustering performance in 265

Section 3.3 using simulations. 266

3.3 Simulation study 267

Inspired by the theoretical principles outlined 268

above, our main goal is to identify utterances that 269

share the same intent as the seed utterance. To 270

2We use capital to highlight it is a random vector
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achieve this, we only need to consider a randomly271

selected subset of candidate utterances at a time.272

A straightforward way to compare the seed ut-273

terance with a subset is to use an LLM directly.274

However, choosing the right subset size is challeng-275

ing: A small subset may miss related utterances,276

while a large one increases computational cost. To277

address this, we use an embedding model to select278

a subset of similar utterances as a starting point.279

However, this approach might deviate from the280

theory’s assumption that the subset is randomly281

selected from the whole cluster, as it focuses only282

on locally close utterances. To evaluate the impact283

brought by embedder-base selection, we conduct a284

simulation study.285

In the simulation, we analyze two extreme pool-286

ing strategies: randomly selecting k utterances287

from the same cluster to pool with the seed utter-288

ance (strategy Rd) (following the theoretical analy-289

sis), and selecting only the top-k closest utterances290

from the same cluster to pool with the seed utter-291

ance (strategy TopK). Sampling is performed with-292

out replacement to prevent over-representation of293

certain examples, which can occur in small clusters.294

See Appendix B for simulation process details.295

Table 1 shows that both Rd and TopK pooling296

strategies reduce variances while simultaneously297

improving clustering metrics in both non-skewed298

and skewed settings. Furthermore, the results indi-299

cate that increasing the pooling size leads to better300

clustering performance. Finally, even in scenarios301

with a skewed distribution, both pooling methods302

continue to enhance performance. We also investi-303

gate whether the results hold with varying dimen-304

sionality. We found that for higher dimensionality,305

the variances for both Rd and TopK remain re-306

duced and the clustering performance improved307

(more details in Appendix C).308

The findings of our simulation study are as fol-309

lows: (1) lower variance within a cluster is asso-310

ciated with better clustering performance. (2) in-311

creasing the value of k tends to improve clustering312

performance. (3) pooling based on the closest k313

still shows improvement, indicating that using an314

embedder as an initial selection step is a reasonable315

approach.316

4 Computational Method317

Based on our theoretical analysis and simulation318

results, randomly selecting utterances among the319

entire cluster to pool with a seed utterance is guar-320

k = 0 k = 5 k = 10 k = 20
Rd TopK Rd TopK Rd TopK

Normal
ˆvar2 39.76 6.33 7.70 3.30 4.20 1.58 2.12

Acc 37.54 69.73 65.74 94.71 92.61 99.54 99.20
NMI 0.52 33.15 32.94 80.32 77.32 97.60 96.33

Log-normal
ˆvar2 28.12 4.45 3.04 2.33 1.29 1.12 0.47

Acc 43.52 47.54 53.50 58.60 88.16 81.67 98.77
NMI 0.93 9.82 19.14 31.63 71.41 74.94 94.16

Table 1: Average estimated variances, mean, and cluster-
ing metrics over 50 runs in our simulation study. Note:
ˆvar2: Estimated variance for the one of the cluster (We

report only one of them since all clusters have the same
trend) over 128 dimensions; k: Number of data points
selected to pool with the seed.

anteed to reduce clustering variance, which is as- 321

sociated with better clustering performance. The 322

simulation results further demonstrate that pooling 323

using top−k selection can still outperform no pool- 324

ing and can approach the performance of random 325

selection achieved with larger k in higher dimen- 326

sional spaces. Building on these findings, we pro- 327

pose a two-stage selection approach. In the first 328

stage, we implement a selection strategy based on 329

these findings. In the second stage, to refine the 330

candidates from the first stage, we leverage the ca- 331

pabilities of LLM to identify the best utterances in 332

the selection, ensuring that the selected utterances 333

belong to the same cluster. 334

4.1 First stage: Embedding based selection 335

In this stage, we use open-source models to ex- 336

tract the utterance embeddings: We feed xi into 337

a existing pretrained encoder or a large language 338

model (referred to as the "embedder" in the fol- 339

lowing text) to extract its embedding, denoted as 340

zi := Embedder(xi). Let d(zi, zj) be a distance 341

function that compute the distance between the two 342

embeddings zi and zj , where i ̸= j. This dis- 343

tance is denoted as dij . We use Euclidean distance. 344

By sorting the distances dij , we can select the top 345

ltop closest utterances to the seed xi, which have 346

highest chance of being in the same cluster. These 347

corresponding utterances are denoted as {xij}
ltop
j=1. 348

Additionally, to introduce some variety, we also 349

select utterances, denoted as lrandom {xij}lrandom
j=1 , 350

using chunk sampling: We split the whole sam- 351

ple into lrandom chunks, and take the first closest 352

utterance from each chunk. This chunk sampling 353

method introduces variety while ensuring that rel- 354

atively close utterances are selected. Thus, the 355

entire candidate set is given by: Di := {xij}
ltop
j=1∪ 356
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{xij}lrandom
j=1 The goal of the first stage is to quickly357

