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ABSTRACT

Recent works on neural contextual bandits have achieved compelling performances
due to their ability to leverage the strong representation power of neural networks
(NNs) for reward prediction. Many applications of contextual bandits involve
multiple agents who collaborate without sharing raw observations, thus giving
rise to the setting of federated contextual bandits. Existing works on federated
contextual bandits rely on linear or kernelized bandits, which may fall short when
modeling complex real-world reward functions. So, this paper introduces the
federated neural-upper confidence bound (FN-UCB) algorithm. To better exploit
the federated setting, FN-UCB adopts a weighted combination of two UCBs: UCBa

allows every agent to additionally use the observations from the other agents to
accelerate exploration (without sharing raw observations), while UCBb uses an
NN with aggregated parameters for reward prediction in a similar way to federated
averaging for supervised learning. Notably, the weight between the two UCBs
required by our theoretical analysis is amenable to an interesting interpretation,
which emphasizes UCBa initially for accelerated exploration and relies more on
UCBb later after enough observations have been collected to train the NNs for
accurate reward prediction (i.e., reliable exploitation). We prove sub-linear upper
bounds on both the cumulative regret and the number of communication rounds of
FN-UCB, and empirically demonstrate its competitive performance.

1 INTRODUCTION

The stochastic multi-armed bandit is a prominent method for sequential decision-making problems
due to its principled ability to handle the exploration-exploitation trade-off (Auer, 2002; Bubeck &
Cesa-Bianchi, 2012; Lattimore & Szepesvári, 2020). In particular, the stochastic contextual bandit
problem has received enormous attention due to its widespread real-world applications such as
recommender systems (Li et al., 2010a), advertising (Li et al., 2010b), and healthcare (Greenewald
et al., 2017). In each iteration of a stochastic contextual bandit problem, an agent receives a context
(i.e., a d-dimensional feature vector) for each of the K arms, selects one of the K contexts/arms, and
observes the corresponding reward. The goal of the agent is to sequentially pull the arms in order to
maximize the cumulative reward (or equivalently, minimize the cumulative regret) in T iterations.

To minimize the cumulative regret, linear contextual bandit algorithms assume that the rewards can
be modeled as a linear function of the input contexts (Dani et al., 2008) and select the arms via
classic methods such as upper confidence bound (UCB) (Auer, 2002) or Thompson sampling (TS)
(Thompson, 1933), consequently yielding the Linear UCB (Abbasi-Yadkori et al., 2011) and Linear
TS (Agrawal & Goyal, 2013) algorithms. The potentially restrictive assumption of a linear model
was later relaxed by kernelized contextual bandit algorithms (Chowdhury & Gopalan, 2017; Valko
et al., 2013), which assume that the reward function belongs to a reproducing kernel Hilbert space
(RKHS) and hence model the reward function using kernel ridge regression or Gaussian process (GP)
regression. However, this assumption may still be restrictive (Zhou et al., 2020) and the kernelized
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model may fall short when the reward function is very complex and difficult to model. To this end,
neural networks (NNs), which excel at modeling complex real-world functions, have been adopted
to model the reward function in contextual bandits, thereby leading to neural contextual bandit
algorithms such as Neural UCB (Zhou et al., 2020) and Neural TS (Zhang et al., 2021). Due to
their ability to use the highly expressive NNs for better reward prediction (i.e., exploitation), Neural
UCB and Neural TS have been shown to outperform both linear and kernelized contextual bandit
algorithms in practice. Moreover, the cumulative regrets of Neural UCB and Neural TS have been
analyzed by leveraging the theory of the neural tangent kernel (NTK) (Jacot et al., 2018), hence
making these algorithms both provably efficient and practically effective. We give a comprehensive
review of the related works on neural bandits in App. A.

The contextual bandit algorithms discussed above are only applicable to problems with a single agent.
However, many modern applications of contextual bandits involve multiple agents who (a) collaborate
with each other for better performances and yet (b) are unwilling to share their raw observations
(i.e., the contexts and rewards). For example, companies may collaborate to improve their contextual
bandits-based recommendation algorithms without sharing their sensitive user data (Huang et al.,
2021b), while hospitals deploying contextual bandits for personalized treatment may collaborate to
improve their treatment strategies without sharing their sensitive patient information (Dai et al., 2020).
These applications naturally fall under the setting of federated learning (FL) (Kairouz et al., 2019;
Li et al., 2021) which facilitates collaborative learning of supervised learning models (e.g., NNs)
without sharing the raw data. In this regard, a number of federated contextual bandit algorithms have
been developed to allow bandit agents to collaborate in the federated setting (Shi & Shen, 2021). We
present a thorough discussion of the related works on federated contextual bandits in App. A. Notably,
Wang et al. (2020) have adopted the Linear UCB policy and developed a mechanism to allow every
agent to additionally use the observations from the other agents to accelerate exploration, while
only requiring the agents to exchange some sufficient statistics instead of their raw observations.
However, these previous works have only relied on either linear (Dubey & Pentland, 2020; Huang
et al., 2021b) or kernelized (Dai et al., 2020; 2021) methods which, as discussed above, may lack the
expressive power to model complex real-world reward functions (Zhou et al., 2020). Therefore, this
naturally brings up the need to use NNs for better exploitation (i.e., reward prediction) in federated
contextual bandits, thereby motivating the need for a federated neural contextual bandit algorithm.

To develop a federated neural contextual bandit algorithm, an important technical challenge is how to
leverage the federated setting to simultaneously (a) accelerate exploration by allowing every agent
to additionally use the observations from the other agents without requiring the exchange of raw
observations (in a similar way to that of Wang et al. (2020)), and (b) improve exploitation by further
enhancing the quality of the NN for reward prediction through the federated setting (i.e., without
requiring centralized training using the observations from all agents). In this work, we provide a
theoretically grounded solution to tackle this challenge by deploying a weighted combination of two
upper confidence bounds (UCBs). The first UCB, denoted by UCBa, incorporates the neural tangent
features (i.e., the random features embedding of NTK) into the Linear UCB-based mechanism adopted
by Wang et al. (2020), which achieves the first goal of accelerating exploration. The second UCB,
denoted by UCBb, adopts an aggregated NN whose parameters are the average of the parameters of
the NNs trained by all agents using their local observations for better reward prediction (i.e., better
exploitation in the second goal). Hence, UCBb improves the quality of the NN for reward prediction
in a similar way to the most classic FL method of federated averaging (FedAvg) for supervised
learning (McMahan et al., 2017). Notably, our choice of the weight between the two UCBs, which
naturally arises during our theoretical analysis, has an interesting practical interpretation (Sec. 3.3):
More weight is given to UCBa in earlier iterations, which allows us to use the observations from the
other agents to accelerate the exploration in the early stage; more weight is assigned to UCBb only in
later iterations after every agent has collected enough local observations to train its NN for accurate
reward prediction (i.e., reliable exploitation). Of note, our novel design of the weight (Sec. 3.3) is
crucial for our theoretical analysis and may be of broader interest for future works on related topics.

This paper introduces the first federated neural contextual bandit algorithm which we call federated
neural-UCB (FN-UCB) (Sec. 3). We derive an upper bound on its total cumulative regret from
all N agents: RT = Õ(d̃

√
TN + d̃maxN

√
T )1 where d̃ is the effective dimension of the contexts

from all N agents and d̃max represents the maximum among the N individual effective dimensions

1The Õ ignores all logarithmic factors.
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of the contexts from the N agents (Sec. 2). The communication complexity (i.e., total number
of communication rounds in T iterations) of FN-UCB can be upper-bounded by CT = Õ(d̃

√
N).

Finally, we use both synthetic and real-world contextual bandit experiments to explore the interesting
insights about our FN-UCB and demonstrate its effective practical performance (Sec. 5).

2 BACKGROUND AND PROBLEM SETTING

Let [k] denote the set {1, 2, . . . , k} for a positive integer k, 0k represent a k-dimensional vector
of 0’s, and 0k×k denote an all-zero matrix with dimension k × k. Our setting involves N agents
with the same reward function h defined on a domain X ⊂ Rd. We consider centralized and
synchronous communication: The communication is coordinated by a central server and every agent
exchanges information with the central server during a communication round. In each iteration
t ∈ [T ], every agent i ∈ [N ] receives a set Xt,i ≜ {xk

t,i}k∈[K] of K context vectors and selects
one of them xt,i ∈ Xt,i to be queried to observe a noisy output yt,i ≜ h(xt,i) + ϵ where ϵ is an
R-sub-Gaussian noise. We will analyze the total cumulative regret from all N agents in T iterations:
RT ≜

∑N
i=1

∑T
t=1 rt,i where rt,i ≜ h(x∗

t,i)− h(xt,i) and x∗
t,i ≜ argmaxx∈Xt,i

h(x).

Let f(x; θ) denote the output of a fully connected NN for input x with parameters θ (of dimension
p0) and g(x; θ) denote the corresponding (column) gradient vector. We focus on NNs with ReLU
activations, and use L ≥ 2 and m to denote its depth and width (of every layer), respectively. We
follow the initialization technique from Zhang et al. (2021); Zhou et al. (2020) to initialize the NN
parameters θ0 ∼ init(·). Of note, as a common ground for collaboration, we let all N agents share
the same initial parameters θ0 when training their NNs and computing their neural tangent features:
g(x; θ0)/

√
m (i.e., the random features embedding of NTK (Zhang et al., 2021)). Also, let H denote

the (TKN)× (TKN)-dimensional NTK matrix on the set of all received TKN contexts (Zhang
et al., 2021; Zhou et al., 2020). Similarly, let Hi denote the (TK)× (TK)-dimensional NTK matrix
on the set of TK contexts received by agent i. We defer the details on the definitions of H and Hi’s,
the NN f(x; θ), and the initialization scheme θ0 ∼ init(·) to App. B due to limited space.

Next, let h ≜ [h(xk
t,i)]t∈[T ],i∈[N ],k∈[K] denote the (TKN)-dimensional column vector of reward

function values at all received contexts and B be an absolute constant s.t.
√
2h⊤H−1h ≤ B. This

is related to the commonly adopted assumption in kernelized bandits that h lies in the RKHS H
induced by the NTK (Chowdhury & Gopalan, 2017; Srinivas et al., 2010) (or, equivalently, that
the RKHS norm∥h∥H of h is upper-bounded by a constant) because

√
h⊤H−1h ≤ ∥h∥H (Zhou

et al., 2020). Following the works of Zhang et al. (2021); Zhou et al. (2020), we define the effective
dimension of H as d̃ ≜ log det(I+H/λ)

log(1+TKN/λ) with regularization parameter λ > 0. Similarly, we define the

effective dimension for agent i as d̃i ≜
log det(I+Hi/λ)
log(1+TK/λ) and also define d̃max ≜ maxi∈[N ] d̃i. Note

that the effective dimension is related to the maximum information gain γ which is a commonly
adopted notion in kernelized bandits (Zhang et al., 2021): d̃ ≤ 2γTKN/ log(1 + TKN/λ) and d̃i ≤
2γTK/ log(1 + TK/λ),∀i ∈ [N ]. Consistent with the works on neural contextual bandits (Zhang
et al., 2021; Zhou et al., 2020), our only assumption on the reward function h is its boundedness:
|h(x)| ≤ 1,∀x ∈ X . We also make the following assumptions for our theoretical analysis, all of
which are mild and easily achievable, as discussed in (Zhang et al., 2021; Zhou et al., 2020):
Assumption 1. There exists λ0 > 0 s.t. H ⪰ λ0I and Hi ⪰ λ0I,∀i ∈ [N ]. Also, all contexts satisfy
∥x∥2 = 1 and [x]j = [x]j+d/2, ∀x ∈ Xt,i,∀t ∈ [T ], i ∈ [N ].

3 FEDERATED NEURAL-UPPER CONFIDENCE BOUND (FN-UCB)
Our FN-UCB algorithm is described in Algo. 1 (agents’ part) and Algo. 2 (central server’s part).

3.1 OVERVIEW OF FN-UCB ALGORITHM

Before the beginning of the algorithm, we sample the initial parameters θ0 and share it with all
agents (Sec. 2). In each iteration t ∈ [T ], every agent i ∈ [N ] receives a set Xt,i = {xk

t,i}k∈[K] of K
contexts (line 3 of Algo. 1) and then uses a weighted combination of UCBa

t,i and UCBb
t,i to select a

context xt,i ∈ Xt,i to be queried (lines 4-7 of Algo. 1). Next, each agent i observes a noisy output
yt,i (line 8 of Algo. 1) and then updates its local information (lines 9-10 of Algo. 1). After that, every
agent checks if it has collected enough information since the last communication round (i.e., checks
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Algorithm 1 FN-UCB (Agent i)
1: inputs: λ = 1+2/T , θ0 ∼ init(·), Wsync = 0p0×p0

, Wnew,i = 0p0×p0
, Bsync = 0, Bnew,i = 0p0

,
α = 0, V local

t,i = λI , V −1
sync,NN = λ−1I , Vlast = λI , tlast = 0, θsync,NN = θ0.

