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Abstract

Domain adaptation methods often exploit
domain-transferable input features, a.k.a. piv-
ots. The task of Aspect and Opinion Term
Extraction presents a special challenge for do-
main transfer: while opinion terms largely
transfer across domains, aspects change dras-
tically from one domain to another (e.g. from
restaurants to laptops). In this paper, we in-
vestigate and establish empirically a prior con-
jecture, which suggests that the linguistic rela-
tions connecting opinion terms to their aspects
transfer well across domains and therefore can
be leveraged for cross-domain aspect term ex-
traction. We present several analyses support-
ing this conjecture, via experiments with four
linguistic dependency formalisms to represent
relation patterns. Following, we present an as-
pect term extraction method that drives mod-
els to consider opinion—aspect relations via ex-
plicit multitask objectives. This method pro-
vides significant performance gains, even on
top of a prior state-of-the-art linguistically-
informed model, which are shown in analysis
to stem from the relational pivoting signal.

1 Introduction

Sentiment Analysis is one of the most widely
used applications of natural language processing.
A common fine grained formulation of the task,
termed Aspect Based Sentiment Analysis, matches
the terms in the text expressing opinions to corre-
sponding aspects. For example, in the restaurant
review in Figure 1, great, calm and quiet are opin-
ion terms (OTs) referring to the aspect term (AT)
ambience.

Following the SemEval shared tasks (Pontiki
et al., 2014, 2015), the preliminary task of AT and
OT extraction has attracted significant research at-
tention (Wang and Pan, 2020; Pereg et al., 2020, in-
ter alia), especially for its domain adaptation setup,
where a model trained on one domain is tested on
another, unseen domain. Domain adaptation is cru-
cial for this task, since each product or service is
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Figure 1: An OT (yellow) to AT (blue) path-pattern
(green), defined on top of Universal Dependencies
(UD), occurring in sentences from the Devices (top)
and Restaurants (bottom) domains.

considered a different domain. Yet performance
on cross-domain aspect term extraction is still low,
reflecting that this task poses a special challenge to
common domain adaptation paradigms.

In most domain adaptation settings, some fea-
tures of the input are domain specific, while oth-
ers — also known as pivot features (Blitzer et al.,
2006) — do transfer into unseen domains. Hence,
cross-domain generalization concerns focusing the
model’s learning on the latter. However, aspect
terms across domains share little direct common-
alities. Essentially, the primary property aspects
share is being the target topic referred to by opinion
terms. For this reason, prior works suggested us-
ing hand-crafted syntactic rules (Hu and Liu, 2004;
Ding et al., 2017), or alternatively, injecting a full
syntactic analysis into the model (Wang and Pan,
2018; Pereg et al., 2020), aiming to capture the
transferable relation-based properties of aspects.

Our first contribution is establishing the rela-
tional pivoting approach for cross-domain AT ex-
traction on quantitative, data driven analysis (§3).
We utilize four different linguistic formalisms (i.e.,
syntactic and semantic dependencies) to identify
and characterize OT-AT relations, and empirically
confirm their domain transferability and impor-
tance for the task. Following, we propose an aux-
iliary multi-task learning method with specialized
relation-focused tasks, designed to teach the model



to focally capture these relations during OT and
AT extraction training (§4). Our method improves
cross-domain AT extraction performance over both
vanilla BERT (Devlin et al., 2019) and the state-
of-the-art SA-EXAL (Pereg et al., 2020) models.
We conclude with a quantitative analysis of model
predictions, ascribing observed performance gains
to enhanced relational pivoting.

2 Background

Following the SemEval Aspect Based Sentiment
Analysis shared tasks (Pontiki et al., 2014, 2015),
recent works have formulated the OT and AT extrac-
tion task: given an opinionated text, identify the
spans denoting OTs and ATs. We adopt the bench-
mark dataset that was used by recent works (Wang
and Pan, 2020; Pereg et al., 2020), which consists
of three customer-review domains — (R)estaurants,
(L)aptops and digital (D)evices — and was aggre-
gated from the SemEval tasks jointly with several
published resources (Hu and Liu, 2004; Wang et al.,
2016). While promising AT extraction performance
has been demonstrated for in-domain settings (Li
et al., 2018; Augustyniak et al., 2019), it does not
scale to unseen domains, where state-of-the-art
models exhibited small incremental improvements
and struggle to surpass F1 scores of 40-55 (for the
different domain pairs).

