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Abstract
Domain adaptation methods often exploit001
domain-transferable input features, a.k.a. piv-002
ots. The task of Aspect and Opinion Term003
Extraction presents a special challenge for do-004
main transfer: while opinion terms largely005
transfer across domains, aspects change dras-006
tically from one domain to another (e.g. from007
restaurants to laptops). In this paper, we in-008
vestigate and establish empirically a prior con-009
jecture, which suggests that the linguistic rela-010
tions connecting opinion terms to their aspects011
transfer well across domains and therefore can012
be leveraged for cross-domain aspect term ex-013
traction. We present several analyses support-014
ing this conjecture, via experiments with four015
linguistic dependency formalisms to represent016
relation patterns. Following, we present an as-017
pect term extraction method that drives mod-018
els to consider opinion–aspect relations via ex-019
plicit multitask objectives. This method pro-020
vides significant performance gains, even on021
top of a prior state-of-the-art linguistically-022
informed model, which are shown in analysis023
to stem from the relational pivoting signal.024

1 Introduction025

Sentiment Analysis is one of the most widely026

used applications of natural language processing.027

A common fine grained formulation of the task,028

termed Aspect Based Sentiment Analysis, matches029

the terms in the text expressing opinions to corre-030

sponding aspects. For example, in the restaurant031

review in Figure 1, great, calm and quiet are opin-032

ion terms (OTs) referring to the aspect term (AT)033

ambience.034

Following the SemEval shared tasks (Pontiki035

et al., 2014, 2015), the preliminary task of AT and036

OT extraction has attracted significant research at-037

tention (Wang and Pan, 2020; Pereg et al., 2020, in-038

ter alia), especially for its domain adaptation setup,039

where a model trained on one domain is tested on040

another, unseen domain. Domain adaptation is cru-041

cial for this task, since each product or service is042
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Figure 1: An OT (yellow) to AT (blue) path-pattern
(green), defined on top of Universal Dependencies
(UD), occurring in sentences from the Devices (top)
and Restaurants (bottom) domains.

considered a different domain. Yet performance 043

on cross-domain aspect term extraction is still low, 044

reflecting that this task poses a special challenge to 045

common domain adaptation paradigms. 046

In most domain adaptation settings, some fea- 047

tures of the input are domain specific, while oth- 048

ers — also known as pivot features (Blitzer et al., 049

2006) — do transfer into unseen domains. Hence, 050

cross-domain generalization concerns focusing the 051

model’s learning on the latter. However, aspect 052

terms across domains share little direct common- 053

alities. Essentially, the primary property aspects 054

share is being the target topic referred to by opinion 055

terms. For this reason, prior works suggested us- 056

ing hand-crafted syntactic rules (Hu and Liu, 2004; 057

Ding et al., 2017), or alternatively, injecting a full 058

syntactic analysis into the model (Wang and Pan, 059

2018; Pereg et al., 2020), aiming to capture the 060

transferable relation-based properties of aspects. 061

Our first contribution is establishing the rela- 062

tional pivoting approach for cross-domain AT ex- 063

traction on quantitative, data driven analysis (§3). 064

We utilize four different linguistic formalisms (i.e., 065

syntactic and semantic dependencies) to identify 066

and characterize OT–AT relations, and empirically 067

confirm their domain transferability and impor- 068

tance for the task. Following, we propose an aux- 069

iliary multi-task learning method with specialized 070

relation-focused tasks, designed to teach the model 071
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to focally capture these relations during OT and072

