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Abstract

Scene understanding in adverse conditions, such as fog, snow, and night, is chal-
lenging due to the visual appearance degeneration. In this context, we propose a
Cross-modal Semantic Compensation Adaptation method (CroPe) for scene under-
standing. Distinct from the existing methods, which only use the visual information
to learn the domain-invariant features, CroPe establishes a visual-textual paradigm
which provides textual semantic compensation for visual features, enabling the
model to learn more consistent representations. We propose the Complementary
Perceptual Text Generation (CPTG) module which generates a set of multi-level
complementary-perceptive text embeddings incorporating both generalization and
domain awareness. To achieve cross-modal semantic compensation, the Reverse
Chain Text-Visual Fusion (RCTVF) module is developed. By the unified attention
and reverse decoding chain, compensation information is successively fused to the
visual features from the deep (semantic dense) to shallow (semantic sparse) features,
maximizing compensation gain. CroPe yields competitive results under all adverse
conditions and significantly improves the state-of-the-art performance by 6.5 mloU
for ACDC-Night dataset and 1.2 mloU for ACDC-AIll dataset, respectively.

1 Introduction

Scene understanding under adverse weather conditions serves an essential task for outdoor applica-
tions, such as autonomous driving, surveillance systems, and disaster response. However, due to the
extreme changes in illumination, texture, and occlusion patterns under various adverse conditions,
the large domain discrepancies across diverse scenes pose a significant challenge, making it difficult
for existing methods to effectively address segmentation under all adverse weather conditions.

Existing methods can be divided into two groups. One is scene-specific framework [1, 2, 3, 4, 5, 6],
which is tailored to particular adverse conditions. For example, BWG [3] enhances the generalization
ability for foggy scenes through content enhancement and style decorrelation. S2R2 [2] jointly
optimizes deraining and segmentation tasks using contrastive learning. Despite the successes in
certain scenarios, the model’s performance declines when confronted with more complex and diverse
scenes. Another group is scene-agnostic framework [7, 8, 9, 10, 11, 12] which offers a more unified
solution. For instance, PASS [13] utilizes an implicit visual prompt strategy to enhance cross-domain
consistency by eliminating domain-specific weather features. MIC [9] captures contextual information
of the scene through mask reconstruction. However, whether scene-specific or scene-agnostic
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Figure 1: Comparison between our CroPe and existing methods: (a) In contrast to existing methods
relying solely on visual modality, our CroPe integrates visual and text modality. (b) Our CroPe
outperforms existing methods in many adverse scenarios. (c) Existing methods often produce
hallucinations (e.g., incorrectly classifying the sky as trees). We highlight the differences between
our CroPe and existing methods using dashed boxes, and zoom in with solid boxes for emphasis.

frameworks, they only train the model within the visual modality (e.g. using visual prompts, mask
reconstruction or tuning) to learn domain-invariant knowledge for unsupervised domain adaptation
(UDA) segmentation, as shown in Figure 1 (a)(1). Under adverse conditions, visual features often
experience severe degradation (e.g., loss of texture, low visibility, and color distortion). This
degradation makes the model prone to hallucinations and complicates the learning of consistent
semantic knowledge across different domains.

To address the aforementioned issue, we introduce the integration of robust text modality into unsu-
pervised domain adaptive semantic segmentation (UDASS) under adverse conditions and propose
a novel cross-modal semantic compensation adaptation method (CroPe) for all adverse scene un-
derstanding. Since text semantics are invariant to environmental changes and facilitate acquisition
of across-domain class-consistent semantics, our CroPe leverages text semantics as a high-level
guidance modality to compensate for degraded visual information under adverse conditions, which
can effectively obtain semantic consistency across different domains, as illustrated in Figure 1 (a)(2).
Specifically, we propose the Complementary-Perceptive Text Generation (CPTG), which is composed
of a decoupling strategy, domain-specific perception, domain-invariant regularization, and gated
complementary fusion. The decoupling strategy is proposed to decouple the text embeddings into
domain invariant embedding which is constrained by domain-invariant regularization and domain
perceptive embedding which is interacted with visual features by the domain-specific perception. The
gated complementary fusion is designed to adaptively fuse the domain-specific and domain-invariant
text embeddings. After the CPTG module, the Reverse Chain Text-Visual Fusion (RCTVF) module
is designed, which develops the unified attention and reverse decoding chain. The unified attention
mechanism integrates the multi-scale visual features and the multi-level textual features outputted
by CPTG. The reverse decoding chain incorporates the visual features compensated with deep se-
mantics into the shallower, yet unfused, visual feature. By this chained fusion, compensation gain of
visual features can be maximized. CroPe surpasses most of existing visual frameworks, effectively
addressing visual degradation in UDASS, avoids erroneous classifications such as mistaking skies for
roads. The performance superiorities of CroPe in comparison with the SOTA methods on ten datasets
under challenging scenarios is shown in Figure 1 (b). The segmentation maps presented in Figure 1
(c) qualitatively illustrate CroPe’s adaptability in adverse scenarios.

Our contributions are briefly summarized as follows:



* We propose a cross-modal semantic compensation method, which integrates the textual
modality into the unsupervised domain adaptation semantic segmentation task under adverse
scenes to enhance the model’s adaptability.

* We design CPTG module to generate multi-level complementary-perceptive text embeddings,
which are then integrated into visual features using the RCTVF module to achieve cross-
modal semantic compensation.

» Extensive experimental results show that our method achieves state-of-the-art performance
in various adverse scenarios, including rain, snow, fog, and nighttime, while also reducing
training cost. This highlights the model’s superiority in both effectiveness and efficiency.

