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ABSTRACT

Offline preference-based reinforcement learning (PbRL) provides an effective way
to overcome the challenges of designing reward and the high costs of online in-
teraction. However, since labeling preference needs real-time human feedback,
acquiring sufficient preference labels is challenging. To solve this, this paper
proposes a offLine prEference-bAsed RL with high Sample Efficiency (LEASE)
algorithm, where a learned transition model is leveraged to generate unlabeled
preference data. Considering the pretrained reward model may generate incorrect
labels for unlabeled data, we design an uncertainty-aware mechanism to ensure the
performance of reward model, where only high confidence and low variance data
are selected. Moreover, we provide the generalization bound of reward model to
analyze the factors influencing reward accuracy, and demonstrate that the policy
learned by LEASE has theoretical improvement guarantee. The developed the-
ory is based on state-action pair, which can be easily combined with other offline
algorithms. The experimental results show that LEASE can achieve comparable
performance to baseline under fewer preference data without online interaction.

1 INTRODUCTION

Reinforcement learning (RL) has been widely applied in robot control (Haarnoja et al., 2024; Ra-
dosavovic et al., 2024) and healthcare (Li et al., 2021; Wu et al., 2022) fields. However, in real-world
scenarios, RL faces two serious challenges: 1) It is dangerous for agent to interact directly with en-
vironment, especially human-in-loop control (Levine et al., 2020); 2) It is difficult to design a quan-
titative reward function to accurately reflect the human intention or preference (Hadfield-Menell
et al., 2017). Many researches have been explored to solve the above challenges.

Offline RL, learning policy from previous collected dataset without interaction with environ-
ment, has become an effective way for challenge 1 (Kumar et al., 2020; Kostrikov et al., 2021a).
Preference-based RL (PbRL), which learns the reward function from human preference data without
the demand for tedious hand-engineered reward design (Christiano et al., 2017), has been developed
recently for challenge 2. However, compared with data (s, a, s′), the collecting cost of preference
data is higher since it demands human real-time feedback to label preference, which often brings
high sample complexity (low sample efficiency) (Liang et al., 2022; Park et al., 2022).

Some data augmentation techniques have been proposed to solve problem of the limitation of pref-
erence data (Park et al., 2022; Hu et al., 2024). However, the above methods need online interaction
with environment and still demand large human feedback. Therefore, this paper aims to design a
high sample efficiency offline PbRL algorithm that can achieve comparable control performance
with baseline from a limited amount of preference data without interaction with environment.

In offline PbRL setting, existing methods (Shin et al., 2021; Kim et al., 2023; Zhang et al., 2024)
typically involve two steps: reward learning and policy learning. However, the theoretical guarantees
of reward generalization and policy improvement are not provided. Therefore, this paper focuses on
answering the following two questions: 1) In algorithm, how to use the limited preference data to
learn accurate reward model and guarantee agent performance? 2) In theory, what factors affect the
reward generalization and what is the detailed relationship between offline RL algorithm itself, the
reward gap and the improvement of policy performance?
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Figure 1: The learning framework of LEASE. The offline dataset without reward is used to train
transition model and limited labeled preference dataset is used to pretrain reward model. Then the
generated unlabeled preference data is screened through uncertainty-aware selecting mechanism.
The reward model is updated based on labeled and generated dataset. Finally, the agent learns the
policy based on offline dataset and learned reward model.

.

For question 1, motivated by model-based offline RL, which learns the environment model to
broaden data coverage (Yu et al., 2020; Liu et al., 2024), we also train the transition model to
achieve data augmentation (improve sample efficiency). Specifically, the agent generates two dif-
ferent trajectories through interaction with the learned transition model, and then the pretrained
reward model generates pseudo label for these two trajectories. However, the preference model may
generate incorrect pseudo label, which may bring unstable training and low performance.

For question 2, there are very fewer algorithms for offline PbRL theory. The most relevant work
is Zhan et al. (2024), where the theory of policy improvement guarantee is established. However,
the generalization bound for reward model is not considered, and this theory is based on the whole
trajectory rather than state-action pair in offline algorithms, which is not conducive to the theoretical
analysis of specific offline PbRL algorithms since many offline RL are based on state-action pair.

To solve the above problems, this paper proposes a novel offLine prEference-bAsed RL with high
Sample Efficiency algorithm (LEASE), where a selecting mechanism is designed to guarantee the
quantity of generated dataset. Moreover, we develop a new generalization bound for reward model,
and provide the theory of policy improvement guarantee for offline PbRL based on state-action pair.
Fig. 1 shows the learning framework of LEASE. LEASE can achieve comparable performance to
baseline under fewer preference data. The contributions are given below:

1) A novel learning framework, named LEASE, is proposed for offline PbRL, where an innovative
preference augmentation technique is utilized to improve sample efficiency.

2) An uncertainty-aware mechanism is designed for screening the generated preference data so as
to guarantee the stability of reward training and improve the accuracy of reward prediction.

3) The generalization bound of reward model and the theory of policy improvement based on state-
action pair are developed to analyze factors that influence reward and policy performance.

In this paper, the theoretical and experimental results show that LEASE has policy improvement
guarantee and can achieve superior performance under fewer preference data on D4RL benchmark.

2 PRELIMINARIES

Offline Reinforcement Learning. The framework of RL is based on the Markov Decision Process
(MDP) that is described by the tupleM = (S,A, R, T, ρ, γ), where S is the state space, A is the
action space, R : S ×A → R is the reward function, T : S ×A → ∆(S) is the transition dynamics,
ρ is the initial state distribution, and γ ∈ (0, 1) is the discount factor (Levine et al., 2020). The term
∆(Ω) denotes the set of probability distribution over space Ω. The goal of RL is to optimize the
policy π that maximizes the expected discounted return J(π,R) := E(s,a)∼dπT (s,a)[R(s, a)]/(1−γ),
where dπT (s, a) := dπT (s)π(a|s) is the state-action marginal distribution under the learned policy
π. The discounted state marginal distribution dπT (s) is denoted as (1 − γ)

∑∞
t=0 γ

tP(st = s|π),

2
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where P(st = s|π) is the probability of reaching state s at time t by rolling out π. The policy
π can be derived from Q-learning, which learns the Q-function that satisfies Bellman operator:
T Q(s, a) := R(s, a) + γEs′∼TM(s′|s,a)[maxa′∈AQ(s′, a′)] (Sutton et al., 1998).

The goal of offline RL is to learn a policy from offline datasetDoffline = {(si, ai, ri, s′i)}Ci=1 collected
by the behavior policy µ. The policy learning includes two parts: policy evaluation (minimizing the
Bellman error) and policy improvement (maximizing the Q-function), that is

Q̂← argmin
Q

Es,a,s′∼D
[
Q(s, a)− T̂ Q̂(s, a)

]2
(Policy Evaluation)

π̂ ← argmax
π

Es∼D,a∼π
[
Q̂(s, a)

]
(Policy Improvement)

(1)

where D can be a fixed offline dataset or replay buffer generated by the current policy π̂ interact-
ing with the environment. The operator T̂ is the Bellman operator based on sample, denoted as
T̂ Q(s, a) := R(s, a) + γmaxa′∈AQ (s′, a′) (Kumar et al., 2020).

Preference-based Reinforcement Learning. Different from standard RL setting, the reward func-
tion is not available in PbRL. Instead, PbRL learns the reward function R̂ from preferences between
pairs of trajectory segments to align the human intention (Wilson et al., 2012), where a trajectory
segment σ of length L is defined as a sequence of states and actions {sk, ak, ..., sk+L−1, ak+L−1} ∈
(S × A)L. Given a pair of segments (σ0, σ1), human choose which segment is preferred, i.e.,
y ∈ {0, 1} (Christiano et al., 2017). The preference label y = 1 indicates σ1 ≻ σ0 and y = 0
indicates σ0 ≻ σ1, where σi ≻ σj denotes that the segment i is preferable to the segment j.

The preference data is stored in the dataset Dl as a tuple (σ0, σ1, y). To obtain the reward function
R̂ parameterized by ψ, the Bradley-Terry model (Bradley and Terry, 1952) is utilized to define a
preference predictor following previous works (Kim et al., 2023; Verma and Metcalf, 2024):

P (σ0 ≻ σ1;ψ) =
exp

∑
t R̂ψ(s

0
t , a

0
t )

exp
∑
t R̂ψ(s

0
t , a

0
t ) + exp

∑
t R̂ψ(s

1
t , a

1
t )
. (2)

Then, based on the collected preference dataset Dl, the reward function R̂ψ can be updated through
minimizing the cross-entropy loss between the predicted and the true preference labels (Verma and
Metcalf, 2024):

LR(ψ) = −E(σ0,σ1,y)∼Dl

[
(1− y) logP (σ0 ≻ σ1;ψ) + y logP (σ1 ≻ σ0;ψ)

]
. (3)

After obtaining the reward function R̂, offline PbRL optimizes the policy by maximizing the ex-
pected discounted return J(π,R) like standard offline RL.

Model-based Offline Reinforcement Learning. Model-based RL learns the dynamics model to
improve sample efficiency (Rigter et al., 2022; Liu et al., 2024). They used the offline dataset
Doffline to estimate transition model T̂ (s′|s, a). The transition model T̂φ parameterized by φ is
typically trained via maximum likelihood estimation (MLE):

LT (φ) = −E(s,a,s′)∼Doffline

[
log T̂φ(s

′ | s, a)
]
. (4)

In practical implantation, the transition model is approximated by Gaussian distribution and the
MLE method is employed to train NT ensemble transition models {T iφ = N (µiφ, σ

i
φ)}

NT
i=1 (Yu

et al., 2020). The samples are generated through H-step rollouts. Here, we use the trained transition
to generate more trajectory to achieve data augmentation.