2: for t = 1, 2, . . . , T do
3: Receive a set Xt,i = {xk

t,i}k∈[K] of K contexts

4: Compute V t,i = λI +Wsync +Wnew,i , θt,i = V
−1

t,i (Bsync +Bnew,i)

5: Compute UCBa
t,i(x) ≜ ⟨g(x; θ0)/

√
m, θt,i⟩+ νTKN

√
λ
∥∥g(x; θ0)/√m∥∥V −1

t,i

6: If α ̸= 0, compute UCBb
t,i(x) ≜ f(x; θsync,NN)+νTK

√
λN−1

∑N
j=1

∥∥g(x; θ0)/√m∥∥(V local
j )−1

7: Select xt,i ≜ argmaxx∈Xt,i
(1− α) UCBa

t,i(x) + α UCBb
t,i(x)

8: Query xt,i to observe yt,i
9: Update Wnew,i ←Wnew,i+g(xt,i; θ0) g(xt,i; θ0)

⊤/m, Bnew,i ← Bnew,i+yt,i g(xt,i; θ0)/
√
m

10: Update V local
t,i = V local

t−1,i + g(xt,i; θ0) g(xt,i; θ0)
⊤/m

11: if (t− tlast) log
(
det(λI +Wsync +Wnew,i)/det(Vlast)

)
> D then

12: Send a synchronisation signal to the central server to start a communication round
13: if a communication round is started then
14: Train an NN with gradient descent using all agent i’s local observations Dt,i =

{(xτ,i, yτ,i)}τ∈[t] based on initial parameters θ0, learning rate η, number J of iterations,
and Equation 1 as loss function to obtain θit

15: Compute αt,i = σ̃local
t,i,min/σ̃

local
t,i,max (Sec. 3.3)

16: send {Wnew,i, Bnew,i, θ
i
t, αt,i, (V

local
t,i )−1 } to the central server

17: receive {Wsync, Bsync, θsync,NN, α, {(V local
i )−1 }i∈[N ] } from the central server

18: Set Vlast = Wsync + λI , tlast = t , Wnew,i = 0p0×p0 , Bnew,i = 0

Algorithm 2 Central Server
1: if a synchronization signal is received from any agent then
2: Send a signal to all agents to start a communication round
3: receive {Wnew,i, Bnew,i, θ

i
t, αt,i, (V

local
t,i )−1 }i∈[N ]

4: Compute θsync,NN = N−1
∑N

i=1 θ
i
t , α = mini∈[N ] αt,i ; let (V local

i )−1 = (V local
t,i )−1,∀i ∈ [N ]

5: Update Wsync ←Wsync +
∑N

i=1 Wnew,i , Bsync ← Bsync +
∑N

i=1 Bnew,i

6: Broadcast {Wsync, Bsync, θsync,NN, α, {(V local
i )−1}i∈[N ] } to all agents

the criterion in line 11 of Algo. 1); if so, it sends a synchronization signal to the central server (line
12 of Algo. 1) who then tells all agents to start a communication round (line 2 of Algo. 2). During a
communication round, every agent i uses its current history of local observations to train an NN (line
14 of Algo. 1) and sends its updated local information to the central server (line 16 of Algo. 1); the
central server then aggregates these information from all agents (lines 4-5 of Algo. 2) and broadcasts
the aggregated information back to all agents (line 6 of Algo. 2) to start the next iteration. We refer
to those iterations between two communication rounds as an epoch.2 So, our FN-UCB algorithm
consists of a number of epochs which are separated by communication rounds.

Note that every agent i only needs to train an NN in every communication round, i.e., only after the
change in the log determinant of the covariance matrix of any agent exceeds a threshold D (line 11
of Algo. 1). This has the additional benefit of reducing the computational cost due to the training
of NNs. Interestingly, this is in a similar spirit as the adaptive batch size scheme in Gu et al. (2021)
which only retrains the NN in Neural UCB after the change in the determinant of the covariance
matrix exceeds a threshold and is shown to only slightly degrade the performance of Neural UCB.

3.2 THE TWO UPPER CONFIDENCE BOUNDS (UCBS)

Firstly, UCBa
t,i can be interpreted as the Linear UCB policy (Abbasi-Yadkori et al., 2011) using the

neural tangent features g(x; θ0)/
√
m as the input features. In iteration t, let p denote the index of the

2The first (last) epoch is between a communication round and the beginning (end) of FN-UCB algorithm.
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current epoch. Then, computing UCBa
t,i (line 5 of Algo. 1) makes use of two types of information.

The first type of information, which uses the observations from all N agents before epoch p, is
used for computing UCBa

t,i via Wsync and Bsync (line 4 of Algo. 1). Specifically, as can be seen
from line 5 of Algo. 2, Wsync and Bsync are computed by the central server by summing up the
Wnew,i’s and Bnew,i’s from all agents (i.e., by aggregating the information from all agents) where
Wnew,i and Bnew,i are computed using the local observations of agent i (line 9 of Algo. 1). The
second type of information used by UCBa

t,i (via Wnew,i and Bnew,i utilized in line 4 of Algo. 1)
exploits the newly collected local observations of agent i in epoch p. As a result, UCBa

t,i allows us to
utilize the observations from all agents via the federated setting for accelerated exploration without
requiring the agents to share their raw observations. UCBa

t,i is computed with the defined parameter
νTKN ≜ B +R[2(log(3/δ) + 1) + d̃ log(1 + TKN/λ)]1/2 where δ ∈ (0, 1).

Secondly, UCBb
t,i leverages the federated setting to improve the quality of NN for reward prediction

(to achieve better exploitation) in a similar way to FedAvg, i.e., by averaging the parameters of
the NNs trained by all agents using their local observations (McMahan et al., 2017). Specifically,
when a communication round is started, every agent i ∈ [N ] uses its local observations Dt,i ≜
{(xτ,i, yτ,i)}τ∈[t] to train an NN (line 14 of Algo. 1). It uses initial parameters θ0 (i.e., shared among
all agents (Sec. 2)) and trains the NN using gradient descent with learning rate η for J training
iterations (see Theorem 1 for the choices of η and J) to minimize the following loss function:

Lt,i(θ) ≜ 0.5
∑t

τ=1(f(xτ,i; θ)− yτ,i)
2 + 0.5mλ∥θ − θ0∥22 . (1)

The resulting NN parameters θit’s from all N agents are sent to the central server (line 16 of Algo. 1)
who averages them (line 4 of Algo. 2) and broadcasts the aggregated θsync,NN ≜ N−1

∑N
i=1 θ

i
t back

to all agents to be used in the next epoch. In addition, to compute the second term of UCBb
t,i, every

agent needs to compute the matrix V local
t,i using its local inputs (line 10 of Algo. 1) and send its inverse

to the central server (line 16 of Algo. 1) during a communication round; after that, the central server
broadcasts these matrices {(V local

i )−1}i∈[N ] received from each agent back to all agents to be used
in the second term of UCBb

t,i (line 6 of Algo. 1). Refer to Sec. 4.2 for a detailed explanation on the
validity of UCBb

t,i as a high-probability upper bound on h (up to additive error terms). UCBb
t,i is

computed with the defined parameter νTK ≜ B +R[2(log(3N/δ) + 1) + d̃max log(1 + TK/λ)]1/2.

3.3 WEIGHT BETWEEN THE TWO UCBS

Our choice of the weight α between the two UCBs, which naturally arises during our theoretical
analysis (Sec. 4), has an interesting interpretation in terms of the relative strengths of the two UCBs
and the exploration-exploitation trade-off. Specifically, σ̃local

t,i (x) ≜
√
λ
∥∥g(x; θ0)/√m∥∥(V local

t,i )−1

intuitively represents our uncertainty about the reward at x after conditioning on the local observations
of agent i up to iteration t (Kassraie & Krause, 2022).3 Next, σ̃local

t,i,min ≜ minx∈X σ̃local
t,i (x) and

σ̃local
t,i,max ≜ maxx∈X σ̃local

t,i (x) represent our smallest and largest uncertainties across the entire domain,
respectively. Then, we choose α ≜ mini∈[N ] αt,i (line 4 of Algo. 2) where αt,i ≜ σ̃local

t,i,min/σ̃
local
t,i,max

(line 15 of Algo. 1). In other words, αt,i is the ratio between the smallest and largest uncertainty
across the entire domain for agent i, and α is the smallest such ratio αt,i among all agents. Therefore,
α is expected to be generally increasing with the number of iterations/epochs: σ̃local

t,i,min is already small
after the first few iterations since the uncertainty at the queried contexts is very small; on the other
hand, σ̃local

t,i,max is expected to be very large in early iterations and become smaller in later iterations
only after a large number of contexts has been queried to sufficiently reduce the overall uncertainty in
the entire domain. This implies that we give more weight to UCBa

t,i in earlier iterations and assign
more weight to UCBb

t,i in later iterations. This, interestingly, turns out to have an intriguing practical
interpretation: Relying more on UCBa

t,i in earlier iterations is reasonable because UCBa
t,i is able

to utilize the observations from all agents to accelerate exploration in the early stage (Sec. 3.2); it
is also sensible to give more emphasis to UCBb

t,i only in later iterations because the NN trained by
every agent is only able to accurately model the reward function (for reliable exploitation) after it has
collected enough observations to train its NN. In our practical implementation (Sec. 5), we will use
the analysis here as an inspiration to design an increasing sequence of α.

3Formally, σ̃local
t,i (x) is the Gaussian process posterior standard deviation at x conditioned on the local

observations of agent i till iteration t and computed using the kernel k̃(x, x′) = g(x; θ0)
⊤g(x′; θ0)/m.
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3.4 COMMUNICATION COST

To achieve a better communication efficiency, we propose here a variant of our main FN-UCB
algorithm called FN-UCB (Less Comm.) which differs from FN-UCB (Algos. 1 and 2) in two
aspects. Firstly, the central server averages the matrices {(V local

t,i )−1}i∈[N ] received from all agents to
produce a single matrix V −1

sync,NN = N−1
∑N

i=1(V
local
t,i )−1 and hence only broadcasts the single matrix

V −1
sync,NN instead of all N received matrices {(V local

t,i )−1}i∈[N ] to all agents (see line 6 of Algo. 2).
Secondly, the UCBb

t,i of every agent i (line 6 of Algo. 1) is modified to use the matrix V −1
sync,NN:

UCBb
t,i(x) ≜ f(x; θsync,NN) + νTK

√
λ
∥∥g(x; θ0)/√m∥∥V −1

sync,NN
. To further reduce the communication

cost of both FN-UCB and FN-UCB (Less Comm.) especially when the NN is large (i.e., its total
number p0 of parameters is large), we can follow the practice of previous works (Zhang et al., 2021;
Zhou et al., 2020) to diagonalize the p0 × p0 matrices, i.e., by only keeping the diagonal elements
of the matrices. Specifically, we can diagonalize Wnew,i (line 9 of Algo. 1) and V local

t,i (line 10 of
Algo. 1), and let the central server aggregate only the diagonal elements of the corresponding matrices
to obtain Wsync and V −1

sync,NN. This reduces both the communication and computational costs.

As a result, during a communication round, the parameters that an agent sends to the central server in-
clude {Wnew,i, Bnew,i, θ

i
t, αt,i, (V

local
t,i )−1} (line 16 of Algo. 1) which constitute p0+p0+p0+1+p0 =

O(p0) parameters and are the same for FN-UCB and FN-UCB (Less Comm.). The parameters
that the central server broadcasts to the agents include {Wsync, Bsync, θsync,NN, α, {(V local

t,i )−1}i∈[N ]}
for FN-UCB (line 6 of Algo. 2) which amount to p0 + p0 + p0 + 1 +Np0 = O(Np0) parameters.
Meanwhile, FN-UCB (Less Comm.) only needs to broadcast O(p0) parameters because the N
matrices {(V local

t,i )−1}i∈[N ] are now replaced by a single matrix V −1
sync,NN. Therefore, the total number

of exchanged parameters by FN-UCB (Less Comm.) is O(p0) which is comparable to the number
of exchanged parameters in standard FL for supervised learning (e.g., FedAvg) where the parameters
(or gradients) of the NN are exchanged (McMahan et al., 2017). We will also analyze the total number
of required communication rounds by FN-UCB, as well as by FN-UCB (Less Comm.), in Sec. 4.1.

As we will discuss in Sec. 4.1, the variant FN-UCB (Less Comm.) has a looser regret upper bound
than our main FN-UCB algorithm (Algos. 1 and 2). However, in practice, FN-UCB (Less Comm.)
is recommended over FN-UCB because it achieves a very similar empirical performance as FN-UCB
(which we have verified in Sec. 5.1) and yet incurs less communication cost.

4 THEORETICAL ANALYSIS

4.1 THEORETICAL RESULTS

Regret Upper Bound. For simplicity, we analyze the regret of a simpler version of our algorithm
where we only choose the weight α using the method described in Sec. 3.3 in the first iteration after
every communication round (i.e., first iteration of every epoch) and set α = 0 in all other iterations.
Note that when communication occurs after each iteration (i.e., when D is sufficiently small), this
version coincides with our original FN-UCB described in Algos. 1 and 2 (Sec. 3). The regret upper
bound of FN-UCB is given by the following result (proof in Appendix C):
Theorem 1. Let δ ∈ (0, 1), λ = 1 + 2/T , and D = O(T/(Nd̃)). Suppose that the NN width m
grows polynomially: m ≥ poly(λ, T,K,N,L, log(1/δ), 1/λ0). For the gradient descent training
(line 14 of Algo. 1), let η = C4(mλ+mTL)−1 for some constant C4 > 0 and J = Õ

(
TL/(λC4)

)
.

Then, with probability of at least 1− δ, RT = Õ
(
d̃
√
TN + d̃maxN

√
T
)
.

Refer to Appendix C.1 for the detailed conditions on the NN width m as well as the learning rate
η and number J of iterations for the gradient descent training (line 14 of Algo. 1). Intuitively, the
effective dimension d̃ measures the actual underlying dimension of the set of all TKN contexts for
all agents (Zhang et al., 2021), and d̃max ≜ maxi∈[N ] d̃i is the maximum among the underlying
dimensions of the set of TK contexts for each of the N agents. Zhang et al. (2021) showed that if
all contexts lie in a d′-dimensional subspace of the RKHS induced by the NTK, then the effective
dimension of these contexts can be upper-bounded by the constant d′.

The first term d̃
√
TN in the regret upper bound (Theorem 1) arises due to UCBa

t,i and reflects the
benefit of the federated setting. In particular, this term matches the regret upper bound of standard
Neural UCB (Zhou et al., 2020) running for TN iterations and so, the average regret d̃

√
T/N
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across all agents decreases with a larger number N of agents. The second term d̃maxN
√
T results

from UCBb
t,i which involves two major components of our algorithm: the use of NNs for reward

prediction and the aggregation of the NN parameters. Although not reflecting the benefit of a larger
N in the regret bound, both components are important to our algorithm. Firstly, the use of NNs for
reward prediction is a crucial component in neural contextual bandits in order to exploit the strong
representation power of NNs. This is similar in spirit to the works on neural contextual bandits (Zhang
et al., 2021; Zhou et al., 2020) in which the use of NNs for reward prediction does not improve the
regret upper bound (compared with using the linear prediction given by the first term of UCBa

t,i) and
yet significantly improves the practical performance. Secondly, the aggregation of the NN parameters
is also important for the performance of our FN-UCB since it allows us to exploit the federated setting
in a similar way to FL for supervised learning which has been repeatedly shown to improve the
performance (Kairouz et al., 2019). We have also empirically verified (Sec. 5.1) that both components
(i.e., the use of NNs for reward prediction and the aggregation of NN parameters) are important to
the practical performance of our algorithm. The work of Huang et al. (2021a) has leveraged the NTK
to analyze the convergence of FedAvg for supervised learning (McMahan et al., 2017) which also
averages the NN parameters in a similar way to our algorithm. Note that their convergence results
also do not improve with a larger number N of agents but in fact become worse with a larger N .