2 Related Work

Adverse visual scenes hinder effective knowledge transfer in unsupervised domain adaptation (UDA)
for scene understanding. Early studies primarily focus on single scenarios. For example, FIFO
[14] focuses on fog scenes and learns fog-invariant representations by extracting fog-related factors
from style features. Some works focus on night scenes [15, 16], using pseudo-supervision through
day-night paired images or cross-temporal correspondences. These methods perform well in spe-
cific scenes but struggle to generalize across diverse adverse conditions. Recent research turns to
developing a unified framework capable of handling multiple adverse scenes simultaneously [17, 13].
For example, Refign [18] introduces an uncertainty-aware dense matching method to align the target
image and the reference image from various adverse scenes, thereby improving its robustness across
multiple adverse scenes. DAFormer [7] further improves the expressiveness in various scenarios by
introducing training strategies such as Transformer encoder, rare category sampling, and ImageNet
feature distance constraints. SePiCo [19] proposes a semantically guided pixel comparison method,
which constructs a cross-domain discriminative embedding space through center point-aware and
distribution-aware comparison losses, and simultaneously optimizes feature alignment and self-
training stability. The unified framework has become the mainstream solution due to its powerful
cross-scenario capabilities. However, existing unified framework methods rely on visual modeling
to capture domain invariance and struggle to address the challenges posed by significant visual
distortion. In this paper, we introduce the first cross-modal semantic compensation method to learn
domain-invariant features for UDA. More related works on UDA semantic segmentation can be found
in Appendix A.l.

3 Method

In this section, we first give the task formulation of an unsupervised domain adaptation (UDA) scene
understanding in adverse scenes in §3.1 and then describe our method in detail. As shown in Figure
2, our proposed CroPe consists of two components, a Complementary-Perceptive Text Generation
§3.2 and a Reverse Chain Text-Visual Fusion §3.3.

3.1 Task Formulation

Given a training sample (15, I, 4%), where (I°, IT) € R3*H*W represents the input images of the
training set from the source domain S and the target domain 7', and y* € R¥*W is the corresponding
image label from the source domain, H and W represent the resolution. The goal of the UDA scene
understanding task is to use I°, ¢, and I for training a model with good segmentation performance
in the target domain test set.

3.2 Complementary-Perceptive Text Generation

The Complementary-Perceptive Text Generation (CPTG) aims to obtain a set of multi-level
complementary-perceptive text embeddings to provide more effective completion and alignment for
cross-modal semantic compensation from textual to visual modality. A key challenge of CPTG is
the design of textual prompts, as using learnable or hand-crafted text prompts alone poses the risks
of overfitting and limited flexibility, respectively. Therefore, we propose to use learnable prompts
as the core and combine them with hand-crafted prompts in the Domain-Invariant Regularization to
complement each other.
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Figure 2: The overview of our proposed CroPe. The CPTG module receives image features
[Ps, P3, Py] from the visual encoder and global text features 7" from the text encoder. It processes
them through Domain-Specific Perception, Domain-Invariant Regularization, and Gated Comple-

mentary Fusion to generate multi-level complementary-perceptive text embeddings T = [ﬁ, fg, fg]

Next, the RCTVF module fuses T into the multi-scale visual features [F}, Fy, F3, Fy] through Uni-
fied Attention and Reverse Decoding Chain, outputs the multi-scale semantic compensated visual
features Q* = [Q7, Q3, Q%, Q], which are then passed into the segmentation head to obtain the final
segmentation predictions.

Specifically, we first input the learnable text prompt of each category [V]1[V]a ... [V]ar[class] into
the text encoder to generate the corresponding raw text embeddings 7' € R¢*P, where V, [class],
M, C, and D denote the context word, category name, the number of context words, the number of
categories, and the dimension of text embedding, respectively.

Decoupling Strategy. Instead of direct optimization of ', we propose a decoupling strategy to learn
two independent structures of textual prompts, i.e., generality and domain awareness. Specifically,
we use two identical multi-layer perceptrons (MLPs) (with non-shared weights) to decouple 7" into
the domain-specific embedding Ts € R“*? and the domain-invariant embedding 77 € RE*P,
Meanwhile, to ensure clear semantic independence between these two decoupled feature embeddings,
we apply an orthogonality constraint on T's and 77. The orthogonal loss is defined as follows:

Lortn = |{Ts, T1)|1?, 4))

where (., .) represents the cosine similarity. By explicitly decoupling T's and T, we can establish
optimization objectives for domain invariance and domain perception independently.

Domain-Specific Perception. To enhance the domain-awareness ability of T's, we propose a domain-
specific perception module where the correlation of T's and the visual representation is explored
and mined. To balance computational efficiency and the richness of domain-specific information,
we use the last three level features [Ps, P3, P4] from the visual encoder as the visual clues with the
domain perception. Then, both Ts and [P, Ps, Py] are projected from D to the channel dimension
D, through linear layers, with T's mapped to the query tokens ()7, and P; mapped to the key tokens
K p, and value tokens Vp,, where ¢ € {2,3,4}. Through attention interactions, T's can capture
multi-level domain-specific information, the process is expressed as:

Qr: K7,
QT;‘ = QTL1 + Softmax %TH— Vp, SUPEAS {1,2,3}, @
d

where T = T's. Finally, each output Q7> is restored from Dy to D dimension through a linear layer,
obtaining 7 = [T}, Ty, T;] € R3*E*D ag the multi-level perception output. By aligning T's and



the visual space, we obtain the domain-specific perceptive embedding 7™ which captures the local
and global context.

Domain-Invariant Regularization. To enable the domain-invariant embedding 77 to effectively
generalize across different domains, we utilize manually designed prompts that provide general
representations and maintain invariance. Concretely, by creating a general text prompt and obtaining
the corresponding text embedding T € RE*P through the text encoder, we exploit a cosine
similarity soft constraint L, 4, between T7 and T, ensuring that T7 does not deviate excessively
from T, thereby maintaining the domain robustness. The soft constraint Lg; 4y, is defined as follows:

Lalign =1- <T], TC> . (3)

By minimizing the L;;4» in Equation (3), we can both prevent T from overfitting to a specific
domain and allow 77 to learn more generalized representations.