select utterances that are more likely to belong to358

the same cluster as the seed xi. However, since359

the embedder is not specifically optimized for the360

datasets we are experimenting with, and the clus-361

ters may be in overlapping areas in the vector space,362

it is possible that some candidates belong to a dif-363

ferent cluster than the seed xi.364

4.2 Second stage: LLM based selection365

To address the possibility that the candidate set366

Di may include utterances from different clusters367

than xi, we use in-context learning with an LLM to368

select utterances that share the same intent as the369

seed utterance from Di. Note that Di is shuffled370

before being fed into the LLM. These selected ut-371

terances are denoted as D̃i, note D̃i ⊆Di. We then372

take the seed xi along with all elements from D̃i to373

compute the mean pooling. This pooled represen-374

tation,
∗
zi, will be used for the clustering algorithm.375

The size of D̃i varies for each seed utterance, as it376

depends on the LLM’s selection result.377

The purpose for the second stage is to leverage378

the power of LLMs with a simple designed prompt379

to further select the utterances sharing the same380

intent as the seed utterance.381

5 Experimental Settings382

5.1 Datasets and models383

We use SGD (Rastogi et al., 2020), Bank77384

(Casanueva et al., 2020), CLINC150 (Larson et al.,385

2019), Mtop and Massive for our experiments.386

Statistics are provided in Table 2.387

In the first stage, embeddings extraction,388

we experiment with three decoder models, i.e.389

Qwen2.5-7B-Instruct (Team, 2024b) Llama3.2-390

8B-Instruct (AI@Meta, 2024), and Gemma-2-9b-391

it (Team, 2024a), as well as two encoder models,392

i.e. E5-large (Wang et al., 2022) and Instructor-393

large (Su et al., 2022). In the second stage, we use394

an LLM to verify these utterances. If a decoder395

model is used in the first stage as an embedder, we396

continue with the same model in the second stage;397

for the encoder models in the first stage, we tried398

all the three LLMs in the second stage. For simplic-399

ity, we refer to these models with shortened names:400

Qwen, Llama, Gemma, E5, and Instructor in the401

following sections.402

Dataset # clusters # utterances
SGD 34 1, 506∗

Bank77 77 3,080
Clinc150 150 4,500

Mtop 102 4,386
Massive 59 2,974

Table 2: Dataset Statistics. Note: SGD includes a
dataset of 57.2K samples across the training, valida-
tion, and test splits. We only use its subset for setting
hyperparameters. For other datasets, we use the same
settings as Zhang et al. (2023b)

.

Task Instructions:

Step 1: Identify Intent Clusters
Review the Candidate Utterances to identify their individual intents and
group them into clusters based on shared intent. Candidates may either
align with the same cluster as the Target Utterance or belong to entirely
different clusters.
Note: Intent refers to the request or the purpose the user wants to achieve.

Step 2: Match Intent with Target Utterance
Compare each Candidate’s intent to the Target Utterance, using the
clusters you identified. Select only Candidates from the same intent
cluster as the Target Utterance.
Note: Choose a Candidate only if its intent clearly aligns with the Target
Utterance’s purpose.

Answer Format:
Only provide the final selection of Candidate Utterances by listing their
numbers if they match the Target Utterance intent or request.
1. If Candidates 3, 4, 9, and 11 match, write: The Candidate utterances

numbers are: 3, 4, 9, 11

2. If no Candidate matches, write: The Candidate utterances numbers
are: none

Note: Stick to the answer format and avoid providing extra explanations.

Task:
Target Utterance: {sentence 1}
Candidate Utterances:
1. {sentence 1}
...
L. {sentence L}

Table 3: Task Instructions Prompt. Note: The boldface
used here is for readability; it is not used in the prompt.

5.2 Prompts used 403

First stage We build on previous research to im- 404

plement our method for extracting embeddings. 405

The prompts we used can be see in appendix D. 406

We in general follow their practice. 407

Second stage In this stage we use the same 408

prompt across different LLMs, shown in Table 3. 409

5.3 Embedding derivation 410

E5 and Instructor use mean pooling to derive em- 411

beddings for sentence representation. Echo uses 412

mean pooling on the last hidden layer output to 413

achieve better results than using the last token, 414

while Summarizer utilizes the last token embed- 415

ding from the last hidden layer output. We adopt 416

their settings for our follow-up experiments. 417

5.4 Evaluation 418

To evaluate the embedding quality, for simplic- 419

ity, we assume the true cluster number is known 420
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(note that in our method, this is not required), in421

line with previous research evaluation practices422

(Zhang et al., 2021a, 2022, 2023b; Viswanathan423

et al., 2024; Liang et al., 2024). Therefore, the424

number of clusters will correspond to the number425

of labels for each dataset, and the KMeans algo-426

rithm (Lloyd, 1982) is applied for clustering.427

Since the datasets used in our experiments are428

labeled, we will apply standard clustering metrics429

to evaluate the results. These metrics include nor-430

malized mutual information (NMI) and clustering431

accuracy (Acc) (Rand, 1971; Meilă, 2007; Huang432

et al., 2014; Gung et al., 2023).433

5.5 Hyperparameters setting434

Although our proposed method does not require435

updating the model parameters, it relies on one436

key hyperparameter: the values used to select first-437

stage candidates, specifically the values of ltop and438

lrandom. We use SGD as an external dataset to439

optimize these parameters. This avoids directly440

applying our method to the evaluation datasets, en-441

suring a fair comparison. We set our tolerance3:442

at 20 = ltop + lrandom, and we experiment with443

different combinations of ltop ∈ {2, 4, ..., 20}. We444

found that the combination ltop = 14; lrandom = 6445

gives the best performance, though overall results446

show little difference across combinations. (See447

more detail in appendix E). We fix the setting (14,6)448

throughout our experiments across all different449

datasets and models.450

5.6 Baselines451

We compare our method with the state-of-the-art452

(SOTA) approaches, all of which operate in a zero-453

shot setting (i.e., performing tasks on an unlabeled454

dataset). Among these, SynCID and ClusterLLM455

involve fine-tuning of their embedding models.456

SynCID (Liang et al., 2024) use davinci-003 to457

refine utterances, which are then used to fine-tune458

a small embedder, bert-base-uncased.4 We report459

their zero-shot setting result.460

KeyphraseCluster (Viswanathan et al., 2024)461

uses GPT (gpt-3.5-turbo) to generate key phrases462

for each utterance, which are then concatenated463

for clustering. They use Instructor-large as their464

backbone of the embedder (Su et al., 2022).465

3we call tolerance because increasing it adds more compu-
tation in the second stage