3 PROBLEM FORMULATION

The cost of collecting preference data is high since it needs real-time human feedback. Therefore,
this paper aims to improve sample efficiency to learn accurate reward model from limited preference
data and guarantee agent performance. For PbRL, the ideal form is that the learned reward function
R̂ from collected preference data can be consistent with true rewardR∗. Here, we define the function
class asR = {R : S ×A → R}. Then we assume the reward classR is realizable.
Assumption 1 (Realizability). Let d(s, a) ∈ ∆(S ×A) be the arbitrary data distribution. Then, for
any distribution d(s, a), infR∈R E(s,a)∼d(s,a)[R

∗(s, a)−R(s, a)]2 < εR holds.

3
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Based on the above assumption, the optimal reward function can be obtained if the preference data
can cover all data space. However, preference data tend to be limited, even less than hundred in
real-world scenarios, such as rehabilitation robot field. Therefore, different from previous PbRL
(Park et al., 2022; Hu et al., 2024; Zhang et al., 2024), this paper learns reward function from the
limited dataset Dl = {(σl0, σl1, y)(i)}

Nl
i=1. We train the transition model through Eq. (4) to generate

more unlabeled preference data Du = {(σu0 , σu1 )(i)}
Nu
i=1. The pseudo labels ŷ for unlabeled dataset

Du can be obtained through reward model trained on Dl (Park et al., 2022), that is

ŷ (σu0 , σ
u
1 ) = 1

[
P (σu1 ≻ σu0 ;ψ) > 0.5

]
, (5)

where 1(·) is indicator function.The reward function is updated through collected labeled datasetDl
and generated unlabeled dataset Du. Then, the reward model can be optimized through minimizing

L′
R(ψ) = E(σl

0,σ
l
1,y)∼Dl

[
L
(
(σl0, σ

l
1), y

) ]
+ E(σu

0 ,σ
u
1 )∼Du

[
L ((σu0 , σ

u
1 ), ŷ)

]
, (6)

whereL((σ0, σ1), y) = −(1−y) logP (σ0 ≻ σ1;ψ)−y logP (σ1 ≻ σ0;ψ). However, the pretrained
reward model may generate incorrect pseudo-labels for unlabeled dataset, leading to noisy training
and poor generalization (Rizve et al., 2021). Therefore, one key question is how to design a data
selecting mechanism to improve prediction accuracy and guarantee training stability.

The another key aspect is the theory for offline PbRL. There are very few algorithms specifically
designed for offline PbRL with strong guarantee, including generalization bound for reward model
and safe improvement guarantee for policy learning. Therefore, another key question is to develop
a systematic theory for offline PbRL, including generalization bound and improvement guarantee.

4 REWARD LEARNING

The reward learning involves two stages: pretraining based on collected labeled data Dl and updat-
ing based on Dl and unlabeled data Du during policy learning, which is essentially semi-supervised
learning (Berthelot et al., 2019). This section focuses on designing a data selecting function
f(σu0 , σ

u
1 ) to ensure the quality of generated preference data, and explaining the factors that in-

fluence the generalization ability of reward model.

4.1 UNCERTAINTY-AWARE PSEUDO-LABEL SELECTION FOR REWARD LEARNING

Motivated by the previous pseudo-labeling work (Rizve et al., 2021), we select data from unlabeled
datasetDu according two principles: confidence and uncertainty. The data with high confidence and
low uncertainty can be chosen for reward training. High confidence refers that pre-trained reward
model discriminates the preference of two trajectories into ŷ with high probability p(σu0 , σ

u
1 , ŷ).

Low uncertainty refers that the NR reward models (model ensembles) predicts with small variance
τ(σu0 , σ

u
1 , NR). The probability confidence p(σu0 , σ

u
1 , ŷ) and uncertainty variance τ(σu0 , σ

u
1 , NR)

can be denoted as

p(σu0 , σ
u
1 , ŷ) = (1− ŷ) · P̄ (σu0 ≻ σu1 ;ψ) + ŷ · P̄ (σu1 ≻ σu0 ;ψ)

τ(σu0 , σ
u
1 , NR) = Std

{
P (σu0 ≻ σu1 ;ψ)

}
,

(7)

where NR is the number of reward model, Std {P (·)} denotes the variance of output probability
of NR reward models, and P̄ (·) is the mean probability of NR reward models. Therefore, according
to high confidence and low uncertainty, the f(σu0 , σ

u
1 ) can be denoted as:

f(σu0 , σ
u
1 ) = 1

[
p(σu0 , σ

u
1 , ŷ) > κp

]
· 1
[
τ(σu0 , σ

u
1 , NR) < κτ

]
, (8)

where κp and κτ are thresholds of confidence and uncertainty respectively. f(σu0 , σ
u
1 ) = 1 denotes

the generated data (σu0 , σ
u
1 ) is selected, and f(σu0 , σ

u
1 ) = 0 denotes the data is not selected. Then

combing Eq. (6), the reward model can be optimized through minimizing

L̂R(ψ) =
1

Nl

∑Nl

i=1
L
(
(σl0, σ

l
1)

(i), yi
)
+

1

Ñu

∑Nu

j=1
f
(
(σu0 , σ

u
1 )

(j)
)
·L
(
(σu0 , σ

u
1 )

(j), ŷj
)
, (9)

where Ñu is the number of generated dataset after screening, and L̂R(ψ) is the empirical risk. It
contains two parts: labeled loss L̂l(ψ) and unlabeled loss L̂u(ψ). Note that the label in unlabeled

4
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loss is pseudo-label, which may be different from the true label. Therefore, there is the gap between
the unlabeled loss with pseudo-label L̂u(ψ) and that with true label L̂′

u(ψ). Before bounding this
gap, we firstly give the below assumption without loss of generality.

Assumption 2. For the pretrained reward model R̂ψ through the limited labeled dataset Dl =

{(σl0, σl1, y)(i)}
Nl
i=1, if the pseudo label ŷ is defined in Eq. (5), then the pseudo-labeling error for the

unlabeled dataset Du = {(σu0 , σu1 )(j)}
Nu
j=1 is smaller than η, i.e.,

∑Nu

j=1 1[ŷ
j ̸= yj ]/Nu ≤ η.

Proposition 1. Suppose that the loss L((σ0, σ1), y)) is bounded by Ω. Then, for any R ∈ R, under
Assumption 2 the following equation holds:∣∣L̂u(ψ)− L̂′

u(ψ)
∣∣ ≤ ηΩ. (10)

The proof of Proposition 1 can be found in Appendix A.1. This gap is mainly influenced by the
term η. Through selecting high confidence and low uncertainty samples, the η can be significantly
reduced. Combining Eqs. (5) and (8), we find that if p(σu0 , σ

u
1 , ŷ) is small, the L((σu0 , σ

u
1 ), ŷ)

would become larger. Too large error can lead to unstable training and low performance. Therefore,
through selecting mechanism f(σu0 , σ

u
1 ), a more accurate subset of pseudo-labels can be used in

reward training, and through setting a higher confidence threshold for pseudo labeling, a lower
prediction error and the stability of training can be guaranteed.

4.2 GENERALIZATION BOUND FOR REWARD MODEL

Before developing generalization bound, we define the expected error LR(ψ) with respect to the
reward model R(s, a;ψ): LR(ψ) = E(σ0,σ1,y)∼D[L((σ0, σ1), y)], where D is data distribution. The
reward model is trained through minimizing the empirical error L̂R(ψ) in Eq. (9). Through devel-
oping generalization error bound, we can analyse the factors that influence generalization ability.

Similar to the previous generalization bound works (Xie et al., 2024), Rademacher complexity,
which measures the richness of a certain hypothesis space (Mohri and Muñoz Medina, 2012), is
introduced firstly. The definition is given below:

Definition 1 (Empirical Rademacher complexity). Let F be a family of functions mapping from Z
to R and Ŝ = {z1, . . . , zNs

} be a fixed sample of size Ns drawn from the distribution S over Z . The
empirical Rademacher complexity of G for sample Ŝ is defined as

ℜ̂Ŝ(F) = Eσ

[
sup
f∈F

1

Ns

∑Ns

i=1
σif (zi)

]
, (11)

where σ = (σ1, ..., σN ) are independent uniform random variables taking values in {−1,+1}.
Definition 2 (Induced Reward Function Families). Given for a space R of reward function R, the
induced reward function families Π(F) is defined as

Π(R) =
{
(σ0, σ1)→ − logP (σ0 ≻ σ1) | R ∈ R

}
, (12)

where P (·) is defined in Eq. (2) and Π(R) is the union of projections ofR onto each dimension.

In general, lower Rademacher complexity corresponds to better generalization performance. Then,
based on the above definition and Proposition 1, we develop the new generalization bound for reward
model trained through Eq. (9). The specific theorem is given below.

Theorem 1. Let reward model be trained on the labeled dataset Dl = {(σl0, σl1, y)(i)}
Nl
i=1 and

unlabeled dataset Du = {(σu0 , σu1 )(i)}
Nu
i=1. Then, for any δ > 0, with probability at least 1 − δ,

under Assumption 1 and 2 the following holds for any reward function R ∈ R,

LR(ψ) ≤ L̂R(ψ) + ηΩ+ 4R̂D̂
(
Π(R)

)
+ 3

√
log(2/δ)

2(Nl +Nu)
, (13)

where D̂ is the input combination of labeled and unlabeled dataset, i.e. {(σ0, σ1)(i)}Nl+Nu

i=1 .