Gated Complementary Fusion. To generate complementary-perceptive text embedding, we propose
a gated complementary fusion that integrates domain-specific and domain-invariant text embeddings
through dynamically adjusting the contribution of each embedding. Primarily, a Gating Unit is
designed. In this unit, 77 € R®*P is broadcasted and concatenated with T* € R3*“*P along the
dimension of the feature as the input, and then passed through a linear layer to obtain the fused feature
Truse € R3XE¢*D  Meanwhile, we fed the input into a single hidden layer multilayer perceptron
(MLP) and a Sigmoid activation function to learn class-specific gating weights {a, 3} € R1*¢x1
for T and T'y,s.. Finally, we obtain the multi-level complementary-perceptive text embeddings

T = [Ty, Ty, Ts] € R3*C*D a5 followings:

T=T +a -Ti+8 Truse. 4)

The gated complementary fusion mechanism dynamically adjusts the fusion weights between domain
perception and generalization information, enabling the complementary integration of the text
semantics. This mechanism effectively enriches text cross-domain representations, providing a robust
basis for enhancing the semantic density of visual features.

3.3 Reverse Chain Text-Visual Fusion

To fully integrate multi-level complementary-perceptive text embedding semantics into the visual
modality and achieve cross-modal semantic compensation, we propose a Reverse Chain Text-Visual
Fusion (RCTVF) module. As shown in Figure 2 (Upper), RCTVF receives T generated by the CPTG
module and the multi-scale features [F}, Fy, F3, Fy] generated by the FPN [20]. The resolution of
the multi-scale features is [+ x, &%, 15X, 35 X] of (H, W), respectively. RCTVF consists of Unified
Attention and Reverse Decoding Chain components.

Unified Attention. The Unified Attention integrates multi-scale deformable attention [21] and cross-
modal attention, allowing the model to concentrate on key areas at various scales while maintaining
text semantic guidance. Then, we fuse the channel information through a feedforward network (FFN)
to enhance the semantic density of visual features.

Specifically, we input one of the scales of F;(i € {1,2,3,4}) into the Unified Attention module at a
time, initially capturing both detail and global information via the multi-scale deformable attention.
Next, we interact the output visual information with the corresponding 7;_; using the cross-modal
attention, and then further integrate the cross-modal semantics through the FFN. We also map F; and

T;_1 to a dimension Dy to create Qr,, K. 7 and Vf,l' The specific calculations are as follows:

Q; = FFN(Cross-Attn(Deform-Attn(Qr, ), K

T\i—17VA

Ti_l))’i =4,3,2. 5)
Among them, the semantic compensated visual features[Q3, Q%, Q] of each scale can be generated
using Equation (5). Due to ) r, having the largest resolution, we control the computational complexity
by processing (), with 1 x 1 convolution to obtain (7.

Reverse Decoding Chain. To maximize semantic compensation, we propose the Reverse Decoding
Chain. It utilizes a reverse chain from deep to shallow layers for decoding compensation, addressing
semantic isolation among the current ();. Specifically, F; has the densest semantic information in



[F1, F», F3, Fy], while in the multi-level text embedding [ﬁ, @7 fg], the image region perceived

by T35 is more global. Therefore, we first calculate the Unified Attention of Fy and f; (not parallel
processing [Fy, Fy, F3, Fy]), and pass it through the following formula:

QFi—l — QFq'—l +Up(Qf7QFl)7Z :4a3527 (6)
where UP(z, y) aims to upsample x to the same scale of y.

After utilizing semantic compensation through the RCTVF module, we generate multi-scale semantic
compensated visual features Q* = [Q7, Q5, Q%, Q4]. Finally, Q* is fed into the segmentation head
[22] to produce predictions p € RE*H*W which are compared with the labels or pseudo-labels to
calculate the cross-entropy segmentation loss L... The overall loss function for the training phase is
expressed as follows, where A represents the training weight.

L= Lorth + Lalign + )\Lce~ (7)

Further details about our method and algorithm can be found in Appendix A.2.

4 Experiments

In this section, we first provide a detailed description of the experimental settings, including the
datasets and implementation details, in §4.1. Subsequently, we present the main experimental results
of the model in §4.2. Furthermore, in §4.3, we conduct comprehensive ablation studies to further
validate the effectiveness of the CroPe.

4.1 Experimental Settings

Datasets: To demonstrate the effectiveness of our proposed CroPe method, we conduct experiments
across all adverse scenes in seven real-world datasets, including Cityscapes (CS)[23], ACDC[24],
Dark Zurich (DZ)[25], Nighttime Driving (ND)[26], BDD100K-Night (BD)[27], Foggy Zurich
(FZ)[28] and Foggy Driving (FD) [29]. Detailed dataset information, including adverse scene types,
data splits, and statistics, can be found in Appendix A.3.

Implementation Details: Following the prevailing method DAFormer, we adopt CLIP (-B/16 and
-L/14 [30]) as the backbone. During training, we use a resolution of 512x512, rather than the high
resolution of 1024x1024 employed by SOTA methods, and omit the FD loss typically used. The initial
learning rate for the AdamW optimizer is set to 6e-5, and the learning rates for the encoder, RCTVF
module, and segmentation head are 6e-5 scaled by %0 x, 10x, 10x, respectively. Additionally, the
context length of the text prompt M is fixed to 5. The attention layers /N are set to 6, with two layers
computed at each scale. The weight parameter ) is set to 2.0. We conduct training experiments for
40,000 iterations. All modules are retained during inference.

4.2 Comparison with State-of-the-art Methods

Table 1 presents a comprehensive performance comparison between our CroPe and existing methods
on seven datasets across ten challenging scenarios.

Cityscapes to Foggy Scenes: As shown in Table 1, we compare three foggy scenes, ACDC-Fog, FZ,
and FD. Among them, we use CS as the source domain, ACDC-AIll or FZ as the target domain for
training, and FD uses the model trained on FZ for direct generalization testing. CroPe achieves the
SOTA performance on all three scenes. On the FD dataset, CroPe improves by 6.2 mloU over DAEN
and 4.2 mloU over SAM-EDA. These improvements are probably attributed to CroPe’s cross-modal
semantic compensation strategy, which enhances the semantic density of visual features, enabling
it to address the challenging conditions such as dense and light fog. It is worth noting that on the
ACDC-Fog dataset, CroPe outperforms DAFormer by 10.7 mIoU and DAEN by 5.0 mIoU. These
demonstrate that CroPe’s cross-modal semantic compensation has effective adaptation and scalability
abilities to this foggy scene.

