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Abstract—With the increasing accumulation of spatial-temporal trajectory data, location-based data mining has recently been

extensively studied. A fundamental research topic in this field is learning the embedding vectors of locations through self-supervised

pre-training. Pre-trained embedding vectors can utilize the highly available unlabeled trajectory data, and benefit downstream tasks in

multiple aspects. However, most existing methods ignore the temporal information hidden in the visited time of locations in trajectories.

Considering that human activities are highly regulated by specific periods of a day, temporal information can reflect some intrinsic

characteristics of locations, so it is necessary to fuse them into location embedding vectors. In this paper, we propose a Time-Aware

Location Embedding (TALE) pre-training method based on the CBOW framework, which is able to incorporate temporal information

into the learned embedding vectors of locations. A novel temporal tree structure is designed to extract temporal information during the

calculation of Hierarchical Softmax. In order to verify the effectiveness of TALE, we apply the learned embedding vectors into three

downstream location-based prediction tasks, i.e., location classification, location visitor flow prediction and user next location

prediction. Experiments are conducted on four real-world user trajectory datasets, and the experimental results demonstrate that our

TALE model can obviously help downstream tasks gain better performance.

Index Terms—Spatial-temporal data, location embedding, pre-training, trajectory modeling

Ç

1 INTRODUCTION

WITH the increasing availability of location-based service
(LBS) data, such as cellular signaling records, check-

ins to point-of-interests (POIs) and taxi trajectories, mining
spatial-temporal data has been extensively studied. Various
tasks have gained much attention in recent years, including
modeling users’ mobility behaviors [1], [2], [3], predicting
or recommending locations for users [4], [5], [6], [7], predict-
ing visitors or crowd flows of locations [8], [9], and classify-
ing functionalities of locations or areas [10], [11], etc.
Among these researches, learning embedding vectors of
locations through self-supervised pre-training is a very fun-
damental and critical problem, for the learned embedding
vectors can benefit downstream tasks and applications in
multiple aspects. First, some location-based mining tasks,
like location classification, are suffering from insufficient
labeled-data for acceptable generalization performance.
This can be solved by pre-training a set of location embed-
ding vectors on large-scale trajectory datasets, which are
often abundant. Second, compared to task-specific objec-
tives, pre-training models can incorporate more comprehen-
sive information into location embedding vectors, thus
helping downstream tasks achieve better performance.

Third, by using general training objectives, embedding vec-
tors learned by pre-training models can be utilized by a
wide range of downstream tasks, which can reduce overall
computational cost.

The key of learning embedding vectors for locations is to
accurately model their sequential correlations in trajectories.
Fortunately, the researches on neural network language
models have developed some elegant methods such as
word2vec [12], [13] to effectively capture the sequential
semantic relationships among words. User check-ins to
POIs and mobile trajectories, are also compatible with
word2vec model for sequential influence modeling.
Inspired by this idea, some researchers employ word2vec
for trajectory data, like users’ sequential check-ins or mobile
signal data, to capture semantic relationships among loca-
tions [10], [14], [15], [16], [17].

When applied on trajectory data, word2vec only consid-
ers contextual information of locations. Yet, trajectories also
possess some unique properties, including geographical
positions of locations and users’ personal interests, which
can be dug to further improve the quality of location repre-
sentations. Recently, Geo-Teaser [16] and POI2Vec [18] are
proposed to incorporate geographical influence, i.e., users
tend to visit nearby locations, into the word2vec model.
Their experimental results give us an insight into how extra
information incorporated into location embedding vectors
can be beneficial for downstream tasks.

Ignored by most existing location embedding methods,
temporal information involved in users’ trajectories can also
reflect intrinsic characteristics of locations. In daily life, peo-
ple usually visit different destinations with corresponding
purposes at appropriate time, e.g., working in offices in
business hours, having lunches in restaurants at noon, jog-
ging or walking in parks in evening, sleeping at their own
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homes at night. Fig. 1 gives an example of various visited
frequency distributions along the time-of-day of different
types of locations. It is clear that the functions carried by
locations will affect users’ mobility behaviors. Correspond-
ingly, temporal information in trajectories implies users’
preferences for locations. By taking temporal information
into account, richer characteristics can be fused into the
embedding vectors of locations. Yet, most latent location
representation models ignore the temporal information.

In this paper, we propose a novel Time-Aware Location
Embedding (TALE) model, which is inspired by the word2-
vec model, but able to further incorporate the temporal
information in trajectory data for learning more exquisite
location embedding vectors. In the model, each location is
assigned with a low-dimensional embedding vector, as the
latent representation of its “semantic” characteristics. The
inner product of two embedding vectors reflects the rele-
vance between the two corresponding locations.

To learn the embedding vectors efficiently, we exploit the
Hierarchical Softmax (HS) technique [19], which constructs
a binary tree structure over items. This technique is widely
used in neural network language models. The structure of
the binary tree controls the core calculation process of Hier-
archical Softmax, so it can greatly affect the quality of the
resulting embedding vectors [20]. In our TALE model, we
propose a novel Hierarchical tree structure to incorporate
the temporal information in trajectory data into the model.
The tree structure is divided into two parts from top to bot-
tom. The top part is a two-layer multi-branch tree, with one
root node and T leaf nodes corresponding to T time slices
of a day with the same length . And the bottom part consists
of a set of Huffman sub-trees, constructed according to the
visited frequency of locations being assigned into each time
slice. A location can appear multiple times in the tree struc-
ture, as the same location can be visited in different time sli-
ces during a day. By utilizing the proposed tree structure,
we are able to extract the temporal information in users’ tra-
jectories and incorporate it into the embedding vectors of
locations in the training process. Theoretically, the resulting
embedding vectors are more accurate and will contain
richer characteristic information about locations.

To verify the efficiency of the proposed model, we apply
the location representations learned by TALE into three
downstream prediction tasks, i.e., location classification,
location visitor flow prediction and user next location pre-
diction. In addition to three public available check-in

datasets from Foursquare, we also collect a mobile phone
signaling dataset, as a showcase of data with higher density
compared to traditional check-in data, to perform our
experiments. The experimental results demonstrate that the
TALE model can obviously improve the performance of the
three downstream tasks.

In summary, the main contributions of this paper are as
follows:

� We propose a time-aware location embedding model
TALE, which utilizes trajectories generated by users
to learn distributed location embedding vectors. The
model is able to extract temporal information hidden
in trajectories, and incorporate it into the embedding
vectors of locations.

� A novel hierarchical tree structure is designed to
model the temporal information in users’ trajecto-
ries, which consists of T Huffman sub-trees by divid-
ing one day into T time slices. Each sub-tree consists
of locations that are visited during the corresponding
time slice, and are organized according to their vis-
ited frequencies.

� We employ our TALE model into three downstream
location-based prediction tasks, and conduct experi-
ments on three real-world user check-in datasets
plus one mobile phone signaling dataset. Experimen-
tal results show that the prediction performance is
significantly improved, which demonstrate the effec-
tiveness of our TALE model.