5
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Algorithm 1 LEASE: offLine prEference-bAsed RL with high Sample Efficiency
Input: offline dataset Doffline, limited labeled preference dataset Dl, critic Qω , policy πθ, transition
model Tφ, and reward model Rψ .
Output: the reward model R̂ and the policy π̂ learned by LEASE.

1: Initialization: Randomly initializing all networks and generated unlabeled dataset Du = ∅.
2: Train an ensemble transition model {T iφ}

NT
i=1 on Doffline according to Eq. (4).

3: Pre-train an ensemble reward model {Riψ}
NR
i=1 on Dl according to Eq. (3).

4: for t = 1, 2, · · · , Niter do
5: if t % rollout frequency = 0 then
6: Generate synthetic H-step rollouts by Tφ. Add transition trajectory into Du.
7: end if
8: if reward update condition is TRUE then
9: Give pseudo label for unlabeled dataset Du based on pre-trained reward model.

10: Select high confidence and low uncertainty unlabeled data according to Eq. (8).
11: Train the reward model based on Dl and Du according to Eq. (9).
12: end if
13: Train policy using offline RL algorithms, such as CQL and IQL.
14: end for

The proof of Theorem 1 can be found in Appendix A.2. Theorem 1 indicates that the expected error
LR(ψ) is bounded by empirical error L̂R(ψ), pseudo-labeling error ηΩ, Rademacher complexity
and constant terms. The constant term can become small when the number of unlabeled data in-
creases, but it may cause unstable training when labels are inaccurate. According to Proposition 1,
empirical error and pseudo-labeling error can be reduced through selecting mechanism f(σu0 , σ

u
1 ),

thus the better generalization ability, that is tighter upper bound, can be achieved. Note that Theorem
1 has generality and can be applicable to methods that train reward model using pseudo-labels. The
difference among various methods may lie in how they train reward model to improve the accuracy
of pseudo-labels, that is reducing η. If one method fails to reduce the pseudo-labeling error η, the
upper generalization bound would be looser than that of no data augmentation.

5 POLICY LEARNING

This paper directly uses the proposed offline RL algorithms, such as CQL (Kumar et al., 2020)
and IQL (Kostrikov et al., 2021b), to perform policy learning. To solve the problem of high cost
for labeling preference, we propose a offLine prEference-bAsed RL with high Sample Efficiency
algorithm (LEASE). This section aims to describe the details of LEASE and establishes the theory
for safe policy improvement guarantee.

5.1 THE IMPLEMENTATION DETAILS OF LEASE

Most offline RL algorithms are based on Eq. (1). They proposed various algorithms to solve the
problem of distribution shift. In offline PbRL setting, the reward is unknown for agent. The accuracy
of reward model directly influence the performance of policy. Moreover, the unlabeled data are
generated through the current policy interaction with learned transition model. Therefore, the reward
model and policy influence each other. In practical implementation, the policy, Q-function, reward
and transition model are parameterized by πθ, Qω , Rψ and Tφ respectively.

Algorithm 1 gives pseudocode for LEASE. The goal of LEASE is to learn better reward model
Rψ from fewer labeled preference dataset Dl and learn better policy πθ from offline dataset Doffline
without interaction with environment. The key of LEASE is how to train reward model in policy
learning process. Notably, the reward model only update once instead of updating constantly in this
process. The reward update condition is set to when the number of unlabeled data in buffer reaches
the maximum buffer capacity. The update time is influenced by rollout frequency and rollout batch
size. The reward update condition, rollout length H and selecting mechanism f(σ1, σ2) are the
important factors for reward model. The more detailed analysis can be found in Appendix B.3.

6
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5.2 SAFE POLICY IMPROVEMENT GUARANTEE

Offline RL aims to guarantee ξ-safe policy improvement over the behavior policy µ (the policy used
to collect offline dataset), i.e. J(π̂, R∗) ≥ J(µ,R∗) − ξ (Kumar et al., 2020). This part develops
theoretical guarantee of policy improvement for LEASE, that is giving the bound for J(µ,R∗) −
J(π̂, R∗), and further analyzes sample complexity when reward model is unknown. Firstly, we
propose a new single-policy concentrability coefficient for PbRL based on state-action pair instead
of trajectory like (Zhan et al., 2024).

Definition 3 (Concentrability coefficient for PbRL). Concentrability coefficient CR(π) is used to
measure how well reward model errors transfer between offline data distribution dµT and the visita-
tion distribution dπT under transition T and policy π, defined as

CR(π) = sup
R̂∈R

∣∣∣∣∣E(s,a)∼dπT

[
R∗(s, a)− R̂(s, a)

]
E(s,a)∼dµT

[
R∗(s, a)− R̂(s, a)

] ∣∣∣∣∣. (14)

where R∗(s, a) is the true reward model and coefficient CR(π) is upper bounded by ∥dπT /d
µ
T ∥∞.

Next, similar to (Geer, 2000; Zhan et al., 2024), we use ε-bracketing number to measure the com-
plexity of reward function classR, which can be defined as

Definition 4 (ε-bracketing number). The ε-bracketing number NR(ε) is the minimum number of
ε-brackets (l, u) required to cover a function classR, where each bracket (l, u) satisfies l(σ0, σ1) ≤
PR(σ0, σ1) ≤ u(σ0, σ1) and ∥l − u∥1 ≤ ε for all R ∈ R and all trajectory-pairs (σ0, σ1), and
PR(σ0, σ1) is the probability that segment σ0 is preferable to segment σ1 defined in Eq. (2).

Theorem 2. Under Assumption 1, for any δ ∈ (0, 1], the policy π̂ learned by LEASE, with high
probability 1− δ, satisfies that J(µ,R∗)− J(π̂, R∗) is upper bound by

ξ +
1 + CR(π̂)

1− γ

(√
4C

NL2
log

(
NR(1/N)

δ

)
+

√
4R2

max log
(
1/δ
)

NL

)
, (15)

where C > 0 is the absolute constant defined in Eq. (A.19), N is the size of preference dataset, and
L is the length of trajectory. The term ξ is performance gap depending on offline algorithm itself.

The proof of Theorem 2 can be found in Appendix A.3. The ξ is constant when offline algorithm is
determined. Therefore, the tighter bound can be achieved through reducing performance gap caused
by reward model (see Proposition 3). It can be reduced to small value ϖ with sample complexity of

N = Õ

(
4
(
1 + CR(π̂)

)2
ϖ2(1− γ)2

(√
C log(NR(1/N)/δ)

L2
+

√
R2
max log

(
1/δ
)

L

)2)
, (16)

where concentrability coefficient CR(π̂) can become smaller when the learned policy π̂ is close to
behavior policy µ. Bracketing number log(NR(1/N)) measures the complexity of function class
R and takes Õ(d) in linear reward model (Zhan et al., 2024). Notably, LEASE can learn accurate
reward model through data augmentation under fewer Nl preference data (Nl < N ). Thus, the per-
formance gap can become tighter under fewer data, that is LEASE can have higher sample efficiency
compared with Zhan et al. (2024). More discussion can be found in Appendix C.1.

6 EXPERIMENTS

This section focuses on answering the following questions: Q1: How well the accuracy and gen-
eralization of reward model through data augmentation under fewer preference data? (Section 6.2)
Q2: How well does LEASE perform compared with offline PbRL baseline in standard benchmark
tasks? (Section 6.1) We answer these questions using D4RL benchmark (Fu et al., 2020) with sev-
eral control tasks. More hyperparameters and implementation details are provided in Appendix B.
The code for LEASE is available at github.com/***.
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Table 1: Results for the D4RL tasks during the last 5 iterations of training averaged over 3 seeds.
± captures the standard deviation over seeds. Bold indicates the performance within 2% of the best
performing algorithm for each offline algorithm.

Task Name CQL (Kumar et al., 2020) IQL (Kostrikov et al., 2021b)
URLHF FEWER LEASE URLHF FEWER LEASE

walker2d-m 76.0± 0.9 77.4± 0.6 78.4± 0.9 78.4± 0.5 71.8± 0.8 74.6± 1.8
walker2d-m-e 92.8± 22.4 77.7± 0.3 98.6± 18.1 109.4± 0.1 105.2± 3.1 108.1± 0.5

hopper-m 54.7± 3.4 55.8± 2.8 56.5± 0.6 50.8± 4.2 56.7± 2.6 56.0± 0.5
hopper-m-e 57.4± 4.9 53.6± 0.9 56.4± 0.8 94.3± 7.4 56.0± 1.4 55.9± 1.9

halfcheetah-m 43.4± 0.1 43.5± 0.1 43.5± 0.1 43.3± 0.2 42.2± 0.1 43.0± 0.3
halfcheetah-m-e 62.7± 7.1 48.3± 0.7 53.2± 3.1 91.0± 2.3 59.1± 4.9 62.4± 1.4

Mujoco Average 64.5± 6.5 59.4± 0.9 64.4± 4.0 77.9± 2.5 65.2± 2.2 66.7± 1.0

pen-human 9.8± 14.1 0.5± 3.0 3.8± 4.6 50.2± 15.8 67.3± 10.0 75.6± 3.3
pen-expert 138.3± 5.2 128.1± 0.7 132.5± 2.3 132.9± 4.6 104.1± 12.9 113.8± 6.3

door-human 4.7± 5.9 0.2± 1.0 4.7± 8.8 3.5± 3.2 4.0± 2.5 5.9± 0.5
door-expert 103.9± 0.8 103.0± 0.9 103.2± 0.7 105.4± 0.4 104.5± 0.6 105.2± 0.2

hammer-human 0.9± 0.3 0.3± 0.0 0.3± 0.0 1.4± 1.0 1.2± 0.2 1.7± 0.4
hammer-expert 120.2± 6.8 124.1± 2.1 126.3± 1.2 127.4± 0.2 125.2± 2.3 126.3± 0.1

Adroit Average 63.0± 5.5 59.4± 1.3 61.8± 3.0 70.1± 4.2 67.1± 4.8 71.4± 1.8

6.1 RESULTS ON BENCHMARK TASKS

This part chooses several mujoco and adroit tasks to evaluate the performance of LEASE, where
offline dataset and preference dataset originate from Fu et al. (2020) and Yuan et al. (2024), re-
spectively. Yuan et al. (2024) provided baseline for offline PbRL based on 2000 preference data
labeled by two types (We denote this method as URLHF). One is crowd-sourced labels obtained by
crowd-sourcing, and the other is synthetic labels based on ground truth reward. To test LEASE per-
formance for two types preference data, the labels of preference is from human-realistic feedback
for mujoco tasks, and ground truth reward for adroit tasks. This paper aims to test the performance
under fewer preference data without online interaction. We take the first 100 data of (Yuan et al.,
2024) as 2000 preference dataset, and denote method without data augmentation as FEWER. The
effects of the number of labeled preference data Nl can be found in Appendix B.3.