Cityscapes to Night Scenes: The nighttime scenes pose the greatest low-visibility challenges. Our
CroPe still outperforms nighttime-specific and scene-agnostic models on four nighttime scenes, as
shown in Table 1. Specifically, CroPe achieves 62.3 mloU on the CS — DZ, improving by 19.8



Table 1: Comparison of mloU (%) across four adverse scenarios: Foggy, Night, Rainy, and Snowy.
The best accuracy in each column is marked in bold, and the second highest is marked in underlined.
‘~’ indicates experiments that cannot be implemented using a scene-specific models, or the results
were not clear for the scene-agnostic models.

Models Foggy Night Rainy Snowy All
ACDC-Fog FZ FD ACDC-Night DZ ND BD ACDC-Rain ACDC-Snow ACDC-All

Scene-specific Models

CuDA-Net [6] 55.6 49.1 535 - - - - - - -
FIFO [14] - 484 50.7 - - - - - - -
FogAdapt [5] - 50.6 534 - - - - - - -
SAM-EDA [31] - - 56.4 - - - - - - -
GCMA [25] - - - - 420 456 332 - - -
MCGDA [16] - - - - 425 494 349 - - -
SWG [3] - 513 542 - - - - - - -
DAEN [32] 65.6 542 540 - - - - - - -

Scene-Agnostic Models

AdaptSeg [33] - 26.1 37.6 - 304 345 220 - - -

DAFormer [7] 48.9 40.8 - 44.7 485 51.8 339 59.9 53.7 55.4
SePiCo [19] 58.5 - - 50.5 542 569 40.6 66.1 57.9 59.1
STA [11] 60.2 469 549 48.4 - - - 61.3 58.0 60.9
HRDA [8] 69.9 46.0 - 53.1 55.9 - - 73.6 69.5 68.0
MIC [9] 67.0 533 56.6 57.2 60.2 58.6 413 72.3 66.6 70.4
PASS [13] 70.6 59.9 60.2 60.3 60.2 57.0 43.0 74.6 70.0 70.8
CroPe (Ours) 70.6 60.4 60.6 66.8 623 61.6 475 744 71.4 72.0

Baseline Ground-Truth

Figure 3: Visualization results comparison with SOTA methods across four adverse scenarios, white
dashed boxes and zoomed-in boxes highlighting the different regions.

mloU compared with MCGDA. In addition, the model trained on DZ shows excellent generalization
ability when tested on the ND and BD datasets, improving by 4.6 mloU and 4.5 mloU over PASS,
respectively. On ACDC-Night, CroPe also achieves the best performance, with 66.8 mloU when
trained on the CS — ACDC-AII dataset and tested on ACDC-Night. These results indicate that CroPe
is better at overcoming the ambiguity of category boundaries in night scenes.

Comparison on Rainy, Snowy, and All Scenes: As shown in Table 1, our CroPe trained on ACDC-
All outperforms other methods in rainy, snowy, and all scenarios. On the ACDC-Rain dataset, CroPe
achieved 74.4 mloU, which is comparable to PASS. On the ACDC-Snow dataset, the CroPe even
surpasses PASS by 1.4 mloU, setting a new best benchmark. This performance showcases CroPe’s
ability to handle challenges such as blurry visual features and occlusions in rainy and snowy scenes
while maintaining accurate modeling of both global semantics and small targets. On the ACDC-All
dataset, CroPe achieved 72.0 mloU, leading the SOTA method PASS by 1.2 mloU. Finally, when
the performance of ten datasets is averaged, CroPe surpasses PASS by 2.1 mloU. The above results
demonstrate the stable and comprehensive adaptability of CroPe.

Visualization Results: To clearly demonstrate the effectiveness of our method, we provide a
visualization comparison with different methods across night, rain, snow, and fog scenes in Figure
3. As illustrated, the existing methods often produce hallucinations in adverse scenes, such as
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Table 3: Internal ablation study of the CPTG Table 4: The ablation study of the Reverse De-
module on the ACDC-AII validation set. coding Chain in RCTVF. The "Mean" column
represents the average mloU on the ACDC-All
and DZ validation sets.

Inva Spec Comp mloU gain
X X X 69.9

X X 696 -03 Method ACDC-All DZ Mean
X X 70.6  +0.7 No-Chain 70.7 60.2 654
X 704  +0.5 Forward-Chain 69.9 59.8 648

71.5 +1.6 Reverse-Chain 72.0 62.3 67.1

misclassifying the sky as trees or blurring sidewalk boundaries, as emphasized by the rectangular
box. In contrast, our CroPe generates more consistent representations by leveraging abstract semantic
information from the text modality. Additional visualization results are in Appendices A.7 and A.8.

4.3 Ablation Studies

Effectiveness of Individual Module. Table 2 shows the ablation study of the key components
of CroPe. The column “RCTVF” uses the RCTVF module and takes “a typical driving scenario
with a [class]" fixed prompt and image as input, which improves 1.1 mIoU compared to pure vision
methods. The column “Prompt” substitutes the invariant prompt with a learnable prompt, leading
to an increase of 1.5 mloU. The column “CPTG” leverages both the complementarity of invariance
and domain awareness, achieving 62.3 mloU. These results suggest that the proposed modules can
produce synergistic effects, and additional ablation studies are detailed in the Appendix A.4.

Furthermore, Figure 4 illustrates the comparison of the convergence curve between Crope and the
existing methods. Crope exhibits faster convergence speed, better stability, and higher accuracy.

Component Analysis of the CPTG Module. This

section presents an ablation study of the CPTG swow Night Rain Fog
module to assess the impact of each prompt, with ] ' :
results detailed in Table 3. The first row illus-
trates the performance of directly inputting 7" into
the RCTVF module. The column “Inva” applies
Domain-Invariant Regularization to 7', resulting in
a decrease of 0.3 mloU. This reduction occurs be-
cause it overlooks the coupling between the domain-
invariant and domain-specific semantic structures in
T, leading to blind constraints. The column “Spec” ] o ]
employs Domain-Specific Perception on T, effec- Flggre 5: Visualization comparison of /7 and
tively aligning the modalities and enabling T to @1 in the ACDC validation set.

learn domain perception, which improves perfor-

mance by 0.5 mloU. The column “Comp” introduces a decoupling strategy to address the blind
constraint issue. Implementing Gated Complementary Fusion after decoupling enhances text embed-
ding more effectively. Other ablation experiments of CPTG can be found in Appendix A.5.