� Besides, we theoretically analyze how TALE model
can incorporate temporal information into location
embedding vectors from the parameter learning per-
spective, and also visualize some location embedding
vectors as examples to prove our theoretical analysis.

The preliminary version of this paper has been published
in DASFAA 2019 [21]. Compared to [21], we have made the
following major improvements:

� We improve the temporal tree structure by propos-
ing a new time splitting strategy. When constructing
the tree, the original version fixed the length of one
time slice to 1 hour, i.e., splitting one day into 24
time slices. In this paper, we treat the length of time
slices as a hyper-parameter, so that it can be adjusted
during the training process.

� When assigning locations into different time slices,
locations that have close visited time might be
assigned into different time nodes, due to the hard
split of time slices. This can cause loss of temporal
relationship. To address this problem, we introduce
an “influence span” mechanism in this paper to
smoothen the assignment process, so that the corre-
lation between locations that are visited in close time
period can be retained.

� We expand our experiments by applying our TALE
model in different downstream tasks and introducing
new datasets. Location classification task is added as
an new task. DeepMove [22] is introduced as one of
the downstream models in the task of user next loca-
tion prediction. We also introduce three publicly
available check-in datasets from Foursquare.

Fig. 1. The visit frequency distributions of three types of locations by
Foursquare users in New York.
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� We add a theoretical analysis and case visualization
with regard to the effectiveness of the TALE model,
from the perspective of parameter learning (as pre-
sented in Section 4.3 and 5.7). They prove that our
model is indeed capable of capturing the temporal
information in trajectory data.

The remainder of this paper is organized as follows.
Section 2 reviews related works. Section 3 describes our
TALE model in details. Section 4 presents the experimental
evaluations. Section 5 gives the conclusion of this work.

2 RELATED WORK

2.1 FromWord Embedding to Location Embedding

The researches on location representation are largely moti-
vated by the success of pre-trained word embedding in neu-
ral language processing (NLP), that utilizes probabilistic
language modeling as its training objective [12], [23], [24],
[25]. During the training of a language model, the appear-
ance probability of a sentence PS ¼ P ðw1; w2; . . . ; wnÞ is
given by the corpus. The embedding model aims to opti-
mize its parameters, so that its estimation of the probability
is precise enough. Word2vec [12] is a very popular word
embedding method. It models PS by calculating the poste-
rior probability of the observing target word given its con-
text, denoted as P ðwijCðwiÞÞ, where CðwiÞ is the context of
the word wi. By maximizing the posterior probability,
word2vec is able to capture semantic information in senten-
ces. Yet, the original word2vec model have a very high cal-
culation expense, due to the involvement of Softmax
process. In other words, the model has to implicitly calcu-
late a probability for every word in the corpus, which has a
time complexity of OðjW jÞ.

One of the solutions to improve word2vec’s training effi-
ciency is Hierarchical Softmax [13]. This approach builds a
binary Huffman tree based on the occurrence frequency of
words, where each word is represented by a leaf node, and
every inner node can be treated as a binary classifier. Under
the Hierarchical Softmax framework, P ðwijCðwiÞÞ is equal
to the probability of reaching the corresponding target leaf
node of wi through a path in the Huffman tree. Hierarchical
Softmax diminish the time complexity from OðjW jÞ to
Oðlog jW jÞ. This can be regard as a huge leap in calculation
efficiency, especially considering that jW j is usually a huge
number.

The efficiency improvement of word2vec brings it into a
usable state, thus the reputation expands into other research
fields. Word2vec has been successfully applied in various
domains, like user modeling [26], item modeling [27] and
item recommendation [28]. These successful applications
lead us to believe that word2vec definitely can be applied in
location embedding. This is also due to sequential trajecto-
ries share many similar characteristics with sentences. For
example, sentences and trajectories are both continuous
sequences, and the functionalities of locations are akin to
the semantic information of words. In the same time, user
trajectories own some distinct characteristics compared to
sentences. The most obvious one being there are temporal
information assigned to trajectory data. Human activities
are regulated by temporal states, i.e., people usually visit
certain locations during certain periods. Correspondingly,

temporal information in trajectories can reflect characteris-
tics of locations, and shouldn’t be ignored by pre-training
location embedding methods.

In recent researches, [10], [14], [17], [29] employed
word2vec to learn a set of location embedding vectors from
users’ check-in data. They treated each location as a word,
and each visitor’s sequence of visited locations as a sen-
tence. Chang et al. [30] proposed a content-aware location
embedding model, which integrates additional semantic
information of text content into the POI embedding. Feng
et al. [18] considered the effect of geographical relationships
among locations in the learning process. In these researches,
however, temporal information in trajectories were ignored.
Cao et al. [31] replaced the fixed length context window in
word2vec with a temporal span window, yet they didn’t
directly incorporate the visited time of locations into the
result representations, thus will suffer from information
loss. Zhao et al. [16] incorporated the effects of temporal
influence into the representation learning model, but they
only differentiated mobility behaviors during weekdays
and weekends, which is not the full picture of temporal
information. Chen et al. [28] tried to project various types of
information like objects, locations and time into an inte-
grated low-dimensional latent space. Yet, they only consid-
ered the relationships between two adjacent trajectory
points, and ignored the sequential relationships among the
locations. Yang et al. [32] presented a location embedding
model STES, which uses feature vectors to encode geo-
graphic, temporal and functional information for location
representation. The limitation of STES is that the functions
of all the locations are needed as a prepositive information,
which is impractical in most real application scenarios.

There are also a few location embedding methods that
are based on N-gram architecture [33] or representation
learning on graphs [34]. Shimizu et al. [11] implemented an
N-gram structure on users’ trajectories to learn embedding
vectors for locations. Yet, N-gram structure is unidirec-
tional, and is unable to consider contextual locations from
both sides in a trajectory. Wang et al. [15] constructed a flow
graph based on users’ movements between geographical
areas. Yet, by constructing flow graph rather than directly
utilizing trajectories, some semantic information will be lost.

2.2 Location Embedding for Downstream Tasks

Most location-based data mining models are feature-based,
that is, they require locations to be represented by latent
embedding vectors. One of the simplest embedding strate-
gies is to use one-hot vector. The length of a one-hot vector
is the same as the total number of locations. It consists of 0s
in all positions, except for a single 1 in the corresponding
position used to identify a specific location. While simple,
one-hot vectors cannot indicate any additional information
besides the index of locations. In reality, a location carries
rich characteristic information, such as its functionality and
geographical position. There are also complex relationships
between locations, like functional similarities. One-hot vec-
tor is unable to represent these kinds of information.