Of note, in the single-agent setting where N = 1, we have that d̃ = d̃max (Sec. 2). Therefore, our
regret upper bound from Theorem 1 reduces to RT = Õ(d̃

√
T ), which, interestingly, matches the

regret upper bounds of standard neural bandit algorithms including Neural UCB (Zhou et al., 2020)
and Neural TS (Zhang et al., 2021). We also prove (App. C.7) that FN-UCB (Less Comm.), which
is a variant of our FN-UCB with a better communication efficiency (Sec. 3.4), enjoys a regret upper
bound of RT = Õ(d̃

√
TN + d̃maxN

√
TN), whose second term is worse than that of FN-UCB

(Theorem 1) by a factor of
√
N . In addition, we have also analyzed our general algorithm which

does not set α = 0 in any iteration (results and analysis in Appendix F), which requires an additional
assumption and only introduces an additional multiplicative constant to the regret bound.

Communication Complexity. The following result (proof in App. D) gives a theoretical guarantee
on the communication complexity of FN-UCB, including its variant FN-UCB (Less Comm.):

Theorem 2. With the same parameters as Theorem 1, if the NN width m satisfies m ≥
poly(T,K,N,L, log(1/δ)), then with probability of at least 1 − δ, the total number of commu-
nication rounds for FN-UCB satisfies CT = Õ(d̃

√
N).

The specific condition on m required by Theorem 2 corresponds to condition 1 listed in App. C.1
(see App. D for details) which is a subset of the conditions required by Theorem 1. Following the
same discussion on the effective dimension d̃ presented above, if all contexts lie in a d′-dimensional
subspace of the RKHS induced by the NTK, then d̃ can be upper-bounded by the constant d′,
consequently leading to a communication complexity of CT = Õ(

√
N).

4.2 PROOF SKETCH

We give a brief sketch of our regret analysis for Theorem 1 (detailed proof in Appendix C). To begin
with, we need to prove that both UCBa

t,i and UCBb
t,i are valid high-probability upper bounds on the

reward function h (App. C.3) given that the conditions on m, η, and J in App. C.1 are satisfied.

Since UCBa
t,i can be viewed as Linear UCB using the neural tangent features g(x; θ0)/

√
m as the

input features (Sec. 3), its validity as a high-probability upper bound on h can be proven following
similar steps as that of standard linear and kernelized bandits (Chowdhury & Gopalan, 2017) (see
Lemma 3 in App. C.3). Next, to prove that UCBb

t,i is also a high-probability upper bound on h (up to
additive error terms), let θlocal

t,i ≜ (V local
t,i )−1(

∑t
τ=1 yτ,ig(xτ,i; θ0)/

√
m) which is defined in the same

way as θt,i (line 4 of Algo. 1) except that θlocal
t,i only uses the local observations of agent i. Firstly,

we show that f(x; θsync,NN) (i.e., the NN prediction using the aggregated parameters) is close to
N−1

∑N
i=1⟨g(x; θ0)/

√
m, θlocal

t,i ⟩ which is the linear prediction using θlocal
t,i averaged over all agents.

This is achieved by showing that the linear approximation of the NN at θ0 is close to both terms.
Secondly, we show that the absolute difference between the linear prediction ⟨g(x; θ0)/

√
m, θlocal

t,i ⟩
of agent i and the reward function h(x) can be upper-bounded by νTK

√
λ||g(x; θ0)/

√
m||(V local

t,i )−1 .
This can be done following similar steps as the proof for UCBa

t,i mentioned above. Thirdly, using the
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averaged linear prediction N−1
∑N

i=1⟨g(x; θ0)/
√
m, θlocal

t,i ⟩ as an intermediate term, the difference
between f(x; θsync,NN) and h(x) can be upper-bounded. This implies the validity of UCBb

t,i as a
high-probability upper bound on h (up to additive error terms which are small given the conditions
on m, η, and J presented in App. C.1), as formalized by Lemma 4 in App. C.3.

Next, following similar footsteps as the analysis in Wang et al. (2020), we separate all epochs into
“good” epochs (intuitively, those epochs during which the amount of newly collected information from
all agents is not too large) and “bad” epochs (details in App. C.2), and then separately upper-bound
the regrets incurred in these two types of epochs. For good epochs (App. C.4), we are able to derive a
tight upper bound on the regret rt,i = h(x∗

t,i)− h(xt,i) in each iteration t by making use of the fact
that the change of information in a good epoch is bounded, and consequently obtain a tight upper
bound on the total regrets in all good epochs. For bad epochs (App. C.5), we make use of the result
from App. C.2 which guarantees that the total number of bad epochs can be upper-bounded. As a
result, with an appropriate choice of D = O(T/(Nd̃)), the growth rate of the total regret incurred in
bad epochs is smaller than that in good epochs. Lastly, the final regret upper bound follows from
adding up the total regrets from good and bad epochs (App. C.6).

5 EXPERIMENTS

All figures in this section plot the average cumulative regret across all N agents up to an iteration,
which allows us to inspect the benefit that the federated setting brings to an agent (on average). In all
presented results, unless specified otherwise (by specifying a value of D), a communication round
happens after each iteration. All curves stand for the mean and standard error from 3 independent
runs. Some experimental details and results are deferred to App. E due to space limitation.

5.1 SYNTHETIC EXPERIMENTS

We firstly use synthetic experiments to illustrate some interesting insights about our algorithm.
Similar to that of Zhou et al. (2020), we adopt the synthetic functions of h(x) = cos(3⟨a, x⟩) and
h(x) = 10(⟨a, x⟩)2 which are referred to as the cosine and square functions, respectively.
We add a Gaussian observation noise with a standard deviation of 0.01. The parameter a is a 10-
dimensional vector randomly sampled from the unit hypersphere. In each iteration, every agent
receives K = 4 contexts (arms) which are randomly sampled from the unit hypersphere. For fair
comparisons, for all methods (including our FN-UCB, Neural UCB, and Neural TS), we use the same
set of parameters of λ = νTKN = νTK = 0.1 and use an NN with 1 hidden layer and a width of
m = 20. As suggested by our theoretical analysis (Sec. 3.3), we select an increasing sequence of
α which is linearly increasing (to 1) in the first 700 iterations, and let α = 1 afterwards. To begin
with, we compare our main FN-UCB algorithm and its variant FN-UCB (Less Comm.) (Sec. 3.4).
The results (Figs. 3a and 3b in App. E) show that their empirical performances are very similar.
So, for practical deployment, we recommend the use of FN-UCB (Less Comm.) as it is more
communication-efficient and achieves a similar performance. Accordingly, we will use the variant
FN-UCB (Less Comm.) in all our subsequent experiments and refer to it as FN-UCB for simplicity.

Fig. 1 presents the results. Figs. 1a and 1b show that our FN-UCB with N = 1 agent performs
comparably with Neural UCB and Neural TS, and that the federation of a larger number N of agents
consistently improves the performance of our FN-UCB. Note that the federation of N = 2 agents can
already provide significant improvements over non-federated algorithms. Fig. 1c gives an illustration
of the importance of different components in our FN-UCB. The red curve is obtained by removing
UCBb

t,i (i.e., letting α = 0) and the green curve corresponds to removing UCBa
t,i. The red curve

shows that relying solely on UCBa
t,i leads to significantly larger regrets in the long run due to its

inability to utilize NNs to model the reward functions. On the other hand, the green curve incurs
larger regrets than the red curve initially; however, after more observations are collected (i.e., after
the NNs are trained with enough data to accurately model the reward function), it quickly learns to
achieve much smaller regrets. These results provide empirical justifications for our discussion on the
weight between the two UCBs (Sec. 3.3): It is reasonable to use an increasing sequence of α such
that more weight is given to UCBa

t,i initially and then to UCBb
t,i later. The yellow curve is obtained

by removing the step of aggregating (i.e., averaging) the NN parameters (in line 4 of Algo. 2), i.e.,
when calculating UCBb

t,i (line 6 of Algo. 1), we use θit to replace θsync,NN. The results show that
the aggregation of the NN parameters significantly improves the performance of FN-UCB (i.e., the
blue curve has much smaller regrets than the yellow one) and is hence an indispensable part of our
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Figure 1: Cumulative regret with varying number of agents for the (a) cosine function and
(b) square function. (c) Illustration of the importance of different components of our FN-UCB
algorithm (cosine function). (d) Performances with different values of D (cosine function). The
average number of rounds of communications are 348.0, 380.0, 456.7 for D = 5, 4, 2.5, respectively.
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Figure 2: Results (m = 20) for (a) shuttle and (b) magic. (c) Results for shuttle with
diagonal approximation (m = 50). (d) Results for shuttle with different values of D. The average
number of communication rounds are 3850.7, 4442.7, 4906.3 for D = 0.05, 0.03, 0.01, respectively.

FN-UCB. Lastly, Fig. 1d shows that more frequent communications (i.e., smaller values of D which
make it easier to initiate a communication round; see line 11 of Algo. 1) lead to smaller regrets.

5.2 REAL-WORLD EXPERIMENTS

We adopt the shuttle and magic telescope datasets from the UCI machine learning repos-
itory (Dua & Graff, 2017) and construct the experiments following a widely used protocol in
previous works (Li et al., 2010a; Zhang et al., 2021; Zhou et al., 2020). A K-class classification
problem can be converted into a K-armed contextual bandit problem. In each iteration, an input
x is randomly drawn from the dataset and is then used to construct K context feature vectors
x1 = [x;0d; . . . ;0d],x2 = [0d;x; . . . ;0d], . . . ,xK = [0d; . . . ;0d;x] which correspond to the K
classes. The reward is 1 if the arm with the correct class is pulled, and 0 otherwise. For fair compar-
isons, we use the same set of parameters of λ = 10, νTKN = 0.1, and νTK = 0.01 for all methods.
Figs. 2a and 2b present the results for the two datasets (1 hidden layer, m = 20) and show that our
FN-UCB with N = 2 agents consistently outperforms standard Neural UCB and Neural TS, and
its performance also improves with the federation of more agents. Fig. 2c shows the results for
shuttle when diagonal approximation (Sec. 3.4) is applied to the NNs (1 hidden layer, m = 50);
the corresponding results are consistent with those in Fig. 2a.4 Moreover, the regrets in Fig. 2c are in
general smaller than those in Fig. 2a. This may suggest that in practice, a wider NN with diagonal
approximation may be preferable to a narrower NN without diagonal approximation since it not only
improves the performance but also reduces the computational and communication costs (Sec. 3.4).
Fig. 2d plots the regrets of shuttle (with diagonal approximation) for different values of D and
shows that more frequent communications lead to better performances and are hence consistent
with that in Fig. 1d. For completeness, we also compare their performance with that of linear and
kernelized contextual bandit algorithms (for the experiments in both Secs. 5.1 and 5.2), and the results
(Fig. 4, App. E) show that they are outperformed by neural contextual bandit algorithms.

6 CONCLUSION

This paper describes the first federated neural contextual bandit algorithm called FN-UCB. We use a
weighted combination of two UCBs and the choice of this weight required by our theoretical analysis
has an interesting interpretation emphasizing accelerated exploration initially and accurate prediction
of the aggregated NN later. We derive upper bounds on the regret and communication complexity of
FN-UCB, and verify its effectiveness using empirical experiments. Our algorithm is not equipped
with privacy guarantees, which may be a potential limitation and will be tackled in future work.

4Since diagonalization increases the scale of the first term in UCBa
t,i, we use a heuristic to rescale the values

of this term for all contexts such that the max and min values (among all contexts) are 0 and 1 after rescaling.
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REPRODUCIBILITY STATEMENT

We have included the necessary details to ensure the reproducibility of our theoretical and empirical
results. For our theoretical results, we have stated all our assumptions in Sec. 2, added a proof sketch
in Sec. 4.2, and included the complete proofs in App. C and App. D. Our detailed experimental
settings have been described in Sec. 5.1, Sec. 5.2, and App. E. Our code has been submitted as
supplementary material.
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A RELATED WORKS

Federated Bandits. Federated learning (FL) has received enormous attention in recent years
(Kairouz et al., 2019; Li et al., 2021; 2014; McMahan et al., 2017). A number of recent works
have extended the classic K-armed bandits (i.e., the arms are not associated with feature vectors)
to the federated setting. Li & Song (2022) and Li et al. (2020) focused on incorporating privacy
guarantees into federated K-armed bandits in both centralized and decentralized settings. Shi & Shen
(2021) proposed a setting where the goal is to minimize the regret of a global bandit whose reward
of an arm is the average of the rewards of the corresponding arm from all agents, which was later
extended by adding personalization such that every agent aims to maximize a weighted combination
between the global and local rewards (Shi et al., 2021). Subsequent works on federated K-armed
bandits have focused on other important aspects such as decentralized communication via the gossip
algorithm (Zhu et al., 2021b), the security aspect via cryptographic techniques (Ciucanu et al., 2022),
uncoordinated exploration (Yan et al., 2022), and robustness against Byzantine attacks (Demirel
et al., 2022). Regarding federated linear contextual bandits, Wang et al. (2020) proposed a distributed
linear contextual bandit algorithm which allows every agent to use the observations from the other
agents by only exchanging the sufficient statistics to calculate the Linear UCB policy. Subsequently,
Dubey & Pentland (2020) extended the method from Wang et al. (2020) to consider differential
privacy and decentralized communication, Huang et al. (2021b) considered a setting where every
agent is associated with a unique context vector, Li & Wang (2022a) focused on asynchronous
communication, and Jadbabaie et al. (2022) considered the robustness against Byzantine attacks.
Federated kernelized/GP bandits (also named federated Bayesian optimization) have been explored
by Dai et al. (2020; 2021), which focused on the practical problem of hyperparameter tuning in
the federated setting. The recent works of Li et al. (2022); Li & Wang (2022b) have, respectively,
focused on deriving communication-efficient algorithms for federated kernelized and generalized
linear bandits. In addition to federated bandits, other similar sequential decision-making problems
have also been extended to the federated setting, such as federated reinforcement learning (Fan et al.,
2021; Zhuo et al., 2019) and federated hyperparameter tuning (Holly et al., 2021; Khodak et al., 2021;
Zhou et al., 2021).