AT extraction training (§4). Our method improves073

cross-domain AT extraction performance over both074

vanilla BERT (Devlin et al., 2019) and the state-075

of-the-art SA-EXAL (Pereg et al., 2020) models.076

We conclude with a quantitative analysis of model077

predictions, ascribing observed performance gains078

to enhanced relational pivoting.079

2 Background080

Following the SemEval Aspect Based Sentiment081

Analysis shared tasks (Pontiki et al., 2014, 2015),082

recent works have formulated the OT and AT extrac-083

tion task: given an opinionated text, identify the084

spans denoting OTs and ATs. We adopt the bench-085

mark dataset that was used by recent works (Wang086

and Pan, 2020; Pereg et al., 2020), which consists087

of three customer-review domains — (R)estaurants,088

(L)aptops and digital (D)evices — and was aggre-089

gated from the SemEval tasks jointly with several090

published resources (Hu and Liu, 2004; Wang et al.,091

2016). While promising AT extraction performance092

has been demonstrated for in-domain settings (Li093

et al., 2018; Augustyniak et al., 2019), it does not094

scale to unseen domains, where state-of-the-art095

models exhibited small incremental improvements096

and struggle to surpass F1 scores of 40–55 (for the097

different domain pairs).098

Previous works have conjectured that aspect and099

opinion terms maintain frequently occurring syntac-100

tic relations between them. Subsequently, Hu and101

Liu (2004), followed by Qiu et al. (2011), crafted a102

handful of simple syntactic patterns for in-domain103

AT extraction based on OTs. Motivated by the hy-104

pothesized domain transferability of syntactic OT–105

AT relations, Ding et al. (2017) employed pseudo106

labeling of AT based on the aforementioned pat-107

terns, which was used as auxiliary supervision for108

domain adaptation setup. We, however, exhaus-109

tively extract our patterns from the data rather than110

manually crafting them.111

In a related line of work, syntax was leveraged112

more broadly for the same relational pivoting mo-113

tivation. Wang and Pan (2018) and Wang and Pan114

(2020) encoded dependency relations with a re-115

cursive neural network using multitask learning,116

where the latter also applied domain-invariant ad-117

versarial learning. Most recently, the Syntacti-118

cally Aware Extended Attention Layer model (SA-119

EXAL) (Pereg et al., 2020) improved cross-domain120

OT and AT extraction by augmenting BERT with121

an additional self-attention head that attends solely 122

to the syntactic head of each token. 123

3 Motivating Analysis 124

The Relational Pivoting hypothesis is jointly en- 125

tailed from two observations: (1) Opinion terms 126

are similar across domains. (2) The relationships 127

between corresponding OT–AT pairs have com- 128

mon, domain transferable linguistic characteristics. 129

Taken together, these suggest that OT–AT linguistic 130

relations are informative pivot features for trans- 131

ferring aspect extraction across domains. In the 132

following subsections, we show several analyses 133

supporting the above observations and hypothesis. 134

3.1 Opinions vs. Aspects Domain Variability 135

We first measure the degree to which OTs and ATs 136

are shared across domains, by computing cross- 137

domain lexical overlap. We find that while only 138

20% of aspect terms in target domain were seen at 139

least once in source domain, this pertains to 69% of 140

the opinions (see Appendix A for details). This is in 141

sync with model experiments — both in-house and 142

as reported by Wang and Pan (2020) — showing 143

a drastic performance drop for cross-domain AT 144

extraction, from lower 70s in domain to around 145

45 F1, while exhibiting a “reasonable” drop in OT 146

extraction, from lower 80s to around 70 F1. 147

3.2 OT–AT Path Patterns 148

Next, we measure the degree to which linguistic 149

relations connecting OT–AT pairs are shared across 150

domains. To this end, we capture OT–AT linguistic 151

relations using their path pattern in a dependency 152

graph, i.e., the ordered list of the dependency rela- 153

tion labels occurring throughout the shortest (undi- 154

rected) path between the terms (Figure 1).1 155

We investigate and compare four linguistic for- 156

malisms: Spacy’s syntactic dependencies2, Univer- 157

sal Dependencies (UD), and two formalisms from 158

Semantic Dependency Parsing (Oepen et al., 2015) 159

— DELPH-IN MRS (DM) and Prague Semantic De- 160

pendencies (PSD).3 We parsed all the sentences in 161

1We maintain edge direction by appending a directionality
marker to each edge label. In case of multi-word terms, we
take the token pair across the terms having the shortest path.

2https://spacy.io/
3We also experimented with three application-oriented UD

extensions: Enhanced UD, Enhanced UD++ (Schuster and
Manning, 2016), and pyBART (Tiktinsky et al., 2020). These
formalisms introduced more label variability compared with
UD, but also shortened OT–AT paths and performed slightly
better in the multitask experiments. However, we omit these
due to space considerations.
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the benchmark dataset with state-of-the-art parsers162