In addition to one-hot embedding technique, many
location-based deep learning models use embedding layers
to obtain task-specified embedding vectors [1], [22], [35],
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[36]. In most cases, an embedding layer is essentially an
embedding matrix ZZ. A matrix multiplication process
zzðliÞ ¼ ooðliÞ>ZZ is used to fetch the embedding vector of loca-
tion li, where ooðliÞ is the one-hot vector of li. The embedding
matrix ZZ is trained together along with the whole model
using backward propagation. This will make the row vec-
tors in ZZ becoming task-specific embedding vectors, since
their training are guided by the model’s supervised objec-
tive function. However, this approach have a few down-
sides. First, the task-specific embedding vectors are difficult
to migrate to other models and tasks. Second, using embed-
ding layers will make models easily over-fitting on small-
scale training data, and do not generalize well in practice.

Pre-training embedding vectors are widely used in com-
puter vision [37] and neural language processing [38], and
has recently attracted much attention in other fields. Pre-
trained location embedding vectors can be learned through
self-supervised objective, and only require unlabeled trajec-
tory data, which is often abundant. Implementing such
approach have many advantages. First, pre-trained embed-
ding vectors incorporate universal information of locations,
such as functionalities and relative positions. This can help
downstream tasks to achieve better generalization and accu-
racy. Second, pre-trained embedding vectors can be utilized
by a wide range of downstream tasks and models without
too much adjustment, which can improve overall calcula-
tion efficiency.

There are different approaches to pre-train general
embedding vectors for locations, like using auto-encoder
[39] to reduce the dimension of extracted feature vectors [40],
utilizing supervised next-location prediction tasks [11], or
extracting contextual information from trajectory data [10].
Among them, methods that are inspired by word2vec [12]
are every popular, due to their high efficiency and flexibility.
The basic idea is migrated from language modeling, which
captures semantic information from sequences. By designing
the structure of the embedding model, we can incorporate
more information into the embedding vectors, thus helping
downstream tasks to achieve better performance.

3 PRELIMINARIES

In this section, we first introduce some definitions, and then
give the Problem Statement.

Definition 1 (Spatial-Temporal Trajectory). In a spatial-
temporal dataset, user movements can be represented by a set of
user trajectoriesH, in which each trajectory h consists of conse-
cutive visiting points. A visiting point ðlui ; tiÞ indicates that
user u visited location li at time ti. If the visited time informa-
tion is not utilized, a visiting point can be simplified into lui .
For easy presentation, we also denote the set of all locations as
L, and the set of all users as U .

Definition 2 (Location Embedding Vector). The embed-
ding vector for a location l is a fixed length vector zzðlÞ 2 Rd,
where the dimension d is regarded as a hyper-parameter. The
embedding vector contains latent information about the loca-
tion, e.g., the functions and geographical position of the loca-
tion, the relations with other locations, and so on.

Problem Statement. Time-Aware Representation Learning of
Location Embedding Vectors. Given a set of historical user

spatial-temporal trajectories H, we aim to learn an embed-
ding vector zzðliÞ for each location li in the set L. Apart from
the sequential information, temporal information should
also be extracted from the trajectories, to make the embed-
ding vectors more precise.

4 METHODOLOGY

In this work we propose a Time-Aware Location Embedding
(TALE)model to involve the temporal influence into location
representation. Our method is motivated by the recent prog-
ress in pre-trained language modeling [12], [26], [27], [41],
[42], which has been proved effective in capturing the seman-
tic relationships amongwords from sequential data.

The model proposed in this paper is based on the Contin-
uous Bag-of-Words (CBOW) [13] framework, one of the
model architectures of word2vec. The basic idea of CBOW
is to maximize the occurrence probability of a target word
given its context, which guides embedding vectors of words
with similar contextual environments being closer in the
latent space. In this way, sequential relationships and
semantic information in the corpus can be incorporated into
word embedding vectors.

In this section, we first introduce how to transfer the
basic CBOW framework and its efficiency-improved variant
to the location embedding domain, and utilize CBOW
framework to extract sequential information from user tra-
jectories. Then we present a novel temporal tree structure
for Hierarchical Softmax to incorporate temporal informa-
tion into the location embedding.

4.1 Basic Location Representation Model

In order to incorporate characteristic information of locations
into their embedding vectors, CBOW aims to make embed-
ding vectors of locations with similar contextual environ-
ments being closer in the latent space. Specifically, given a
user u and one of his/her visited location lui in the trajectory
hu ¼ flu1 ; lu2 ; . . . ; lung, we define Cðlui Þ ¼ fluj ; jj� ij � �g as the
set of contextual locations of lui in hu, where � is a hyper-
parameter to control the context window size. The goal of
location sequential modeling is to maximize the probability
of a user visiting the true target location given its contextual
locations.

In the basic CBOW framework, each location li is repre-
sented by two vectors, an input vector zzðliÞ and a output
vector zz0ðliÞ. The input vector will be fetched as the result
embedding vector of li, and the output vector is used only
for training. To calculate the appearance probability of tar-
get location li given its contextual locations CðliÞ, we have:

P ðlijCðliÞÞ ¼ expðzz0ðliÞ>fðCðliÞÞÞ=ZðCðliÞÞ; (1)

where fðCðliÞÞ ¼
P

lj2CðliÞ zzðljÞ is the element-wise sum of
the input vectors of all the contextual locations, and
ZðCðliÞÞ ¼

P
lk2L expðzzðlkÞfðCðliÞÞÞ is a normalization fac-

tor. The training objective of CBOW is to maximize the
aforementioned probability across all target-context pairs in
the trajectory setH.

The computational cost of Equation (1) is very expensive,
for it includes a Softmax progress. To be more exact, the
computation of ZðCðliÞÞ requires to traverse each location
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lk 2 L, leading to a time complexity of OðjLjÞ. In order to
calculate the probability without traverse every location, we
introduce the Hierarchical Softmax technique.

Hierarchical Softmax is widely used in Softmax compu-
tation. For implementation, we initialize each location as a
leaf node, and using the occurrence frequencies of locations
in the trajectory data to build a Huffman tree. The structure
of the tree is shown in Fig. 2. Each inner node vi can be
regarded as a binary classifier, with a hidden vector ��ðviÞ
as its parameter. By utilizing the tree structure, the probabil-
ity P ðlijCðliÞÞ can be computed as the route probability from
the root node v0 to the leaf node li. Formally, we have:

P ðlijfðCðliÞÞÞ ¼
Y

vj2path
sðhvji � ��ðvjÞ>fðCðliÞÞÞ; (2)

where sðxÞ ¼ 1=ð1þ e�xÞ is the Sigmoid function, path
denotes the set of inner nodes appearing in the path from v0
to li, and hvji is a special function defined as:

hvji ¼
�1 if vj choices left child in the path

1 otherwise
:

�
(3)

Thus, sðhvji � ��ðvjÞ>fðCðliÞÞÞ in Equation (2) can be
regarded as the classification result of inner node vj.

It is not hard to verify that
P

li2L P ðlijfðCðliÞÞÞ ¼ 1, which
means the result of Hierarchical Softmax is a valid multi-
noulli distribution among all locations. The use of Huffman
tree structure makes it possible to get the shortest average
path length through the whole training process, and achieve
a time complexity of Oðlog jLjÞ.