4google-bert/bert-base-uncased

ClusterLLM (Zhang et al., 2023b) uses GPT 466

(gpt-3.5-turbo) to construct hard triplets from the 467

test dataset and fine-tune a small embedder. They 468

use Instructor-large (Su et al., 2022) and E5-large 469

embedders (Wang et al., 2022). 470

Echo embeddings and Summarizer Both Echo 471

embeddings (Springer et al., 2024) and Summa- 472

rizer (Lei et al., 2024) do not rely on contrastive 473

learning for optimization. Instead, they use their 474

own prompts to derive the desired embedding from 475

decoder-only LLMs. 476

6 Results 477

6.1 Main results 478

Tabel 4 compares our proposed method SPILL with 479

all baselines with different encoder and decoder 480

embedders. For encoder embedders, we found that 481

our proposed method generally performs best with 482

Gemma, followed by Qwen, and then LLama. 483

Additionally, SPILL mostly in almost all set- 484

ting performs better than directly using the em- 485

beddings. Notably, our proposed method achieves 486

results comparable to Zhang et al. (2023b) (Cluster- 487

LLM) and Liang et al. (2024) (SynCID), which 488

perform fine-tuning on the embedders. For de- 489

coder embedders, our method shows better per- 490

formance than Echo and Summarizer on most 491

datasets, and even better than encoder embedders 492

on some datasets. This suggests that decoder 493

embedders without contrastive loss optimization 494

can outperform encoder embedders and show self- 495

improvement with SPILL. 496

6.2 Ablation and analysis 497

Effectiveness of the first and second stage We 498

analyze how the first and second stages improve 499

clustering performance. Based on the results shown 500

in Table 5, we find that the first selection stage 501

generally improves performance compared to the 502

plain setting, and the second selection stage often 503

provides further performance gains compared to 504

the first stage. 505

Analysis of Performance Variations Although 506

Table 4 shows that our proposed method mostly 507

improves performance than directly using an em- 508

bedder, we analyze why some results still show 509

lower performance. We found a higher correct 510

selection ratio is associated with better clustering 511

performance (See more detail in appendix F). We 512
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Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI Acc

Fine-tuned embeddings
SynCID (davinci-003) 84.20 72.89 94.23 86.80 - - - -
ClusterLLME5 (GPT) 84.16 (0.36) 70.13 (1.34) 92.92 (0.29) 80.48 (0.93) 74.46 (0.11) 37.22 (1.18) 74.39 (0.21) 56.08 (1.01)

ClusterLLMInstructor (GPT) 85.15 (0.41) 71.20 (1.59) 94.00 (0.21) 83.80 (0.41) 73.83 (0.79) 35.04 (0.97) 77.64 (0.21) 60.69 (0.96)

E5-large
Plain 77.19 (0.34) 59.60 (1.42) 91.27 (0.38) 75.92 (0.91) 70.87 (0.23) 34.21 (0.57) 71.38 (0.55) 53.85 (1.28)

SPILL (Gemma) 83.56 (0.47) 70.25 (1.56) 92.93 (0.08) 83.18 (0.78) 71.77 (0.35) 36.83 (1.10) 75.40 (0.51) 60.28 (1.81)

SPILL (LLama) 80.94 (0.29) 66.84 (0.97) 91.41 (0.07) 80.09 (1.31) 70.52 (0.51) 35.04 (1.06) 72.74 (0.44) 58.06 (1.52)

SPILL (Qwen) 83.64 (0.26) 70.31 (0.75) 92.67 (0.31) 82.58 (0.87) 71.20 (0.36) 36.48 (0.73) 74.46 (0.57) 59.38 (1.20)

Instructor-large
Plain 82.38 (0.59) 65.70 (1.78) 93.25 (0.32) 81.12 (2.27) 71.69 (0.60) 34.06 (2.51) 74.56 (0.37) 56.62 (1.75)

KeyphraseClust. (GPT) 82.4 (0.0) 65.3 (0.0) 92.6 (0.0) 79.4 (0.0) - - - -
SPILL (Gemma) 85.01 (0.29) 71.05 (0.83) 93.77 (0.35) 85.14 (1.04) 72.65 (0.32) 37.11 (1.62) 77.62 (0.46) 62.42 (2.06)

SPILL (LLama) 83.37 (0.22) 69.55 (0.60) 92.96 (0.18) 84.31 (0.72) 71.41 (0.31) 35.18 (1.12) 75.28 (0.83) 58.79 (2.75)

SPILL (Qwen) 85.12 (0.30) 71.48 (0.27) 93.63 (0.32) 84.43 (1.38) 72.18 (0.43) 36.33 (0.70) 76.84 (0.58) 61.37 (1.83)

Qwen
Echo 63.80 (0.66) 40.28 (1.62) 85.19 (0.35) 65.80 (0.97) 64.57 (0.35) 28.49 (0.68) 62.19 (0.64) 42.57 (1.63)

SPILL (Qwen) 73.66 (0.66) 53.44 (1.57) 90.62 (0.22) 75.73 (0.99) 68.15 (0.27) 31.45 (0.74) 69.06 (0.34) 49.09 (1.68)

Summarizer 64.80 (0.35) 42.92 (1.41) 91.55 (0.18) 77.54 (0.94) 76.33 (0.48) 39.08 (0.90) 76.43 (0.89) 61.91 (2.35)

SPILL (Qwen) 70.98 (0.22) 49.94 (0.67) 94.10 (0.19) 85.02 (1.04) 77.41 (0.24) 42.45 (1.42) 78.12(0.40) 65.33 (1.27)

Llama
Echo 68.40 (0.46) 46.20 (0.46) 87.03 (0.47) 70.60 (0.79) 68.19 (0.48) 31.49 (1.24) 61.62 (0.76) 42.24 (1.45)

SPILL (Llama) 73.44 (0.35) 53.50 (0.60) 90.49 (0.29) 78.89 (0.47) 70.53 (0.27) 33.55 (1.19) 67.42 (0.64) 47.57 (1.82)

Summarizer 67.47 (0.21) 43.99 (1.19) 92.49 (0.31) 81.26 (1.27) 76.51 (0.19) 40.10 (0.86) 74.67 (0.66) 59.23 (1.62)

SPILL (Llama) 70.31 (0.20) 48.62 (0.99) 93.59 (0.17) 86.12 (0.96) 76.26 (0.48) 40.59 (1.25) 76.20 (0.47) 63.19 (1.77)

Gemma
Echo 71.20 (0.45) 50.32 (1.88) 90.13 (0.24) 73.36 (0.65) 71.24 (0.18) 32.82 (0.80) 70.51 (0.93) 50.13 (0.89)

SPILL (Gemma) 79.37 (0.51) 60.25 (1.94) 93.77 (0.09) 82.97 (1.32) 74.74 (0.34) 38.70 (1.38) 76.24 (0.40) 58.75 (0.73)

Summarizer 69.74 (0.28) 47.16 (1.14) 94.10 (0.24) 83.67 (0.74) 78.90 (0.32) 45.14 (1.87) 77.83 (0.58) 63.48 (2.22)

