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ABSTRACT

Reinforcement Learning (RL) has been shown to significantly boost reasoning
capabilities of large language models (LLMs) in math, coding, and multi-hop
reasoning tasks. However, RL fine-tuning requires abundant high-quality verifi-
able data, often obtained through human-annotated datasets and LL.M-as-verifier
loops. Both of these data types have considerable limitations: human-annotated
datasets are small and expensive to curate, while LLM verifiers have high scoring
latency and are costly to operate. In this work, we investigate the use of synthetic
datasets in RL fine-tuning for multi-hop reasoning tasks. We discover that LLMs
fine-tuned on synthetic data perform significantly better on popular real-world
question-answering benchmarks, even though the synthetic data only contain fic-
tional knowledge. On stratifying model performance by question difficulty, we
find that synthetic data teaches LLMs to compose knowledge, which we to be a
fundamental and generalizable reasoning skill. Our work thus highlights the util-
ity of synthetic reasoning datasets in improving LLM reasoning capabilities.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated remarkable success in enhancing the reasoning capa-
bilities of large language models (LLMs) across diverse domains including mathematics, coding, and
complex reasoning tasks (Bai et al., 2022; Shao et al., 2024; Lambert et al., 2025; Guo et al., 2025a;
Guan et al., 2025). Answering questions in these language model reasoning domains characteristi-
cally require executing multi-hop or multi-step solution trajectories to reach the final solution. That
is, the questions require solving intermediate subproblems in math and coding tasks, or sequencing
deduction steps in natural language question-answering. In recent years, most LLM-oriented rea-
soning benchmarks reflect this multi-hop structure (Mirzadeh et al., 2025; MAA; Yang et al., 2018;
Trivedi et al., 2022) and are popularly used to evaluate gains in LLM reasoning capabilities. Beyond
evaluation, these datasets have also been used to fine-tune LLMs (Shao et al., 2024; Rafailov et al.,
2023), demonstrating that they are valuable resources for boosting LLM reasoning capabilities.

However, the effectiveness of RL fine-tuning for LLM reasoning is fundamentally constrained by the
availability of high-quality training data of questions and verifiably correct answers (Lambert et al.,
2025). Curation of new datasets is both time-consuming and expensive, especially when reasoning
tasks require reliable ground-truth labels (Xie et al., 2024). In addition, as LLMs are trained at
internet-scale, they eventually become prone to data leakage, memorization, and thus reasoning im-
provements are often unreliable (Gong et al., 2025; Xie et al., 2024). As an observed consequence,
the pace of language model training is starting to outpace the availability of high-quality human-
written text required for reasoning training (Villalobos et al., 2024; Muennighoff et al., 2023). In
response, it has been a recent practice to leverage synthetic data in both LLM pretraining and fine-
tuning, either by expanding upon the existing data with generated traces (Trinh et al., 2024; Ruan
etal., 2025) or by training on synthetic problems generated from stronger model (Abdin et al., 2025).
Another major trend focuses on generating problems within systematically verifiable domains such
as mathematics and coding, enabling the application of reinforcement learning with verifiable re-
ward signals (RLVR; Guo et al., 2025a; Lambert et al., 2025). While this approach has shown
promising results, reasoning domains beyond mathematics and coding remain relatively underex-
plored, primarily due to the inherent challenges in establishing verifiable systems in more general
problem settings (Su et al., 2025).
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Figure 1: We analyze performance transfer from synthetic to real-world multi-hop reasoning.

In this work, we investigate a fundamental research question: can models develop general reasoning
capabilities solely from synthetic data, without relying on real-world knowledge? Among various
reasoning capabilities, we focus specifically on knowledge composition—the fundamental ability to
integrate information across multiple inferential steps for multi-hop reasoning.

To answer this question, we examine whether capabilities acquired from synthetic multi-hop rea-
soning datasets can effectively generalize to real-world natural language question-answering sce-
narios. Specifically, we conduct systematic experiments using knowledge composition datasets such
as PhantomWiki (Gong et al., 2025) and GSM-Infinite (GSM-00) (Zhou et al., 2025), to fine-tune
LLMs with reinforcement learning across diverse reasoning complexity levels. Our findings demon-
strate that these synthetic datasets provide scalable and verifiable training signals, enabling success-
ful transfer of enhanced reasoning capabilities to real-world question-answering benchmarks. Train-
ing on these synthetic datasets consistently improves performance on in-context multi-hop reason-
ing tasks such as HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), and MuSiQue
(Trivedi et al., 2022). Moreover, performance transfer trends are consistent across model families
and sizes, with no evidence of overfitting at scale. For example, Qwen3-0.6B model trained on Phan-
tomWiki achieves F1 improvements of 62% on HotpotQA, 63% on 2WikiMultihopQA, and 132%
on MuSiQue, relative to the base model. Scaling synthetic training data does not cause overfitting,
demonstrating robust generalization. We further analyze model performance during training, strati-
fied by question difficulty levels, which is systematically defined by the number of required reason-
ing steps. We establish that improvements on more challenging questions in synthetic datasets con-
sistently translate to enhanced performance on more difficult real-world question-answering tasks,
empirically demonstrating the transferability of multi-hop reasoning capabilities.