4.2 Time-Aware Location Embedding

4.2.1 Constructing Temporal Tree Structure

Human activities are usually time-regulated and location-
constrained, so there is a strong correlation between a
location’s function and the users’ arrival time. Therefore, in
users’ spatial-temporal trajectories, the time users arrive at a
certain location contains information about the characteristics
of the location. For example, if a user arrives at a certain place
at 9:00 am onweekdays, that place is likely to be awork place.
If a user arrives at a location at 6:00 pm on weekdays, that
place may be a transportation hub or a restaurant. It is clear
that incorporating temporal information into location embed-
ding can improve the quality of embedding vectors.

If a location is visited only during a small time range, it
implies that the location have relatively specific functions.

For instance, the visiting records to a nightclub will central-
ize in late night. On the other hand, multi-functional loca-
tions are common in real world, and this type of locations
will often be visited during a wide time range. For example,
the visiting records to a large mall which undertakes the
functionalities of supermarket, restaurant and cinema will
scatter across the whole day. Fig. 3 shows another example.
Location l1 was accessed by u1 at t1, u2 at t2 and u3 at t4,
which means that l1 is probably a multi-functional place.
Meanwhile, location l2 was only visited at t3 by user u2 and
u3, which means that l2 is probably a single functional place.
We can also see that both location l2 and l3 are visited by
users at the same time t3, which means that they probably
have the same functions.

In order to incorporate the temporal influence in users’ tra-
jectories into the location representation learning, we present
a novel temporal tree structure for Softmax calculation. The
temporal tree consists of two parts from top to bottom, as
shown in Fig. 4. The top part is a two-layer multi-branch tree.
The first layer only contains one root node v0, and the second
layer contains T “time nodes” from vs1 to vsT . We divide the
time of a day into T equally-long time slices, denoted as
fs1; s2; . . . ; sTg, and let each time slice st correspond to one
time node vst ð1 � t � T Þ. The length of each time slice is
regard as a hyper-parameter and denoted as islice. The bottom
part of the tree is generated from user trajectories. We assign
all visit records into these time slices according to their arrival
time, and build a Huffman sub-tree for each time slice based
on the visit frequency of locations. Then, for the sub-tree
which contains visit records within time slice st, we take time
node vst in the top part as its root node. The construction pro-
cess of temporal tree is given inAlgorithm 1.

Algorithm 1. Construction of Temporal Tree Structure

Input: User set U , location set L, historical trajectories set H,
length of time slice islice;
Output: Temporal tree structure;
1: Initialize T ¼ d24hours=islicee and time slices S ¼ fs1; s2;

. . . ; sTg, with time slice st corresponding to time span
½½t � islice; ðt þ 1Þ � isliceÞÞ;

2: Create time nodes V ¼ fvs1 ; vs2 ; . . . ; vsT g, with time node vst
corresponding to time slice st ;

3: Create a root node v0 and set time nodes V as its child
nodes;

4: for Each time node vtt 2 V do
5: Collect the set of visiting records Ht ¼ fðlu; tÞjðlu; tÞ 2 H;

t 2 ½½t � islice; ðt þ 1Þ � islice��g;
6: Collect location set Lt ¼ fljl appears in Htg and calculate

the occurrence frequency of each l 2 Lt inHt ;
7: Build a Huffman sub-tree T t according to Lt and their

occurrence frequency;
8: Set time node vst as the root node of tree T t;
9: end for
10: Return root node v0, time nodes V and set of Huffman sub-

trees fT 1; T 2; . . . ; T Tg as the temporal tree structure;

4.2.2 Soft Assignment Strategy of Visit Records

As a certain location is usually visited by users during dif-
ferent periods of a day, it is highly possible that one location
is assigned to multiple time slices. But a problem still arises

Fig. 2. Huffman tree structure constructed from user trajectories.
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as the hard division of time slices conflicts with the continu-
ous nature of time. This will lead to some degree of tempo-
ral information loss. Imagine that two restaurants being
visited at 11:55 a.m. and 12:05 p.m. respectively. The visit
times are very close, but if we divide one day into 24 time
slices, these two locations will be assigned into different
time slices and lost their correlation. In that scenario, we fail
to capture the temporal relationship between locations that
are visited in different time slices.

In order to compensate for the temporal information loss,
we intend to assign a visit record ðlu; tÞ to multiple time sli-
ces, so the temporal influence of a record can spread further.
We consider the “influence span” of a record for that pur-
pose. Formally, the influence span of visit record ðlu; tÞ is
defined as a time period of length iinflu and centered at t, i.e.,
time span ½½t� iinflu=2; tþ iinflu=2��. If the influence span of
ðlu; tÞ overlaps with a time slice st , we assign this record to
st. Take a temporal tree with 24 time slices as an example.
As shown in Fig. 5, location l2 is visited by a user at time t2,
and the time span centered at time t2 overlaps with time sli-
ces s2 and s3, thus record ðlu2 ; t2Þ is assigned both to s2 and
s3. The process of building the temporal tree stays mostly
the same as denoted in Algorithm 1, except that in Step 5,
the definition of record setHt is changed to:

Ht ¼ ffðlu; tÞjðlu; tÞ 2 H;

½½t� iinflu=2; tþ iinflu=2��\
½½t � islice; ðt þ 1Þ � islice�� 6¼ ?gg:

(4)

It is easy to prove that one visit record will be assigned to
no more than diinflu=islicee þ 1 time slice(s). We denote the set
of time slices to which visit record ðlu; tÞ is assigned as
Vðlu;tÞ.

If a visit record ðlu; tÞ is assigned to more than one time slice,
we compute the probability of l belonging to time slice st as:

P ðstÞ ¼ Lðlu;tÞ
st

=
X

sk2Vðlu;tÞ
Lðlu;tÞ
sk

;
(5)

where Lðlu;tÞ
st

is the length of overlap between influence span
½½t� iinflu=2; tþ iinflu=2�� and time slice st .

As shown in Fig. 4, there may be multiple paths for one
location, each of which belongs to a different time slice. For
example, l3 appears three times, respectively in time slice s2,
sT�1 and sT . Our model can learn and fuse the latent fea-
tures of locations from different time slices.

In summary, TALE has two advantages against the pure
Huffman tree structure used in word2vec [13]. First, our
model incorporates the temporal influence of trajectory points
into the process of building the tree structure. Locations
appearing in similar time slices tend to exhibit similar charac-
teristics, thus introduce richer function information into
embedding vectors. Second, unlike the conventional models
where each location only appears once, in our TALEmodel, a
location may appear multiple times in the tree, which makes
it be able to learn the location representations more accu-
rately, since one location can bemulti-purpose, and also, there
exhibits various relationships between locations.

4.2.3 Probability Estimation

Using the proposed temporal tree structure, we can compute
the probability of a user u visiting location l at time t given
the contextual locations Cðlu; tÞ, i.e., P ðlu; tjCðlu; tÞÞ. The
Hierarchical Softmax method performs a Softmax classifica-
tion by calculating the probability of a path from the root to
the leaf node. In the temporal tree introduced above, leaf
nodes corresponds to locations, and the other nodes are inner
nodes. The root node v0 has T branches, and can be regarded
as a multi-class classifier. Other inner nodes can be regarded
as binary classifiers, just like in the original Huffman tree.