SPILL (Gemma) 75.38 (0.22) 55.12 (0.65) 95.49 (0.08) 88.25 (0.70) 79.01 (0.48) 43.77 (1.04) 79.11 (0.57) 64.33 (2.54)

Table 4: Results for the four benchmark sets. Scores are averages over 5 runs, with standard deviations shown in
parentheses. Model names in bold denote the embedding model, with names in parentheses indicating the LLM
used. Plain refers to directly using the embedding for clustering. Boldface numbers highlight the highest values
globally, while underlined values indicate the best within each embedder. Results for ClusterLLM, KeyphraseClust,
and SynCID are taken directly from their papers.

hypothesize that reduced performance occurs be-513

cause some pooled utterances come from different514

clusters than the seed utterance.515

To verify this, Table 6 shows a hypothetical re-516

sult with 100% correct selection rate. In this sce-517

nario, we assume that the correct candidates in the518

first stage are already known, without relying on519

an LLM for validation. Under this assumption, the520

results show consistent improvements over directly521

using the embedder, which supports our hypothesis,522

and aligns with the simulation result.523

6.3 Qualitative analysis524

We apply t-SNE (Van der Maaten and Hinton,525

2008) to reduce the embedding dimensions for 2D526

visualization. The embeddings are obtained from527

Gemma with Echo prompt. We compare the re-528

sults between the Echo and SPILL. From Figure 1529

is clear that our method separates the clusters bet-530

ter. However, we also observe that for the Mtop531

dataset, both approaches struggle with clustering it532

well. As an additional analysis, we randomly select 533

examples from the first and second stage selections 534

using Gemma-Echo on the Bank77 dataset. In the 535

first stage, we observe that utterances with different 536

intents tend to appear as they become farther from 537

the seed. Second, the LLM can identify utterances 538

with the same intent as the seed. Finally, we find 539

that the LLM is able to select more distant same- 540

cluster utterances from the seed, thereby introduc- 541

ing greater variety. The examples are provided in 542

Appendix G. 543

7 Conclusions 544

We proposed Selection and Pooling with Large 545

Language Models (SPILL), an intuitive, zero-shot 546

method for intent clustering without fine-tuning. 547

SPILL is applicable to any embedder and does not 548

require fine-tuning. We found that (1) our pro- 549

posed method enables viewing a clustering task 550

as a small-scale selection problem, providing a 551

novel perspective on the clustering process; (2) our 552
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Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI Acc

E5-large
Plain 77.19 (0.34) 59.60 (1.42) 91.27 (0.38) 75.92 (0.91) 70.87 (0.23) 34.21 (0.57) 71.38 (0.55) 53.85 (1.28)

w\1st stage 79.79 (0.24) 66.16 (0.80) 91.49 (0.31) 81.59 (0.69) 70.62 (0.53) 33.37 (0.93) 71.32 (0.26) 55.70 (1.13)

w\2nd stage (Gemma) 83.56 (0.47) 70.25 (1.56) 92.93 (0.08) 83.18 (0.78) 71.77 (0.35) 36.83 (1.10) 75.40 (0.51) 60.28 (1.81)

w\2nd stage (Llama) 80.94 (0.29) 66.84 (0.97) 91.41 (0.07) 80.09 (1.31) 70.52 (0.51) 35.04 (1.06) 72.74 (0.44) 58.06 (1.52)

w\2nd stage (Qwen) 83.64 (0.26) 70.31 (0.75) 92.67 (0.31) 82.58 (0.87) 71.20 (0.36) 36.48 (0.73) 74.46 (0.57) 59.38 (1.20)

Gemma
Echo 71.20 (0.45) 50.32 (1.88) 90.13 (0.24) 73.36 (0.65) 71.24 (0.18) 32.82 (0.80) 70.51 (0.93) 50.13 (0.89)

w\1st stage 72.09 (0.39) 51.55 (0.94) 90.75 (0.17) 79.46 (0.41) 71.70 (0.42) 34.17 (1.13) 70.45 (0.33) 49.17 (0.54)

w\2nd stage 79.37 (0.51) 60.25 (1.94) 93.77 (0.09) 82.97 (1.32) 74.74 (0.34) 38.70 (1.38) 76.24 (0.40) 58.75 (0.73)

Summarizer 69.74 (0.28) 47.16 (1.14) 94.10 (0.24) 83.67 (0.74) 78.90 (0.32) 45.14 (1.87) 77.83 (0.58) 63.48 (2.22)

w\1st stage 70.98 (0.36) 49.84 (0.65) 94.28 (0.08) 86.64 (0.41) 77.89 (0.55) 41.65 (1.31) 77.82 (0.25) 63.38 (1.14)

w\2nd stage 75.38 (0.22) 55.12 (0.65) 95.49 (0.08) 88.25 (0.70) 79.01 (0.48) 43.77 (1.04) 79.11 (0.57) 64.33 (2.54)

Table 5: Ablation study: Contribution of the first and selection stage (%). Average over 5 runs. The results of other
embedders is in appendix F.

Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI Acc

E5-large
Plain 77.19 (0.34) 59.60 (1.42) 91.27 (0.38) 75.92 (0.91) 70.87 (0.23) 34.21 (0.57) 71.38 (0.55) 53.85 (1.28)

Ground truth 91.74 (0.15) 83.40 (0.97) 98.17 (0.17) 94.28 (1.11) 81.87 (0.50) 45.44 (1.65) 87.08 (0.39) 73.16 (1.87)

Gemma
Echo 71.20 (0.45) 50.32 (1.88) 90.13 (0.24) 73.36 (0.65) 71.24 (0.18) 32.82 (0.80) 70.51 (0.93) 50.13 (0.89)

Ground truth 86.47 (0.46) 71.49 (0.88) 97.76 (0.19) 92.21 (0.85) 82.06 (0.62) 45.74 (1.85) 86.37 (0.54) 69.00 (1.76)

Sum 69.74 (0.28) 47.16 (1.14) 94.10 (0.24) 83.67 (0.74) 78.90 (0.32) 45.14 (1.87) 77.83 (0.58) 63.48 (2.22)

Ground truth 81.05 (0.33) 62.23 (1.59) 97.68 (0.09) 92.67 (0.46) 83.65 (0.44) 49.84 (1.17) 85.94 (0.40) 73.34 (1.14)

Table 6: Average results of ground truth pooling (%) over 5 runs. Ground truth pools each seed utterance with
same-cluster utterances from 20 candidates in the stage one. Results for other embedders are in Appendix F.