Table 2: The comparison results between the performance using selecting mechanism and that not
using. The latter method is denoted as FRESH. ↑ denotes the improvement of performance.

Task Name walker2d-m hopper-m halfcheetah-m walker2d-m-e hopper-m-e halfcheetah-m-e

CQL FRESH 76.0± 1.3 54.4± 1.6 43.4± 0.1 77.4± 2.2 55.0± 0.4 49.9± 0.9
LEASE 78.4 ↑ (3.3%) 56.5(↑ 4.0%) 43.5 ↑ (0.6%) 98.6 ↑ (27.4%) 56.4 ↑ (2.6%) 53.2 ↑ (6.6%)

IQL FRESH 72.7± 4.1 53.5± 0.8 42.5± 0.1 105.3± 1.0 53.9± 0.1 54.5± 2.2
LEASE 74.6 ↑ (2.6%) 56.0 ↑ (4.5%) 43.0 ↑ (1.3%) 108.1 ↑ (2.7%) 55.9 ↑ (3.7%) 62.4 ↑ (14.6%)

Here, we evaluate LEASE performance based on CQL (Kumar et al., 2020) and IQL (Kostrikov
et al., 2021b) two offline algorithms. Table 1 gives the results of the average normalized score
with standard deviation, where m and m-e denote medium and medium-expert respectively. The
offline PbRL algorithm under sufficient feedback (URLHF) are obtained from paper (Yuan et al.,
2024). This table shows that LEASE can greatly improve performance under fewer preference data
compared with FEWER, and achieve comparable performance to URLHF that demand large human
feedback. This validates the content of Theorem 2 that LEASE can reduce the performance gap
caused by reward model under fewer preference data and has high sample efficiency. Table 2 shows
the effect of designed selecting mechanism for agent performance, where the method not using
selecting mechanism is denoted as FRESH. This table indicates that the application of selecting
mechanism f(σ0, σ1) can efficiently improve agent performance. The comparison results between
LEASE and URLHF under fewer preference data, and results of model-based offline RL algorithm
under the designed framework can be found in Appendix B.4.

6.2 RESULTS FOR REWARD MODEL

Learning an accurate reward is difficult in the offline PbRL setting when preference labels are scarce.
Fig. 2 illustrates the relationship between the prediction accuracy of preference model without data
augmentation and the number of preference data Nl, where preference model is based on reward
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Figure 3: The comparison between prediction value by the learned rewards and their ground truths
for different methods under (a) hopper-medium-expert and (b) halfcheetah-medium-expert datasets,
where the value predicted by the trained reward model and ground-truth reward value are both
normalized to [0, 1]. From left to right are methods LEASE, FEWER and FRESH, respectively.

.

Table 3: The performance of the learned transition model, where error is calculated by the sum of
the mean square values of predicted and true value in each dimension.

Task Name walker2d-m walker2d-m-e hopper-m hopper-m-e halfcheetah-m halfcheetah-m-e
Error 10.19± 0.30 6.57± 0.10 0.35± 0.01 0.38± 0.01 16.18± 0.21 16.19± 0.48

Task Name pen-human pen-expert door-human door-expert hammer-human hammer-expert
Error 1.02± 0.08 1.05± 0.01 0.06± 0.04 0.04± 0.01 0.21± 0.05 0.58± 0.03

model (Eq. (2)). Here, we use the last 200 of 2000 preference data that are not seen in training
stage as evaluation dataset. It indicates that as the number of preference data Nl increases, the
prediction accuracy of the preference model shows an upward trend. This also validates Theorem 1
that increasing the number of samples Nl can reduce the generalization error.
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Figure 2: The relationship between
preference model accuracy and the
number of preference dataset Nl.

Next, we compare the accuracy of reward model before and
after data augmentation under fewer preference dataset. Fig. 3
shows the comparison results between prediction and ground
truth of reward, where the predicted and true rewards are both
normalized to [0, 1]. We randomly sample 500 data from un-
labeled datasets that are not seen in training stage for evalua-
tion. This figure indicates the linear relationship between re-
ward predicted by LEASE and ground truth is better than that
of other two methods. The prediction of reward model learned
by method FRESH is very narrow and the accuracy is greatly
reduced compared with FEWER. This is because generated data
of FRESH are not selected by f(σ0, σ1), which causes sub-
stantial errors for the labels of generated data and leads to the
collapse of training. This validates that the performance of reward model can be improved through
data augmentation and selecting mechanism, where the designed selecting mechanism has a greater
impact on reward model performance. The more related experimental results can be found in Ap-
pendix B.4.

6.3 RESULTS FOR TRANSITION MODEL

The accuracy of transition model is the key factor influencing agent performance. Table 3 shows the
accuracy result for the learned transition model, where the accuracy of transition model is measured
by the sum of the mean square values of the predicted value and the true value in each dimension.
Note that, for walker2d and halfcheetah tasks, the error of the learned transition model is greatly
larger than hopper tasks in mujoco environment. This is mainly because the state space of walker2d
and hopper is larger than hopper, and the physical model of them are more complex. Intuitively, the
lower the accuracy of the transition model, the poorer performance of the agent. The results of the
accuracy of the learned transition model for agent performance can be found in Appendix B.4.
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7 RELATED WORK

The algorithm for offline PbRL. Offline PbRL eliminates the demand for interaction with environ-
ment and handcraft designed reward. OPAL (Shin et al., 2021) is the first algorithm that combining
offline RL and PbRL. PT (Kim et al., 2023) utilized transformer-based architecture to design pref-
erence model capable of generating non-Markovian rewards. OPPO (Kang et al., 2023) directly
optimized the policy in a high-level embedding space without learning a separate reward function.
However, the above methods demands a large amount of preference dataset. Zhang et al. (2024)
trains a diffusion model to achieve data augmentation, but this consumers larger training cost. Our
method LEASE can achieve superior performance under fewer dataset and time.

The theory for offline PbRL. There are few algorithms that provide theoretical guarantees for
offline PbRL, including the generalization bound of reward model and the guarantee of policy im-
provement. Zhu et al. (2023) studied offline PbRL, but the analysis are restricted to linear model.
Zhan et al. (2024) extended to general function approximation, but the generalization analysis of
reward model is not provided and the theory is based on trajectory. LEASE gives the theoretical
analysis for reward model, and provides the theoretical guarantee for policy based on state-action
pair. The theory of LEASE can be easily combined with other offline RL theory.

Semi-supervised learning. The goal of semi-supervised learning is using unlabeled data to improve
model performance when labeled data is limited. Data selection techniques is used to filter the data
with clean labels from a noisy dataset. Han et al. (2018) selected unlabeled data with small losses
from one network. Li et al. (2020) used a two-component GMM to separate the dataset into a clean
set and a noisy set. Rizve et al. (2021) modeled the prediction uncertainty of unlabeled data to screen
data. Xiao et al. (2023) selected data with high confidence as clean data. Motivated by (Rizve et al.,
2021) and (Xiao et al., 2023), we trained ensemble reward model to select data with high confidence
and low variance to guarantee the quality of unlabeled data. The more related works for this study
can be found in Appendix C.2.

8 CONCLUSION

This paper proposes a novel offline PbRL algorithm (LEASE) with high sample efficiency. LEASE
can achieve comparable performance under fewer preference dataset. By selecting high confidence
and low variance data, the stability and accuracy of reward model are guaranteed. Moreover, this
paper provides the theoretical analysis for LEASE, including generalization of reward model and
policy improvement guarantee. This theory can be easily connected with other offline algorithms.
The theoretical and experimental results demonstrate that the data selecting mechanism f(σ0, σ1)
can effectively improve performance of reward model and the performance learned by LEASE can
be guaranteed under fewer preference dataset. However, there is still the gap between the true and
the learned reward model. Future works can focus on how to further reduce this gap under the
limited preference data or how to achieve conservative estimation for state-action pairs where the
learned reward model predicts inaccurately.
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A RELATED PROOFS

This section gives the detailed proof for the theorems in the main text.

A.1 PROOF OF PROPOSITION 1

The Proof for Proposition 1: This proof follows the previous work (Xie et al., 2024). Obviously,
the largest pseudo-labeling error η in Assumption 2 includes exactly two types of pseudo-labeling
error:

η1 =
1

Nu

Nu∑
j=1

1

[
P
(
σj1 ≻ σ

j
0;ψ

)
> 0.5, yj = 0

]
,

η2 =
1

Nu

Nu∑
j=1

1

[
P
(
σj0 ≻ σ

j
1;ψ

)
> 0.5, yj = 1

]
,

(A.1)

where η1 represents the error ratio of classifying the first category as the second category, and η2
is the error ratio of classifying the second category as the first category. Then, we prove the gap
between the unlabeled loss with pseudo-label L̂u(ψ) and that with true label L̂′

u(ψ) from two sides:
L̂u(ψ) ≤ L̂′

u(ψ) + ηΩ and L̂u(ψ) ≥ L̂′
u(ψ) − ηΩ. Notably, we ignore the selecting mechanism

in the below proof since it doesn’t influence the proof result.