Fig. 4. The temporal tree structure of the TALE model.

Fig. 5. The illustration of influence span overlapping multiple time slices.

Fig. 3. An example of users’ spatial-temporal trajectories.

WAN ETAL.: PRE-TRAINING TIME-AWARE LOCATION EMBEDDINGS FROM SPATIAL-TEMPORALTRAJECTORIES 5515

Authorized licensed use limited to: SSEN. Downloaded on May 12,2023 at 08:11:24 UTC from IEEE Xplore.  Restrictions apply. 



The path from the root v0 to leaf node l in time slice st can
be defined as a sequence of tree nodes, denoted as path ¼
ðvst0 ; vlst ; v

l
1; v

l
2; . . . ; v

l
nÞ. We divide path into two segments

according to the structure of the temporal tree, i.e., path ¼
path1 þ path2. The first segment, path1 ¼ ðvst0 Þ, only contains
the root node that chooses the branch corresponding to
time slice st in the path. The second segment, path2 ¼
ðvlst ; v

l
1; v

l
2; . . . ; v

l
nÞ belongs to a binary Huffman sub-tree,

with which the time node vst as its root node. The probabil-
ity of observing lu in time slice st along path can be esti-
mated by:

P ðlu; stjCðlu; tÞÞpath

¼ P ðvst0 jffðCðlu; tÞÞÞ
Y

vl
i
2path2

P ðvlijffðCðlu; tÞÞÞ

¼ P ðstjCðlu; tÞÞpath1 � P ðlujCðlu; tÞ; stÞpath2 :

(6)

That is to say, given the contexts, the joint probability
that a user u will visit the location l in the time slice st is the
product of two segments: the probability that the arrival
time is in st, and the probability that the visited location in
st is l. For a visit record ðlu; tÞ that is assigned to multiple
time slices Vðlu;tÞ, we can calculate the probability of observ-
ing lu at time t by summing up the probabilities of all paths
according to Equation (5):

P ðlu; tjCðlu; tÞÞ
¼

X
st2Vðu;l;tÞ

P ðstÞ � P ðlu; stjCðlu; tÞÞpath: (7)

Now we will explain how to calculate the probability of
the two segments of path in detail. The root node v0 has a
latent matrix MM 2 RT�d, which can be treated as the param-
eters of the multi-class classifier. So the first segment in
Equation (6) can be calculated as:

P ðstjCðlu; tÞÞpath1

¼ expðMMðtÞ>ffðCðlu; tÞÞÞ=ZðCðlu; tÞÞ;
(8)

where MMðtÞ is the t-th row of MM, ffðCðlu; tÞÞ ¼P
lj2Cðlu;tÞ zzðljÞ is the sum of input vectors of all the locations

in Cðlu; tÞ, and ZðCðlu; tÞÞ ¼
PT

k¼1 expðMMðkÞ>ffðCðlu; tÞÞÞ is
the normalization factor.

Each inner node vst and vi ði � 1Þ has a latent vector
��ðviÞ 2 Rd, which can be treated as the parameters of a
binary classifier. P ðvlijffðCðlu; tÞÞÞ can be defined as:

P ðvlijffðCðlu; tÞÞÞ ¼ sðhvlii � ��ðvliÞ
>
ffðCðlu; tÞÞÞ; (9)

where sðxÞ ¼ 1=ð1þ e�xÞ is the Sigmoid function, hvlii is
defined in Equation (3). Now we can calculate the second
segment in Equation (6) as:

P ðljCðlu; tÞ; stÞpath2

¼
Y

vl
i
2path2

sðhvlii � ��ðvliÞ
>
ffðCðlu; tÞÞÞ: (10)

For better understanding of the calculation process of
Equation (6), we give an example here. As illustrated in
Fig. 4, given a visit record ðlu3 ; t2Þ, suppose that t2 is within

time slice s2. The path for location l3 in time slice s2 is path ¼
ðv0; vs2 ; viÞ. The probability of this path is:

P ðlu3 ; s2jCðlu3 ; t2ÞÞ
path

¼ eðMMð2Þ>ffðCðlu
3
;t2ÞÞÞ

ZðCðlu3 ; t2ÞÞ
� sð��ðvs2Þ

>
ffðCðlu3 ; t2ÞÞÞ

� sð���ðviÞ>ffðCðlu3 ; t2ÞÞÞ:

(11)

The time complexity of calculating the probability
P ðljCðlÞÞ in Equation (1) is OðjLjÞ. The maximum number of
leaf nodes in our TALE model is ðT � jLjÞ, where T is the
number of time slices. In our temporal tree structure, the aver-
age path length for all the leaf nodes is logjLj þ 1. So the time
complexity of calculating the probability in Equation (6) is
Oðlog jLj þ 1Þ, which ismuch lower thanOðjLjÞ.

4.2.4 Parameter Learning

The goal of the TALE model is to maximize the posterior
probability of observing all visit records of the target loca-
tion, given its contextual content in user trajectories. Assum-
ing that the observed trajectories are independent with each
other, then the optimization objective is:

Q	 ¼ argmax
Q

Y
ðlu;tÞ2h; h2H

P ðlu; tjCðlu; tÞÞ (12)

where Q ¼ fZZ;MM;��g is the set of parameters of the model,
in which ZZ is the set of location embedding vectors, MM is
the parameter of the root node in the temporal tree struc-
ture, and �� is the set of parameters of all other inner nodes.
We employ the Stochastic Gradient Descent (SGD) method
[43] to learn all the parameters of the model.

For better understanding how the TALE model is able to
incorporate temporal information from trajectories, we give a
theoretical analysis from the parameter learning perspective
below. And a case visualization of the embedding vectors is
also presented in Section 5.7 to intuitively demonstrate the
relations between the embedding vectors of locations.

4.3 Theoretical Analysis

In this section, we theoretical analyze how the TALE model is able to
incorporate temporal information into location embedding vectors.
Assuming one training instance with ðlui ;tiÞ being the target visiting
record, path being the set of inner nodes appears in the path form the
root node to leaf node lui which falls in time slice st , ti 2 st . We can
define the loss value for path as follows. For simplicity, we denote
ffðCðlui ;tiÞÞ ascc here.