— SpaCy 2.0, UDPipe4, and HIT-SCIR (Che et al.,163

2019) for DM and PSD. Since correspondences be-164

tween ATs and OTs are not annotated in the bench-165

mark dataset, we consider for each formalism all166

OT–AT pairs whose shortest path length is ≤ 2.167

This yields 9K–10K pairs which cover 60%–70%168

of the ATs across the different formalisms. These169

pairs and their path patterns constitute the data for170

the analyses below, as well as for training relation-171

focused auxiliary tasks (§4).172

We find that between 94%–97% of the patterns173

in one domain were seen at least once in another do-174

main (more details in Appendix C). This confirms175

the prior presupposition that the linguistic struc-176

ture of OT–AT relations is solidly domain invariant.177

Further, by plotting the cumulative distribution of178

patterns per domain, we observed that a small num-179

ber of patterns covers a large proportion of pairs,180

especially for the semantic formalisms, which may181

facilitate learning of these patterns. Full plots and182

additional observations can be found in Appendix183

B. Altogether, these findings demonstrate that path-184

patterns are promising features for domain transfer.185

3.3 Deterministic Relational Pivoting186

To estimate the potential of relation-based pivoting,187

we analyze a deterministic approach for extracting188

ATs via gold OTs based on path patterns, similar to189

prior rule-based methods (Hu and Liu, 2004; Qiu190

et al., 2011), and assess how well such an approach191

transfer across domains. Given predicted linguistic192

parses, we select the top k common OT-to-AT path193

patterns and apply them on every OT, where traver-194

sal destination tokens are selected as ATs. To il-195

lustrate, given the UD pattern OT CONJ←−−−* NSUBJ−−−→AT,196

the OTs quiet and calm would both yield ambience197

as an AT (Figure 1, bottom). Notably, this analysis198

is only a rough upper-bound estimate; it is limited199

to identifying single-word ATs (70% of all ATs)200

which furthermore relates to an OT in a strictly201

known pattern, whereas models may generalize202

over some of these limitations.203

Averaged results (across domain settings) are204

shown in Table 1 for varying k sizes.5 Overall,205

pattern-based AT extraction can bring averaged F1206

score up to 39 (DM), and recall up to 54 (UD).207

Crucially, there is hardly any drop in cross-domain208

settings relative to in-domain, affirming that pat-209

4https://ufal.mff.cuni.cz/udpipe
5See Appendix D for analysis of domain pair variability.

In-Domain Cross-Domain
k = 10 All k = 10 All

P R F1 P R F1 P R F1 P R F1
UD 41 32 35 22 54 31 40 30 34 22 52 30
DM 46 34 39 31 46 37 46 34 38 31 45 36

Table 1: Results of deterministically applying the top k
common path patterns (in source domain) on gold OTs
for extracting ATs. Evaluation is macro-averaged over
the 3 in-domain or 6 cross-domain settings.