Step 1: Proving upper bound : L̂u(ψ) ≤ L̂′
u(ψ) + ηΩ.

L̂u(ψ) =
1

Nu

Nu∑
j=1

L
(
(σu0 , σ

u
1 )

(j), ŷj
)

=− 1

Nu

Nu∑
j=1

1
[
P
(
σj0 ≻ σ

j
1;ψ

)
> 0.5

]
logP

(
σj0 ≻ σ

j
1;ψ

)
+ 1

[
P
(
σj1 ≻ σ

j
0;ψ

)
> 0.5

]
logP

(
σj1 ≻ σ

j
0;ψ

)
≤− 1

Nu

Nu∑
j=1

1
[
yj = 0

]
logP

(
σj0 ≻ σ

j
1;ψ

)
+ 1

[
yj = 1

]
logP

(
σj1 ≻ σ

j
0;ψ

)
+ 1

[
P
(
σj1 ≻ σ

j
0;ψ

)
> 0.5, yj = 0

]
logP

(
σj0 ≻ σ

j
1;ψ

)
+ 1

[
P
(
σj0 ≻ σ

j
1;ψ

)
> 0.5, yj = 1

]
logP

(
σj1 ≻ σ

j
0;ψ

)
≤L̂′

u(ψ) + η1 max
j

{
− logP

(
σj0 ≻ σ

j
1

)}
+ η2 max

j

{
− logP

(
σj1 ≻ σ

j
0

)}
≤L̂′

u(ψ) + ηΩ.

(A.2)

Step 2: Proving low bound : L̂u(ψ) ≥ L̂′
u(ψ)− ηΩ.

L̂u(ψ) =
1

Nu

Nu∑
j=1

L
(
(σu0 , σ

u
1 )

(j), ŷj
)

≥ − 1

Nu

Nu∑
j=1

1
[
yj = 0

]
logP

(
σj0 ≻ σ

j
1;ψ

)
+ 1

[
yj = 1

]
logP

(
σj1 ≻ σ

j
0;ψ

)
− 1

[
P
(
σj1 ≻ σ

j
0;ψ

)
> 0.5, yj = 0

]
logP

(
σj0 ≻ σ

j
1;ψ

)
− 1

[
P
(
σj0 ≻ σ

j
1;ψ

)
> 0.5, yj = 1

]
logP

(
σj1 ≻ σ

j
0;ψ

)
≥ L̂′

u(ψ)−ηΩ.

(A.3)
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Combing Step 1 and Step 2, we can obtain the following result:∣∣∣L̂u(ψ)− L̂′
u(ψ)

∣∣∣ ≤ ηΩ. (A.4)

This completes the proof of Theorem 1.

A.2 PROOF OF THEOREM 1

Lemma 1. Let F be a family of functions mapping from X to R and D̂ be empirical datasets
sampled from an i.i.d. sample D of size N . Then, for any δ > 0, with probability at least 1− δ, the
following holds for all f ∈ F ,∣∣∣ED [f ]− ED̂ [f ]

∣∣∣ ≤ 2R̂D̂(F) + 3

√
log(2/δ)

2N
, (A.5)

where ED̂ [f ] =
∑m
i=1 [g(xi)] /m is the empirical form of ED [f ]. This proof can be found in

Theorem 3.3 of work Mohri et al. (2018).
Proposition 2. Let F be a family of loss functions defined in Eq. (6) and Π(R) be a family of
functions defined in Definition 2. Then, for any sample D̂ = {(σ0, σ1, y)(i)}Ni=1, the following
relation holds between the empirical Rademacher complexities of Π(R) and F:

ℜ̂D̂(F) ≤ 2ℜ̂D̂
(
Π(R)

)
. (A.6)

Proof. According to Definition 1, the empirical Rademacher complexity of F can be written as:

ℜ̂D̂(F)

=Eσ

[
sup
R∈R

1

N

N∑
i=1

σi
[
− (1− y) logP (σ0 ≻ σ1)− y logP (σ1 ≻ σ0)

]]

≤Eσ

[
sup
R∈R

1

N

N∑
i=1

σi
[
− logP (σ0 ≻ σ1)

]]

+ Eσ

[
sup
R∈R

1

N

N∑
i=1

σi
[
− logP (σ1 ≻ σ0)

]]
=2ℜ̂D̂

(
Π(R)

)
.

(A.7)

This completes the proof of Proposition 2.

The Proof for Theorem 1: This proof is based on Proposition 1 and 2. Combing Eqs. (A.5) and
(A.6), we can derive that for labeled dataset D̂ = {(σ0, σ1, y)(i)}Ni=1, the generalization error bound
between expected error L(ψ) and empirical error L̂(ψ) holds:

L(ψ) ≤ L̂(ψ) + 4R̂D̂
(
Π(R)

)
+ 3

√
log(2/δ)

2N
. (A.8)

However, the dataset for training reward model includes two parts: the labeled dataset Dl =

{(σl0, σl1, y)(i)}
Nl
i=1 and unlabeled dataset Du = {(σu0 , σu1 )(i)}

Nu
i=1, and empirical error L̂R(ψ) =

L̂l(ψ) + L̂u(ψ). Let L̂′
u(ψ) be the empirical error under unlabeled dataset with true label, then

LR(ψ) ≤ L̂l(ψ) + L̂′
u(ψ) + 4R̂D̂

(
Π(R)

)
+ 3

√
log(2/δ)

2(Nl +Nu)
, (A.9)

where D̂ is the input combination of labeled and unlabeled dataset, denoted as {(σ0, σ1)(i)}Nl+Nu

i=1 .
According to Proposition 1, that is L̂′

u(ψ) ≤ L̂u(ψ) + ηΩ., we can derive

LR(ψ) ≤ L̂R(ψ) + ηΩ+ 4R̂D̂
(
Π(R)

)
+ 3

√
log(2/δ)

2(Nl +Nu)
. (A.10)

This completes the proof of Theorem 1.
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A.3 PROOF OF THEOREM 2

Before proof, we give the related Assumption and Lemmas for Theorem 2. Firstly, we assume the
the reward classR is realizable (Assumption 1) and bounded (Assumption 3).
Assumption 3 (Boundedness). For any R ∈ R and any state-action pairs (s, a), the equation
|R(s, a)| ≤ Rmax holds.
Proposition 3. Consider a set of trajectories {σi0, σi1}Ni=1, each of length L, collected from an offline
dataset following the distribution dµT (s, a). Then, for any δ ∈ (0, 1], with probability at least 1− δ,
the following holds for all R̂ ∈ R∣∣∣∣E(s,a)∼dµT (s,a)

[
R∗(s, a)−R̂(s, a)

]∣∣∣∣ ≤
√

4C

NL2
log

(
NR(1/N)

δ

)
+

√
4R2

max log
(
1/δ
)

NL
, (A.11)

where R∗ is the true reward model and R̂ is the learned reward model. NR(1/N) is the bracketing
number defined in Definition 3.

The proof of Proposition 3 can be found in Appendix A.4. Note that, the above reward model is only
trained from offline preference dataset. Through generating more preference data, the upper bound
can be tighter. However, the generated data may be inaccuracy, which may improve the reward gap.
The selecting mechanism can effectively solve this problem.

The Proof for Theorem 2: This Theorem aims to give the lower bound of term J(π̂, R∗)−J(µ,R∗).
We prove this from ideal case and actual case.

1) Ideal case: there is no need to consider distribution shift and empirical error problem. The policy
π̂ is directly learned by π̂ = maxπ J(π, R̂). Thus, J(π̂, R̂) ≥ J(µ, R̂) holds. Then, we can derive

J(µ,R∗)− J(π̂, R∗) = J(µ,R∗)− J(µ, R̂) + J(µ, R̂)− J(π̂, R∗)

≤ J(µ,R∗)− J(µ, R̂) + J(π̂, R̂)− J(π̂, R∗)

≤
∣∣J(µ,R∗)− J(µ, R̂)

∣∣+ ∣∣J(π̂, R∗)− J(π̂, R̂)
∣∣. (A.12)

Since J(π,R) := E(s,a)∼dπT (s,a)[R(s, a)]/(1− γ), |J(π,R∗)− J(π, R̂)| can be written as∣∣J(π,R∗)− J(π, R̂)
∣∣ = 1

1− γ

∣∣∣E(s,a)∼dπT

[
R∗(s, a)− R̂(s, a)

]∣∣∣. (A.13)

Then, according to Definition 3, we have∣∣∣J(π,R∗)− J(π, R̂)
∣∣∣ ≤ CR(π)

1− γ

∣∣∣E(s,a)∼dπT

[
R∗(s, a)− R̂(s, a)

]∣∣∣. (A.14)

By Proposition 3, the following inequality holds

J(µ,R∗)−J(π̂, R∗) ≤ 1 + CR(π̂)

1− γ

(√
4C

NL2
log

(
NR(1/N)

δ

)
+

√
4R2

max log
(
1/δ
)

NL

)
. (A.15)

2) Actual case: offline RL suffers from distribution shift problem and it is a necessity to consider
empirical error. Therefore, many offline RL algorithms incorporate conservatism into policy to
overcome distribution shift, that is learning policy through π̂ = maxπ J(π, R̂) − P (π). Therefore,
J(π̂, R̂) ≥ J(µ, R̂) − ξ instead of J(π̂, R̂) ≥ J(µ, R̂) in actual implantation. The term ξ depends
on the algorithm itself. Here, we take CQL as a example. The policy gap is proven in Theorem 3.6
of (Kumar et al., 2020). The detailed is given as follow.