Previous works have conjectured that aspect and
opinion terms maintain frequently occurring syntac-
tic relations between them. Subsequently, Hu and
Liu (2004), followed by Qiu et al. (2011), crafted a
handful of simple syntactic patterns for in-domain
AT extraction based on OTs. Motivated by the hy-
pothesized domain transferability of syntactic OT-
AT relations, Ding et al. (2017) employed pseudo
labeling of AT based on the aforementioned pat-
terns, which was used as auxiliary supervision for
domain adaptation setup. We, however, exhaus-
tively extract our patterns from the data rather than
manually crafting them.

In a related line of work, syntax was leveraged
more broadly for the same relational pivoting mo-
tivation. Wang and Pan (2018) and Wang and Pan
(2020) encoded dependency relations with a re-
cursive neural network using multitask learning,
where the latter also applied domain-invariant ad-
versarial learning. Most recently, the Syntacti-
cally Aware Extended Attention Layer model (SA-
EXAL) (Pereg et al., 2020) improved cross-domain
OT and AT extraction by augmenting BERT with

an additional self-attention head that attends solely
to the syntactic head of each token.

3 Motivating Analysis

The Relational Pivoting hypothesis is jointly en-
tailed from two observations: (1) Opinion terms
are similar across domains. (2) The relationships
between corresponding OT-AT pairs have com-
mon, domain transferable linguistic characteristics.
Taken together, these suggest that OT-AT linguistic
relations are informative pivot features for trans-
ferring aspect extraction across domains. In the
following subsections, we show several analyses
supporting the above observations and hypothesis.

3.1 Opinions vs. Aspects Domain Variability

We first measure the degree to which OTs and AT's
are shared across domains, by computing cross-
domain lexical overlap. We find that while only
20% of aspect terms in target domain were seen at
least once in source domain, this pertains to 69% of
the opinions (see Appendix A for details). This is in
sync with model experiments — both in-house and
as reported by Wang and Pan (2020) — showing
a drastic performance drop for cross-domain AT
extraction, from lower 70s in domain to around
45 F1, while exhibiting a “reasonable” drop in OT
extraction, from lower 80s to around 70 F1.

3.2 OT-AT Path Patterns

Next, we measure the degree to which linguistic
relations connecting OT-AT pairs are shared across
domains. To this end, we capture OT-AT linguistic
relations using their path pattern in a dependency
graph, i.e., the ordered list of the dependency rela-
tion labels occurring throughout the shortest (undi-
rected) path between the terms (Figure .t

We investigate and compare four linguistic for-
malisms: Spacy’s syntactic dependencies?, Univer-
sal Dependencies (UD), and two formalisms from
Semantic Dependency Parsing (Oepen et al., 2015)
— DELPH-IN MRS (DM) and Prague Semantic De-
pendencies (PSD).> We parsed all the sentences in

"We maintain edge direction by appending a directionality
marker to each edge label. In case of multi-word terms, we
take the token pair across the terms having the shortest path.

https://spacy.io/

3We also experimented with three application-oriented UD
extensions: Enhanced UD, Enhanced UD++ (Schuster and
Manning, 2016), and pyBART (Tiktinsky et al., 2020). These
formalisms introduced more label variability compared with
UD, but also shortened OT-AT paths and performed slightly

better in the multitask experiments. However, we omit these
due to space considerations.
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the benchmark dataset with state-of-the-art parsers
— SpaCy 2.0, UDPipe*, and HIT-SCIR (Che et al.,
2019) for DM and PSD. Since correspondences be-
tween ATs and OTs are not annotated in the bench-
mark dataset, we consider for each formalism all
OT-AT pairs whose shortest path length is < 2.
This yields 9K-10K pairs which cover 60%—70%
of the ATs across the different formalisms. These
pairs and their path patterns constitute the data for
the analyses below, as well as for training relation-
focused auxiliary tasks (§4).