terns from a different source domain are as infor- 210

mative as in-domain patterns for opinion based AT 211

extraction, consistent with observed pattern stabil- 212

ity (§3.2). These findings suggest that driving a 213

model to encode OT–AT relations should enhance 214

domain adaptation. 215

4 Multi-task Learning Method 216

To propagate the relational pivoting signal into an 217

OT and AT extraction model, we apply auxiliary 218

multitask learning (AMTL). We experimented with 219

two auxiliary tasks for steering the model to en- 220

code OT–AT relationship information. Given an 221

OT from an OT–AT pair of the collected auxiliary 222

training data (§3.2), the model learns to: (1) predict 223

its counterpart AT (ASP); and (2) predict the path- 224

pattern connecting them on the dependency graph 225

(PATT).6 The ASP task should foreground the im- 226

plicit representation of OT–AT relations, whereas 227

PATT injects explicit, linguistically-oriented rela- 228

tion information. 229

Prior multitask learning approaches for enrich- 230

ing models with syntax (Strubell et al., 2018; Wang 231

and Pan, 2018, 2020) have pushed them to encode a 232

full syntactic analysis, possibly including irrelevant 233

information. In contrast, our auxiliary tasks form a 234

“partial parsing” objective, specialized in the rele- 235

vant terms and their multifarious relations. We use 236

both vanilla BERT (Devlin et al., 2019) and state- 237

of-the-art SA-EXAL (Pereg et al., 2020) as base 238

models, where the latter may imply whether our 239

relation-focused signal is subsumed by SA-EXAL’s 240

awareness to the full syntactic parse (§2). 241

Implementation details We follow the experi- 242

mental setup of (Pereg et al., 2020), including re- 243

ported hyper-parameters, and apply one-layer clas- 244

sifiers on top of either bert-base-uncased or 245

SA-EXAL encoders, both for OT and AT extrac- 246

tion (formulated as a BIO-tagging task), and for 247

6The SA-EXAL model was amended to generalize over
the graph structures (rather than trees) produced by semantic
formalisms (Appendix E).
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L→ R D→ R R→ L D→ L R→ D L→ D Mean
BERT 47.2 (4.0) 51.6 (2.1) 44.5 (3.1) 46.7 (1.7) 38.3 (2.4) 42.6 (0.6) 45.16
BERT + ASP — DM 53.5 (3.3) 52.0 (2.1) 45.7 (2.4) 45.9 (2.3) 38.8 (1.5) 42.8 (1.0) 46.45
BERT + ASP — Spacy 49.8 (3.2) 51.6 (1.5) 46.2 (2.5) 45.2 (2.5) 39.4 (1.6) 42.5 (1.0) 45.77
BERT + PATT — DM 46.3 (4.7) 50.9 (2.6) 42.9 (3.4) 46.2 (2.4) 38.0 (1.9) 42.1 (1.0) 44.40
BERT + PATT — Spacy 50.1 (3.0) 51.6 (2.0) 43.1 (2.2) 46.6 (2.5) 37.8 (1.6) 42.0 (0.9) 45.20
SA-EXAL — DM 48.7 (5.8) 53.8 (2.8) 46.0 (3.1) 47.7 (1.8) 40.7 (1.3) 41.9 (0.6) 46.48
SA-EXAL — Spacy 47.9 (3.1) 54.1 (1.9) 45.4 (3.3) 47.1 (1.1) 40.7 (1.7) 42.1 (1.4) 46.24
SA-EXAL + ASP — DM 54.1 (2.3) 51.6 (2.0) 45.6 (2.9) 45.8 (4.1) 39.2 (1.9) 41.8 (0.9) 46.37
SA-EXAL + ASP — Spacy 54.0 (3.1) 52.6 (1.9) 47.1 (3.0) 46.9 (2.4) 39.1 (2.7) 42.2 (0.6) 47.00
SA-EXAL + PATT — DM 52.8 (4.3) 54.3 (1.8) 47.5 (1.9) 47.7 (2.2) 40.3 (1.5) 41.6 (0.8) 47.37
SA-EXAL + PATT — Spacy 51.2 (3.4) 53.3 (2.3) 46.5 (2.3) 46.6 (1.8) 39.5 (1.2) 41.5 (0.9) 46.42

Table 2: Models evaluation (mean F1 score and standard deviation) for different datasets and linguistic formalisms.
The best BERT and SA-EXAL results for each dataset are highlighted in bold.

the auxiliary tasks. Let Z = {z1, z2, . . . , zn} be248

the contextualized representations of the input se-249

quence produced by the encoder, and op be the OT250

index from an extracted OT–AT pair. The auxiliary251

classifiers are defined as follows:252

PATT(Z, op) = softmax(zopW
P + UP )

ASP(Z, op) = softmax(o1, . . . , on)

oi = (zopW
A + UA) · zi

253

where WP ∈ Rd×m, UP ∈ Rm, WA ∈ Rd×d,254

UA ∈ Rd are model parameters, · stands for dot255

product, d is the hidden vector size and m is the256

size of the output pattern vocabulary. m is set by257

taking all the patterns whose frequency in training258

data (i.e., source domain) is ≥ 3, while mapping259

other patterns to a fixed UNK symbol.260

5 Results and Analysis261

Following (Pereg et al., 2020), we run each model262

on 3 random data splits and 3 different random263

seeds, presenting the mean F1 (and standard de-264

viation) of the 9 runs. Detailed results are shown265

in Table 2, omitting the UD and PSD formalisms266

— which perform virtually on par with the other267

formalisms — for space considerations.7268

For BERT, training for ASP consistently im-269

proves the mean F1 score, by up to 1.3 points (DM),270

bringing BERT’s performance to be on par with the271

state-of-the-art SA-EXAL model. Improvements272

over the SA-EXAL baseline is generally smaller,273

yet some settings improve by 0.5–1 mean F1 points.274

Best performance is attained using SA-EXAL +275

PATT with semantic formalisms, indicating that276

pattern-focused signal is complementary to generic277

syntax enrichment methods.278

7Results for models trained with both ASP and PATT were
also omitted due to their lower performance.