ξ =
γCT,RRmax
(1− γ)2

Es∼dµT (s)

√
|A|(1 +D(s))

|D(s)|︸ ︷︷ ︸
:=ξ1

− α

1− γ
Es∼dµT (s)

[
D(s)

]
︸ ︷︷ ︸

:=ξ2

, (A.16)

where | · | denotes cardinality of a specific set, D(s) =
∑
a π̂(a|s)(

π̂(a|s)
µ(a|s) − 1) and CT,R is the

empirical coefficient. It consists of two terms: the first term ξ1 captures the decrease in policy
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performance due to sampling error. The second term ξ2 captures the increase in policy performance
in empirical setting (Kumar et al., 2020).

Therefore, when considering distribution shift and empirical error, we can derive

J(µ,R∗)− J(π̂, R∗) ≤ J(µ,R∗)− J(µ, R̂) + J(π̂, R̂) + ξ − J(π̂, R∗)

≤ ξ +
∣∣J(µ,R∗)− J(µ, R̂)

∣∣+ ∣∣J(π̂, R∗)− J(π̂, R̂)
∣∣. (A.17)

Furthermore, according to Eq. (A.15), we have

J(µ,R∗)− J(π̂, R∗) ≤ ξ + 1 + CR(π̂)

1− γ

(√
4C

NL2
log

(
NR(1/N)

δ

)
+

√
4R2

max log
(
1/δ
)

NL

)
.

(A.18)
This completes the proof for Theorem 2.

A.4 PROOF OF PROPOSITION 3

Lemma 2. There exists an absolute constant C such that for any δ ∈ (0, 1], with probability at least
1− δ, the following holds for all R̂ ∈ R

N∑
i=1

(
PR̂(y

i|σi0, σi1)− PR∗(yi|σi0, σi1)
)2
≤ C log

(
NR(1/N)

δ

)
, (A.19)

where y ∈ {0, 1}, R∗ is the true reward model and R̂ is the learned reward model. PR(0 | σ0, σ1) is
the probability that σ0 is preferable σ1 under reward model R. NR(1/N) is the bracketing number
defined in Definition 3. This proof can be found in Lemma 2 of previous work (Zhan et al., 2024)
and Proposition 14 of (Liu et al., 2022).

The Proof for Proposition 3: We prove this Proposition from two steps. Firstly, we bound the
difference between PR∗(· | σ0, σ1) and PR̂(· | σ0, σ1). Then, we bound the difference between
R∗(s, a) and R̂(s, a).

Step 1: Bound the probability difference |PR∗(· | σ0, σ1)− PR̂(· | σ0, σ1)|.

By Cauchy-Schwarz inequality
(∑

i aibi
)2 ≤ (∑i a

2
i

)(∑
i b

2
i

)
, we set ai = PR̂−PR∗ and bi that

is chosen from {−1, 1} and satisfies aibi > 0. Then, we have

1

N

( N∑
i=1

∣∣∣PR̂(yi|σi0, σi1)− PR∗(yi|σi0, σi1)
∣∣∣)2

≤
N∑
i=1

(
PR̂(y

i|σi0, σi1)− PR∗(yi|σi0, σi1)
)2
.

Then, by Lemma 2, the probability difference can be written as

N∑
i=1

∣∣∣PR̂(yi|σi0, σi1)− PR∗(yi|σi0, σi1)
∣∣∣ ≤√CN log

(
NR(1/N)

δ

)
. (A.20)

Step 2: Bound the reward difference |R∗(s, a)− R̂(s, a)|.

Based on Assumption 3, let f(σ) =
∑
iR

∗(si, ai) ∈ [−LRmax, LRmax], g(σ) =
∑
i R̂(s

i, ai) ∈
[−LRmax, LRmax], and F (x1, x2) = ex1/(ex1 + ex2). Then, according to Eq. (2), we can derive∣∣∣PR̂(y|σ0, σ1)− PR∗(y|σ0, σ1)

∣∣∣ = ∣∣∣F (f(σ0), f(σ1))− F (g(σ0), g(σ1))∣∣∣. (A.21)
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Notably, the above equation only considers the condition y = 0 since the result of y = 1 is similar
to y = 0. Then, according to error propagation, we have∣∣∣F (f(σ0), f(σ1))− F (g(σ0), g(σ1))∣∣∣

≈

∣∣∣∣∣ ∂F∂x1
∣∣∣∣∣∣∣∣f(σ0)− g(σ0)∣∣∣+

∣∣∣∣∣ ∂F∂x2
∣∣∣∣∣∣∣∣f(σ1)− g(σ1)∣∣∣

≥ ex1+x2(
ex1 + ex2

)2 ∣∣∣(f(σ0)− g(σ0))+ (f(σ1)− g(σ1))∣∣∣
≥1

4

∣∣∣∣ L∑
l=1

1∑
j=0

(
R∗(slj , a

l
j)− R̂(slj , alj)

)∣∣∣∣.
(A.22)

Then, combing Eqs. (A.20) and (A.22), we can further derive

∣∣∣∣ N∑
i=1

L∑
l=1

1∑
j=0

(
R∗(si,lj , a

i,l
j )− R̂(si,lj , a

i,l
j )
)∣∣∣∣ ≤ 4

√
CN log

(
NR(1/N)

δ

)
. (A.23)

According to Chernoff-Hoeffding bound (Hoeffding, 1994), for independent random variables
X1, X2, ..., Xn, with high probability 1− δ, the below equation holds

E[X] ≤ 1

n

n∑
i=1

Xi + (b− a)
√

log(1/δ)

2n
, (A.24)

where [a, b] is the range of values that each Xi can take. Then, for Eq. (equation A.23), we set Xi

as R∗(sj , aj)−R(sj , aj) and Xi ∈ [−2Rmax, 2Rmax]). Then, the below equation holds

∣∣∣∣E(s,a)∼dµT (s,a)

[
R∗(s, a)−R̂(s, a)

]∣∣∣∣ ≤
√

4C

NL2
log

(
NR(1/N)

δ

)
+

√
4R2

max log
(
1/δ
)

NL
, (A.25)

where dµT (s, a) is the distribution of offline dataset. The above equation holds since the trajectories
{σi0, σi1}Ni=1 are collected from offline dataset. This completes the proof of Proposition 3.

B RELATED EXPERIMENTS

We conduct experiments on Mujoco and Adroit tasks, which are included in the D4RL (Fu et al.,
2020) benchmark. The code for LEASE is available at github.com/***. This part introduces detailed
experiments setup, hyper-parameter and parameter analysis for LEASE.

B.1 EXPERIMENTS SETUP

Offline dataset. We employ Mujoco and Adroit environments to test the performance of LEASE.
The Mujoco tasks include halfcheetah-v2, hopper-v2, and walker2d-v2. The Adroit tasks include
pen-v1, door-v1 and hammer-v1. Fig. A.1 depicts the above six tasks. For three Mujoco tasks, the
goal is to control the robot’s various joints to achieve faster and more stable locomotion. For Adroit
tasks, they involve controlling a 24-DoF simulated Shadow Hand robot on a sparse reward, high-
dimensional robotic manipulation task (Fu et al., 2020). The offline datasets are based on the D4RL
dataset. We select medium and medium-expert two types dataset for Mujoco tasks and human and
expert for Adroit tasks. The difference between different dataset in certain task lies in the collected
policy.
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halfcheetah hopper walker2d pen door hammer

Figure A.1: The description of Mujoco tasks (version 2) and Adroit tasks (version 1).
.

Preference dataset. The preference dataset is from (Yuan et al., 2024). We use two types preference
dataset to test algorithm performance. One is that the labels for preference are from human feedback,
the another is the labels are from the ground-truth reward. Obviously, since human preferences are
subjective, the labels from ground-truth reward do not correspond to human preference in actual
situation, and the performance of preference labels calibrated by ground-truth reward is better than
that of labels calibrated by human feedback in most cases. Here, we use the labels from human
feedback in Mujoco tasks and from ground-truth reward in Adroit tasks.

Basic offline algorithms. Offline PbRL setting involves two steps: reward learning and policy
learning. Here, we directly use offline RL algorithms CQL (Kumar et al., 2020) and IQL (Kostrikov
et al., 2021b) to perform policy learning. The performance of these algorithms is evaluated based on
the cumulative return. For comparison, the scores are normalized between 0 (random policy score)
and 100 (expert policy score) (Fu et al., 2020). The normalized score S̃ is computed by:

S̃ =
S − Sr
Se − Sr

× 100,

where Sr, Se and S are the expected return of a random policy, an expert policy, and the trained
policy by offline RL algorithms, respectively.

B.2 HYPER-PARAMETERS

Reward and transition model training. Table A.1 gives the hyperparameter configuration for
reward and transition training. Similar to (Yu et al., 2020), we train an ensemble of 7 transition
models and select the best 5 models. Each model consists of a 4-layer feed-forward neural network
with 200 hidden units. The model training employs maximum likelihood estimation with a learning
rate of 1e−3 and Adam optimizer. Following (Yuan et al., 2024), we train an ensemble of 3 reward
models. Each reward model includes a 3-layer feed-forward neural network with 256 hidden units.
The reward model training uses cross-entropy loss with a learning rate of 3e−4 and Adam optimizer.

Table A.1: Base parameter configuration of LEASE.