We find that between 94%—-97% of the patterns
in one domain were seen at least once in another do-
main (more details in Appendix C). This confirms
the prior presupposition that the linguistic struc-
ture of OT-AT relations is solidly domain invariant.
Further, by plotting the cumulative distribution of
patterns per domain, we observed that a small num-
ber of patterns covers a large proportion of pairs,
especially for the semantic formalisms, which may
facilitate learning of these patterns. Full plots and
additional observations can be found in Appendix
B. Altogether, these findings demonstrate that path-
patterns are promising features for domain transfer.

3.3 Deterministic Relational Pivoting

To estimate the potential of relation-based pivoting,
we analyze a deterministic approach for extracting
ATs via gold OTs based on path patterns, similar to
prior rule-based methods (Hu and Liu, 2004; Qiu
etal., 2011), and assess how well such an approach
transfer across domains. Given predicted linguistic
parses, we select the top k common OT-to-AT path
patterns and apply them on every OT, where traver-
sal destination tokens are selected as ATs. To il-
lustrate, given the UD pattern OT L B8UBL AT
the OT's quiet and calm would both yield ambience
as an AT (Figure 1, bottom). Notably, this analysis
is only a rough upper-bound estimate; it is limited
to identifying single-word ATs (70% of all ATs)
which furthermore relates to an OT in a strictly
known pattern, whereas models may generalize
over some of these limitations.

Averaged results (across domain settings) are
shown in Table 1 for varying k sizes.’ Overall,
pattern-based AT extraction can bring averaged F1
score up to 39 (DM), and recall up to 54 (UD).
Crucially, there is hardly any drop in cross-domain
settings relative to in-domain, affirming that pat-

‘https://ufal.mff.cuni.cz/udpipe
3See Appendix D for analysis of domain pair variability.

Cross-Domain
k=10 All k=10 All

P R FI|P R FI|P R Fl ‘ P R Fl

UD |41 32 35|22 54 31(40 30 34|22 52 30

DM | 46 34 39 ‘ 31 46 37 ‘ 46 34 38 ‘ 31 45 36

In-Domain

Table 1: Results of deterministically applying the top k
common path patterns (in source domain) on gold OT's
for extracting ATs. Evaluation is macro-averaged over
the 3 in-domain or 6 cross-domain settings.

terns from a different source domain are as infor-
mative as in-domain patterns for opinion based AT
extraction, consistent with observed pattern stabil-
ity (§3.2). These findings suggest that driving a
model to encode OT-AT relations should enhance
domain adaptation.

4 Multi-task Learning Method

To propagate the relational pivoting signal into an
OT and AT extraction model, we apply auxiliary
multitask learning (AMTL). We experimented with
two auxiliary tasks for steering the model to en-
code OT-AT relationship information. Given an
OT from an OT-AT pair of the collected auxiliary
training data (§3.2), the model learns to: (1) predict
its counterpart AT (ASP); and (2) predict the path-
pattern connecting them on the dependency graph
(PATT).% The AsP task should foreground the im-
plicit representation of OT-AT relations, whereas
PATT injects explicit, linguistically-oriented rela-
tion information.

Prior multitask learning approaches for enrich-
ing models with syntax (Strubell et al., 2018; Wang
and Pan, 2018, 2020) have pushed them to encode a
full syntactic analysis, possibly including irrelevant
information. In contrast, our auxiliary tasks form a
“partial parsing” objective, specialized in the rele-
vant terms and their multifarious relations. We use
both vanilla BERT (Devlin et al., 2019) and state-
of-the-art SA-EXAL (Pereg et al., 2020) as base
models, where the latter may imply whether our
relation-focused signal is subsumed by SA-EXAL’s
awareness to the full syntactic parse (§2).