Neural Bandits. Since the pioneering works of Zhou et al. (2020) and Zhang et al. (2021) which,
respectively, introduced Neural UCB and Neural TS, a number of recent works have focused on
different aspects of neural contextual bandits. Xu et al. (2020) reduced the computational cost of
Neural UCB by using an NN as a feature extractor and applying Linear UCB only to the last layer
of the learned NN, Kassraie & Krause (2022) analyzed the maximum information gain of the NTK
and hence derived no-regret algorithms, Gu et al. (2021) focused on the batch setting in which the
policy is only updated at a small number of time steps, Nabati et al. (2021) aimed to reduce the
memory requirement of Neural UCB, Lisicki et al. (2021) performed an empirical investigation of
neural bandit algorithms to verify their practical effectiveness, Ban et al. (2022) adopted a separate
NN for exploration in neural contextual bandits, Ban & He (2021) applied the convolutional NTK,
Jia et al. (2021) used perturbed rewards to train the NN to remove the need for explicit exploration,
Nguyen-Tang et al. (2022) incorporated offline policy learning into neural contextual bandits, Zhu
et al. (2021a) studied pure exploration in kernel and neural bandits, Kassraie et al. (2022) applied
graph NNs in neural bandits to handle graph-structured data, Salgia et al. (2022) extended neural
bandits beyond the ReLU activation to consider smoother activation functions, and Dai et al. (2022)
introduced a scalable batch Neural TS algorithm through sample-then-optimize optimization.

B MORE BACKGROUND

In this section, we give more details on some of the technical background mentioned in Sec. 2. The
details in this section all follow the works of Zhang et al. (2021); Zhou et al. (2020), and we present
them here for completeness.
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Definition of the NN f(x; θ). Let W1 ∈ Rm×d, Wl ∈ Rm×m,∀l = 2, . . . , L − 1, and WL ∈
Rm×1, then the NN f(x; θ) is defined as

f1 = W1x,

fl = WlReLU(fl−1),∀l = 2 . . . , L,

f(x; θ) =
√
mfL,

in which ReLU(z) = max(z, 0) denotes the rectified linear unit (ReLU) activation function and
is applied to each element of fl−1. With this definition of the NN, θ denotes the collection of all
parameters of the NN: θ = (vec(W1), . . . , vec(WL)) ∈ Rp0 .

Details of the Initialization Scheme θ0 ∼ init(·). To obtain the initial parameters θ0, for each

l = 1, . . . , L− 1, let Wl =

(
W 0
0 W

)
where each entry of W is independently sampled from

N (0, 4/m), and let WL = (w⊤,−w⊤) where each entry of w is independently sampled from
N (0, 2/m). This initialization scheme is the same as that used by the works of Zhang et al. (2021);
Zhou et al. (2020).

Definitions of the NTK Matrices H and Hi’s. To simplify the exposition here, we use
{xj}j=1,...,TKN to denote the set of all contexts from all iterations, all arms and all agents:
{xk

t,i}t∈[T ],k∈[K],i∈[N ]. We can then define

H̃
(1)
i,j = Σ

(1)
i,j = ⟨xi, xj⟩,A(l)

i,j =

(
Σ

(l)
i,i Σ

(l)
i,j

Σ
(l)
i,j Σ

(l)
j,j

)
,

Σ
(l+1)
i,j = 2E

(u,v)∼N (0,A
(l)
i,j)

max(u, 0)max(v, 0),

H̃
(l+1)
i,j = 2H̃

(l)
i,jE(u,v)∼N (0,A

(l)
i,j)

1(u > 0)1(v > 0) +Σ
(l+1)
i,j .

With these definitions, the NTK matrix is defined as H = (H̃(L) +Σ(L))/2. Similarly, Hi can be
obtained in the same way by only using all contexts from agent i in the definitions above, i.e., now
we use {xj}j=1,...,TK to denote {xk

t,i}t∈[T ],k∈[K] and plug these TK contexts into the definitions
above to obtain Hi.

C PROOF OF REGRET UPPER BOUND (THEOREM 1)

We use p to index different epochs and denote by P the total number of epochs. We use tp to denote
the first iteration of epoch p, and use Ep to represent the length (i.e., number of iterations) of epoch p.
Throughout our theoretical analysis, we will denote different error probabilities as δ1, . . . , δ6, which
we will combine via a union bound at the end of the proof to ensure that our final regret upper bound
holds with probability of at least 1− δ.

C.1 CONDITIONS ON THE WIDTH m OF THE NEURAL NETWORKS

We list here the detailed conditions on the width m of the NN that are needed by our theoretical
analysis. These include two types of conditions, some of them (conditions 1-4) are required for our
regret upper bound to hold (i.e., they are used during the proof to derive the regret upper bound),
whereas the others (conditions 5-6) are used after the final regret upper bound is derived to ensure
that the final regret upper bound is small (see App. C.6).

When presenting our detailed proofs starting from the next subsection, we will refer to each of these
conditions whenever they are used by the corresponding lemmas. Different lemmas may use different
leading constants in their required condition (i.e., lower bound) on m, but here we use the same
constant C > 0 for all lower bounds for simplicity, which can be considered as simply taking the
maximum among all these different leading constants for different lemmas.

1. m ≥ CT 6K6N6L6 log(TKNL/δ),
2. m ≥ CT 4K4N4L6 log(T 2K2N2L/δ)/λ4

0,
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3. m ≥ C
√
λL−3/2[log(TKNL2/δ)]3/2,

4. m(logm)−3 ≥ CTL12λ−1 + CT 7λ−8L18(λ+ LT )6 + CL21T 7λ−7(1 +
√
T/λ)6.

5. m(logm)−3 ≥ CT 10N6λ−4L18,

6. m(logm)−3 ≥ CT 16N6L24λ−10(1 +
√
T/λ)6.

Some of these conditions above can be combined, but we leave them as separate conditions to make
it easier to refer to the corresponding place in the proof where a particular condition is needed.

Furthermore, to achieve a small upper bound on the cumulative regret, we also need to place some
conditions on the learning rate η and number of iterations J for the gradient descent training (line 14
of Algo. 1). Specifically, we need to choose the learning rate as

η = C4(mλ+mTL)−1, (2)

in which C4 > 0 is an absolute constant such that C4 ≤ 1 + TL, and choose

J =
1

C4

(
1 +

TL

λ

)
log

(
1

3C2N

√
λ

T 3L

)
= Õ

(
TL/(λC4)

)
. (3)

C.2 DEFINITION OF GOOD AND BAD EPOCHS

Denote the matrix Vlast (see line 18 of Algo. 1) after epoch p as Vp. As a result, the matrix VP is
calculated using all selected inputs from all agents: VP =

∑T
t=1

∑N
i=1 g(xt,i; θ0)g(xt,i; θ0)

⊤/m+

λI . Define V0 ≜ λI . Imagine that we have a hypothetical agent which chooses all T × N
queries {xt,i}t∈[T ],i∈[N ] sequentially in a round-robin fashion (i.e., the hypothetical agent chooses
x1,1, x1,2, . . . , x2,1, x2,2, . . . , xT,N ), and denote the corresponding hypothetical covariance matrix
as Ṽt,i =

∑t−1
τ=1

∑N
j=1 g(xτ,j ; θ0)g(xτ,j ; θ0)

⊤/m +
∑i

j=1 g(xt,j ; θ0)g(xt,j ; θ0)
⊤/m + λI . We

represent the indices of this hypothetical agent by t′ ∈ [TN ] to distinguish it from our original
multi-agent setting. Define JTN ≜ [g(xt′ ; θ0)]t′∈[TN ] which is a p0 × (TN) matrix, and define
KTN ≜ J⊤

TNJTN/m, which is a (TN)× (TN) matrix. According to thes definitions, we have that
Lemma 1 (Lemma B.7 of Zhang et al. (2021)). Let δ1 ∈ (0, 1). If m ≥
CT 6N6K6L6 log(TNKL/δ1), we have with probability of at least 1− δ1 that

log det(I + λ−1Kt′) ≤ log det(I + λ−1H) + 1,∀t′ ∈ [TN ].

The condition on m given in Lemma 1 corresponds to condition 1 listed in App. C.1, except that δ1 is
used here instead of δ in App. C.1. Lemma 1 allows us to derive the following equation, which we
will use (at the end of this section) to justify that the total number of "bad" epochs is not too large.

P−1∑
p=0

log
detVp+1

detVp
= log

detVP

detV0

(a)
= log

det
(
JTNJ⊤

TN/m+ λI
)

detV0

= log
det
(
λ
(
λ−1JTNJ⊤

TN/m+ I
))

detV0

(b)
= log

λp0det
(
λ−1JTNJ⊤

TN/m+ I
)

λp0

= log det
(
λ−1JTNJ⊤

TN/m+ I
)

(c)
= log det

(
λ−1J⊤

TNJTN/m+ I
)

= log det
(
λ−1KTN + I

)
(d)

≤ log det
(
λ−1H+ I

)
+ 1

(e)
= d̃ log(1 + TKN/λ) + 1 ≜ R′.

(4)
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Step (a) is because VP = JTNJ⊤
TN/m + λI according to our definition of JTN above. Step

(b) follows from our definition of V0 = λI above, as well as some standard properties of matrix
determinant. Step (c) follows because: det(AA⊤ + I) = det(A⊤A + I). Step (d) has made use
of Lemma 1 above, which suggests that equation 4 holds with probability of at least 1 − δ1. Step
(e) follows from the definition of d̃ ≜ log det(I+H/λ)

log(1+TKN/λ) (Sec. 2). In the last step, we have defined

R′ ≜ d̃ log(1+TKN/λ)+1. We further define R ≜ ⌈R′⌉, in which ⌈·⌉ denotes the ceiling operator.

Now we define all epochs p’s which satisfy the following condition as "good epochs":

1 ≤ detVp

detVp−1
≤ e, (5)

and define all other epochs as "bad epochs". The first inequality trivially holds for all epochs
according to the way in which the matrices are constructed. It is easy to verify that the second
inequality holds for at least R epochs (with probability of at least 1 − δ1). This is because if the
second inequality is violated for more than R epochs (i.e., if log detVp

detVp−1
> 1 for more than R epochs),

then
∑P−1

p=0 log
detVp+1

detVp
> R, which violates equation 4. This suggests that there are no more than R

bad epochs (with probability of at least 1− δ1). From here onwards, we will denote the set of good
epochs by Egood and the set of bad epochs by Ebad.

C.3 VALIDITY OF THE UPPER CONFIDENCE BOUND

In this section, we prove that the upper confidence bound used in our algorithm, (1−αt)UCBa
t,i(x)+

αtUCBb
t,i(x) (used in line 7 of Algo. 1), is a valid high-probability upper bound on the reward

function h. We will achieve this by separately proving that UCBa
t,i and UCBb

t,i are valid high-
probability upper bounds on h in the next two sections. Note that for both UCBs, unlike Neural
UCB (Zhou et al., 2020) and Neural TS (Zhang et al., 2021) which use θt (the parameters of trained
NNs) to calculate the exploration term (the second terms of UCBa

t,i and UCBb
t,i), we instead use θ0.

This is consistent with Kassraie & Krause (2022) who have shown that the use of θ0 gives accurate
uncertainty estimation.

C.3.1 VALIDITY OF UCBa
t,i AS A HIGH-PROBABILITY UPPER BOUND ON h:

To begin with, we will need the following lemma from Zhang et al. (2021).
Lemma 2 (Lemma B.3 of Zhang et al. (2021)). Let δ2 ∈ (0, 1). There exists a constant C > 0 such
that if

m ≥ CT 4K4N4L6 log(T 2K2N2L/δ2)/λ
4
0,

then with probability of ≥ 1− δ2 over random initializations of θ0, there exists a θ∗ ∈ Rp0 such that

h(x) = ⟨g(x; θ0), θ∗ − θ0⟩,
√
m∥θ∗ − θ0∥2 ≤

√
2h⊤H−1h ≤ B, ∀x ∈ Xt,i, t ∈ [T ], i ∈ [N ].

(6)

The condition on m required by Lemma 2 corresponds to condition 2 listed in App. C.1, except that
δ2 is used here instead of δ as in App. C.1. The following lemma formally guarantees the validity of
UCBa

t,i as a high-probability upper-bound on h.

Lemma 3. Let δ3 ∈ (0, 1) and νTKN = B + R

√
2(log(1/δ3) + 1) + d̃ log(1 + TKN/λ). We

have with probability of at least 1− δ1 − δ2 − δ3 for all t ∈ [T ], i ∈ [N ], that

|h(x)− ⟨g(x; θ0)/
√
m, θt,i⟩| ≤ νTKN

√
λ
∥∥g(x; θ0)/√m∥∥V −1

t,i
,∀x ∈ Xt,i

Proof. Lemma 3 can be proved by following similar steps as the proof of Lemma 4.3 in the work
of Zhang et al. (2021). Specifically, the proof of Lemma 3 requires Lemmas B.3, B.6 and B.7
of Zhang et al. (2021) (after being adapted for our setting). The adapted versions of Lemmas B.3 and
B.7 of Zhang et al. (2021) have been presented in our Lemma 2 and Lemma 1, respectively. Of note,
Lemma 1 and Lemma 2 require some conditions on the width m of the NN, which have been listed
as conditions 1 and 2 in Appendix C.1. Lastly, Lemma B.6 of Zhang et al. (2021), which makes use
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of Theorem 1 of Chowdhury & Gopalan (2017), can be directly applied in our setting and introduces
an error probability of δ3 (which appears in the expression of νTKN ). As a result, Lemma 3 holds
with probability of at least 1− δ1 − δ2 − δ3, in which the error probabilities come from Lemma 1
(δ1), Lemma 2 (δ2) and the application of Lemma B.6 of Zhang et al. (2021) (δ3).

C.3.2 VALIDITY OF UCBb
t,i AS A HIGH-PROBABILITY UPPER BOUND ON h:

Note that UCBb
t,i is updated only in every communication round. We denote the set of iterations after

which UCBb
t,i is updated (i.e., the last iteration in every epoch) as T−1 ≜ {tp − 1}p=2,...,P−1, which

immediately implies that T−1 ⊂ [T ] and hence |T−1| ≤ T .

Lemma 4. Let δ4, δ5 ∈ (0, 1), and νTK = B + R

√
2(log(N/δ4) + 1) + d̃max log(1 + TK/λ)

Suppose the width m of the NN satisfies m ≥ C
√
λL−3/2[log(TKNL2/δ5)]

3/2 for some constant
C > 0, as well as condition 4 in Appendix C.1. Suppose the learning rate η and number of iterations
J of the gradient descent training satisfy the conditions in equation 2 and equation 3 (App. C.1),
respectively. We have with probability of at least 1− δ4 − δ5 for all t ∈ T−1, i ∈ [N ], that

|h(x)− f(x; θsync,NN)| ≤ νTK

√
λ
1

N

N∑
i=1

∥∥g(x; θ0)/√m∥∥(V local
i )−1 + εlinear(m,T ),∀x ∈ Xt,i.