Our key insight is that reasoning capabilities developed on synthetic data—particularly the ability to
compose and chain logical inferences—can generalize to real-world multi-hop reasoning scenarios,
even when the training and evaluation domains share no factual overlap. Our contributions:

1. We propose synthetic multi-hop datasets as a scalable, cost-effective source of reasoning
training data that provides infinite, verifiable training signals, demonstrating that multi-hop
reasoning capabilities can be effectively learned from synthetic data without factual overlap
between training and evaluation domains.

2. We provide empirical evidence for synthetic reasoning training that generalizing to real-
world scenarios, demonstrating performance gains across model families and sizes, and
establishing the practical viability of synthetic data for reasoning enhancement.

3. We study reasoning transfer to synthetic and real-world tasks across question difficulty lev-
els, demonstrating that improvements on synthetic tasks with varying reasoning complexity
translate to enhanced performance on increasingly challenging real-world tasks.

2 BACKGROUND AND RELATED WORK

Reasoning in Large Language Models. While LLM reasoning is a long-standing research area, the
definition and assessment of reasoning capabilities is ambiguous and therefore complex (Xie et al.,
2024; Han et al., 2025). Thinking and reasoning models like DeepSeekMath (Shao et al., 2024),



DeepSeek-R1 (Guo et al., 2025a), or Phi-4-reasoning (Abdin et al., 2025) are typically evaluated
in their reasoning skills through performance on various benchmarks. These benchmark tasks may
range from technical and abstract domains like mathematics, algorithms, coding, puzzle-solving
(Hendrycks et al., 2021; MAA; Cobbe et al., 2021; Jain et al., 2025; Chollet et al., 2025), to more
knowledge-intensive domains like the sciences and law (Rein et al., 2024; Sawada et al., 2023),
general common sense, abductive, and counterfactual reasoning (Talmor et al., 2019; Zhao et al.,
2023; Bhagavatula et al., 2020; Wu et al., 2025a; Hiyiik et al., 2025), natural language question-
answering (Trivedi et al., 2022; Yang et al., 2018; Ho et al., 2020; Tang & Yang, 2024; Qi et al.,
2021), and interaction with the environment through planning and tool use (Patil et al., 2024; Zhuang
et al., 2023; Yao et al., 2024). Many of these benchmarks require breaking the question down into
intermediate subproblems and composing them together to arrive at the correct final answer (Gong
et al., 2025; Xie et al., 2025); this behavior is considered to be one of the intrinsic properties of
effective reasoning models (Gandhi et al., 2025).

Training and Fine-tuning Large Reasoning Models. LLM performance and generalization on rea-
soning benchmarks can be improved with training or fine-tuning using several classes of techniques.
The simplest approach is to train on the datasets directly using supervised fine-tuning (SFT; Lambert
et al., 2025) with the next-token prediction objective. This includes variations to add more helpful
instructions or to encourage a more detailed thinking process, for instance through instruction fine-
tuning (Chung et al., 2024) and chain-of-thought (CoT) modeling (Xiang et al., 2025; Zelikman
et al., 2022; Hao et al., 2025; Yao et al., 2023; Chen et al., 2023; Wan et al., 2025). reinforcement
learning from human feedback (RLHF; Christiano et al., 2017; Ouyang et al., 2022) emerged as a
more complicated, RL-based framework for fine-tuning models using human preferences. RLHF al-
gorithms include policy gradient-based PPO (Schulman et al., 2017), and variants or simplifications
like GRPO (Shao et al., 2024) and DPO (Rafailov et al., 2023), among others (Hu et al., 2025; Pang
et al., 2024; Brantley et al., 2025; Yu et al., 2025; Liu et al., 2025; Shrivastava et al., 2025).

Many LLM reasoning benchmarks benefit from having objective ground-truth answers (such as the
correct answer to a math question); replacing the reward model in RLHF with a procedural verifica-
tion function has been termed reinforcement learning with verifiable rewards (RLVR; Lambert et al.,
2025). While this technique has been utilized in several recent reasoning models (Lambert et al.,
2025; Guo et al., 2025a; Abdin et al., 2025), its ability and mechanisms for eliciting fundamentally
novel reasoning patterns remains an open research area (Wen et al., 2025; Yue et al., 2025; Shao
et al., 2025; Zhao et al., 2025).