Implementation details We follow the experi-
mental setup of (Pereg et al., 2020), including re-
ported hyper-parameters, and apply one-layer clas-
sifiers on top of either bert -base-uncased or
SA-EXAL encoders, both for OT and AT extrac-
tion (formulated as a BIO-tagging task), and for

®The SA-EXAL model was amended to generalize over
the graph structures (rather than trees) produced by semantic
formalisms (Appendix E).
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LR D—=R R—-L D=L R—=D L—D Mean
BERT 472(40) 51.6(2.1) 445(3.1) 46.7(17) 383(24) 426(0.6) 45.16
BERT + ASP — DM 535(33) 52.0(2.1) 457 (24) 459(23) 38.8(1.5) 42.8(1.0) 4645
BERT + ASP — Spacy 49.8(32) 51.6(1.5) 462 (2.5) 452(2.5) 39.4(L.6) 42.5(1.0) 4577
BERT + PATT — DM 463 (47) 50.9(2.6) 429 (3.4) 462(24) 38.0(1.9) 42.1(1.0) 44.40
BERT + PATT — Spacy 50.1 (3.0) 51.6(2.0) 43.1(22) 46.6(25) 37.8(1.6) 42.0(0.9) 45.20
SA-EXAL — DM 48.7(58) 53.8(2.8) 460(3.1) 47.7(1.8) 40.7(1.3) 41.9(0.6) 46.48
SA-EXAL — Spacy 479 (3.1) 54.1(1.9) 454 (3.3) 47.1(1.1) 407 (1.7) 42.1(1.4) 4624
SA-EXAL + AsP — DM | 541 (23) 51.6(2.0) 456(2.9) 458 (4.1) 392(1.9) 41.8(0.9) 46.37
SA-EXAL + ASP — Spacy | 54.0 (3.1) 52.6(1.9) 47.1 (3.0) 469 (2.4) 39.1(2.7) 422(0.6) 47.00
SA-EXAL + PATT — DM | 52.8 (4.3) 54.3(1.8) 47.5(1.9) 47.7(22) 40.3(1.5) 41.6(0.8) 47.37
SA-EXAL + PATT — Spacy | 51.2(3.4) 53.3(2.3) 46.5(2.3) 46.6(1.8) 39.5(1.2) 41.5(0.9) 4642

Table 2: Models evaluation (mean F1 score and standard deviation) for different datasets and linguistic formalisms.
The best BERT and SA-EXAL results for each dataset are highlighted in bold.

the auxiliary tasks. Let Z = {z1,29,...,2,} be
the contextualized representations of the input se-
quence produced by the encoder, and op be the OT
index from an extracted OT-AT pair. The auxiliary
classifiers are defined as follows:

PATT(Z, 0p) = softmaz(zo, W' + UT)
ASP(Z,0p) = softmax(o1,...,0n)
0; = (zopWA + UA) - %

where WP e R&xm [P ¢ Rm, WA ¢ Rixd,
U4 € R are model parameters, - stands for dot
product, d is the hidden vector size and m is the
size of the output pattern vocabulary. m is set by
taking all the patterns whose frequency in training
data (i.e., source domain) is > 3, while mapping
other patterns to a fixed UNK symbol.

5 Results and Analysis

Following (Pereg et al., 2020), we run each model
on 3 random data splits and 3 different random
seeds, presenting the mean F1 (and standard de-
viation) of the 9 runs. Detailed results are shown
in Table 2, omitting the UD and PSD formalisms
— which perform virtually on par with the other
formalisms — for space considerations.’

For BERT, training for ASP consistently im-
proves the mean F1 score, by up to 1.3 points (DM),
bringing BERT’s performance to be on par with the
state-of-the-art SA-EXAL model. Improvements
over the SA-EXAL baseline is generally smaller,
yet some settings improve by 0.5-1 mean F1 points.
Best performance is attained using SA-EXAL +
PATT with semantic formalisms, indicating that
pattern-focused signal is complementary to generic
syntax enrichment methods.

"Results for models trained with both ASP and PATT were
also omitted due to their lower performance.