Model Parameter Value

Tr
an

si
tio

n
M

od
el

Model learning rate 1× e−3

Number of hidden layers 4
Number of hidden units per layer 200
Batch size 256
Number of model networks NT 7
Number of elites 5

R
ew

ar
d

M
od

el

Model learning rate 3× e−4

Number of hidden layers 3
Number of hidden units per layer 256
Batch size (Pretrain) 256(64)
Number of model networks NR 3
Number of labeled dataset Nl 100
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Table A.2: The hyperparameters for LEASE under CQL and IQL algorithms.

Task Name CQL IQL
H κp κτ H κp κτ

walker2d-medium 10 0.85 0.05 10 0.75 0.08
walker2d-medium-expert 10 0.85 0.05 10 0.85 0.08

hopper-medium 10 0.85 0.05 10 0.85 0.08
hopper-medium-expert 100 0.85 0.05 10 0.85 0.08
halfcheetah-medium 10 0.85 0.05 10 0.85 0.08

halfcheetah-medium-expert 200 0.85 0.05 10 0.75 0.08

pen-human 10 0.95 0.05 10 0.85 0.08
pen-expert 10 0.90 0.05 10 0.95 0.08

door-human 10 0.95 0.05 10 0.90 0.08
door-expert 20 0.95 0.05 10 0.95 0.08

hammer-human 10 0.95 0.05 10 0.90 0.08
hammer-expert 20 0.99 0.05 10 0.95 0.08

Policy optimization. Offline PbRL involves reward learning and policy optimization. For LEASE,
the reward is updated during policy learning. Therefore, the reward is influenced by the rollout
length and rollout batch size and current learned policy. Here, we select CQL and IQL as basic
offline algorithms. In CQL algorithm, cql weight and temperature are set as 5.0 and 1.0 for
all tasks, respectively. In IQL algorithm, expectile and temperature are set as 0.7 and 3.0
for mujoco tasks and 0.8 and 3.0 for adroit tasks.

The critic network Qω and the policy network πθ adopt a 2-layer feed-forward neural net-
work with 256 hidden units. The hyperparameters for LEASE includes: rollout horizon H ∈
{10, 20, 100, 200}, probability confidence κp(σu0 , σ

u
1 , ŷ) ∈ {0.75, 0.85, 0.90, 0.95, 0.99} and un-

certainty variance κτ (σu0 , σ
u
1 , NR) ∈ {0.05, 0.08}. Table A.2 shows the above hyperparameters for

LEASE under CQL and IQL algorithms. The maximum buffer capacity of unlabeled data is 50000.
In next part , we give detailed analysis for the above hyper-parameters.

B.3 PARAMETER ANALYSIS

Number of preference data Nl. The number of preference data Nl influences the accuracy of
reward model directly. URLHF (Yuan et al., 2024) trains reward model with 2000 preference dataset.
Our method LEASE aims to achieve comparable performance with URLHF under fewer preference
dataset. To test the effects of the number of labeled preference data for agent performance, we
analyze the performance when the number of preference data Nl is 20. The hyper-parameters of 20
preference dataset are same with that of 100 preference dataset, apart from the number of preference
dataset and the batch size of pretrained reward model. The batch size is set as 16 here.

Table A.3: The comparison results for the D4RL tasks under different number of preference data
Nl. ± captures the standard deviation over seeds. Bold indicates the highest score.

CQL (Kumar et al., 2020) IQL (Kostrikov et al., 2021b)
Task Name Nl = 20 Nl = 100 Task Name Nl = 20 Nl = 100

walker2d-medium 77.7± 1.3 78.4± 0.9 pen-human 71.9± 7.4 75.6± 3.3
walker2d-medium-expert 98.0± 18.6 98.6± 18.1 pen-expert 102.5± 12.8 113.8± 6.3

hopper-medium 56.8± 1.5 56.5± 0.6 door-human 4.4± 1.2 5.9± 0.5
hopper-medium-expert 54.5± 1.2 56.4± 0.8 door-expert 105.2± 0.1 105.2± 0.2
halfcheetah-medium 43.4± 0.4 43.5± 0.1 hammer-human 1.2± 0.4 1.7± 0.4

halfcheetah-medium-expert 51.0± 0.8 53.2± 3.1 hammer-expert 126.4± 0.1 126.3± 0.1

Mujoco Average 63.6± 4.0 64.4± 4.0 Adroit Average 68.6± 3.7 71.4± 1.8

Table A.3 shows the agent performance when the number of preference dataset is 20 and 100, where
we use CQL algorithm for mujoco tasks and IQL algorithm for adroit tasks. This table indicates
LEASE still can improve agent performance under very fewer preference dataset. However, as
the number of preference data Nl decreases, the average of agent performance is slightly reduced.
This is mainly because the reward model pretrained with very little preference data has a large
generalization error, resulting in low quality of the generated preference data, which in turn affects
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the accuracy of the final reward model. Notably, the performance gap between 100 preference data
and 20 preference data is not much. This indicates that LEASE have potential to perform well under
more fewer preference dataset.

Rollout length H . The rollout length H is equal to the length of generated unlabeled data L̂.
The H is influenced by the accuracy of trained dynamics model. As H increases, the accuracy
of prediction decreases and large error will bring the unstable agent training. However, the long
horizon of trajectory can better describe the preference of human feedback and can reduce sample
complexity (Eq. (16)). Table A.4 gives the prediction accuracy of the trained reward model for
different rollout lengthH . Here, we take CQL as example and select the last 200 of 2000 preference
data as evaluation dataset that are not seen in in reward training stage.

The accuracy is calculated through the gap between predicted preference and true preference based
on two trajectories. It shows that long horizon easily brings low performance of reward model
since the cumulative error of the trained transition model, but long horizon is beneficial to enhance
the performance of reward model under some conditions. The accuracy of preference model can
be improved through data augmentation under most tasks. Note that the result can not completely
represent the generalization performance of reward model since the evaluation data are limited. The
choice of rollout length H mainly depends on the accuracy of the trained transition model and the
agent performance.

Table A.4: The prediction result of preference model for different rollout length H . The preference
model is based on reward model. The performance of preference model can directly reflect the
performance of reward model. The evaluation data are not seen in reward training stage.

Task name walker2d-m walker2d-m-e hopper-m hopper-m-e halfcheetah-m halfcheetah-m-e

Pretrained model 0.59 0.85 0.73 0.77 0.6 0.72

Updated
H = 10 0.58 0.85 0.78 0.74 0.62 0.78
H = 100 0.57 0.84 0.71 0.79 0.57 0.74
H = 200 0.57 0.83 0.74 0.76 0.60 0.77

Probability confidence p and uncertainty variance τ . The above two parameters influence the
selection of unlabeled preference dataset (Eq. (8)). For reward model composed of simple fully
connected layers, using excessive amounts of unlabeled data for training can easily lead to over-
fitting. Conversely, using too little data can result in poor generalization of the model. Implementing
a selection mechanism ensures data quality on one hand while preventing the reward model from
over-fitting on the other. Since the label is from the ground-truth reward for adroit tasks, the pre-
trained reward model is closed to true model. Therefore, the probability confidence p in adroit tasks
is set higher than that of Mujoco tasks.

B.4 ADDITIONAL RESULTS

The other comparison results for screen mechanism. Table A.5 shows the performance improve-
ment under Adroit tasks when using screen mechanism f(σ0, σ1). It shows that the performance can
be significantly improved under CQL algorithm through selecting mechanism, but not significant un-
der IQL algorithm. In general, combing with Table 2, we can conclude the selecting mechanism for
unlabeled dataset can effectively improve the agent performance.

Table A.5: The comparison results between the performance using selecting mechanism and that
not using. The latter method is denoted as FRESH. ↑ denotes the improvement of performance.

Method CQL (Kumar et al., 2020) IQL (Kostrikov et al., 2021b)
pen-expert door-expert hammer-expert pen-expert door-expert hammer-expert

FRESH 113.2± 14.8 101.6± 3.5 99.5± 34.5 113.4± 14.7 105.1± 0.1 125.5± 0.8
LEASE 132.5 ↑ (17.0%) 103.2 ↑ (1.6%) 126.3 ↑ (26.5%) 113.8 ↑ (0.3%) 105.2 ↑ (0.2%) 126.3 ↑ (0.7%)

The other comparison results for reward model performance. Fig. A.2 and A.3 show compari-
son between prediction value by the learned rewards and their ground truths for LEASE, FEWER and
FRESH under other Mujoco and Adroit tasks, where the offline algorithm is IQL. The predicted and
true rewards are both normalized to [0, 1]. We randomly sample 500 data from unlabeled datasets
that are not seen in training stage for evaluation like Fig. 3. Since the reward has the value in
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Figure A.2: The comparison between prediction value by the learned rewards and their ground truths
for different methods under (a) walker2d-medium and (b) halfcheetah-medium datasets.
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Figure A.3: The comparison between prediction value by the learned rewards and their ground truths
for different methods under (a) pen-expert and (b) hammer-expert datasets.

.

certain position in Adroit tasks, the figure is in the form of multiple scattered lines in Fig. A.3.
This also shows that the data augmentation and selecting mechanism can improve the reward model
performance.

Comparison results between LEASE and URLHFwith fewer preference dataset. To further show
superior performance of the proposed method, Table A.6 compares LEASE to the baseline algorithm
URLHF with the same amount of data as LEASE, where the latter method is denoted as URLHF∗.
This table shows that the average performance of LEASE is superior to that of the baseline algorithm
URLHF using the same amount data with LEASE.

Table A.6: Comparison results between URLHF using fewer preference data and LEASE, where the
offline RL algorithm is CQL and URLHF using fewer data is denoted as URLHF∗.