Proof. Note that the condition on m listed in the lemma, m ≥ C
√
λL−3/2[log(TKNL2/δ5)]

3/2,
corresponds to condition 3 listed in App. C.1 except that δ5 is used here instead of δ. Therefore,
the validity of Lemma 4 requires conditions 3 and 4 on m (App. C.1) to be satisfied. For ease of
exposition, we separate our proof into three steps.

Step 1: NN Output f(x; θsync,NN) Is Close to (Averaged) Linear Prediction

Based on Lemma C.2 of Zhang et al. (2021), if the conditions on m listed in Lemma 4 is satisfied,
then for any θ̃ such that

∥∥∥θ̃ − θ0

∥∥∥
2
≤ 2
√

t/(mλ), there exists a constant C1 > 0 such that we have
with probability of at least 1− δ5 over random initializations θ0 that

|f(x; θ̃)− ⟨g(x; θ0), θ̃ − θ0⟩| ≤ C1t
2/3m−1/6λ−2/3L3

√
logm

≤ C1T
2/3m−1/6λ−2/3L3

√
logm

≜ εlinear,1(m,T ),

(7)

which holds ∀x ∈ Xt,i, t ∈ [T ], i ∈ [N ].

Also note that according to Lemma C.1 of Zhang et al. (2021), if conditions 3 and 4 on m listed in
App. C.1, as well as the condition on η equation 2, are satisfied, then we have with probability of
at least 1− δ5 over random initializations θ0 that

∥∥θit − θ0
∥∥
2
≤ 2
√
t/mλ, ∀i ∈ [N ]. An immediate

implication is that the aggregated NN parameters θsync,NN = 1
N

∑N
i=1 θ

i
t also satisfies:

∥∥θsync,NN − θ0
∥∥
2
=

∥∥∥∥∥∥ 1

N

N∑
i=1

θit − θ0

∥∥∥∥∥∥
2

≤ 1

N

N∑
i=1

∥∥∥θit − θ0

∥∥∥
2
≤ 2
√
t/mλ.

This implies that equation 7 holds for θsync,NN with probability of at least 1− 2δ5:

|f(x; θsync,NN)− ⟨g(x; θ0), θsync,NN − θ0⟩| ≤ εlinear,1(m,T ). (8)

Next, note that the θit is obtained by training only using agent i’s local observations (line 14 of
Algo. 1). Define θlocal

t,i = (V local
t,i )−1(

∑t
τ=1 yτ,ig(xτ,i; θ0)/

√
m). Note that θlocal

t,i is calculated in
the same way as θt,i (line 4 of Algo. 1), except that its calculation only involves agent i’s local
observations. Next, making use of Lemmas C.1 and C.4 of Zhang et al. (2021), we can follow similar
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steps as equation C.3 of Zhang et al. (2021) (in Appendix C.2 of Zhang et al. (2021)) to show that
there exists constants C2 > 0 and C3 > 0 such that we have ∀x ∈ Xt,i, t ∈ [T ], i ∈ [N ] that

|⟨g(x; θ0), θit − θ0⟩ − ⟨g(x; θ0)/
√
m, θlocal

t,i ⟩|

≤ C2(1− ηmλ)J
√

tL/λ+ C3m
−1/6

√
logmL4t5/3λ−5/3(1 +

√
t/λ)

≤ C2(1− ηmλ)J
√

TL/λ+ C3m
−1/6

√
logmL4T 5/3λ−5/3(1 +

√
T/λ)

≜ εη,J + εlinear,2(m,T ).

(9)

We refer to ⟨g(x; θ0)/
√
m, θlocal

t,i ⟩ as the linear prediction because it is the prediction of the linear
model with the neural tangent features g(x; θ0)/

√
m as the input features, conditioned on the local

observations of agent i. Note that similar to equation 8 which also relies on Lemma C.1 of Zhang et al.
(2021), equation 9 also requires conditions 3 and 4 on m, as well as the condition on η, in App. C.1
to be satisfied. equation 9 holds with probability of at least 1 − 2δ5, where the error probabilities
come from the use of Lemmas C.1 and C.4 of Zhang et al. (2021).

Next, we can bound the difference between f(x; θsync,NN) (i.e., the prediction of the NN with the
aggregated parameters) and the averaged linear predictions of all agents calculated using their local
observations:

|f(x; θsync,NN)−
1

N

N∑
i=1

⟨g(x; θ0)/
√
m, θlocal

t,i ⟩| ≤ |f(x; θsync,NN)−
1

N

N∑
i=1

⟨g(x; θ0), θit − θ0⟩|

+ | 1
N

N∑
i=1

⟨g(x; θ0), θit − θ0⟩ −
1

N

N∑
i=1

⟨g(x; θ0)/
√
m, θlocal

t,i ⟩|

≤ |f(x; θsync,NN)− ⟨g(x; θ0), θsync,NN − θ0⟩|

+
1

N

N∑
i=1

|⟨g(x; θ0), θit − θ0⟩ − ⟨g(x; θ0)/
√
m, θlocal

t,i ⟩|

≤ εlinear,1(m,T ) +
1

N

N∑
i=1

(εη,J + εlinear,2(m,T ))

≤ εlinear,1(m,T ) + εη,J + εlinear,2(m,T )

≜ εlinear(m,T ).

(10)

In the second inequality, we plugged in the definition of θsync,NN = 1
N

∑N
i=1 θ

i
t. In the third inequality,

we have made use of equation 8 and equation 9; equation 10 holds with probability of at least 1− 4δ5,
where the error probabilities come from equation 8 (2δ5) and equation 9 (2δ5), respectively. Now we
replace δ5 by δ5/4, which ensures that equation 10 holds with probability of at least 1− δ5. This will
only introduce a factor of 4 within the log of condition 3 on m (App. C.1), which is ignored since it
can be absorbed by the constant C.

Step 2: Linear Prediction Is Close to the Reward Function h(x)

In the proof in this section, we will also need a "local" variant of the confidence bound of Lemma 3,
i.e., the confidence bound of Lemma 3 calculated only using the local observations of an agent i:

Lemma 5 (Zhang et al. (2021)). We have with probability of at least 1−δ4 for all t ∈ T−1 ⊂ [T ], i ∈
[N ], that

|h(x)− ⟨g(x; θ0)/
√
m, θlocal

t,i ⟩| ≤ νTK

√
λ
∥∥g(x; θ0)/√m∥∥(V local

t,i )−1 ,∀x ∈ Xt,i.

Proof. Similar to the proof of Lemma 3 (App. C.3.1), the proof of Lemma 5 also requires of Lemmas
B.3, B.6 and B.7 from Zhang et al. (2021), which, in this case, can be directly applied to our setting
(except that we need an additional union bound over all N agents). The implication of the additional
union bound on the error probabilities is taken care of by the additional term of N within the log in
the expression of νTK (Lemma 4), and in conditions 1 and 2 on m (see App. C.1, and also Lemmas 2
and 1). The required lower bounds on m by the local variants of Lemmas B.3 and B.7 (required in
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the proof here) are smaller than those given in Lemmas 2 and 1 and hence do not need to appear in
the conditions in Appendix C.1. By letting the sum of the three error probabilities (resulting from the
applications of Lemmas B.3, B.6 and B.7 of Zhang et al. (2021)) be δ4, we can ensure that Lemma 5
holds with probability of at least 1− δ4. For simplicity, we let the error probability for Lemma B.6 be
δ4, which leads to the cleaner expression of νTK in Lemma 4. This means that the error probabilities
for Lemmas B.3 and B.7 are very small, which can be accounted for by simply increasing the value
of the absolute constant C in conditions 1 and 2 on m (App. C.1) and hence does not affect our main
theoretical analysis.

Step 3: Combining Results from Step 1 and Step 2

Next, we are ready to prove the validity of UCBb
t,i by using the averaged linear prediction

1
N

∑N
i=1⟨g(x; θ0)/

√
m, θlocal

t,i ⟩ as an intermediate term:

|f(x;θsync,NN)− h(x)|

= |f(x; θsync,NN)−
1

N

N∑
i=1

⟨g(x; θ0)/
√
m, θlocal

t,i ⟩+
1

N

N∑
i=1

⟨g(x; θ0)/
√
m, θlocal

t,i ⟩ − h(x)|

≤ 1

N

N∑
i=1

|⟨g(x; θ0)/
√
m, θlocal

t,i ⟩ − h(x)|+ εlinear(m,T )

≤ 1

N

N∑
i=1

νTK

√
λ
∥∥g(x; θ0)/√m∥∥(V local

t,i )−1 + εlinear(m,T )

=
1

N

N∑
i=1

νTK

√
λ
∥∥g(x; θ0)/√m∥∥(V local

i )−1 + εlinear(m,T )

(11)

The second inequality has made use of equation 10, and the third inequality follows from Lemma 5.
In the last inequality, we have made the substitution of (V local

i )−1 = (V local
t,i )−1. This is because in

the proof of Lemma 4 here, we only consider the iterations of t ∈ T−1 ≜ {tp−1}p=2,...,P−1, i.e., the
last iteration of every epoch. As a result, this ensures that (V local

i )−1 = (V local
t,i )−1 because every time

the central server obtains (V local
i )−1 through (V local

i )−1 = (V local
t,i )−1,∀i ∈ [N ] (line 4 of Algo. 2),

we have that the current iteration t is the last iteration of the previous epoch. As a results, equation 11
holds with probability of at least 1− δ4 − δ5, in which the error probabilities come from equation 10
(δ5) and Lemma 5 (δ4). In other words, Lemma 4 (i.e., the validity of UCBb

t,i) holds with probability
of at least 1− δ4 − δ5.

C.4 REGRET UPPER BOUND FOR GOOD EPOCHS

In this section, we derive an upper bound on the total regrets incurred in all good epochs Egood

(defined in App. C.2).

C.4.1 AUXILIARY INEQUALITY

We firstly derive an auxiliary result which will be used in the proofs later.
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For agent i and iteration t in a good epoch p ∈ Egood, we have that
√
λ
∥∥g(x; θ0)/√m∥∥V −1

t,i
=

√
λg(x; θ0)⊤V

−1

t,i g(x; θ0)/m

≤

√
λg(x; θ0)⊤Ṽ

−1
t,i g(x; θ0)/m

detṼt,i

detV t,i

≤

√
λg(x; θ0)⊤Ṽ

−1
t,i g(x; θ0)/m

detVp

detVp−1

≤
√

eλg(x; θ0)⊤Ṽ
−1
t,i g(x; θ0)/m

=
√
eλ
∥∥g(x; θ0)/√m∥∥Ṽ −1

t,i

.

(12)

Recall that V t,i (line 4 of Algo. 1) is used by agent i in iteration t to select xt,i (via UCBa
t,i), and

that the matrix Ṽt,i is defined for the hypothetical agent which sequentially chooses all TN queries
{xt,i}t∈[T ],i∈[N ] in a round-robin fashion (App. C.2). The first inequality in equation 12 above
follows from Lemma 12 of Abbasi-Yadkori et al. (2011). The second inequality is because Vp

contains more information than Ṽt,i (since Vp is calculated using all the inputs selected after epoch
p), and Vp−1 contains less information than V t,i (because compared with Vp−1, V t,i additionally
contains the local inputs selected by agent i in the current epoch p). In the last inequality, we have
made use of the definition of good epochs, i.e., (detVp)/(detVp−1) ≤ e (App. C.2).

C.4.2 UPPER BOUND ON THE INSTANTANEOUS REGRET rt,i

Here we assume that both UCBa
t,i and UCBb

t,i hold (hence we ignore the error probabilities here),
which we have proved in App. C.3. We now derive an upper bound on the instantaneous regret
rt,i = h(x∗

t,i)− h(xt,i) for agent i and iteration t in a good epoch p ∈ Egood:

rt,i = h(x∗
t,i)− h(xt,i)

= αh(x∗
t,i) + (1− α)h(x∗

t,i)− h(xt,i)

≤ αUCBb
t,i(x

∗
t,i) + αεlinear(m,T ) + (1− α)UCBa

t,i(x
∗
t,i)− h(xt,i)

≤ αUCBb
t,i(xt,i) + (1− α)UCBa

t,i(xt,i) + αεlinear(m,T )− h(xt,i)

= α
(

UCBb
t,i(xt,i)− h(xt,i)

)
+ (1− α)

(
UCBa

t,i(xt,i)− h(xt,i)
)
+ αεlinear(m,T )

≤ α
(
2νTK

1

N

N∑
j=1

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
(V local

j )−1 + εlinear(m,T )
)
+

(1− α)
(
2νTKN

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

)
+ αεlinear(m,T )

≤ α
(
2νTK

1

N

N∑
j=1

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
(V local

j )−1 + εlinear(m,T )
)
+

(1− α)
(
2νTKN

√
eλ
∥∥g(xt,i; θ0)/

√
m
∥∥
Ṽ −1
t,i

)
+ αεlinear(m,T )

= α2νTK
1

N

N∑
j=1

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
(V local

j )−1 +

(1− α)2νTKN

√
eλ
∥∥g(xt,i; θ0)/

√
m
∥∥
Ṽ −1
t,i

+ 2αεlinear(m,T )

≜ (1− α)2νTKN

√
eσ̃t,i(xt,i) + α2νTK

1

N

N∑
j=1

σ̃local
tp−1,j(xt,i) + 2αεlinear(m,T ).

(13)

The first inequality makes use of Lemma 3 (i.e., the validity of UCBa
t,i) and Lemma 4 (i.e.,

the validity of UCBb
t,i). The second inequality follows from the way in which xt,i is selected
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(line 7 of Algo. 1): xt,i = argmaxx∈Xt,i
(1 − α)UCBa

t,i(x) + αUCBb
t,i(x). The third inequal-

ity again makes use of Lemma 3 and Lemma 4, as well as the expressions of UCBa
t,i and

UCBb
t,i. In the fourth inequality, we have made used of the auxiliary inequality of equation 12

we derived in the last section. Recall that we have discussed that (V local
i )−1 = (V local

t,i )−1

for all t = tp − 1 at the end of App. C.3.2. Therefore, in the last step, we have defined
σ̃local
tp−1,j(xt,i) ≜

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
(V local

tp−1,j)
−1 =

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
(V local

j )−1 which repre-

sents the GP posterior standard deviation (using the kernel of k̃(x, x′) = g(x; θ0)
⊤g(x′; θ0)/m)

conditioned on all agent j’s local observations before iteration tp. Note that σ̃local
tp−1,j(xt,i) is the same

as the one defined in Sec. 3.3 of the main text where we explain the weight between the two UCBs.
Similarly, we have also defined σ̃t,i(xt,i) ≜

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
Ṽ −1
t,i

, which represents the GP
posterior standard deviation conditioned on the observations of the hypothetical agent before xt,i is
selected (App. C.2).