Performance Analysis Examining the overlap 279

between model predictions and the deterministic 280

relational pivoting method (§3.3) can indicate to 281

what extent the model utilizes relational pivot fea- 282

tures. Specifically, we define pivot-∆R as the re- 283

call improvement a model gains by unifying its 284

true predicted ATs with those of the determinis- 285

tic method (at k = 10).8 Greater pivot-∆R indi- 286

cates greater discrepancy from the potential scope 287

of pattern-based coverage. Taking DM as the for- 288

malism, we find that for the vanilla BERT model, 289

average pivot-∆R across 6 domain transfers is 16.5 290

recall points, with 22.6 for the Laptops to Restau- 291

rants transfer (L→ R). This implies that relational 292

features have a significant potential for enhancing 293

its cross-domain coverage, especially on L→ R, 294

where we indeed observe the most profound model 295

improvements using our relation-focused tasks. In 296

comparison, BERT + ASP (DM) has an averaged 297

pivot-∆R of 14, with 15.7 on L→ R,9 confirming 298

that the multi-task objective pushes the model to 299

cover more ATs using relational pivoting. 300

6 Conclusion 301

We establish an opinion-based cross-domain AT 302

extraction approach, by analyzing the domain in- 303

variance of linguistic OT–AT path pattern. We 304

consequently propose a relation-focused multitask 305

learning method, and demonstrate that it enhances 306

models results by utilizing relational features. 307

8We average this measure as well over the 9 runs of each
model (#data splits × #seeds).

9More generally, the difference between pivot-∆R for
BERT and BERT + ASP (DM) correlates with model’s im-
provement along the datasets (Spearman’s ρ = 0.83).
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A Cross–domain lexical overlap in 404

Opinion and Aspect Terms 405

Table 3 shows the percentage of term instances in 406

the target domain occurring at least once in the 407

source domain. Overall, unlike aspect terms, opin- 408

ion terms have significant overlap across domains. 409

For example, the terms great, good, best, better and 410

nice all occur in the top-10 common OTs in each 411

of the three domains, jointly covering 22%, 20% 412

and 14% of OTs in the Restaurants, Devices and 413

Laptops domains, respectively. In sharp contrast, 414

there is only one aspect (price) occurring in the top 415

50 common ATs at all three domains. 416
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Aspects Opinions
D→ R 7.3 78.6
D→ L 42.3 83.2
R→ D 12.2 59.1
R→ L 11 61.4
L→ D 41.3 65.4
L→ R 9.1 68.3
Mean 20.5 69.3

Table 3: Cross-Domain lexical term overlap — how
many term instances from target domain occur at least
once in source domain (percentage).