Component Analysis of the RCTVF Module. This section presents a qualitative and quantitative
analysis of the correctness and effectiveness of RCTVF. First, to confirm that multi-scale visual



Table 5: Ablation results of Lo, and Lgjign.

Methods DZ ACDC-All ACDC-Night ACDC-Fog ACDC-Rain ACDC-Snow

Crope 48.7 71.5 54.2 78.2 72.1 73.0
w/o Lopy, 477 68.7 51.3 73.6 68.6 67.9
w/0 Loiign  48.5 70.1 52.8 74.9 69.9 71.6

Table 6: Ablation results of CroPe on normal scene understanding tasks. For the training resolution,
LR represents 512x 512, while HR represents 1024 x 1024.

Methods Training Resolution GTASto CS SYNTHIA to CS

DAFormer LR 68.3 60.9
MIC LR + HR 75.9 67.3
CroPe LR 74.7 67.6

features can aggregate the semantics of 7T', we visualize the features F; and ()7 in the first stage
of the reverse chain text-visual fusion, as shown in Figure 5. Prior to RCTVF processing, the
features of I} exhibited significant sparsity and window tracking issues. However, after fusing
multi-level complementary-perceptive text embeddings and performing reverse decoding chain, the
visual semantic information is effectively compensated and propagated (as shown in the second row
of the figure). This proves that RCTVF achieves cross-modal semantic compensation as described in
the method.

Secondly, the ablation experiment of the reverse decoding chain for transferring deep dense semantics
is presented in Table 4. "No-Chain" indicates that only the Unified Attention of each layer is computed
for semantic compensation, with no transmission between different scales. "Forward-Chain" refers
to the transmission of semantics from the shallowest to the deepest layer. The performance of
Forward-Chain is worse than No-Chain, with an average decrease of 0.6 mloU. This is because the
semantic information in the shallow layers lacks the quality and density necessary to enhance the
expression of deeper features effectively. Additionally, when using the segmentation head to process
visual features across multiple scales, shallow semantic information may fail to integrate effectively
with deep features. In contrast, Reverse-Chain prioritizes the utilization of high-level features that
carry rich semantic information, enhancing the overall semantic fusion effect. Additional ablation
experiments related to RCTVF are detailed in Appendix A.6.

Effectiveness of Loss Functions. In our CroPe, two loss functions: L5, and Lgj; gy are proposed.
L.4p, serves as the core of the decoupling strategy, enabling the MLP to effectively decompose the
text embedding 7' into domain-invariant and domain-specific components. Removing this loss may
cause the decoupling process to fail. Meanwhile, Lgy;4, improves the generalizability of learnable
prompts during training through generalizable hand-crafted templates (e.g., “a photo of a [class]”);
removing Lg;;4, would eliminate this crucial supervision signal. To verify the effectiveness of these
two losses, we further conducted experiments to confirm the essential roles of Lo,.¢5 and Lgign, as
shown in Table 5. The results demonstrate that removing L+, leads to a 2.8 mIoU drop on the
ACDC-AlI dataset, as MLPs fail to decouple, causing redundant and ineffective parameter learning.
Likewise, removing L,;; 4., €liminates the generalization constraint provided by hand-crafted prompts
(e.g., “a photo of a [class]"), resulting in a 1.4 mloU drop. These findings validate the critical role of
our design.

Effectiveness under Normal Scenes. Although CroPe is primarily designed for adverse conditions
such as fog or nighttime, it can also be applied to normal scene understanding. To verify this, we
conducted experiments on two standard domain adaptation tasks (GTAS — Cityscapes and SYNTHIA
— Cityscapes). In these experiments, we adopted a general prompt “a photo of a [class]” instead of
“a typical driving scenario with a [class]." As shown in Table 6, the results show that CroPe achieves
improvements of 6.4 mloU and 6.7 mloU over the baseline (DAFormer), respectively. These findings
are particularly encouraging, as they highlight the robust performance of CroPe even in scenarios
with smaller domain gaps and less severe visual degradation, where the impact of our modules
may be weakened. While CroPe demonstrates strong performance in adverse scenarios, these new



Table 7: Analysis of model complexity, training cost, and inference speed.

Method Params Time GPU Usage Inference Speed mloU
HRDA (SegFormer) 85.69M 17h 23.5 GB 2.00 img/s 68.0
MIC(SegFormer) 85.69M 23 h 23.5GB 1.82 img/s 70.4
PASS(SegFormer) 85.69M 25h 23.5GB 1.82 img/s 70.8
CroPe(ViT-B/16 w Frozen) 2736 M 6h 5.7GB 5.12 img/s 67.0
CroPe(ViT-B/16 w Full) 114.19 M 9h 11.0GB 5.10 img/s 68.6
CroPe(ViT-B/16 w LoRA) 4391 M 8h 7.2 GB 4.98 img/s 68.3
CroPe(ViT-L/14 w Frozen) 36.34 M 9h 8.9 GB 2.67 img/s 69.7
CroPe(ViT-L/14 w Full) 34137M  12h 18.0 GB 2.64 img/s 72.0
CroPe(ViT-L/14 w LoRA) 6470M 10h 12.0 GB 2.60 img/s 71.4

Table 8: Comparison of the parameters in each module of the method.
Method Total Visual Encoder CPTG RCTVF
MIC(SegFormer) 85.69M  81.44 M (95.05%) -

CroPe(ViT-L/14 w Full) 341.37TM  214.64 M (69.38%) 1024 M (2.99%)  9.39 M (2.75%)
CroPe(ViT-L/14 w LoRA) 6470 M 37.78 M (58.38%) 10.24 M (15.83%) 9.39 M (14.51%)

experiments further validate the generalization ability and scalability of the proposed prompt-based
adaptation framework in normal scenes.