Next, we will separately derive upper bounds on the summation (across all good epochs and all
agents) of the first and second terms of the upper bound from equation 13.

C.4.3 UPPER BOUND ON THE SUM OF THE FIRST TERM OF EQUATION 13

Here, similar to Kassraie & Krause (2022), we denote as κ0 an upper bound on the value of
the NTK function for any input: ⟨g(x; θ0)/

√
m, g(x; θ0)/

√
m⟩ ≤ κ0,∀x ∈ Xt,i, t ∈ [T ], i ∈

[N ]. As a result, we can use it to show that both σ̃t,i(x) and σ̃local
tp−1,j(x) can be upper-bounded:

σ̃t,i(x) ≤
√
κ0 and σ̃local

tp−1,j(x) ≤
√
κ0. To show this, following the notations of Appendix C.2, we

denote Ṽt,i = Jt,iJ
⊤
t,i + λI where Jt,i =

[[
g(xτ,j ; θ0)

]
τ∈[t−1],j∈[N ]

,
[
g(xt,j ; θ0)

]
j∈[i]

]
which is a

p0 × [(t− 1)N + i] matrix. Then we have

σ̃2
t,i(x) = λ

∥∥g(x; θ0)/√m∥∥2Ṽ −1
t,i

= λg(x; θ0)
⊤(Jt,iJ

⊤
t,i + λI)−1g(x; θ0)/m

= λg(x; θ0)
⊤
( 1
λ
I − 1

λ
Jt,i
(
I + J⊤

t,i

1

λ
Jt,i
)−1

J⊤
t,i

1

λ

)
g(x; θ0)/m

= g(x; θ0)
⊤g(x; θ0)/m− (g(x; θ0)

⊤/
√
m)Jt,i

(
λI + J⊤

t,iJt,i
)−1

J⊤
t,i(g(x; θ0)/

√
m)

= g(x; θ0)
⊤g(x; θ0)/m−

∥∥∥(g(x; θ0)⊤/√m)Jt,i

∥∥∥2(
λI+J⊤

t,iJt,i

)−1

≤ g(x; θ0)
⊤g(x; θ0)/m ≤ κ0

(14)

where we used the matrix inversion lemma in the third equality. Using similar derivations also allows
us to show that (σ̃local

tp−1,j(x))
2 ≤ κ0. Therefore, we have that σ̃t,i(x) ≤

√
κ0 and σ̃local

tp−1,j(x) ≤
√
κ0.
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Denoting the set of iterations from all good epochs as T good, we can derive an upper bound the first
term of equation 13, summed across all agents i ∈ [N ] and all iteration in good epochs T good:

N∑
i=1

∑
t∈T good

(1− α)2νTKN

√
eσ̃t,i(xt,i)

(a)

≤ 2
√
eνTKN

N∑
i=1

T∑
t=1

σ̃t,i(xt,i)

(b)
= 2
√
eνTKN

N∑
i=1

T∑
t=1

min{σ̃t,i(xt,i),
√
κ0}

(c)

≤ 2
√
eνTKN

N∑
i=1

T∑
t=1

min{
√
κ0σ̃t,i(xt,i),

√
κ0}

≤ 2
√
eνTKN

√
κ0

N∑
i=1

T∑
t=1

min{σ̃t,i(xt,i), 1}

(d)

≤ 2
√
eνTKN

√
κ0

√√√√TN

N∑
i=1

T∑
t=1

min{σ̃2
t,i(xt,i), 1}

(e)

≤ 2
√
eνTKN

√
κ0

√
TN [2λ log det(λ−1KTN + I)]

(f)

≤ 2
√
2eνTKN

√
κ0

√
TNλ[log det(λ−1H+ I) + 1]

= 2
√
eνTKN

√
κ0

√
TNλ

[
d̃ log(1 + TNK/λ) + 1

]

(15)

Step (a) follows from α ≤ 1,∀t ≥ 1 and summing across all iterations [T ] instead of only those
iterations T good in good epochs. Step (b) follows because σ̃t,i(x) ≤

√
κ0 as discussed above. In step

(c), we have assumed that κ0 ≥ 1; however, if κ0 < 1, the proof still goes through since we can
directly upper-bound min{σ̃t,i(xt,i),

√
κ0} by min{σ̃t,i(xt,i), 1}, after which the only modification

we need to make to the equation above is to remove the dependency on multiplicative term of
√
κ0.

Step (d) results from the Cauchy–Schwarz inequality. Step (e) can be derived following the proof of
Lemma 4.8 of Zhang et al. (2021) (in Appendix B.7 of Zhang et al. (2021)). Step (f) follows from
Lemma 1 and hence holds with probability of at least 1− δ1. The last equality simply plugs in the
definition of the effective dimension d̃ (Sec. 2).

C.4.4 UPPER BOUND ON THE SUM OF THE SECOND TERM OF EQUATION 13

In this subsection, we derive an upper bound on the sum of the second term in equation equation 13
across all good epochs and all agents.

For the proof here, we need a "local" version of Lemma 1, i.e., a version of Lemma 1 which only
makes use of the contexts of an agent i. Define Kt,i as the local counterpart to Kt′ (from Lemma 1),
i.e., Kt,i is the t × t matrix calculated using only agent j’s local contexts up to (and including)
iteration t. Specifically, define Jt,i ≜ [g(xτ,i; θ0)]τ∈[t] which is a p0 × t matrix, then Kt,i is defined
as Kt,i ≜ J⊤

t,iJt,i/m, which is a t× t matrix. Also recall that in the main text, we have defined Hi

as the local counterpart of H for agent i (Sec. 2). The next lemma gives our desired local version of
Lemma 1.

Lemma 6 (Lemma B.7 of Zhang et al. (2021)). If m ≥ CT 6K6L6 log(TNKL/δ6), we have with
probability of at least 1− δ6 that

log det(I + λ−1Kt,i) ≤ log det(I + λ−1Hi) + 1,

for all t ∈ [T ], i ∈ [N ].

We needed to take a union bound over all N agents, which explains the factor of N within the log in
the lower bound on m given in Lemma 6. Note that the required lower bound on m by Lemma 6
is smaller than that of Lemma 1 (by a factor of N6), therefore, the condition on m in Lemma 6 is
ignored in the conditions listed in App. C.1.
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Of note, throughout the entire epoch p, σ̃local
tp−1,j(xt,i) is calculated conditioned on all the local

observations of agent j before iteration tp. Denote by T (p) the iteration indices in epoch p: T (p) =
{tp, . . . , tp + Ep − 1}. In the proof in this section, as we have discussed in the first paragraph of
Sec. 4.1, we analyze a simpler variant of our algorithm where we only set α > 0 in the first iteration
after a communication round, i.e., α > 0,∀t ∈ {tp}p∈[P ] and α = 0,∀t ∈ [T ] \ {tp}p∈[P ]. Now we
are ready to derive an upper bound on the second term in equation 13, summed over all agents and all
good epochs:

N∑
i=1

∑
p∈Egood

∑
t∈T (p)

α2νTK
1

N

N∑
j=1

σ̃local
tp−1,j(xt,i)

(a)

≤ 2νTK
1

N

N∑
i=1

∑
p∈[P ]

∑
t∈T (p)

α

N∑
j=1

σ̃local
tp−1,j(xt,i)

(b)

≤ 2νTK
1

N

N∑
i=1

N∑
j=1

∑
p∈[P ]

ασ̃local
tp−1,j(xtp,i)

(c)

≤ 2νTK
1

N

N∑
i=1

N∑
j=1

∑
p∈[P ]

σ̃local
tp−1,j(xtp,j)

(d)

≤ 2νTK
1

N

N∑
i=1

N∑
j=1

T∑
t=1

σ̃local
t−1,j(xt,j)

(16)

The inequality in step (a) results from summing across all epoch p ∈ [P ] instead of only good
epochs p ∈ Egood. Step (b) follows since αt = 0,∀t ∈ [T ] \ {tp}p∈[P ] as we discussed above,
therefore, for every epoch p, we only need to keep the first term of t = tp in the summation
of t ∈ T (p). To understand step (c), recall that in the main text (Sec. 3.3), we have defined:
σ̃local
t,i,min ≜ minx∈X σ̃local

t,i (x) and σ̃local
t,i,max ≜ maxx∈X σ̃local

t,i (x),∀i ∈ [N ]. Next, note that our
algorithm selects α by: α = mini∈[N ] αt,i (line 4 of Algo. 2) where αt,i = σ̃local

t,i,min/σ̃
local
t,i,max (line

15 of Algo. 1) and t = tp − 1 since αt,i is calculated only in the last iteration of every epoch. As a
result, we have that

α = min
i∈[N ]

αtp−1,i = min
i∈[N ]

σ̃local
tp−1,i,min

σ̃local
tp−1,i,max

≤
σ̃local
tp−1,j,min

σ̃local
tp−1,j,max

≤
σ̃local
tp−1,j(xtp,j)

σ̃local
tp−1,j(xtp,i)

,

which tells us that ασ̃local
tp−1,j(xtp,i) ≤ σ̃local

tp−1,j(xtp,j) and hence leads to step (c). Step (d) results
from summing across all iterations [T ] instead of only the first iteration of every epoch.

Next, we can derive an upper bound on the inner summation over t = 1, . . . , T from equation 16:

T∑
t=1

σ̃local
t−1,j(xt,j)

(a)

≤
√
κ0

T∑
t=1

min{σ̃local
t−1,j(xt,j), 1}

(b)

≤
√
κ0

√√√√T

T∑
t=1

min{
(
σ̃local
t−1,j(xt,j)

)2
, 1}

(c)

≤
√
κ0

√
T [2λ log det(λ−1KT,j + I)]

(d)

≤
√
2
√
κ0

√
Tλ[log det(λ−1Hj + I) + 1]

=
√
2
√
κ0

√
Tλ
[
d̃j log(1 + TK/λ)) + 1

]
.

(17)

Step (a) is obtained in the same way as steps (b) and (c) in equation 15 (App. C.4.3), i.e., we have
made use of σ̃local

tp−1,j(x) ≤
√
κ0 and assumed that κ0 ≥ 1. Again note that if κ0 < 1, then the

proof still goes through since σ̃local
t−1,j(xt,j) ≤ min{σ̃local

t−1,j(xt,j),
√
κ0} ≤ min{σ̃local

t−1,j(xt,j), 1}, after
which the only modification we need to make to the equation above is to remove the dependency
on multiplicative term of

√
κ0. Step (b) makes use of the Cauchy–Schwarz inequality. Step (c),
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similar to step (e) of equation 15, is derived following the proof of Lemma 4.8 of Zhang et al. (2021)
(in Appendix B.7 of Zhang et al. (2021)). Step (d) follows from Lemma 6 and hence holds with
probability of at least 1 − δ6. In the last equality, we have simply plugged in the definition of d̃j
(Sec. 2).

Now we can plug equation 17 into equation 16 to obtain

N∑
i=1

∑
p∈Egood

∑
t∈T (p)

α2νTK
1

N

N∑
j=1

σ̃local
tp−1,j(xt,i)

≤ 2νTK
1

N

N∑
i=1

N∑
j=1

√
2
√
κ0

√
Tλ
[
d̃j log(1 + TK/λ)) + 1

]

= 2
√
2νTK

√
κ0

N∑
j=1

√
Tλ
[
d̃j log(1 + TK/λ)) + 1

]
.

(18)

C.4.5 PUTTING THINGS TOGETHER

Finally, recall that our derived upper bound on rt,i in equation 13 contains three terms (the third term
is simply an error term), and now we can make use of our derived upper bound on the first term
(App. C.4.3) and the second term (App. C.4.4), summed over all agents and all good epochs, to obtain
an upper bound on the total regrets incurred in all good epochs:

Rgood
T =

N∑
i=1

∑
t∈T good

rt,i

≤ 2
√
eνTKN

√
κ0

√
TNλ

[
d̃ log(1 + TNK/λ) + 1

]
+

2
√
2νTK

√
κ0

N∑
j=1

√
Tλ
[
d̃j log(1 + TK/λ)) + 1

]
+ TNεlinear(m,T )

= Õ
(√

d̃
√
TNd̃+

√
d̃maxN

√
T d̃max + TNεlinear(m,T )

)
= Õ

(
d̃
√
TN + d̃maxN

√
T + TNεlinear(m,T )

)
.

(19)

In the second last equality, we have used νTKN = Õ(
√

d̃) and νTK = Õ(

√
d̃max).

24



Published as a conference paper at ICLR 2023

C.5 REGRET UPPER BOUND FOR BAD EPOCHS

In this section, we derive an upper bound on the total regrets from all bad epochs. To begin with, we
firstly derive an upper bound on the total regrets of any bad epoch p denoted as R[p]:

R[p] =

N∑
i=1

tp+Ep−1∑
t=tp

rt,i
(a)

≤
N∑
i=1

(
2 + 2 +

tp+Ep−2∑
t=tp+1

rt,i

)
(b)

≤
N∑
i=1

[
4 +

tp+Ep−2∑
t=tp+1

(
UCBa

t,i(x
∗
t,i)− h(xt,i)

)]
(c)

≤
N∑
i=1

[
4 +

tp+Ep−2∑
t=tp+1

(
UCBa

t,i(xt,i)− h(xt,i)
)]

(d)

≤
N∑
i=1

[
4 +

tp+Ep−2∑
t=tp+1

2νTKN

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

]
(e)

≤
N∑
i=1

(
4 + 2νTKN

√
κ0

tp+Ep−2∑
t=tp

min{
√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

, 1}
)

(f)

≤
N∑
i=1

(
4 + 2νTKN

√
κ0λ

tp+Ep−2∑
t=tp

min{
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

, 1}
)
(20)

Step (a) follows from simply upper-bounding the regrets of the first and last iteration within this
epoch by 2. Step (b) makes use of the validity of UCBa

t,i (Lemma 3). Step (c) follows because α =
0,∀t ∈ [T ] \ {tp}p∈[P ] (i.e., we set α = 0 except for the first iteration of all epochs), which implies
that after the first iteration of an epoch, xt,i is selected by only maximizing UCBa

t,i (line 7 of Algo. 1).
Step (d) again uses Lemma 3, as well as the expression of UCBa

t,i. Step (e) is obtained in the same
way as steps (b) and (c) in equation 15 (App. C.4.3). Specifically, since ⟨g(x; θ0), g(x; θ0)⟩ ≤ κ0

(App. C.4.3), therefore,
√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i
≤ √κ0, which can be proved by following the

same steps as equation 14. As a result, if we assume that κ ≥ 1, then
√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

=

min{
√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

,
√
κ0} ≤

√
κ0 min{

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

, 1}; in the other

case where κ0 < 1, then
√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

= min{
√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

,
√
κ0} ≤

min{
√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

, 1}. Here we have assumed κ0 ≥ 1 for simplicity, since when

κ0 < 1, the equation above still holds except that we can remove the dependency on
√
κ0. Step (f)

follows because λ = 1 + 2/T > 1.