Lpath ¼� logP ðlui ;tijccÞ

¼ � log
eðMMðtÞ>ccÞPT
k¼1 e

ðMMðkÞ>ccÞ

� log
Y

vi2path
sðhvii � ��ðviÞ>ccÞ

¼ �MMðtÞ>ccþ log
XT
k¼1

expðMMðkÞ>ccÞ

�
X

vi2path
log sðhvii � ��ðviÞ>ccÞ:

(13)
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Wedivide the above equation into two parts. The first part,
L1 ¼ �MMðtÞ>ccþ log

PT
k¼1 expðMMðkÞ>ccÞ, which denotes the

training loss of the multi-class classifier v0. The second part,
L2 ¼ �

P
vi2path logsðhvii � ��ðviÞ>ccÞ, which denotes the train-

ing loss of the inner nodes in the Huffman sub-tree corre-
sponding to the time node vst . Take the derivative of L1 with
regard toMMðjÞ>cc, we have:

@L1

@MMðjÞ>cc
¼ expðMMðjÞ>ccÞPT

k21 expðMMðkÞ>ccÞ
� r

v0
j ; (14)

where expðMMðjÞ>ccÞPT

k21 expðMMðkÞ>ccÞ
is the output value of the jth unit of vo,

which we denoted as o
v0
j in the following for simplicity. r

v0
j

resembles the “true value” corresponding to o
v0
j , and r

v0
j ¼ 1

only if sj is the actual time slice this path falls in, i.e., j ¼ t,

otherwise r
v0
j ¼ 0. This derivation result can be seen as the

prediction error of the classifier v0. Then we calculate the

derivative of L1 with regard to cc as:

@L1

@cc
¼
X
j2T

@L1

@MMðjÞ>cc
� @MMðjÞ>cc

@cc

¼
X
j2T

ðov0j � r
v0
j Þ �MMðjÞ;

(15)

which can be interpreted as sum of rows of classifier v0’s
parameters, weighted by its prediction error.

Now we take the derivative of L2 with regard to ��ðvjÞcc,
we have:

@L2

@��ðvjÞ>cc
¼ðsð��ðvjÞ>ccÞ � 1Þhvji

¼sð��ðvjÞ>ccÞ � rvj ;

(16)

where sð��ðvjÞ>ccÞ is the prediction result of classifier vj,
which we denoted as ovj in the following. rvj denotes the
“true value” corresponding to ovj , where rj ¼ 1 if hvji ¼ 1,
and rj ¼ 0 otherwise. This derivation result can be seen as
the prediction error of the classifier vj. Then we calculate
the derivative of L2 with regard to the cc as:

@L2

@cc
¼

X
vi2path

@L2

@��ðviÞ>cc
� @��ðviÞ>cc

@cc

¼
X

vi2path
ðovj � rvjÞ � ��ðviÞ;

(17)

which can be interpreted as sum of inner nodes’ parameters,
weighted by their prediction loss.

Because we use gradient descent to train our model, and
considering that cc ¼ ffðCðlui ; tiÞÞ ¼

P
lk2Cðlu

i
;tiÞ zzðlkÞ, we can

give the update equation for input vector of the one location
lk 2 Cðlui ; tiÞ as:

zzðlkÞðnewÞ ¼ zzðlkÞðoldÞ �
1

jCj � h �
@L1

@cc
þ @L2

@cc

� �
; (18)

where h is the learning rate, jCj is the number of contextual
locations. Combining the information from Equations (15),
(17), and (18), we can understand the process of parameter
training in TALE as adding a portion of parameters of root

node and inner nodes to the input vector of locations. The
prediction loss of the root node v0 and inner nodes vj 2 path
will decide whether to “push” zzðlkÞ away from their param-
eters, or to “pull” it closer. As we iterate through the whole
dataset during the training process, this “push and pull”
effect of parameter update will accumulate, leading to the
result that embedding vectors of locations which are always
visited during similar periods, and share more contextual
neighbors being dragged closer in the embedding space.

From the above analysis, it can be seen that both contex-
tual information and temporal influence in trajectories take
part in the training process of TALE. This proves that our
model is able to incorporate temporal information into loca-
tion embedding vectors.

5 EXPERIMENTS

To demonstrate the effectiveness of our proposed represen-
tation model, we incorporate location embedding vectors
pre-trained by different models into multiple downstream
applications, and conduct experiments on four real-world
spatial-temporal trajectory datasets.

5.1 Datasets

We conduct our experiments on four datasets, three of
which are Foursquare check-ins in New York, Tokyo and
Jakarta, denoted as Foursquare-NYC, Foursquare-TKY and
Foursquare-JKT. Check-in data are formed by users’ arriv-
ing at functional locations, thus can be regard as users’
trajectories.

The fourth dataset is constructed from mobile phone sig-
naling data in Beijing, denoted as Mobile-PEK. It records
the switching events between telecommunication base sta-
tions of mobile users in 5 consecutive workdays. We treat
base stations as locations. To guarantee the quality of the
trajectories, we filter out the ping-pong switches which are
very common in mobile phone signaling data, and ignore
the trajectory points that users just passed by.

For all the four datasets, we discard the locations which
are visited by less than 5 users, and the users with less than
10 check-in records. The statistics of datasets after the pre-
processing are shown in Table 1.

5.2 Baseline Location Embedding Models

To prove the effectiveness of the embedding vectors learned
by our TALE model, we include some classic word embed-
ding models and state-of-the-art location embedding mod-
els for comparison.

� CBOW [13]: An variation of the original word2vec [12].
Although proposed for word embedding, word2vec

TABLE 1
Statistics of Datasets

Dataset #User #Location #Check-in

Foursquare-NYC 1,077 3,908 82,091
Foursquare-TKY 2,290 7,057 389,063
Foursquare-JKT 9,193 13,105 536,792
Mobile-PEK 8,319 7,274 944,763

WAN ETAL.: PRE-TRAINING TIME-AWARE LOCATION EMBEDDINGS FROM SPATIAL-TEMPORALTRAJECTORIES 5517

Authorized licensed use limited to: SSEN. Downloaded on May 12,2023 at 08:11:24 UTC from IEEE Xplore.  Restrictions apply. 



can be easily generalized to other embedding tasks
based on sequential data. It can capture the semantic
information based on the correlation between the tar-
get words and their contexts. In our implementation,
we utilize the Hierarchical Softmax technique to accel-
erate its training process.

� Skip-Gram[13]: Another approach aiming to improve
the training efficiency of the original word2vec.
Compared to CBOW, it takes target words as input
and contextual words as output. In our implementa-
tion, we utilizes the negative sampling technique to
accelerate its training process.

� POI2Vec[18]: A location embedding model based on
CBOW. This model considers that the geographical
relationships among locations have impacts on user
mobility behaviors and incorporates geographical
features into the embedding learning process.

� Geo-Teaser[16]: Geo-temporal sequential embedding
rank, a location embedding model based on Skip-
Gram. It incorporates the effects of temporal influence
into the location embedding through concatenating a
temporal state vector with the target location’s emb-
edding vector as the input of Skip-Gram. The tempo-
ral state indicates whether the location is visited on
weekdays or onweekends.

5.3 Downstream Prediction Models

Pre-trained location embedding methods capture general
information of locations. Theoretically, the learned embed-
ding vectors of locations should be beneficial for multiple
location-based data mining tasks. On the other hand, the
loss values of embedding methods are not consistent for a
crosswise comparison. In this paper, we use three down-
stream tasks, i.e., location classification, location visitor flow
prediction and user next location prediction, to verify the
effectiveness of our model. Their results can be an indica-
tion of the quality of location embedding vectors.