Performance Analysis Examining the overlap
between model predictions and the deterministic
relational pivoting method (§3.3) can indicate to
what extent the model utilizes relational pivot fea-
tures. Specifically, we define pivor-AR as the re-
call improvement a model gains by unifying its
true predicted ATs with those of the determinis-
tic method (at k& = 10).® Greater pivor-AR indi-
cates greater discrepancy from the potential scope
of pattern-based coverage. Taking DM as the for-
malism, we find that for the vanilla BERT model,
average pivot-AR across 6 domain transfers is 16.5
recall points, with 22.6 for the Laptops to Restau-
rants transfer (L — R). This implies that relational
features have a significant potential for enhancing
its cross-domain coverage, especially on L — R,
where we indeed observe the most profound model
improvements using our relation-focused tasks. In
comparison, BERT + ASP (DM) has an averaged
pivot-AR of 14, with 15.7on L — R,° confirming
that the multi-task objective pushes the model to
cover more AT's using relational pivoting.

6 Conclusion

We establish an opinion-based cross-domain AT
extraction approach, by analyzing the domain in-
variance of linguistic OT-AT path pattern. We
consequently propose a relation-focused multitask
learning method, and demonstrate that it enhances
models results by utilizing relational features.

8We average this measure as well over the 9 runs of each
model (#data splits X #seeds).

“More generally, the difference between pivot-AR for
BERT and BERT + ASP (DM) correlates with model’s im-
provement along the datasets (Spearman’s p = 0.83).
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A Cross—domain lexical overlap in
Opinion and Aspect Terms

Table 3 shows the percentage of term instances in
the target domain occurring at least once in the
source domain. Overall, unlike aspect terms, opin-
ion terms have significant overlap across domains.
For example, the terms great, good, best, better and
nice all occur in the top-10 common OTs in each
of the three domains, jointly covering 22%, 20%
and 14% of OTs in the Restaurants, Devices and
Laptops domains, respectively. In sharp contrast,
there is only one aspect (price) occurring in the top
50 common ATs at all three domains.
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Aspects  Opinions
D—R 73 78.6
D—L 42.3 83.2
R—D 12.2 59.1
R—L 11 61.4
L—D 41.3 65.4
L—R 9.1 68.3
Mean 20.5 69.3

Table 3: Cross-Domain lexical term overlap — how
many term instances from target domain occur at least
once in source domain (percentage).

B Pattern distribution analysis

As mentioned in Section 3.3, we plot the relative
cumulative pattern distribution in each domain for
each formalism, visualizing the number of differ-
ent patterns versus OT-AT pairs coverage[%] (Ap-
pendix Figure 2). The general picture is that the
vast majority of OT-AT pairs exhibit a few dozens
of path patterns. Nevertheless, it is illuminating
to examine the differences between domains and
linguistic formalisms.

Specifically, we observe that the Laptops domain
is the most diverse and slowly-accumulating, pre-
sumably making it harder to benefit from relational
pivoting, while the opposite is true for the Restau-
rants domain. By and large, this is inline both with
results of the deterministic pivoting analysis (Sec-
tion 3.3) broken down by domain pairs (Table 4),
and, to a smaller degree, with performance gains
of our relation-focused multitask experiments (Sec-
tion 5).

In addition, we find the cumulative distributions
of DM and PSD to be more “dense”. In DM, for

example, the most frequent common pattern (sim-

ply OTﬂ)AT) covers 55% of the paths. This

implies that semantic formalisms, designed for ab-
stracting out surface realization details, strengthen
the commonalities across different sentences, thus
might have greater potential for relational pivoting.
This conjecture is also backed by the deterministic
pivoting analysis (Section 3.3). However, we did
not find a significant advantage for semantic vs.
syntactic formalisms using our multitask methods
(See Section 5).

C Cross-domain overlap in path patterns

In Table 5, we present the percentage of target
domain path patterns occurring at least once in the
source domain. To account for pattern frequency in
each domain, we also compute the Jensen-Shannon
Distance between pattern probability distributions

(Table 6). Overall, DM has the best cross-domain
pattern overlap, while the Devices and Laptops
domains are slightly more similar to each other.