Next, we derive an upper bound on the inner summation in equation 20.
tp+Ep−2∑

t=tp

min{
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

, 1}

(a)

≤

√√√√(Ep − 1)

tp+Ep−2∑
t=tp

min{
∥∥g(xt,i; θ0)/

√
m
∥∥2
V

−1
t,i

, 1}

(b)

≤

√
(Ep − 1)2 log

detV tp+Ep−2,i

detV tp,i

(c)

≤

√
2((tp + Ep − 2)− tlast) log

detVtp+Ep−2,i

detVlast

(d)

≤
√
2D.

(21)
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Step (a) follows from the Cauchy–Schwarz inequality. Step (b) makes use of Lemma 11 of Abbasi-
Yadkori et al. (2011). In step (c), we used the notations of tlast = tp − 1, V tp,i = Vlast

(this is because in the first iteration tp of an epoch, Wnew,i = 0p0×p0
and hence V tp,i =

Vlast = Wsync + λI), and Vtp+Ep−2,i = V tp+Ep−2,i + g(xt,i; θ0)g(xt,i; θ0)
⊤/m, and also

used detV tp+Ep−2,i ≤ detVtp+Ep−2,i. To understand step (d), note that the term in step (c):

((tp + Ep − 2) − tlast) log
detVtp+Ep−2,i

detVlast
is exactly the criterion we use to check whether to start a

communication round in iteration t = tp+Ep−2 (line 11 of Algo. 1). Since t = tp+Ep−2 is not the
last iteration in this epoch (i.e., we did not start a communication round after checking this criterion
in iteration t = tp +Ep − 2), therefore, this criterion is not satisfied in iteration t = tp +Ep − 2, i.e.,
((tp + Ep − 2)− tlast) log

detVtp+Ep−2,i

detVlast
≤ D, which explains step (d).

Next, we can plug equation 21 into equation 20 to obtain:

R[p] =

N∑
i=1

tp+Ep−1∑
t=tp

rt,i ≤
N∑
i=1

(
4 + 2νTKN

√
κ0λ
√
2D
)
=
(
4 + 2νTKN

√
2κ0λD

)
N, (22)

which gives an upper bound on the total regret from any bad epoch. Now recall that as we have
discussed in App. C.2, there are no more than R bad epochs (with probability of at least 1 − δ1).
Therefore, the total regret of all bad epochs can be upper-bounded by:

Rbad
T ≤ R

(
4 + 2νTKN

√
2κ0λD

)
N

≤
(
d̃ log(1 + TKN/λ) + 1

)(
4 + 2νTKN

√
2κ0λD

)
N

= Õ
(
d̃
√
d̃
√
DN

)
= Õ

(
(d̃)3/2

√
DN

)
.

(23)

In the second last equality, we have used νTKN = Õ(
√

d̃). By choosing D = O( T

Nd̃
) (line 1 of

Algo. 1), we can further express the above upper bound on the total regrets from all bad epochs as:

Rbad
T = O

(√ T

Nd̃
(d̃)3/2N

)
= O

(
d̃
√
TN

)
.

(24)

C.6 FINAL REGRET UPPER BOUND

Here we derive an upper bound on the total cumulative regret by adding up the regrets resulting from
all good epochs (App. C.4) and all bad epochs (App. C.5):

RT = Rgood
T +Rbad

T

= Õ
(
d̃
√
TN + d̃maxN

√
T + TNεlinear(m,T ) + d̃

√
TN

)
= Õ

(
d̃
√
TN + d̃maxN

√
T + TNεlinear(m,T )

)
.

(25)

This regret upper bound holds with probability of at least 1− δ1 − δ2 − δ3 − δ4 − δ5 − δ6. We let
δ3 = δ4 = δ/3, which leads to the expressions of νTKN and νTK given in the main paper (Sec. 3).
We let δ1 = δ2 = δ5 = δ6 = δ/12, and this will only introduce an additional factor of log 12 in the
first three conditions on m in App. C.1 which can be absorbed by the constant C.

Next, the last term from the upper bound in equation 25 can be further written as:

TNεlinear(m,T ) = TN
(
εlinear,1(m,T ) + εlinear,2(m,T ) + εη,J

)
= TNC1T

2/3m−1/6λ−2/3L3
√

logm+ TNC3m
−1/6

√
logmL4T 5/3λ−5/3(1 +

√
T/λ)

+ TNC2(1− ηmλ)J
√
TL/λ.

(26)
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It can be easily verified that as long as m(logm)−3 ≥ 36C6
1T

10N6λ−4L18 and m(logm)−3 ≥
36C6

3T
16N6L24λ−10(1 +

√
T/λ)6 (which are ensured by conditions 5 and 6 on m in App. C.1),

then the first and second terms in equation 26 can both be upper-bounded by 1/3. Moreover, if
the conditions on η and J presented in App. C.1 are satisfied, i.e., if we choose the learning rate
as η = C4(mλ +mTL)−1 in which C4 > 0 is an absolute constant such that C4 ≤ 1 + TL, and

choose J = 1
C4

(
1 + TL

λ

)
log
(

1
3C2N

√
λ

T 3L

)
= Õ

(
TL/(λC4)

)
, then the third term in equation 26

can also be upper-bounded by 1/3.

As a result, the last term from the upper bound in equation 25 can be upper-bounded by 1, and hence
the regret upper bound becomes:

RT = Õ
(
d̃
√
TN + d̃maxN

√
T
)
. (27)

Worst-Case Regret Upper Bound in Terms of the Maximum Information Gain γ. Next, we
perform some further analysis of the final regret upper bound derived above, which allows us to inspect
the order of growth of our regret upper bound in the worst-case scenario (i.e., without assuming
that the effective dimensions are upper-bounded by constants). We have defined in Sec. 2 that
d̃ ≤ 2γTKN/ log(1 + TKN/λ), d̃i ≤ 2γTK/ log(1 + TK/λ),∀i ∈ [N ] and d̃max = maxi∈[N ] d̃.
As a result, in our derivations in equation 19 and equation 23, we can replace d̃ log(1 + TKN/λ) by
2γTKN and replace d̃j log(1 + TK/λ) by 2γTK , after which the regret upper bound becomes

RT = Õ
(
γTKN

√
TN + γTKN

√
T
)
. (28)

The growth rate of the maximum information gain of NTK has been characterized by previous works:
γT = Õ(T d−1

d ) (Kassraie & Krause, 2022; Vakili et al., 2021). This implies that our regret upper
bound can be further expressed as

RT = Õ
(
K

(d−1)
d (TN)

3d−2
2d +K

(d−1)
d T

3d−2
2d N

)
= Õ

(
K

(d−1)
d T

3d−2
2d N

)
.

C.7 REGRET UPPER BOUND FOR FN-UCB (LESS COMM.)

Here we explain how the proof above can be modified to derive a regret upper bound FN-UCB
(Less Comm.). To begin with, note that in terms of the regret analysis, the only difference
between FN-UCB (Less Comm.) and FN-UCB is that UCBb

t,i of every agent i is now modified
to be: UCBb

t,i(x) = f(x; θsync,NN) + νTK

√
λ
∥∥g(x; θ0)/√m∥∥V −1

sync,NN
, in which the matrix V −1

sync,NN is

obtained by: V −1
sync,NN = 1

N

∑N
i=1(V

local
t,i )−1. Note that every time the matrix V −1

sync,NN is calculated,
we have that t = tp − 1.

Firstly, we prove that the modified UCBb
t,i is also a valid high-probability upper bound on the reward

function f . To achieve this, all we need to do is to add a few steps to equation 11 in Step 3 of the

27



Published as a conference paper at ICLR 2023

proof of. Specifically, we can further analyze equation 11 by:

|f(x;θsync,NN)− h(x)|

≤ 1

N

N∑
i=1

νTK

√
λ
∥∥g(x; θ0)/√m∥∥(V local

i )−1 + εlinear(m,T )

= νTK
1

N

N∑
i=1

√
λg(x; θ0)⊤(V

local
i )−1g(x; θ0)/m+ εlinear(m,T )

≤ νTK

√√√√ 1

N

N∑
i=1

λg(x; θ0)⊤(V
local
i )−1g(x; θ0)/m+ εlinear(m,T )

= νTK

√√√√√λg(x; θ0)⊤

 1

N

N∑
i=1

(V local
i )−1

 g(x; θ0)/m+ εlinear(m,T )

= νTK

√
λg(x; θ0)⊤

(
V −1

sync,NN

)
g(x; θ0)/m+ εlinear(m,T )

= νTK

√
λ
∥∥g(x; θ0)/√m∥∥V −1

sync,NN
+ εlinear(m,T ).

(29)

The first inequality directly follows from equation 11, and the second inequality results from the
concavity of the square root function. In the second last equality, we have plugged in the definition of
V −1

sync,NN = 1
N

∑N
i=1(V

local
t,i )−1. As a result, Lemma 4 which guarantees the validity of UCBb

t,i can be
modified to be:

|h(x)− f(x; θsync,NN)| ≤ νTK

√
λ
∥∥g(x; θ0)/√m∥∥V −1

sync,NN
+ εlinear(m,T ),∀x ∈ Xt,i. (30)

Secondly, we will need the following auxiliary inequality for agent i and iteration t in a good epoch
p ∈ Egood:

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V −1

sync,NN
=
√

λg(xt,i; θ0)⊤V
−1

sync,NNg(xt,i; θ0)/m

=

√√√√λg(xt,i; θ0)⊤
( 1

N

N∑
j=1

(V local
j )−1

)
g(xt,i; θ0)/m

=

√√√√ 1

N

N∑
j=1

λg(xt,i; θ0)⊤(V
local
j )−1g(xt,i; θ0)/m

≤ 1√
N

N∑
j=1

√
λg(xt,i; θ0)⊤(V

local
j )−1g(xt,i; θ0)/m

≤ 1√
N

N∑
j=1

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
(V local

j )−1 .

(31)

The first inequality is because
√
a+ b ≤

√
a+
√
b.

Thirdly, we need to modify the proof of the regret upper bound for good epochs (App. C.4).
Specifically, we can derive an upper bound on the instantaneous regret rt,i = h(x∗

t,i)− h(xt,i) for
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agent i and iteration t in a good epoch p ∈ Egood (in a similar way to equation 13):

rt,i = h(x∗
t,i)− h(xt,i)

≤ α
(
2νTK

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V −1

sync,NN
+ εlinear(m,T )

)
+

(1− α)
(
2νTKN

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
V

−1
t,i

)
+ αεlinear(m,T )

≤ α
(
2νTK

1√
N

N∑
j=1

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
(V local

j )−1 + εlinear(m,T )
)
+

(1− α)
(
2νTKN

√
eλ
∥∥g(xt,i; θ0)/

√
m
∥∥
Ṽ −1
t,i

)
+ αεlinear(m,T )

= α2νTK
1√
N

N∑
j=1

√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
(V local

j )−1 +

(1− α)2νTKN

√
eλ
∥∥g(xt,i; θ0)/

√
m
∥∥
Ṽ −1
t,i

+ 2αεlinear(m,T )

≜ (1− α)2νTKN

√
eσ̃t,i(xt,i) + α2νTK

1√
N

N∑
j=1

σ̃local
tp−1,j(xt,i) + 2αεlinear(m,T ).

(32)

In the first inequality, we have made use of equation 30 which ensures the validity of the modified
UCBb

t,i as a high probability upper bound on h. The second inequality follows from equation 31. In
the last equality, we have defined σ̃local

tp−1,j(xt,i) in the same way as equation 13. The steps regarding
the term involving (1− α) are the same as those from equation 13. As a result, the only change we
have made to instantaneous regret upper bound from equation 13 is that in the second term, we have
replaced 1

N by 1√
N

. Further propagating this change through the proof for the regret upper bound for
all good epochs (App. C.4.4 and App. C.4.5), we have that:

Rgood
T =

N∑
i=1

∑
t∈T good

rt,i = Õ
(
d̃
√
TN + d̃maxN

3/2
√
T + TNεlinear(m,T )

)
. (33)

Lastly, also note that the regret upper bound for the bad epochs (i.e., the proof in App. C.5) remains
unchanged. Therefore, the final regret upper bound for FN-UCB (Less Comm.) is

RT = Rgood
T +Rbad

T

= Õ
(
d̃
√
TN + d̃maxN

3/2
√
T + TNεlinear(m,T ) + d̃

√
TN

)
= Õ

(
d̃
√
TN + d̃maxN

3/2
√
T + TNεlinear(m,T )

)
= Õ

(
d̃
√
TN + d̃maxN

3/2
√
T
)
.

(34)

D PROOF OF UPPER BOUND ON COMMUNICATION COMPLEXITY
(THEOREM 2)

In this section, we derive an upper bound on the communication complexity (i.e., the total number of
communication rounds) of our FN-UCB algorithm (including its variant FN-UCB (Less Comm.)).
Define ζ ≜

√
DT/R. An immediate implication is that there can be at most ⌈T/ζ⌉ epochs whose

length is larger than ζ. Next, we try to derive an upper bound on the number of epochs whose length
is smaller than ζ.

Note that if an epoch p contains less than ζ iterations, then because of our criterion to start a communi-
cation round (line 10 of Algo. 1), we have that log detVp

detVp−1
> D

ζ . Also recall that equation equation 4
(Appendix C.2) tells us that:

P−1∑
p=0

log
detVp+1

detVp
≤ R′ ≤ R, (35)
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with probability of at least 1 − δ1 ≥ 1 − δ. Therefore, there can be at most ⌈ R
D/ζ ⌉ = ⌈

Rζ
D ⌉ such

epochs whose length is smaller than ζ. As a result, the total number of epochs can be upper-bounded
by:

⌈T/ζ⌉+ ⌈Rζ

D
⌉ = O

(√TR

D

)
. (36)

Recall that R = Õ(d̃) (App. C.2). Therefore, with probability of at least 1− δ1 ≥ 1− δ, the total

number of epochs can be upper-bounded by Õ(
√

T d̃
D ).