(a) Bank77 (b) Clinc150

(c) Mtop (d) Massive

Figure 1: T-SNE plots for the four datasets (20 clusters for each). Left: Echo (Gemma). Right: SPILL

method demonstrates general improvements regard-553

less of the embedding model used, highlighting its554

versatility; (3) Our method can achieve comparable555

results to other SOTA research studies without fine-556

tuning and by using smaller models; (4) It proves557

to be effective in data-limited domains (zero-shot558

setting), showing its adaptability in challenging 559

scenarios. For future work, we see potential for im- 560

proved prompting, the addition of few-shot settings, 561

and generalisation to other languages. 562
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Limitations563

Language. Like most of the prior work, we only564

focus on English utterance datasets. This is rel-565

evant because most of benchmark datasets are in566

English.567

Prompt design Our research uses only one prompt568

in the second stage across different models and569

datasets. Our main goal is to avoid overdoing570

prompt engineering and to make our approach gen-571

eralizable. The prompt simply explains the task572

and ensures the desired answer format for easy ex-573

traction. However, this also implies there still be574

room for improvement in our results because we575

did not specifically design a unique prompt for each576

LLM or dataset.577

Few-shot settings. Our research only considers578

the zero-shot setting. However, in our second stage579

selection, we use LLMs for selection. If LLMs580

are provided with some examples with known in-581

tents, they could potentially identify the relevance582

between seed and candidate utterances more ef-583

fectively. This exploration will be left for future584

work.585
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A Mathematical proof of the inequality756

Proof. To show the inequality holds, we first to757

show both
∗
Zih and Zih have the same mean:758

E(
∗
Zih) = E

(
Zih +

∑k
m=1 Zimh

1 + k

)
(3)759

=
1

(1 + k)

{
E(Zih) +

k∑
m=1

E(Zimh)

}
(4)

760

=
1

(1 + k)
(µh + kµh) (5)761

= µh (6)762

Zimh is the hth dimension element of Zim (see763

Eq. 1). Since E[
∗
Zih] = E[Zih] = µh, the inequal-764

ity (see the formula 2) can be rewritten as follows:765

d∑
h=1

Var[
∗
Zih]− Var[Zih] < 0 (7)766

Then, we have:767

Var[
∗
Zih] = Var

[
Zih +

∑k
m=1 Zimh

1 + k

]
768

⋄
=

1

(1 + k)2

[
Var[Zih] +

k∑
m=1

Var[Zimh]

]
769

=
1

(1 + k)2
[σ2

h + k · σ2
h]770

=
1

1 + k
· σ2

h < σ2
h = Var[Zih]771

772

Note that the step marked with ⋄ holds due to773

the independence of these random variables. Since774

this property holds for each dimension, the entire775

summation (see Eq. 7) will hold as well.776

B Simulation process777

We consider 3 clusters in a 128-dimensional space.778

The mean and variances are averaged over 128 di-779

mensions. For each experiment trial, between 50780

and 250 data points are independently sampled for781

each cluster. The data is drawn from either a normal782

distribution or a skewed log-normal distribution.783

For the normal distribution, the µ and σ2 in each784

dimension are sampled from the ranges (0, 1e−10)785

Summarizer (Jiang et al., 2023):
The task is intent detection. The goal is to identify the purpose or goal
behind a user input. The user intent of this sentence: {sentences} means
in one word:"
Echo (Repetition) (Springer et al., 2024):
Instruct: The task is intent detection. The goal is to identify the purpose
or goal behind a user input. Give the user intent of the utterance,
User utterances:{sentences} User utterances again:{sentences}
Instructor (Su et al., 2022) and (Liang and Liao, 2023):
Bank77: Represent the bank purpose for retrieval:
Mtop: Represent the sentence for retrieval:
Clinc150 and Massive: Represent the sentence for retrieving the purpose:

Table 7: Task Instructions Prompt for the first stage.
Note that for Summarizer and Echo, we use the same
prompt across different datasets.

and (20, 60), respectively. The log-normal distribu- 786

tion is generated by taking the exponential of data 787

points sampled from the normal distribution, with 788

the σ2 and µ in each dimension sampled from the 789

ranges (0, 1e− 10) and (1.5, 2). 790

C Simulation with varied dimensionality 791

Figure 2 shows TopK pooling performs even better 792

in higher dimension than Rd when the cluster is 793

skewed. For a normal distribution, Rd consistently 794

outperforms TopK. 795

D Prompt used in the first stage 796

Table 7 shows the prompts we apply. Specifically, 797

we follow the main prompt structures outlined in 798

Echo and Summarizer, with minor modifications 799

to include wording tailored to our specific task of 800

intent detection. For Instructor, we adopt the same 801

prompt used in the study we reference for compari- 802

son (Zhang et al., 2023b), which is similar to the 803

ones used in the original study (Su et al., 2022). For 804

E5-large, we follow their practice to add ’Query:’ 805

as prefix. 806

E Hyperparameter selection process 807

We use Instructor as our first-stage embedding 808

model to align with previous research, such as 809

Zhang et al. (2023b) and Viswanathan et al. (2024), 810

who proposed methods built on this embedder. For 811

the second stage, while both studies use GPT, we 812

instead use the smaller and open-source model 813

Llama for the reproducibility and accessibility. 814

Although a higher tolerance gives us a better 815

chance to cover more utterances from the same 816

cluster, this also increases the computation required 817

for the second stage. We set L = 20. 818

We experiment with different combinations of 819

ltop ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20} utterances. 820

11



(a) Estimated variance (normal) (b) NMI (normal) (c) Acc (normal)

(d) Estimated Variance (log-normal) (e) NMI (log-normal) (f) Acc (log-normal)

Figure 2: Average variance, clustering accuracy (Acc), and NMI over 50 runs with different dimensions given
k = 10. We only present variance from one of the three clusters (they all have the same trend) for readability. The
simulation process is the same as table 1, and only varies in dimension.