Complexity Comparison and Optimization. Although the CroPe shows significant performance
advantages, the increase in training parameters caused by its multi-modal design still raises concerns
about deployment feasibility. This section quantitatively analyzes the efficiency of the CroPe through
systematic experiments and introduces a lightweight adaptation strategy to optimize scalability. Table
7 shows the trainable parameters (Params), training time (Time), GPU memory usage (GPU Usage),
inference speed, and mloU performance comparison on the ACDC dataset. The experiment covers
four types of models: 1) traditional SegFormer [34] variants; 2) CroPe variants with frozen backbones;
3) CroPe with full fine-tuning; 4) CroPe with LoRA [35] parameter-efficient fine-tuning.

We conduct all experiments on a single RTX4090. It can be seen that methods based on the SegFormer
(lines 1-3) generally occupy nearly 24GB of memory, have an average training time of more than 20h,
and an inference speed of less than 2 img/s. This is mainly due to its use of large-resolution training
and multi-branch forward strategy to ensure performance. All forms of CroPe can better achieve the
balance between efficiency and performance. For example, CroPe achieves certain performance with
less than 10 GB of memory and less than 10 h of training time when the backbone network is frozen
(lines 4 and 7). The fully fine-tuned CroPe further maximizes the performance (lines 5 and 8) without
significantly increasing the training cost. However, the increase in its parameter raises a key question:
Is CroPe still competitive under the same parameter adjustment? Therefore, we introduce the LoORA
strategy to apply low-rank projections with rank = 64, scaling factor & = 2r, and dropout=0.1 to
the ¢ and v branches in ViT (lines 6 and 9), achieving a better performance-efficiency balance under
limited limits. The specific parameter analysis of each module within CroPe are shown in Table 8.

5 Conclusion

In this paper, we present CroPe, a Cross-Modal Semantic Compensation Adaptation method for
UDA scene understanding in adverse scenarios. We introduce the Complementary-Perceptive Text
Generation module to enhance the cross-domain semantic representation of text and develop the
Reverse Chain Text-Visual Fusion module to improve the consistency of multi-scale visual features
by incorporating dense semantic embeddings of text. Extensive experiments demonstrate that CroPe
enhances domain-invariant feature learning, alleviating model hallucinations and instability in various
adverse scenes. However, CroPe has certain limitations, including an increase in model parameters.
In future work, we will address these challenges and further optimize the model.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main points given in the abstract and introduction accurately reflect the
contribution and scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations of our work in Section 4.3, specifically the slightly
higher model training parameters in the full fine-tuning case and the fact that there is still
some potential and room for improvement based on evaluation on adverse scenes.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Theoretical assumptions are in the methodology section and verified by the
experimental section.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly describe the model architecture and give specific parameters and
details of the implementation.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will make the code of the paper public in a revised version (if accepted).
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and testing details necessary to understand
the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The evaluation schemes for this semantic segmentation task do not need to
report error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the compute resource used is described in Section 4.3.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, our research conform with the NeurIPS Code of Ethics in every respect.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see the Appendix section.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not have such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we are properly accredited and strictly abide by the license and terms of
use

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets were released in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[NA |
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:|[NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodological development of this study did not involve LLM as
any significant, original, or nonstandard component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices

The technical appendix and supplementary materials are organized as follows: 1) Section A.1 gives
more related works to help quickly understand the state-of-the-art work in this field; 2) Section A.2
contains the architectural details and algorithmic supplements of CroPe; 3)Section A.3 contains
detailed dataset information, including adverse scene types, data splits, and statistics. 4) Section
A .4 provides additional complete component ablation studies; 5) Section A.5 performs an additional
prompt ablation study in the CPTG module; 6) Section A.6 presents a quantitative analysis and
additional experiments that examine the performance of the RCTVF module; 7) Section A.7 contains
visualization of feature maps after processing by the RCTVF module; 8) Section A.8 contains more
experiments on CroPe segmentation visualization; 9) Section A.9 contains potential societal impacts.

A.1 More Related Work

In order to reduce the difference in feature distribution between domains, UDA proposes a variety of
methods to bridge the gap between the source domain and the target domain. Existing research can
be mainly divided into two paradigms: adversarial training and self-training. Adversarial training
[36, 37, 38] aims to coordinate the outputs across domains by aligning the distributions of different
domains at different levels such as input, features, and output. However, this method is often affected
by instability [39], which limits its cross-domain effect. In contrast, self-training [40, 41] jointly
optimizes the distribution of the source domain and the target domain through pseudo-label learning
and gradually improves the performance of the target domain. In recent years, HRDA [8], which relies
on self-training, achieves a balance between preservation of high-resolution detail and perception
of long-range context through multi-resolution training (large low-resolution context + small high-
resolution details) and a scale attention mechanism. The core challenge of this paradigm is how
to extract reliable pseudo-labels. Therefore, many studies conduct extensive explorations from the
perspectives of confidence threshold setting [42] and pseudo-label correction [43, 44]. Our work also
belongs to the self-training paradigm and further proposes a better solution on this basis.

A.2 Network Architecture Details

We propose a cross-modal semantic compensation method to improve the consistency of the model
in adverse scenarios. CPTG enhances the domain awareness and generalization ability of text, while
RCTVF compensates for visual semantics with improved textual clues.

CPTG decouples text embedding into two components (invariant and specific) through a decoupling
strategy. It aligns the specific component with CLIP visual features via Domain-Specific Perception
and regulates the generalization of the invariant component through Domain-Invariant Regularization.
Gated Complementary Fusion then fully integrates the two decoupled features, providing rich text
priors for RCTVF. In RCTVF, multi-scale visual features interact with text cues through Unified
Attention, where visual features serve as queries and the embeddings generated by CPTG function as
key-value pairs. This process effectively fuses multi-level textual semantics into the visual modality
while providing semantic compensation. Additionally, we connect multi-scale features through a
Reverse Decoding Chain to enhance the fusion effect and propagate refined semantics from fine-
grained to coarse-grained layers. The complementary design of the two modules ensures that CPTG
focuses on cross-domain guidance, while RCTVF tackles the issue of visual semantic sparsity. By
applying segmentation loss to the multi-scale output of RCTVF, we achieve joint optimization of text
and visual modalities, enabling simultaneous training for visual-text alignment and UDA adaptation
performance. The complete training process of our CroPe is illustrated in Algorithm 1.