5.3.1 Location Classification

Locations can usually be classified into multiple types based
on their urban functions and population mobility patterns.
Accurate location classification requires ample high-quality
features of locations to be fed into the classifier. In this
paper, we utilize two approaches to combine embedding
vectors for location classification:

� FC: a multi-layer fully-connected network. For one
location, we take its embedding vector as the input
of the classifier, and the output vector as the classifi-
cation result of the location.

� kk NN: k-Nearest Neighbor [44] is a commonly used
supervised classier. Given a test location, the pre-
dicted class label is voted by its k nearest training
locations. In our experiments, we regard the euclid-
ean distances between embedding vectors as the dis-
tance measurement of corresponding locations.

5.3.2 Location Visitor Flow Prediction

The visitor flow prediction of locations is a standard time
series prediction task. Apart from the temporal correlation

in historical flow sequences, information of locations can
also help to achieve higher prediction accuracy. In this
paper, we utilize a popular sequential modeling structure to
fuse location embedding vectors into plain sequential
modeling:

� Seq2seq: Sequence-to-sequence architecture [45] is a
widely used approach for sequential correlation
modeling. Given one target location, we first fuse
each element of its visitor flow sequence with the
embedding vector by casting them into the same
dimension, and then concatenate them. The sequ-
ence of concatenated vectors is then split into the
input of a GRU [46]-based seq2seq model’s encoder
and decoder. Finally, we utilize the output vectors of
the decoder and a fully connected layer to calculate
the prediction of future visitor flow values.

5.3.3 User Next Location Prediction

The goal of user next location prediction is to predict a
user’s next visiting location given a certain length of his/
her historical trajectory. Accurate prediction of users’ future
moving choices requires locations to be represented by
high-quality embedding vectors. In this paper, we incorpo-
rate location embedding vectors into two representative
user next location prediction models:

� GRU: Gated Recurrent Unit [46] can be utilized to
model users’ sequential movement pattern. In our
experiments, we implement a single-layer GRU net-
work, and regard a user’s historical trajectory as its
input. The output hidden vector is then fed into a
fully connected layer to make the prediction of the
user’s next visited location.

� DeepMove [22]: one of the state-of-the-art location
prediction models, and a multi-module attentional
recurrent network which utilize attention mecha-
nism to model the multi-level periodicity of human
mobility.

5.4 Settings

For all datasets, we first calculates the earliest and latest
timestamp of all records, and split trajectories into training,
evaluation and testing trajectory sets by 6:2:2 along time
axis (one day is regarded as the smallest unit). Location
embedding models are only trained on the training trajec-
tory sets. We also split all locations into training, evaluation
and testing location sets by 6:2:2 for location classification
task. All downstream prediction models are trained on the
training sets, validated on the evaluation sets to implement
early-stopping technique, and tested on the testing sets to
generate the final results. Noted that class labels of locations
are only available in Foursquare check-in datasets, thus we
only utilize these datasets for location classification task;
Foursquare check-in datasets have too sparse visiting
records for visitor flow calculation, thus only the mobile
phone signaling dataset is utilized in visitor flow prediction
task.

It’sworth noting that the loss value is not a credible indica-
tion of the quality of a embedding method’s generated repre-
sentation vectors. Thus, we tuned the hyper-parameters of
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embedding methods with the help of user next location pre-
diction task and theDeepMove downstreammodel.

In our implementation, we use a time interval of one
hour for visitor flow calculation. We standardize all flow
values by removing the mean and scaling unit variance, i.e.,
X0 ¼ ðX �meanðXÞÞ=stdðXÞ, where meanðXÞ and stdðXÞ
are the mean and standard deviation of input flow value X,
respectively. The prediction model for flow prediction is
trained with Mean Square Error (MSE) loss. Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) are cho-
sen as evaluation metrics of flow prediction task. The pre-
diction models for location classification and next location
prediction are trained with Cross Entropy loss. Top-N accu-
racy (i.e., Acc@N ,N 2 ½1; 5; 10; 20�) and macro-F1 are chosen
as evaluation metrics of location classification and user next
location prediction tasks.

We implement our TALE model based on the PyTorch
[47] framework. For all embedding methods, we set the size
of embedding vectors to 128, batch size to 64, window size
to 2, and choose the Stochastic Gradient Descent optimizer
with an initial learning rate of 0.001. For our TALE model,
we set the time slice length islice to 240 minutes, and the
influence span length iinflu to 60 minutes. For all down-
stream prediction models, we set the hidden size to 256,
and choose the Adam optimizer with an initial learning rate
of 0.001.

5.5 Experimental Results and Analysis

The result representation vectors calculated by baseline
location embedding methods are incorporated into multiple
downstream prediction models to get the results. Tables 2,
3, and 4 show the performance comparison of different
approaches for location classification, location visitor flow
prediction and user next location prediction, respectively.
Our TALE significantly outperforms all the baseline loca-
tion embedding methods across all the datasets and down-
stream prediction models for most of cases.

CBOW and Skip-gram are directly borrowed from the lan-
guage modeling domain, and capture semantic information
of locations from their relationships with contexts. Yet, they
ignore spatial and temporal information,which are important
aspects of user trajectory data, and can reflect characteristics
of locations, as we discussed in Section 4.2. Unsurprisingly,
location embedding vectors generated by these two methods
generally perform the worst when incorporated into down-
streammodels. POI2Vec takes spatial influence into consider-
ation, based on the idea that users tend to visit nearby
locations in a limited period. However, spatial information
are not comprehensive and accurate enough for representing
locations, for functionalities can be diverse across different
locations in the real world, even in a small area.

Temporal information have a strong correlation with
functionalities of locations, since locations with a certain
function will have similar visited time distribution. Geo-
Teaser incorporates temporal influence along with spatial
information into the model. But for temporal influence it
only differentiates the human mobility trajectories occur-
red on weekdays and weekends. Compared to the fore-
mentioned baselines, TALE utilizes a temporal tree struture,
and can model the relationships between the locations that
are visited during similar time periods of a day. In this way,
TALE is able to incorporate more detailed and accurate
functional information of locations into their generated
embedding vectors. Thus, downstream location-based pre-
diction tasks gain highest accuracy when coupled with our
TALE model.