Figure 3: The average clustering accuracy (Acc) and
NMI for different values of ltop over 5 runs. The dashed
line refers to the result obtained by directly using the
embedder.

Figure 3 shows that the (ltop, lrandom = (14, 6)821

overall gives the best performance.822

F Ablation analysis for all encoder and823

decoder embedders824

Here, we provide the complete results of the abla-825

tion study. Details of the performance contributions826

in both the first and selection stages can be found in827

table 8. The average correct ratio and the number828

of selected items are presented in table 9, while the829

details of the ground truth analysis can be found in830

table 10.831

G Some examples of Selection 832

We randomly select three examples extracted 833

from the first selection using Gemma-Echo and 834

our method Gemma-SPILL from the Bank77 835

dataset. In the first stage, the selection is ordered 836

by the distance from the seed (starting at 15, 837

derived through chunk sampling). First, we 838

observe that in the initial stage, utterances with 839

different intents appear in the later part of the 840

selection. Second, it can be seen that the LLM 841

effectively selects utterances with the same intent 842

as the seed. Additionally, the LLM is capable of 843

correctly selecting utterances from the later part 844

of the list, introducing more variety to the pool 845

while maintaining consistency with the seed. For 846

instance, in Example 1, the furthest utterance is 847

selected by the LLM without any mistakes in 848

selecting incorrect utterances. 849

850

Example 1: 851

Seed utterance: I would appreciate it if I could get 852

an item refunded (intent: request refund) 853

854

Gemma-Echo-1stStage 855

1. Would I be able to get a refund for something I 856

bought? (request refund) 857

2. I don’t want the item, I bought it on accident, 858

can I get a refund? (request refund) 859

3. I would like a refund for something I bought 860

(request refund) 861

12



Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI Acc

E5-large
Plain 77.19 (0.34) 59.60 (1.42) 91.27 (0.38) 75.92 (0.91) 70.87 (0.23) 34.21 (0.57) 71.38 (0.55) 53.85 (1.28)

w\1st stage 79.79 (0.24) 66.16 (0.80) 91.49 (0.31) 81.59 (0.69) 70.62 (0.53) 33.37 (0.93) 71.32 (0.26) 55.70 (1.13)
w\2nd stage (Gemma) 83.56 (0.47) 70.25 (1.56) 92.93 (0.08) 83.18 (0.78) 71.77 (0.35) 36.83 (1.10) 75.40 (0.51) 60.28 (1.81)
w\2nd stage (Llama) 80.94 (0.29) 66.84 (0.97) 91.41 (0.07) 80.09 (1.31) 70.52 (0.51) 35.04 (1.06) 72.74 (0.44) 58.06 (1.52)
w\2nd stage (Qwen) 83.64 (0.26) 70.31 (0.75) 92.67 (0.31) 82.58 (0.87) 71.20 (0.36) 36.48 (0.73) 74.46 (0.57) 59.38 (1.20)

Instructor-large
Plain 82.38 (0.59) 65.70 (1.78) 93.25 (0.32) 81.12 (2.27) 71.69 (0.60) 34.06 (2.51) 74.56 (0.37) 56.62 (1.75)

w\1st stage 82.83 (0.45) 68.69 (1.80) 93.48 (0.17) 86.18 (0.72) 71.65 (0.34) 32.63 (1.27) 75.29 (0.59) 59.35 (3.06)
w\2nd stage (Gemma) 85.01 (0.29) 71.05 (0.83) 93.77 (0.35) 85.14 (1.04) 72.65 (0.32) 37.11 (1.62) 77.62 (0.46) 62.42 (2.06)
w\2nd stage (Llama) 83.37 (0.22) 69.55 (0.60) 92.96 (0.18) 84.31 (0.72) 71.41 (0.31) 35.18 (1.12) 75.28 (0.83) 58.79 (2.75)
w\2nd stage (Qwen) 85.12 (0.30) 71.48 (0.27) 93.63 (0.32) 84.43 (1.38) 72.18 (0.43) 36.33 (0.70) 76.84 (0.58) 61.37 (1.83)

Qewn
Echo 63.80 (0.66) 40.28 (1.62) 85.19 (0.35) 65.80 (0.97) 64.57 (0.35) 28.49 (0.68) 62.19 (0.64) 42.57 (1.63)

w\1st stage 65.10 (0.50) 42.84 (0.85) 87.06 (0.25) 70.95 (1.05) 65.79 (0.13) 29.43 (0.26) 63.88 (0.58) 43.69 (1.73)
w\2nd stage 73.66 (0.66) 53.44 (1.57) 90.62 (0.22) 75.73 (0.99) 68.15 (0.27) 31.45 (0.74) 69.06 (0.34) 49.09 (1.68)

Summarizer 64.80 (0.35) 42.92 (1.41) 91.55 (0.18) 77.54 (0.94) 76.33 (0.48) 39.08 (0.90) 76.43 (0.89) 61.91 (2.35)
w\1st stage 65.21 (0.39) 43.95 (0.47) 92.35 (0.15) 83.69 (0.56) 76.13 (0.25) 39.21 (1.11) 76.66 (0.49) 63.67 (2.03)

w\2nd stage 70.98 (0.22) 49.94 (0.67) 94.10 (0.19) 85.02 (1.04) 77.41 (0.24) 42.45 (1.42) 78.12 (0.40) 65.33 (1.27)
Llama

Echo 68.40 (0.46) 46.20 (0.46) 87.03 (0.47) 70.60 (0.79) 68.19 (0.48) 31.49 (1.24) 61.62 (0.76) 42.24 (1.45)
w\1st stage 70.25 (0.56) 48.88 (1.03) 87.57 (0.14) 74.09 (0.48) 68.91 (0.42) 32.07 (0.49) 63.19 (0.40) 42.97 (0.92)

w\2nd stage 73.44 (0.35) 53.50 (0.60) 90.49 (0.29) 78.89 (0.47) 70.53 (0.27) 33.55 (1.19) 67.42 (0.64) 47.57 (1.82)