A.3 Detailed Datasets Information

Cityscapes (CS) is captured under normal weather conditions in 50 European cities, containing
2,975 training images, 500 validation images, and 1,525 test images. ACDC contains four adverse
scenes: fog, rain, snow, and night. For each scene, there are 400 training images, 100 validation
images (including 106 nighttime images), and 500 test images. along with 1,600 clean reference
images (ACDC-ref). Dark Zurich (DZ) provides 8,779 images captured during nighttime, twilight,
and daytime, with 50 validation and 151 test images. Nighttime Driving (ND) includes 50 coarsely
annotated nighttime images specifically designed for testing. BDD100K-Night (BD), a subset of the
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Algorithm 1 The core algorithm in CroPe

Input: Input image I, hand-crafted text prompt m; and learnable text prompt mo, visual encoder
FEyv and text encoder E.
Output Multi-Scale Semantic Compensated Visual Features Q™.
: # Obtain encoder features for visual and textual modalities
: Feed I into By : P = {Pl,PQ,Pg,P4} = Ev(I)
: Multi-scale visual features: F' = FPN(P) = {Fy, F5, F5, F4}.
Feed my, ms into Ep: T = ET(ml),T = ET(mQ).
# Complementary-Perceptive Text Generation (CPTG) module
: Decouple the embedding 7" into 77 and T’s, and pass the orthogonal constraint function. {Eq. 1}
: The soft consistency function constrains 77 to stay close to 7, maintaining the generality of 77.
{Eq. 3)
: Tg is combined with { P, P3, P,} respectively to obtain the T* = {T},T5, T5}. {Eq. 2}
9: Ty is fused with T to obtain multi-level complementary-perceptive text embeddings T' =
[Tla T27 T3} {Eq 4}
10: # Reverse Chain Text-Visual ngion (RCTVF) module
11: The projection Qr, of F; and T;_; are processed by Unified Attention to get ()7, which is then
upsampled and fused with Qr, ., ¢ = 4, 3, 2 through Reverse Decoding Chain. {Eq. 5, Eq. 6}
12: The semantically compensated Q* is passed through the segmentation head to obtain logits p.

o]

[T3R2]

Table 9: The number of training, validation, and test sets for each dataset. ““-” represents missing.

Images CS ACDC-All ACDC-Fog ACDC-Night ACDC-Snow ACDC-Rain DZ ND BD FZ FD
Traing set 2975 1600 400 400 400 400 8779 - - 3808
Validation set 500 406 100 106 100 100 50 - - - -
Test set 1525 2000 500 500 500 500 151 50 87 40 101

BDD100K segmentation dataset, consists of 87 finely annotated nighttime images. Foggy Zurich
(FZ) contains 3,808 images with light and medium fog, and 40 images for testing. Foggy Driving
(FD) provides 101 annotated images purely for testing. For more structured statistics, see Table 9.

A.4 Component Ablation Study

In the main text, we conducted an ablation study on the effectiveness of each module, focusing
on the impact of incorporating the CPTG and RCTVF modules into our proposed CroPe model.
Building on this, we provide a more comprehensive set of ablation experiments following the naming
convention established in Table 2, including replacing the backbone network and choosing different
CLIP variants to illustrate the evolution from the baseline DAFormer to our proposed CroPe.

The results are summarized in Table 10, where we added two columns for clarity: the column
“V-only”, which is checked if the visual backbone network of CLIP is used (ViT-B and ViT-L are
two considered variants); and the column “w/o FD”, which is checked if the FD loss strategy of
DAFormer is discarded; otherwise, it is retained. We initially conducted experiments by replacing
the backbone network alone (replacing SegFormer with CLIP’s ViT-B or ViT-L). This modification
leads to marginal performance gains, with mIoU improvements of 3.4 and 6.6, respectively. While
replacing the backbone improves overall performance, it also exposes a key limitation: the FD loss in
DAFormer (originally designed to align encoder features with those of a frozen encoder pre-trained
on ImageNet) turns out to be suboptimal. This misalignment occurs because the CLIP encoder is not
pre-trained on ImageNet, which can affect convergence efficiency and discriminability. To address
this, we systematically remove the FD loss (indicated in the w/o FD column), resulting in further
improvements of 3.4 and 4.5 mloU for ViT-B and ViT-L, respectively. This validates the redundancy
of the FD strategy when using a cross-modal backbone.

We then integrate handcrafted text prompts “a typical driving scenarios with a [class]” into the RCTVF
module (column “RCTVF”), which improves the performance of ViT-B and ViT-L by 2.2 mloU and
1.1 mlIoU, respectively. This demonstrates that combining RCTVF with invariant information can
enhance the semantic density of visual features through unified attention fusion and reverse decoding
chain. Replacing the fixed text prompts with learnable prompts (column “Prompt”) can capture
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Table 10: Albation studies of proposed modules on CS—DZ using SegFormer, ViT-B/16 and -L/14.
Method Backbone V-only w/oFD RCTVF Prompt CPTG mloU gain

DAFormer SegFormer X X X X X 48.5

X X X X 519 +34

X X X 553 468

CroPe ViT-B/16 X X 57.5 +9.0
X 579 494
594  +109

X X X X 55.1  +6.6

X X X 59.6  +11.1
CroPe ViT-L/14 X X 60.7  +12.2
X 61.1  +12.6

623  +13.8

Table 11: Ablation experiments using different hand-crafted text prompts, the best results on each
dataset are shown in bold.

Source ACDC Night ACDC Snow ACDC Rain ACDC Foggy

“a photo of a [class]"

60.7 68.8 72.0 67.3
“a clean origami of a [class]"
cs 61.2 68.7 72.2 67.4
“an image of a driving with a [class]"
59.7 67.4 72.0 67.0
“a typical driving scenario with a [class]"
61.5 69.3 72.5 68.1

domain-specific features more flexibly, leading to an additional improvement of 0.4 mIoU. Finally,
incorporating a complementary perceptual mechanism (column “CPTG”) preserves both domain
invariance and domain awareness, ultimately achieving mloU scores of 59.4 and 62.3 for ViT-B and
ViT-L, respectively. These findings highlight the efficacy and synergistic benefits of the proposed
components, providing a strong rationale for the design of the CroPe model.