TABLE 2
Performance Comparison of Different Approaches Towards Location Classification

Prediction Model FC kNN

Metric Acc@1 (%) Acc@5 (%) Acc@10 (%) Acc@20 (%) macro- Acc@1 (%) macro-

Dataset Embedding Method F1 (%) F1 (%)

Foursquare-NYC Skip-gram 18.465
0.19 33.453
0.47 44.220
0.52 58.798
0.82 1.626
0.15 6.266
0.72 1.811
0.22
CBOW 18.414
0.36 33.542
0.57 43.811
0.33 57.583
0.64 1.651
0.18 6.532
0.89 1.694
0.27
POI2Vec 19.587
0.34 36.019
0.46 47.187
0.66 61.679
0.64 1.954
0.26 7.015
0.92 1.749
0.24

Geo-Teaser 21.723
0.81 39.290
0.62 49.457
0.93 62.852
0.79 2.606
0.38 7.399
0.33 1.918
0.33
TALE 22.232
0.43 41.176
1.11 51.005
0.75 64.194
0.55 2.664
0.35 7.709
0.62 2.228
0.39

Foursquare-TKY Skip-gram 17.783
0.55 39.542
0.65 53.864
0.45 68.288
0.60 4.196
0.42 13.031
0.56 2.607
0.24
CBOW 17.057
0.38 39.324
0.55 53.432
0.96 67.601
0.95 3.855
0.52 12.535
0.57 3.595
0.17
POI2Vec 18.944
0.56 40.667
0.89 54.171
0.70 68.670
0.51 4.584
0.61 13.414
0.65 3.556
0.41

Geo-Teaser 19.283
0.36 41.053
0.43 55.043
0.84 69.795
0.89 4.547
0.35 14.164
0.17 3.086
0.19
TALE 20.516
0.52 42.408
0.85 55.645
1.02 70.534
0.66 4.793
0.66 15.492
0.66 4.090
0.31

Foursquare-JKT Skip-gram 5.914
0.39 19.210
0.29 30.485
0.53 45.345
0.94 1.106
0.07 2.724
0.15 0.955
0.14
CBOW 5.779
0.28 19.233
0.50 31.251
0.59 46.578
0.56 1.251
0.12 2.772
0.10 1.042
0.17
POI2Vec 6.620
0.41 20.282
0.66 32.125
0.60 47.222
0.48 1.456
0.43 2.943
0.26 1.123
0.13

Geo-Teaser 6.725
0.32 21.302
0.76 33.216
0.84 48.595
0.84 1.666
0.23 2.976
0.26 1.009
0.21
TALE 7.044
0.37 21.576
0.23 33.766
0.65 48.522
0.27 1.578
0.39 3.256
0.32 1.198
0.21

TABLE 3
Performance Comparison of Different Approaches

Toward Location Visitor Flow Prediction

Metric MAE RMSE
Embedding Method

Skip-gram 2.835
0.01 4.258
0.03
CBOW 2.771
0.01 4.143
0.02
POI2Vec 2.599
0.01 3.871
0.03
Geo-Teaser 2.535
0.01 3.773
0.02
TALE 2.399
0.01 3.560
0.02
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5.6 Effects of Parameters

In this section, we evaluate the effects of three hyper-
parameters: time slice length islice, influence span length
iinflu and the size of embedding vectors. The experiments
are conducted on user next location prediction using Deep-
Move downstream model, and while evaluating one of the
hyper-parameters, we lock the other ones to optimum.

5.6.1 Effects of Time Slice Length

Fig. 6a shows the experimental results on the hyper-
parameter tuning of time slice length islice. From these fig-
ures, we observe that the performance first improves as we
lengthening the time slice, then deteriorates as it exceed the
optimum point. A small islice means only locations that are

visited in very close time interval are clustered into the same
time slice, which fails to capture the relations between loca-
tions that are visited during similar periods. A big islice will
clusters too many locations into one time slice. This will
make the method failing to model the temporal information
in trajectories, and degenerate into the basic CBOW [13]
model. A moderate islice can capture relations between loca-
tions with similar visiting time patterns, while also distin-
guish locations that are typically visited during different
periods. Hence, we set islice to 240minutes across all datasets.

5.6.2 Effects of Influence Span Length

Fig. 6b shows the experimental results on the hyper-
parameter tuning of influence span length iinflu. A small iinflu

TABLE 4
Performance Comparison of Different Approaches Toward User Next Location Prediction

Fig. 6. Effects of hyper-parameters validated on DeepMove.
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will cause some locations which are visited in close time
intervals be assigned into different time slices, thus discard-
ing the relations between these locations. A big iinflu will
cluster one location into irrelevant time slices. This will
cause the method unable to model distinct visiting time pat-
terns for locations. In conclusion, we set iinflu to 60 minutes
for all datasets.

5.6.3 Effects of Embedding Vector Size

Fig. 6c shows the experimental results on the hyper-
parameter tuning of the size of embedding vectors. This
figure demonstrates that the performance improves steadily
as we increase the size of location embedding vectors. Lon-
ger vectors are able to contain more comprehensive infor-
mation, thus helping downstream tasks gain better results.
Yet, we observe that the degree of performance improve-
ment is limited when the size is bigger than 128, and longer
embedding vectors will lead to higher computational
expense. In conclusion, we set the size of embedding vectors
to 128 globally, by considering the trade-off between effec-
tiveness and efficiency.

5.7 Case Visualization of Location Embeddings

We choice a small subset of locations in the Foursquare-TKY
dataset, and visualize their embedding vectors in a
2-dimensional space to get a clear acknowledge of their rela-
tions in the latent space. We use t-SNE method [48] for
dimension reduction. Then we choice different pairs of loca-
tions, whose embedding vectors are close to each other, or
away from each other, respectively, and visualize users’ vis-
iting patterns to these locations by drawing a histogram of
visiting time for each location. The visualization results of
our TALE model are shown in Fig. 7. We can see that

locations whose embedding vectors are closed to each other
often have similar visited time patterns, like locations #1555
and #457, which are both train stations. In the mean time,
locations whose embedding vectors are far away from each
other often have high divergence in visited time patterns,
like locations #1555 and #12, in which location #12 is a
subway.

We do the same visualization to the embedding vectors
learned by CBOW, as shown in Fig. 8. It is clear that loca-
tions with every different visited time patterns can be closed
to each other in the embedding space acquired by CBOW,
meaning CBOW totally ignores the temporal information in
trajectory data, and only uses the contextual information to
guide the training process. Compared to our TALE model,
this will lead to information loss and decrease in embedding
vectors’ quality.

6 CONCLUSION

In this paper, we propose a novel time-aware location
embedding pre-training model TALE. It is able to incorpo-
rate the temporal information in users’ mobility trajectories
into the embedding vectors of locations. A novel tree struc-
ture is designed based on the Hierarchical Softmax to model
the temporal influence. In order to evaluate the effectiveness
of the learned embedding vectors, we involve TALE into
three location-based mining tasks, i.e., location classifica-
tion, location visitor flow prediction, and user next location
prediction. Experimental results show that our model can
improve the performance of various downstream tasks
compared to other existing location embedding models.

There are some interesting issues that can be further
studied. First, we only consider the arrival time of locations
in users trajectories. However, the information that how

Fig. 7. Visualization of location embedding vectors learned by TALE.
Fig. 8. Visualization of location embedding vectors learned by CBOW.
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long a user stay in a location may also be helpful to repre-
sent the characteristics of locations. If we can incorporate
such duration information into location representations,
more meaningful location embedding vectors may be
learned. Second, based on effective location representations,
a lot of location-based mining tasks can be improved, such
as location recommendation, path recommendation, etc.
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