Summarizer 67.47 (0.21) 43.99 (1.19) 92.49 (0.31) 81.26 (1.27) 76.51 (0.19) 40.10 (0.86) 74.67 (0.66) 59.23 (1.62)
w\1st stage 68.54 (0.34) 46.11 (0.77) 93.15 (0.11) 85.55 (0.23) 75.87 (0.32) 39.41 (1.34) 75.81 (0.33) 63.30 (1.82)

w\2nd stage 70.31 (0.20) 48.62 (0.99) 93.59 (0.17) 86.12 (0.96) 76.26 (0.48) 40.59 (1.25) 76.20 (0.47) 63.19 (1.77)
Gemma

Echo 71.20 (0.45) 50.32 (1.88) 90.13 (0.24) 73.36 (0.65) 71.24 (0.18) 32.82 (0.80) 70.51 (0.93) 50.13 (0.89)
w\1st stage 72.09 (0.39) 51.55 (0.94) 90.75 (0.17) 79.46 (0.41) 71.70 (0.42) 34.17 (1.13) 70.45 (0.33) 49.17 (0.54)

w\2nd stage 79.37 (0.51) 60.25 (1.94) 93.77 (0.09) 82.97 (1.32) 74.74 (0.34) 38.70 (1.38) 76.24 (0.40) 58.75 (0.73)

Summarizer 69.74 (0.28) 47.16 (1.14) 94.10 (0.24) 83.67 (0.74) 78.90 (0.32) 45.14 (1.87) 77.83 (0.58) 63.48 (2.22)
w\1st stage 70.98 (0.36) 49.84 (0.65) 94.28 (0.08) 86.64 (0.41) 77.89 (0.55) 41.65 (1.31) 77.82 (0.25) 63.38 (1.14)

w\2nd stage 75.38 (0.22) 55.12 (0.65) 95.49 (0.08) 88.25 (0.70) 79.01 (0.48) 43.77 (1.04) 79.11 (0.57) 64.33 (2.54)

Table 8: Contribution of the first and selection stage (%). Average over 5 runs.

4. I want to get an item refunded (request refund)862

5. I bought something but now I would like a863

refund. How do I do that? (request refund)864

6. I am not Happy with this product can i get a865

refund? (request refund)866

7. Can I have an item refunded? (request refund)867

8. I bought this item and was charged the wrong868

amount can I get a refund? (request refund)869

9. I am unhappy with my purchase, how do I cancel870

the order? (request refund)871

10. I would like to cancel a payment. I purchased872

something several days ago and i still have not873

received it. (request refund)874

11. I would like to know why I was charged twice875

for my purchase. (transaction charged twice)876

12. I would like to know why my payment is still877

pending, can you help? (pending transfer)878

13. Hello! I recently made a purchase and I’m879

needing to cancel my order and process a refund as880

soon as possible. (request refund)881

14. I would like a refund on one of your products882

that has been sold to me (request refund)883

15. Can I receive a refund for my item? (request884

refund)885

16. Can I have a refund? (request refund)886

17. I want to reverse a purchase. Can I cancel it?887

(request refund)888

18. I need a refund on an item I have not received. 889

Am I able to simply cancel the payment? I don’t 890

know how to do this. (request refund) 891

19. I requested a refund, and never received it. 892

What can I do? (Refund not showing up) 893

20. Hi there! I need to cancel an order I recently 894

made and start processing a refund. Can you 895

please help me with this and set up the refund as 896

soon as possible? It’s very urgent. (request refund) 897

898

Gemma-Echo-2ndStage 899

1. Can I have a refund? (request refund) 900

2. Can I receive a refund for my item? (request 901

refund) 902

3. Would I be able to get a refund for something I 903

bought? (request refund) 904

4. I would like a refund on one of your products 905

that has been sold to me (request refund) 906

5. I am not Happy with this product can i get a 907

refund? (request refund) 908

6. I need a refund on an item I have not received. 909

Am I able to simply cancel the payment? I don’t 910

know how to do this. (request refund) 911

7. I want to get an item refunded (request refund) 912

8. I would like a refund for something I bought 913

(request refund) 914

9. Hi there! I need to cancel an order I recently 915
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Bank 77 Clinc150 Mtop Massive
Ratio(%) # Selection Ratio(%) # Selection Ratio(%) # Selection Ratio(%) # Selection

E5-large
Plain w\1st stage 62.01 20.00 71.90 20.00 71.56 20.00 59.12 20.00

w\2nd stage (Gemma) 80.30 10.54 93.05 8.05 84.26 5.91 80.88 6.12
w\2nd stage (Llama) 71.14 12.13 86.52 9.50 80.12 7.09 73.42 7.38
w\2nd stage (Qwen) 80.52 8.61 90.80 7.14 82.45 4.72 78.65 5.17

Instructor-large
w\1st stage 67.84 20.00 78.17 20.00 75.41 20.00 65.38 20.00

w\2nd stage (Gemma) 80.66 11.28 93.43 8.15 85.46 5.94 81.85 6.27
w\2nd stage (Llama) 73.48 13.12 88.79 9.89 81.98 7.26 76.34 7.73
w\2nd stage (Qwen) 81.12 9.41 92.06 7.31 84.50 4.82 79.70 5.38

Qwen
Echo

w\1st stage 44.11 20.00 65.69 20.00 70.18 20.00 56.66 20.00
w\2st stage 72.99 6.94 90.22 6.24 83.29 3.84 78.96 4.25

Summarizer
w\1st stage 43.44 20.00 78.49 20.00 83.28 20.00 71.47 20.00

w\2st stage 69.95 7.30 93.03 6.72 89.15 4.17 82.78 4.94
Llama

Echo
w\1st stage 48.89 20.00 66.84 20.00 73.51 20.00 55.20 20.00

w\2nd stage 61.90 10.54 85.84 8.41 82.83 6.23 71.70 6.32
Summarizer

w\1st stage 47.85 20.00 81.76 20.00 83.46 20.00 71.66 20.00
w\2nd stage 57.70 11.54 89.90 9.58 87.09 6.97 79.37 7.42

Gemma
Echo

w\1st stage 50.85 20.00 71.15 20.00 77.01 20.00 61.25 20.00
w\2nd stage 75.12 9.60 93.92 7.54 88.46 4.94 82.02 5.45

Summarizer
w\1st stage 52.11 20.00 84.68 20.00 85.34 20.00 74.49 20.00

w\2nd stage 73.00 10.10 95.32 8.01 90.19 5.43 84.60 6.13

Table 9: Average correct selection ratio and average number of utterances selected over 5 runs. Note: the number
for the first stage remains constant as L = 20 is fixed. The ratio is defined as the number of same-cluster utterances
out of the total number of selections.