A.5 More CPTG Ablation Studies

In the main text, we conducted ablation experiments inside the CPTG module to explore the effects
of using a certain type of text prompt alone and in combination with different prompts. In this section,
we further conduct an ablation study on the CPTG module to further evaluate the processing effects
of various prompts in CPTG and give a visual analysis of CPTG.

First, we conducted selection experiments on the hand-crafted text prompts listed in Table 11.
Considering that the knowledge based on ViT-B is more unstable and more sensitive to hand-crafted
text prompts, we chose this model to verify the effects of various prompts in four different scenarios
of the ACDC dataset. The experimental results show that the prompt "a typical driving scenarios with
a [class]" shows significant advantages in all indicators. This is mainly due to the fact that the prompt
provides a more general semantic representation of the driving scene, which is closer to the actual
application scenario than "a photo of a [class]|". However, the latter can still achieve relatively ideal
results, and in future domain adaptation tasks involving non-driving scenarios, more general prompts
obviously have greater application potential.

Secondly, through the qualitative ablation analysis of the CPTG in Figure 6, we can intuitively
understand the necessity of the CPTG. The results show that in the absence of the CPTG, cross-layer
fusion relying solely on visual features cannot effectively alleviate the serious visual information
occlusion problem. By introducing semantic compensation of text prompts, the sparsity of features
can be significantly improved, thereby effectively alleviating the serious domain shift problem.

A.6 More RCTVF Ablation Studies

In the main text, we illustrated the impact of the RCTVF module’s fusion strategies and the feature
distribution before and after RCTVF processing through various figures and tables. To further
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(a) Input (b) Ground Truth

(c) w/o TCP (d) w/ TCP

Figure 6: Use our CroPe model to perform visual comparison of the ACDC-AII validation set samples
with and without the CPTG module.

Table 12: RCTVF ablation on the ACDC-ALIl validation set, where * denotes the visual modality only
and “OOM” indicates out-of-memory.

Batch Size MIC Owurs* Ours

1 66.5 67.9 69.8
2 69.6 OOM 715

quantify the domain adaptation performance gains brought by the RCTVF module, we present the
Maximum Mean Discrepancy (MMD) metric between the two domains for each category in the
Cityscapes — ACDC-ALI task, as shown in Figure 7. The results demonstrate that CroPe achieves
significantly lower MMD distances compared to MIC across all categories. Notably, in the more
challenging categories such as train, rider, and motorcycle, CroPe further reduces the MMD by
0.0796, 0.1169, and 0.0500, respectively. This reduction highlights RCTVF’s capability to extract
more robust feature representations, effectively narrowing the domain gap and enabling the model to
better learn domain-invariant features.

Furthermore, while the RCTVF module in the main text was presented solely within the context of a
vision-text multimodal approach, it is also designed to handle pure visual modality inputs, resembling
a self-attention mechanism. To explore this versatility, we compare the performance of RCTVF under
pure visual modality and cross-modal strategies in Table 12. The results reveal that, although the
pure visual modality (third column) outperforms MIC (second column)—underscoring RCTVF’s
adaptability and effectiveness—it remains constrained by inherent visual interference, which limits
its ability to capture dense semantic information effectively. The introduction of the textual modality
(fourth column) mitigates this limitation, further improving performance and reinforcing the necessity
of cross-modal semantic compensation for effective domain adaptation. These findings collectively
affirm the RCTVF module’s critical role in enhancing robustness and semantic richness in UDA.

A.7 Feature Visualization Experiment

To verify the effectiveness of semantic compensation of visual features across multiple scales as
pointed out by the RCTVF module, we visualized the feature maps of Q* = {Q7, Q3,Q3, Q4 } on
the validation set of each scene of ACDC. As shown in Figure 8, the proposed CroPe demonstrates
hierarchical semantic refinement and cross-scale consistency enhancement. Specifically, the deepest
scale O absorbs dense textual semantics from 73 and resolves the ambiguity caused by domain
shift; while the reverse decoding gradually propagates high-level semantics to shallow scales, thereby
sharpening the details of small objects (e.g., road poles in night scenes). This experiment further
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Figure 7: Comparison of Maximum Mean Discrepancy (MMD) distance, where the values represent
the differences for each category.
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Figure 8: Visualization of the feature maps of the semantically compensated visual features of each
stage (scale) of the CroPe model on the ACDC-Fog/Night/Rain/Snow validation set.

confirms that semantic compensation enhances feature density and domain-invariant representation
learning, resulting in clearer semantic boundaries and fewer misclassifications in adverse scenes.

A.8 More Segmentation Visualization Comparison

In Figures 9-12, we show qualitative segmentation results compared with Baseline (DAFormer) and
MIC on the validation set of four different scenes: Cityscapes — ACDC-(Fog, Rain, Night, Snow).
Compared with MIC, the masks predicted by our model have finer details near the object boundaries,
thanks to CroPe’s cross-modal semantic compensation, which makes up for the shortcomings of
visual semantic sparsity. Compared with the Baseline, we have significantly reduced the hallucination
phenomenon of the model. It should be noted that CroPe does not actually use DAFormer’s FDloss
and Segformer backbone, which we have explained in the text.
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Input Baseline MIC Crope(Ours) Ground Truth

Figure 9: Qualitative visual comparison of the proposed CroPe with existing state-of-the-art methods
on the ACDC-Fog validation set

Input Baseline MIC Crope(Ours) Ground Truth

Figure 10: Qualitative visual comparison of the proposed CroPe with existing state-of-the-art methods
on the ACDC-Rain validation set

Input Baseline MIC Crope(Ours) Ground Truth

Figure 11: Qualitative visual comparison of the proposed CroPe with existing state-of-the-art methods
on the ACDC-Night validation set
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Input Baseline Crope(Ours) Ground Truth

Figure 12: Qualitative visual comparison of the proposed CroPe with existing state-of-the-art methods
on the ACDC-Snow validation set
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A.9 Potential Negative Societal Impacts

Our method poses no ethical risks regarding dataset usage or privacy violations, as all datasets and
tools are publicly available and transparent.
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