Task Name URLHF∗ URLHF FEWER LEASE

walker2d-m 76.1± 0.8 76.0± 0.9 77.4± 0.6 78.4± 0.9
walker2d-m-e 86.8± 18.6 92.8± 22.4 77.7± 0.3 98.6± 18.1

hopper-m 56.6± 2.4 54.7± 3.4 55.8± 2.8 56.5± 0.6
hopper-m-e 55.3± 0.9 57.4± 4.9 53.6± 0.9 56.4± 0.8

halfcheetah-m 43.3± 0.2 43.4± 0.1 43.5± 0.1 43.5± 0.1
halfcheetah-m-e 58.9± 2.3 62.7± 7.1 48.3± 0.7 53.2± 3.1

Mujoco Average 62.8± 4.2 64.5± 6.5 59.4± 0.9 64.4± 4.0

pen-human 17.7± 13.0 9.8± 14.1 0.5± 3.0 3.8± 4.6
pen-expert 114.6± 53.7 138.3± 5.2 128.1± 0.7 132.5± 2.3

door-human 1.7± 1.1 4.7± 5.9 0.2± 1.0 4.7± 8.8
door-expert 103.3± 0.5 103.9± 0.8 103.0± 0.9 103.2± 0.7

hammer-human 0.7± 0.1 0.9± 0.3 0.3± 0.0 0.3± 0.0
hammer-expert 117.4± 2.7 120.2± 6.8 124.1± 2.1 126.3± 1.2

Adroit Average 59.2± 11.8 63.0± 5.5 59.4± 1.3 61.8± 3.0
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The effect of the introduction of uncertainty for pseudo-labeling accuracy. Table A.7 validates
the advantage of using uncertainty for reducing pseudo-labeling error, where the accuracy of pseudo-
label generated by reward model is evaluated on all preference dataset. The below table shows that
using uncertainty can improve accuracy of pseudo labels.

Table A.7: Comparison results of pseudo-labeling accuracy between using confidence and uncer-
tainty and only using confidence.

Task name pen-expert door-expert hammer-expert

confidence and uncertainty 87.25% 89.25% 85.45%
only confidence 85.85% 87.80% 84.41%

The other results for LEASE under model-based offline algorithm. Table A.8 shows the results
of COMBO (Yu et al., 2021) under designed framework. For COMBO hyperparameters, the rollout
horizon of preference trajectory H , probability confidence κp and uncertainty variance κτ are set as
10, 0.85 and 0.05 for all tasks, respectively. Note that in our framework, model-based methods do
not necessarily perform better than model-free methods. Model-based RL methods focus on how to
learn conservative policy by regularizing Q values or penalizing rewards to alleviate the effects of
inaccuracy model data. Therefore, model-based RL requires higher accuracy of the reward model
than model-free RL.

Table A.8: Comparison results of offline RL algorithms under the designed framework.
Task Name CQL∗ IQL∗ COMBO∗

walker2d-m 78.4± 0.9 74.6± 1.8 71.6± 2.4
walker2d-m-e 98.6± 18.1 108.1± 0.5 79.1± 1.1

hopper-m 56.5± 0.6 56.0± 0.5 54.8± 0.9
hopper-m-e 56.4± 0.8 55.9± 1.9 54.9± 1.1

halfcheetah-m 43.5± 0.1 43.0± 0.3 42.9± 0.1
halfcheetah-m-e 53.2± 3.1 62.4± 1.4 73.8± 7.0

Mujoco Average 64.4± 4.0 66.7± 1.0 62.9± 2.1

The analysis of the accuracy of transition model for agent performance. Table A.9 shows the
detailed results for the effect of transition model accuracy for agent performance. It shows that the
lower the accuracy of the transition model, the poorer performance of the agent, where the accuracy
of transition model is measured by the sum of the mean square values of the predicted value and the
true value in each dimension.

Table A.9: Results of the effect of the learned transition model for agent performance.
hopper-medium pen-expert

Transition model error Agent performance Transition model error Agent performance
0.35± 0.01 56.5± 0.60 1.05± 0.01 132.5± 2.3
0.49± 0.04 54.8± 0.85 1.42± 0.05 126.4± 8.63
1.19± 0.05 52.85± 0.92 2.36± 0.24 87.65± 41.79

C FURTHER DISCUSSION

C.1 DISCUSSION FOR SAMPLE EFFICIENCY

The discussion of sample efficiency. In offline RL field, high sample efficiency refers that the agent
can achieve comparable performance under fewer data compared with the performance under large
data. In this paper, the data refers to the preference dataset. The labeled preference dataset, each
trajectory of lengthL, is collected through real-time human feedback under policy µ, which demands
tremendous human effort, thus the collected cost of preference data is higher than fixed offline data.
The unlabeled dateset is generated through trained transition without real-time interaction under
learned policy πt at time t. Through data augmentation, the sample efficiency can be significantly
reduced. The performance gap caused by reward can be reduced to ϖ under fewer labeled dataset.
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Comparison with (Zhan et al., 2024). Zhan et al. (2024) developed systematical theory for offline
PbRL and also introduced the concentrability coefficient for PbRL, defined as

Cr(π) = max

{
0, sup

r

Eσ0∼π,σ1∼πref

[
r∗(σ0, σ1)− r(σ0, σ1)

]√
Eσ0∼µ0,σ1∼µ1

∣∣r∗(σ0, σ1)− r(σ0, σ1)
∣∣2
}
. (A.26)

where r(σ0, σ1) =
∑
i[R(s

0
i , a

0
i ) − R(s1i , a1i )], πref is an arbitrary trajectory distribution (usually

set as µ1), and µ0, µ1 are behavior trajectory distribution. However, it is based on trajectory and is
difficult to combine with other offline RL theories. The concentrability coefficient defined in Eq.
(14) is based on state-action pairs.

Moreover, the performance gap of offline PbRL between behavior policy and learned policy is in-
fluenced by offline algorithm itself and the performance of the learned reward (preference) model.
However, Zhan et al. (2024) fails to consider the gap caused by offline algorithm itself. The theory
developed in our paper can be easily combined with other offline algorithm. The method in (Zhan
et al., 2024) can learn ϖ-optimal policy with a sample complexity of

N = Õ

(
c2k2C 2

r (π̂)

ϖ2
log

(
Nr(1/N)

δ

))
, (A.27)

where c > 0 is a universal constant, k = (infx∈[−rmax,rmax] Φ
′(x))−1, and Φ(x) is a monotonically

increasing link function. Compared with Eq. (A.27), the sample complexity of LEASE contains
more useful information. For example, the sample complexity can be reduced when the length of
preference data or the learned policy is closed to behavior policy.

C.2 DISCUSSION FOR RELATED WORKS

Model-free offline RL. Existing model-free algorithms typically use two approaches: policy con-
straint and value regularization. The goal of policy constraint is to keep the learned policy close to
the behavior policy (Kumar et al., 2019). On the other hand, value regularization methods mitigate
the value overestimation for out-of-distribution (OOD) data by conservatively estimating Q values
(Kumar et al., 2020) or by penalizing based on the uncertainty of the Q function (An et al., 2021).
However, the core challenge for offline RL arises from limited data coverage. Model-free offline
RL algorithms can only learn policies from the offline dataset, which restricts the agent’s ability to
explore.

Model-based offline RL. Model-based offline RL algorithms train a dynamics model using the
offline dataset and leverage this model to enhance data coverage. However, due to the limitations
of the offline dataset, there is a discrepancy between the learned dynamics model and the actual
dynamics. To address this, conservatism should be integrated into the algorithms to prevent the
agent from operating in areas where the predictions of the learned dynamics model are unreliable.
One approach is to penalize the reward based on uncertainty quantification (Yu et al., 2020; Sun
et al., 2023). Another approach is to enforce lower Q-values for data generated by the dynamics
model that are deemed imprecise (Yu et al., 2021; Liu et al., 2023).

Comparison with Surf (Park et al., 2022). Surf is the PbRL method similar to LEASE using data
augmentation technique. The differences between them mainly includes the below three aspects:
1) Surf belongs to online RL, but LEASE belongs to offline RL. Surf generates data through in-
teraction with environment (simulator) while LEASE generates data through the learned transition
model; 2) Surf only uses confidence for label filtering, whereas LEASE employs both confidence and
uncertainty principles, which effectively reduce pseudo-label error; 3) LEASE provides the general
theoretical framework for offline PbRL, but Surf don’t provide theoretical analysis.

C.3 BROADER IMPACTS

Actual application. In actual scenarios, especially for human-in-loop-control, such as exoskeleton
robot assistance or rehabilitation, designing a high sample efficient RL algorithm is greatly signif-
icant. Firstly, many rewards are difficult to describe in mathematical terms in some situation, such
as the comfort of interaction. Human feedback or preference is the better way to reflect the above
indexes. In addition, in human in-the-loop control, obtaining preference data through interaction
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can easily cause fatigue, and inappropriate interaction may cause damage to human. It is a necessity
to learn reward model from limited preference dataset. Therefore, PbRL has a great potential to
improve control performance in some scenarios where the reward function is difficult to describe
and human is in the control loop.

Theoretical study. The theory of LEASE shows that the performance gap between the behavior
policy µ and π̂ learned by LEASE includes two part: the gap ξ caused by offline algorithm itself
and the gap ξ1 caused by reward model gap (the details see Theorem 2), where the term ξ1 only
depends on preference dataset. Moreover, the theory of LEASE is based on state-action pairs, which
is consistent with most offline algorithms theory. Therefore, the theory developed in this paper can
be easily combined with other offline algorithms theory and easily used to build theory of policy
improvement guarantee, which can provide the theoretical basis for offline PbRL and facilitate the
further development of offline PbRL theory.
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