B Pattern distribution analysis417

As mentioned in Section 3.3, we plot the relative418

cumulative pattern distribution in each domain for419

each formalism, visualizing the number of differ-420

ent patterns versus OT–AT pairs coverage[%] (Ap-421

pendix Figure 2). The general picture is that the422

vast majority of OT–AT pairs exhibit a few dozens423

of path patterns. Nevertheless, it is illuminating424

to examine the differences between domains and425

linguistic formalisms.426

Specifically, we observe that the Laptops domain427

is the most diverse and slowly-accumulating, pre-428

sumably making it harder to benefit from relational429

pivoting, while the opposite is true for the Restau-430

rants domain. By and large, this is inline both with431

results of the deterministic pivoting analysis (Sec-432

tion 3.3) broken down by domain pairs (Table 4),433

and, to a smaller degree, with performance gains434

of our relation-focused multitask experiments (Sec-435

tion 5).436

In addition, we find the cumulative distributions437

of DM and PSD to be more “dense”. In DM, for438

example, the most frequent common pattern (sim-439

ply OT ARG1−−−→AT) covers 55% of the paths. This440

implies that semantic formalisms, designed for ab-441

stracting out surface realization details, strengthen442

the commonalities across different sentences, thus443

might have greater potential for relational pivoting.444

This conjecture is also backed by the deterministic445

pivoting analysis (Section 3.3). However, we did446

not find a significant advantage for semantic vs.447

syntactic formalisms using our multitask methods448

(See Section 5).449

C Cross-domain overlap in path patterns450

In Table 5, we present the percentage of target451

domain path patterns occurring at least once in the452

source domain. To account for pattern frequency in453

each domain, we also compute the Jensen-Shannon454

Distance between pattern probability distributions455

(Table 6). Overall, DM has the best cross-domain 456

pattern overlap, while the Devices and Laptops 457

domains are slightly more similar to each other. 458

D Deterministic relation pivoting per 459

domain pair 460

In Section 3.3 we describe a deterministic DA AT 461

extraction method based on gold opinion terms 462

and top k most frequent OT–AT path patterns. Re- 463

sults per domain pair are shown in Table 4 for 464

k = 10, which approximately optimizes recall- 465

precision trade-off. Noticeably, the method is sig- 466

nificantly less effective for the Laptops target do- 467

main. This finding aligns with its wider pattern 468

diversity illustrated in Figure 2, but should also be 469

attributed to it having relatively fewer OT–AT pairs 470

that exceed our path-length ≤ 2 criterion. In DM, 471

for example, the ratio of the number of selected 472

OT–AT pairs to the total number of aspect terms 473

is 0.93 for Restaurants, 0.77 for Devices, but only 474

0.67 for the Laptops domain. Altogether, our inves- 475

tigation suggests that the domains vary in linguistic 476

complexity, reflected in richer and longer path pat- 477

terns for truly corresponding OT–AT pairs in some 478

domains (e.g. Laptops) compared to others (e.g. 479

Restaurants). Relational pivoting might be more 480

contributive to the latter, as also demonstrated by 481

the multitask experiments (Section 5). 482

E SA-EXAL for semantic graphs 483

As mentioned in Section 2, the SA-EXAL model 484

augments BERT with anspecialized,13th attention 485

head, incorporating the syntactic parse directly into 486

the model attention mechanism. In the original 487

paper, SA-EXAL was fed with syntactic depen- 488

dency trees, where each token has a syntactic head 489

token to which it should attend. The learned atten- 490

tion matrix A ∈ Rn×n is multiplied element-wise 491

by a matrix representation of the syntactic parse 492

P , where each row is a one-hot vector stating the 493

token to which to attend. 494

However, semantic dependency formalisms, 495

such as PSD and DM, produce bi-lexical directed 496

acyclic graphs, in which a word can have zero 497

“heads” (for semantically vacuous words, e.g. copu- 498

lar verbs) or multiple “heads” (i.e. outgoing edges). 499

We modify the SA-EXAL model such that in- 500

stead of one-hot rows, P can have all-one rows 501

(no heads) or multiple-ones rows (multiple heads). 502

Consequently, for tokens with no heads the network 503

is learning the attention without external interfer- 504
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Figure 2: Relative cumulative frequency distributions of path patterns for each domain in all formalisms, showing
how many different patterns (X axis) cover what percentage of OT–AT pairs (Y axis).

R→ L R→ D L→ R L→ D D→ R D→ L
spacy P: 0.32 R: 0.22 F1: 0.26 P: 0.61 R: 0.29 F1: 0.4 P: 0.49 R: 0.37 F1: 0.42 P: 0.58 R: 0.33 F1: 0.42 P: 0.54 R: 0.37 F1: 0.44 P: 0.3 R: 0.24 F1: 0.27

ud P: 0.26 R: 0.23 F1: 0.24 P: 0.46 R: 0.29 F1: 0.36 P: 0.44 R: 0.39 F1: 0.41 P: 0.47 R: 0.3 F1: 0.36 P: 0.49 R: 0.37 F1: 0.43 P: 0.26 R: 0.23 F1: 0.24
dm P: 0.29 R: 0.25 F1: 0.27 P: 0.6 R: 0.34 F1: 0.44 P: 0.52 R: 0.4 F1: 0.45 P: 0.6 R: 0.37 F1: 0.46 P: 0.47 R: 0.39 F1: 0.43 P: 0.26 R: 0.26 F1: 0.26
psd P: 0.22 R: 0.26 F1: 0.24 P: 0.41 R: 0.34 F1: 0.37 P: 0.35 R: 0.4 F1: 0.38 P: 0.41 R: 0.35 F1: 0.38 P: 0.3 R: 0.4 F1: 0.34 P: 0.19 R: 0.27 F1: 0.22

Table 4: Results of deterministic relational pivoting per DA settings (K=10).

R→ L R→ D L→ R L→ D D→ R D→ L
spacy 89.9 87.4 97.5 96.8 95.3 93

ud 93.4 94 96.7 95.9 95.7 93.1
dm 97.8 97.9 97.9 97 97.3 97.1
psd 93.8 95.5 95.3 96.8 93.2 90.4

Table 5: Cross-domain pattern overlap — how many
AT–OT paths in target domain share a pattern with
paths in source domain (percentage).

R↔ L R↔ D L↔ D Mean
spacy 0.62 0.60 0.58 0.60

ud 0.60 0.59 0.56 0.58
dm 0.50 0.50 0.50 0.50
psd 0.60 0.56 0.58 0.58

Mean 0.58 0.56 0.55 0.57

Table 6: Jensen-Shannon Distances between pattern
probabilities in different domains. Lower distance in-
dicates similarity between the frequency signature of
patterns in a domain pair.

ence, whereas for tokens with multiple heads, the505

attention mass is distributed between the heads.506
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