made and start processing a refund. Can you please916

help me with this and set up the refund as soon as917

possible? It’s very urgent. (request refund)918

10. I bought this item and was charged the wrong919

amount can I get a refund? (request refund)920

11. I don’t want the item, I bought it on accident,921

can I get a refund? (request refund)922

12. Can I have an item refunded? (request refund)923

13. I bought something but now I would like a924

refund. How do I do that? (request refund)925

926

Example 2:927

Seed utterance: When getting my ID checked,928

what are the steps involved? (intent: verify my929

identity)930

931

Gemma-Echo-1stStage932

1. What kind of documents do I need for the iden-933

tity check? (verify my identity)934

2. What will I need for identity verification? (verify935

my identity)936

3. Are there any documents needed for the identity937

check? (verify my identity)938

4. What’s the process for ID verification? (verify939

my identity)940

5. Is there any documentation needed for the iden-941

tity check? (verify my identity)942

6. What are the steps I need to take to verify my943

identity? (verify my identity) 944

7. Do I need any kind of documentation for the 945

identity check? (verify my identity) 946

8. What do I do for the identity check? (verify my 947

identity) 948

9. What is needed to prove my identity? (verify my 949

identity) 950

10. Let me know the steps for the identity checks 951

(verify my identity) 952

11. What is the need to verify my identity? (why 953

verify identity) 954

12. What are the steps to verify my identity? (verify 955

my identity) 956

13. What all am I required to show for the identity 957

check? (verify my identity) 958

14. What things do I need to verify my identity? 959

(verify my identity) 960

15. Is there a specific type you need for identity 961

verification? (verify my identity) 962

16. What do I need to do to verify the source of my 963

funds? (verify source of funds) 964

17. What’s with not verifying my Id? (unable to 965

verify identity) 966

18. I need the source of my funds verified. How do 967

I do this? (verify source of funds) 968

19. What do i need to verify my id? (unable to 969

verify identity) 970

20. What other methods are there to verify my 971
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Bank 77 Clinc150 Mtop Massive
NMI Acc NMI Acc NMI Acc NMI Acc

E5-large
Plain 77.19 (0.34) 59.60 (1.42) 91.27 (0.38) 75.92 (0.91) 70.87 (0.23) 34.21 (0.57) 71.38 (0.55) 53.85 (1.28)
Ground truth 91.74 (0.15) 83.40 (0.97) 98.17 (0.17) 94.28 (1.11) 81.87 (0.50) 45.44 (1.65) 87.08 (0.39) 73.16 (1.87)

Instructor-large
Plain 82.38 (0.59) 65.70 (1.78) 93.25 (0.32) 81.12 (2.27) 71.69 (0.60) 34.06 (2.51) 74.56 (0.37) 56.62 (1.75)
Ground truth 92.68 (0.32) 84.54 (0.91) 98.54 (0.10) 95.44 (0.40) 81.29 (0.27) 43.69 (1.10) 87.30 (0.35) 72.04 (1.87)

Qwen
Echo 63.80 (0.66) 40.28 (1.62) 85.19 (0.35) 65.80 (0.97) 64.57 (0.35) 28.49 (0.68) 62.19 (0.64) 42.57 (1.63)
Ground truth 81.64 (0.68) 64.21 (1.87) 95.60 (0.15) 87.15 (0.68) 76.14 (0.42) 38.35 (1.25) 79.49 (0.46) 60.56 (1.22)

Sum 64.80 (0.35) 42.92 (1.41) 91.55 (0.18) 77.54 (0.94) 76.33 (0.48) 39.08 (0.90) 76.43 (0.89) 61.91 (2.35)
Ground truth 77.05 (0.56) 57.58 (0.79) 97.33 (0.17) 91.91 (0.71) 83.19 (0.40) 49.35 (1.15) 86.99 (0.33) 74.72 (0.90)

Llama
Echo 68.40 (0.46) 46.20 (0.46) 87.03 (0.47) 70.60 (0.79) 68.19 (0.48) 31.49 (1.24) 61.62 (0.76) 42.24 (1.45)
Ground truth 85.44 (0.39) 68.84 (0.82) 95.74 (0.11) 88.45 (0.75) 79.27 (0.28) 40.69 (0.79) 78.74 (0.79) 59.48 (2.75)

Sum 67.47 (0.21) 43.99 (1.19) 92.49 (0.31) 81.26 (1.27) 76.51 (0.19) 40.10 (0.86) 74.67 (0.66) 59.23 (1.62)
Ground truth 80.08 (0.30) 59.68 (0.74) 97.56 (0.08) 93.41 (0.62) 82.77 (0.29) 48.53 (0.79) 85.66 (0.64) 72.53 (2.05)

Gemma
Echo 71.20 (0.45) 50.32 (1.88) 90.13 (0.24) 73.36 (0.65) 71.24 (0.18) 32.82 (0.80) 70.51 (0.93) 50.13 (0.89)
Ground truth 86.47 (0.46) 71.49 (0.88) 97.76 (0.19) 92.21 (0.85) 82.06 (0.62) 45.74 (1.85) 86.37 (0.54) 69.00 (1.76)

Sum 69.74 (0.28) 47.16 (1.14) 94.10 (0.24) 83.67 (0.74) 78.90 (0.32) 45.14 (1.87) 77.83 (0.58) 63.48 (2.22)
Ground truth 81.05 (0.33) 62.23 (1.59) 97.68 (0.09) 92.67 (0.46) 83.65 (0.44) 49.84 (1.17) 85.94 (0.40) 73.34 (1.14)

Table 10: Average results of ground truth pooling (%) over 5 runs. Ground truth refers to each seed utterance being
pooled with other same-cluster (i.e. always selected correctly from a pool of 20 candidates) utterances from the
first-stage collection.

identity? (why verify identity)972

973

Gemma-Echo-2ndStage974

975

1. What are the steps I need to take to verify my976

identity? (verify my identity)977

2. What’s the process for ID verification? (verify978

my identity)979

3. Let me know the steps for the identity checks980

(verify my identity)981

4. What are the steps to verify my identity? (verify982

my identity)983

984
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