D Deterministic relation pivoting per
domain pair

In Section 3.3 we describe a deterministic DA AT
extraction method based on gold opinion terms
and top k£ most frequent OT-AT path patterns. Re-
sults per domain pair are shown in Table 4 for
k = 10, which approximately optimizes recall-
precision trade-off. Noticeably, the method is sig-
nificantly less effective for the Laptops target do-
main. This finding aligns with its wider pattern
diversity illustrated in Figure 2, but should also be
attributed to it having relatively fewer OT-AT pairs
that exceed our path-length < 2 criterion. In DM,
for example, the ratio of the number of selected
OT-=AT pairs to the total number of aspect terms
is 0.93 for Restaurants, 0.77 for Devices, but only
0.67 for the Laptops domain. Altogether, our inves-
tigation suggests that the domains vary in linguistic
complexity, reflected in richer and longer path pat-
terns for truly corresponding OT-AT pairs in some
domains (e.g. Laptops) compared to others (e.g.
Restaurants). Relational pivoting might be more
contributive to the latter, as also demonstrated by
the multitask experiments (Section 5).

E SA-EXAL for semantic graphs

As mentioned in Section 2, the SA-EXAL model
augments BERT with anspecialized,13th attention
head, incorporating the syntactic parse directly into
the model attention mechanism. In the original
paper, SA-EXAL was fed with syntactic depen-
dency trees, where each token has a syntactic head
token to which it should attend. The learned atten-
tion matrix A € R™*" is multiplied element-wise
by a matrix representation of the syntactic parse
P, where each row is a one-hot vector stating the
token to which to attend.

However, semantic dependency formalisms,
such as PSD and DM, produce bi-lexical directed
acyclic graphs, in which a word can have zero
“heads” (for semantically vacuous words, e.g. copu-
lar verbs) or multiple “heads” (i.e. outgoing edges).
We modify the SA-EXAL model such that in-
stead of one-hot rows, P can have all-one rows
(no heads) or multiple-ones rows (multiple heads).
Consequently, for tokens with no heads the network
is learning the attention without external interfer-
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Figure 2: Relative cumulative frequency distributions of path patterns for each domain in all formalisms, showing
how many different patterns (X axis) cover what percentage of OT-AT pairs (Y axis).

R—L R—D L—R L—D D—R D—L
spacy | P: 0.32R: 0.22F1: 026 P:0.61 R: 0.29F1: 0.4 P:0.49R:0.37F1: 042 P:0.58R:0.33F1: 042 P:0.54R:0.37F1: 044 P:0.3R:0.24F1: 0.27
ud | P:0.26 R: 0.23 F1: 0.24 P:0.46R: 0.29F1: 036 P:0.44R:0.39F1: 041 P:047R:0.3F1: 036 P:0.49R:0.37F1: 043 P:0.26 R: 0.23 F1: 0.24
dm | P:0.29R:0.25F1: 0.27 P:0.6R:0.34F1: 044 P:0.52R:04F1:045 P:0.6R:0.37F1: 046 P:047R:0.39F1:043 P:0.26R:0.26 F1: 0.26
psd | P:0.22R:0.26 F1: 0.24 P: 041 R:0.34F1: 0.37 P:035R:04F1: 038 P:041R:0.35F1: 038 P:03R:0.4F1:0.34 P:0.19R:0.27 F1: 0.22

Table 4: Results of deterministic relational pivoting per DA settings (K=10).

| R=L R—»D L—R L—=-D D—R D—=L

spacy 89.9 87.4 97.5 96.8 95.3 93
ud 93.4 94 96.7 95.9 95.7 93.1
dm 97.8 97.9 97.9 97 973 97.1

psd 93.8 95.5 95.3 96.8 93.2 90.4

Table 5: Cross-domain pattern overlap — how many
AT-OT paths in target domain share a pattern with
paths in source domain (percentage).

| R&L R<D LD Mean

spacy 0.62 0.60 0.58 0.60
ud 0.60 0.59 0.56 0.58
dm 0.50 0.50 0.50 0.50
psd 0.60 0.56 0.58 0.58
Mean 0.58 0.56 0.55 0.57

Table 6: Jensen-Shannon Distances between pattern
probabilities in different domains. Lower distance in-
dicates similarity between the frequency signature of
patterns in a domain pair.

ence, whereas for tokens with multiple heads, the
attention mass is distributed between the heads.