Leveraging Synthetic Data. Fine-tuning large reasoning models has several challenges. One
challenge is that the abstract (multi-hop) reasoning skills may be difficult to isolate in any par-
ticular benchmark: they could be confounded both by other skills (such as arithmetic or writing
syntactically-correct code) or memorization—in the way that allows the model to leverage required
implicit knowledge while preventing it from recalling the memorized answer itself (Wu et al., 2025b;
Xie et al., 2024; Yu et al., 2024). Moreover, as LLMs are trained at internet-scale, reasoning bench-
marks gradually become prone to test set leakage (Gong et al., 2025; Wu et al., 2025b), while novel
and unseen benchmarks with reliable rewards become more scarce. All these challenges can be
alleviated using synthetic datasets, which can isolate specific reasoning aspects while providing po-
tentially unlimited number of new examples with verifiable rewards.

Most synthetic reasoning benchmarks are generated programmatically, especially in mathematics
(Mirzadeh et al., 2025; Zhou et al., 2025; Wu et al., 2025b), logic puzzles (Xie et al., 2024; Shojaee
etal., 2025; Stojanovski et al., 2025), and some forms of natural language question-answering (Gong
et al., 2025; Guo et al., 2025b; Sinha et al., 2019). Other benchmarks leverage LLMs to create
additional examples and reasoning traces, augmenting existing curated datasets (Yang et al., 2025;
Goldie et al., 2025; Huang et al., 2025; Saad-Falcon et al., 2024; Li et al., 2025).

However, as with RLVR, the effectiveness and applicability of these synthetic data to real-world
reasoning skills remains an underexplored question (Yu et al., 2024; Mizrahi et al., 2025; Abbe
et al., 2024b;a; Stojanovski et al., 2025), which we study in this work.



3 METHODOLOGY

To comprehensively study the transfer performance of synthetic to real-world datasets, we RL fine-
tune LLMs of sizes varying from ~ 0.75B to 4B parameters: Qwen3-0.6B, Qwen3-1.7B (Qwen
Team, 2025), Qwen2.5-1.5B-Instruct (Qwen Team, 2024), and Phi-4-mini-reasoning (Abdin et al.,
2025). We fine-tune each model for 1 epoch on a random shuffle of each of our synthetic training
datasets, which required 4 NVIDIA H100 GPUs. We describe our synthetic training dataset selec-
tion, RL fine-tuning algorithm, prompt configuration and reward models below; see Appendix A for
full implementation details.

3.1 SYNTHETIC TRAINING DATASETS

To fine-tune LLMs with reinforcement learning, recent works highlight the need for large datasets
with two important characteristics: scalable verification of model generations, and questions of
varying difficulty (Guo et al., 2025a; Wen et al., 2025; Shao et al., 2025; Lambert et al., 2025; Abdin
et al., 2025). Scalable verification is essential for quickly determining the on-policy generation
rewards, enabling reasonable fine-tuning times, meanwhile a mix of easy and hard questions helps
provide both informative and meaningful training signal. With these criteria in mind, and to be
able to investigate the specificity of multi-hop reasoning skills to particular contexts, we select the
following recent synthetic datasets.

GSM-oo (Zhou et al., 2025) generalizes the GSM8K benchmark of grade school math word prob-
lems (Cobbe et al., 2021) to its potentially-infinitely extensible counterpart. GSM-oo builds a ran-
dom computation graph to represent the ground-truth solution trace, optionally augmented with
distractor facts. It then converts the graph to a word problem via natural language templates in one
of the pre-defined themes. This dataset is representative of a common class of math-based syn-
thetic reasoning benchmarks, and due to confounding arithmetic skills it allows us to investigate
generalizability of math-based reasoning to more knowledge-intensive real-world tasks.

We generate arithmetic word problems from GSM-oo using its “medium” difficulty level, set the
number of arithmetic operations to range between 2 and 20, and fix the context length to zero:
this configuration ensures that each problem only contains information necessary and sufficient for
the solution and therefore simplifies the identification of the “hops” in the solution trace. With
this synthetic data curation strategy, we collect ~ 600 questions for each of 19 difficulty levels.
Half of each set of questions are from zoo theme, one quarter from teacher—school theme, and
the remaining from movie theme — all equally split between forward and reverse modes (which
correspond to addition/multiplication and subtraction/division questions, respectively). This yields
a total of ~ 12.5K samples, with 10K samples used for training and the remainder for validation.