Since we have chosen D = Õ( T

Nd̃
) (line 1 of Algo. 1), therefore, the total number of epochs can be

upper-bounded by Õ(
√

T d̃
T

Nd̃

) = Õ(d̃
√
N). Now we can further make use of the relationship between

d̃ and γTKN : d̃ ≤ 2γTKN/ log(1 + TKN/λ), which allows us to show that the worst-case commu-
nication complexity is upper-bounded by: Õ(d̃

√
N) = Õ

(
γTKN

√
N
)
= Õ

(
(TKN)

d−1
d

√
N
)
=

Õ(T
d−1
d K

d−1
d N

3d−2
2d ), which is still sub-linear in T even in the worst case.

The proof here, and hence Theorem 2, makes use of Lemma 1. Therefore, we only need condition 1
on m listed in App. C.1 to hold, and do not require any condition on η and J .

E MORE EXPERIMENTAL DETAILS

Our code can be found at: https://github.com/daizhongxiang/
Federated-Neural-Bandits.

Some of the experimental details (e.g., the number of layers and the width m of the NN used in
every experiment) are already described in the main text (Sec. 5). Following the works of Zhang
et al. (2021); Zhou et al. (2020), when training the NN (line 14 of Algo. 1) for agent i, we use the
NN parameters resulting from the last gradient descent training of agent i (instead of θ0) as the
initial parameters, in order to accelerate the training procedure. Every time we train an NN, we use
stochastic gradient descent to train the NN for 30 iterations with a learning rate of 0.01. To save
computational cost, we stop training the NNs after 2000 iterations, i.e., after 2000 iterations, all NN
parameters are no longer updated. Also to reduce the computational cost, when checking the criterion
in line 11 of Algo. 1, we diagonalize (i.e., only keep the diagonal elements of) the two matrices for
which we need to calculate the determinant. Our experiments are run on a server with 96 CPUs, an
NVIDIA A100 GPU with a memory of 40GB, a RAM of 256GB, running the Ubuntu system.

The shuttle dataset is publicly available at https://archive.ics.uci.edu/ml/
datasets/Statlog+(Shuttle) and contains no personally identifiable information or of-
fensive content. It includes 58000 instances, has an input dimension of d = 9 and contains K = 7
classes/arms. As a result, according to the way in which the contexts are constructed (Sec. 5.2),
every context feature vector has a dimension of 9 × 7 = 63. The magic telescope dataset is
publicly available at https://archive.ics.uci.edu/ml/datasets/magic+gamma+
telescope and contains no personally identifiable information or offensive content. The dataset
contains 19020 instances, has an input dimension of d = 10 and K = 2 classes/arms. As a result,
every context feature vector has a dimension of 10× 2 = 20.

When comparing with Linear-UCB, Linear TS, Kernelized UCB and Kernelized TS, we follow the
work of Zhang et al. (2021) to set λ = 1 and perform a grid search within ν ∈ {1, 0.1, 0.01}. The
results showing comparisons with these algorithms, for both the synthetic experiments (Sec. 5.1)
and real-world experiments (Sec. 5.2), are presented in Fig. 4. The figures show that both linear and
kernelized contextual bandit algorithms are outperformed by neural contextual bandit algorithms,
which is consistent with the observations from Zhang et al. (2021); Zhou et al. (2020).
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Figure 3: Cumulative regret of FN-UCB and FN-UCB (Less Comm.) for the cosine and
square functions. Their performances are very similar for both functions.
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Figure 4: Cumulative regrets for the (a) cosine, (b) square, (c) shuttle (with diagonalization),
and (d) magic telescope experiments, with additional comparisons with Linear UCB, Linear
TS, Kernel UCB and Kernel TS.
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Figure 5: Comparison between the performances without (yellow) and with (red) diagonalization,
using m = 20 with the shuttle dataset. The results show that using an NN with the same width
m = 20, diagonalization indeed deteriorates the performances.
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Figure 6: The scaling of the final average cumulative regret after 5000 iterations (averaged across all
N agents) in terms of the number N of agents, using the cosine and square experiments. The
results correspond to Fig. 1 a and Fig. 1 b, respectively.

We have additionally evaluated the empirical impact of the technique of diagonalization of the
matrices (Sec. 3.4), using the shuttle dataset and a fixed width of m = 20 for the NN. The results
(Fig. 5) show that for the same width of the NN, the technique of diagonalization indeed results in
worse performances. However, also note that diagonalization allows us to afford a larger value of
m in a computationally feasible way, which can lead to better performances than using a smaller
m without diagonalization. This is corroborated by our empirical results in Fig. 2a and 2c, because
the regrets in Fig. 2c (m=50 , with diagonalization) are in general smaller than the regrets in Fig. 2a
(m=20 , without diagonalization), and the computational cost of Fig. 2c (244.9 seconds) is smaller
than that of Fig. 2a (361.8 seconds). Furthermore, using m = 50 without diagonalization would incur
a significantly larger computational cost (3134.3 seconds). These results demonstrate the practical
usefulness of diagonalization.

We have also visualized the empirical scaling of the final average cumulative regret (after 5000
iterations) in terms of the number N of agents, using the cosine and square experiments. The
results (Fig. 6) demonstrate that the average cumulative regret (averaged across all N agents) is
indeed decreasing as the number N of agents increases.

F EXTENDED ANALYSIS FOR THE GENERAL ALGORITHM

Recall that it has been mentioned at the beginning of Sec. 4.1 that our main regret analysis (Theorem
1) has focused on a simpler version of our FN-UCB algorithm, in which we only choose the value of
α using the method described in Sec. 3.3 in the first iteration of every epoch and set α = 0 in the other
iterations. Here, we show how our regret analysis can be extended to derive a regret upper bound
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for the general FN-UCB algorithm, in which we choose α using the method described in Sec. 3.3
in every iteration, i.e., we do not set α = 0 in any iteration. To achieve this, we need an additional
assumption of an upper bound on the amount of new information collected by every agent i in every
epoch p. Specifically, we assume that

detV local
tp+Ep−2,i

detV local
tp−1,i

≤ D,∀i ∈ [N ], p ∈ [P ] (37)

for a constant D ≥ 1. This can in fact be viewed as an additional property of the sequence of contexts
for each agent. Intuitively, if the contexts for each agent are received in such an order that similar
contexts also arrive in similar iterations, then the constant D is likely to be small. This can be seen as
a "stationarity" property of the sequence of contexts, which is reasonable in many practical scenarios.
For example, in a healthcare application, the patients arriving within the same time period are likely to
have similar characteristics due to factors such as the local transmission of a seasonal flu. In addition,
another scenario where D is likely to be small is when every agent has some previously observed
offline contexts before running our algorithm. If these offline contexts have a good coverage of the
space of contexts, then conditioned on these offline contexts, the newly collected information by
every agent in every epoch is highly likely to be small.

With this additional assumption, the most important step in the proof that we need to modify is the
proof in Appendix C.4.4, in which we proved an upper bound on the sum of the second term of
equation 13. To begin with, ∀t = tp, . . . , tp + Ep − 1, we have that

σ̃local
tp−1,j(xt,i)

(a)
=
√
λ
∥∥g(xt,i; θ0)/

√
m
∥∥
(V local

tp−1,j)
−1

=
√
λg(xt,i; θ0)⊤(V

local
tp−1,j)

−1g(xt,i; θ0)/m

(b)

≤

√√√√λg(xt,i; θ0)⊤(V
local
t−1,j)

−1g(xt,i; θ0)/m
detV local

t−1,j

detV local
tp−1,j

(c)

≤

√√√√λg(xt,i; θ0)⊤(V
local
t−1,j)

−1g(xt,i; θ0)/m
detV local

tp+Ep−1−1,j

detV local
tp−1,j

(d)

≤
√
λg(xt,i; θ0)⊤(V

local
t−1,j)

−1g(xt,i; θ0)/mD

(e)
=
√
Dσ̃local

t−1,j(xt,i).

(38)

Step (a) has made use of the definition of σ̃local
tp−1,j(xt,i) (see the paragraph below equation 13), step

(b) results from Lemma 12 of Abbasi-Yadkori et al. (2011), step (c) follows because V local
tp+Ep−1−1,j

contains more information than V local
t−1,j ∀t = tp, . . . , tp +Ep − 1, step (d) follows from equation 37,

and step (e) has again made use of the definition of σ̃local
tp−1,j(xt,i).
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Using equation 38, we can modify the proof in equation 16 (Appendix C.4.4):

N∑
i=1

∑
p∈Egood

∑
t∈T (p)

α2νTK
1

N

N∑
j=1

σ̃local
tp−1,j(xt,i) ≤ 2νTK

1

N

N∑
i=1

∑
p∈[P ]

∑
t∈T (p)

α

N∑
j=1

σ̃local
tp−1,j(xt,i)

≤ 2νTK
1

N

N∑
i=1

N∑
j=1

∑
p∈[P ]

tp+Ep−1∑
t=tp

ασ̃local
tp−1,j(xt,i)

(a)

≤ 2νTK
1

N

N∑
i=1

N∑
j=1

∑
p∈[P ]

tp+Ep−1∑
t=tp

σ̃local
tp−1,j(xt,j)

(b)

≤ 2νTK
1

N

N∑
i=1

N∑
j=1

∑
p∈[P ]

tp+Ep−1∑
t=tp

√
Dσ̃local

t−1,j(xt,j)

=
√
D2νTK

1

N

N∑
i=1

N∑
j=1

T∑
t=1

σ̃local
t−1,j(xt,j).

(39)

Step (a) follows from the same reasoning as step (c) of equation 16, step (b) has made use of
equation 38, and all other steps follow the same corresponding steps of equation 16.

As a result, by comparing the modified equation 39 with the original equation 16, the only modification
to the result in equation 16 is the additional multiplicative term of

√
D. Therefore, after propagating

this modification to all the analysis in Appendix C.4.4, we have that a multiplicative term of
√
D will

also be introduced into equation 18. Subsequently, the upper bound on the total regrets from all good
epochs (i.e., equation 19) will be correspondingly modified to be:

Rgood
T = Õ

(
d̃
√
TN +

√
Dd̃maxN

√
T + TNεlinear(m,T )

)
. (40)

Next, we also need to modify the proof of the upper bound on the total regrets from all bad epochs
(Appendix C.5). Following the roadmap of Appendix C.5, we start by upper-bounding the total
regrets from a particular bad epoch p:

R[p] =

N∑
i=1

tp+Ep−1∑
t=tp

rt,i =

N∑
i=1

tp+Ep−1∑
t=tp

[αh(x∗
t,i) + (1− α)h(x∗

t,i)− h(xt,i)]

(a)

≤
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i=1

tp+Ep−1∑
t=tp

[
αUCBb

t,i(x
∗
t,i) + αεlinear(m,T ) + (1− α)UCBa

t,i(x
∗
t,i)− h(xt,i)

]
(b)

≤
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i=1

tp+Ep−1∑
t=tp

[
αUCBb

t,i(xt,i) + αεlinear(m,T ) + (1− α)UCBa
t,i(xt,i)− h(xt,i)

]

=

N∑
i=1

tp+Ep−1∑
t=tp

[
α(UCBb

t,i(xt,i)− h(xt,i)) + (1− α)(UCBa
t,i(xt,i)− h(xt,i))

+ αεlinear(m,T )
]

(c)

≤
N∑
i=1

[
4 +

tp+Ep−2∑
t=tp+1

(
UCBa

t,i(xt,i)− h(xt,i)
)]
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A

+

N∑
i=1

tp+Ep−1∑
t=tp

[
α(UCBb

t,i(xt,i)− h(xt,i)) + αεlinear(m,T )
]

︸ ︷︷ ︸
B

.

(41)
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Step (a) follows from Lemma 3 (i.e., the validity of UCBa
t,i) and Lemma 4 (i.e., the validity

of UCBb
t,i). Step (b) results from the way in which xt,i is selected (line 7 of Algo. 1): xt,i =

argmaxx∈Xt,i
(1 − α)UCBa

t,i(x) + αUCBb
t,i(x). For step (c), the term A is obtained by upper-

bounding the regrets of the first and last iteration within this epoch by 2 and using the fact that
α ≤ 1.

Next, we can separately analyze the terms A and B in equation 41. Firstly, note that the term A is the
same as step (c) of equation 20, therefore, we can follow the same steps of analyses in App. C.5 (i.e.,
equation 20, equation 21, equation 22, equation 23 and equation 24) to show that after summing the
term A across all bad epochs, we get an upper bound of O

(
d̃
√
TN

)
. Secondly, for the term B, we

can in fact follow similar steps of analysis in equation 13 to show that every term inside the square
bracket of the term B is upper-bounded by the last two terms in equation 13. That is,

α(UCBb
t,i(xt,i)− h(xt,i)) +αεlinear(m,T ) ≤ α2νTK

1

N

N∑
j=1

σ̃local
tp−1,j(xt,i) + 2αεlinear(m,T ). (42)

As a result, we can follow the same steps of analysis in App. C.4.4 (after making the modifica-
tion using equation 39; note that the analysis in App. C.4.4 is applicable to both good and bad
epochs) to show that after summing over all bad epochs, the term B can be upper-bounded by
Õ
(√

Dd̃maxN
√
T + TNεlinear(m,T )

)
. Next, combining the upper bounds on both A and B (after

summing across all bad epochs), we have that for the general algorithm, the total regrets from all bad
epochs can be upper bounded by

Rbad
T = Õ

(
d̃
√
TN +

√
Dd̃maxN

√
T + TNεlinear(m,T )

)
, (43)

which is in fact the same as the upper bound on the total regrets from all good epochs which we have
derived in equation 40.

Finally, following the same analysis in App. C.6, we can show that the final regret upper bound for
the general algorithm, in which we do not set α = 0 in any iteration, is

RT = Õ
(
d̃
√
TN +

√
Dd̃maxN

√
T
)
. (44)

Note that compared to our regret upper bound from Theorem 1, the regret upper bound for the general
algorithm (i.e., when we choose the value of α using the method from Sec. 3.3 in every iteration) only
includes an additional multiplicative term of

√
D in the second term. Of note, when communication

indeed occurs after each iteration (i.e., Ep = 1 for every epoch p), we have that D = 1 because
detV local

tp+Ep−2,i

detV local
tp−1,i

= 1 (equation 37). In this case, the version of our algorithm analyzed in Theorem 1

becomes the same as our general algorithm (Sec. 4.1), and interestingly, the regret upper bound of
our general algorithm (equation 44) also becomes the same as Theorem 1 because D = 1.
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