PhantomWiki (Gong et al., 2025) generates on-demand synthetic datasets of natural language docu-
ment corpora and question answer-pairs, designed to evaluate LLMs on multi-step and multi-branch
reasoning and retrieval capabilities. Each PhantomWiki dataset represents a randomly universe of
fictional individuals, whose personal attributes and inter-personal relations are described in a set of
Wikipedia-like documents; then a context-free grammar and logic programming-based algorithm
generates multi-hop reasoning questions like “Who is the nephew of the friend of the person who
likes birdwatching?”. Unlike in GSM-o0, questions in PhantomWiki may have multiple possible
answers (e.g., there could be many people who like birdwatching, and each of their friends could
have several nephews). It also requires a greater extent of retrieval and knowledge composition
skills—finding and processing the relevant information scattered across multiple documents.

In our experiments, we configure our PhantomWiki datasets to only contain “easy” relations like
immediate family and friends, so that the “hops” are conceptually simple. We further filter out
aggregation questions of the form “How many ...”, to constrain the dataset to purely multi-hop
questions like “Who is the <relation> of ...?” and “What is the <attribute> of ...?. This setup
ensures that answering a question of difficulty d requires hopping through documents of exactly d
individuals in the universe and eliminates the confounding counting skill. We generate 34 universes
of 25 individuals using 100 random seeds, and set the context-free grammar recursion depth to 20
to generate questions with varying difficulties; we also obtain the ground-truth list of answers for
each question using PhantomWiki’s logic program. This results in 330 questions per universe with



question difficulties (hops) ranging from 1 to 9. We select 31 universes for 10K training question-
answer samples, and reserve 3 universes (= 1K samples) for validation.

3.2 RL FINE-TUNING FOR REASONING

In this work, we use group relative policy optimization (GRPO; Shao et al., 2024) as the primary RL
fine-tuning algorithm for understanding reasoning transfer. GRPO has been introduced as a variant
of proximal policy optimization (PPO; Schulman et al., 2017); by replacing the value model-based
advantage estimation of the original PPO algorithm with one the one based on a group of online
completions for each prompt, it effectively reduces memory and compute requirements.

For clarity, we restate the objective from Shao et al. (2024): given a question ¢ sampled from a
distribution over question set P(Q), GRPO samples a group of G output completions {01, . ..o}
from the old LLM 7 with parameters 6,4, and assigns each output completion a scalar reward value

{R1,...,R¢}. The algorithm estimates the advantage A; of each completion by normalizing with
respect to the average reward as a baseline. The final objective is as follows:
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In our experiments, we use the GRPOTrainer implementation from the open-source Hugging Face
TRL library' (von Werra et al., 2020), which implements a per-GPU-device training batch version
of GRPO and sets KL-divergence penalty hyperparameter 3 to 0.

3.3 PROMPT AND REWARD DESIGN

We train LLMs to perform in-context reasoning and retrieval, i.e., to answer questions given all the
relevant context in the prompt. Our prompt first includes the evidence: for a GSM-oo question, this is
the problem statement; for a PhantomWiki question, we provide documents for all 25 individuals of
the randomly generated universe. After the evidence, our prompt includes an instruction for the LLM
to output the final answer within <answer>. ..</answer> tags, which are the standard output
format for DeepSeek-R1 for reasoning questions (Guo et al., 2025a) and subsequent LLMs like the
Qwen3 family (Qwen Team, 2025). To further ground the answer output format, we append CoT
examples: for GSM-oo, we use 3 of the the automatically-generated CoT ground-truth solutions
from the training set; for PhantomWiki we use 11 CoT examples that were originally curated by
Gong et al. (2025). Finally, we pose the question to the LLM (our full prompts are included in
Appendix C).

We parse model generations using a regular expression to pick the last <answer>...</answer>
in the generated text, and compare with the ground-truth answer. For GSM-oo questions, we reward
the model with binary reward on the correct numeric value. As PhantomWiki questions can have
multiple answers, we reward the model-generated answers with an F1 score between 0 and 1.

3.4 EVALUATION DATASETS

We evaluate all models on the following 3 in-context question answering datasets that measure multi-
hop reasoning capabilities. We randomly subsample 500 from the respective test sets for evaluation.
HotpotQA (Yang et al., 2018) is a multi-hop question answering dataset containing over 100,000

"https://huggingface.co/docs/trl/v0.21.0/grpo_trainer
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Figure 2: F1 score on real-world multi-hop reasoning datasets of LLMs finetuned with GRPO
on synthetic datasets PhantomWiki and GSM-oco. We observe that fine-tuning on synthetic rea-
soning data consistently transfers to HotpotQA, 2WikiMultihopQA, and MuSiQue. Concretely,
training Qwen3-0.6B model on PhantomWiki improves F1 scores relative to the base model by
62% on HotpotQA, 63% on 2WikiMultihopQA, and 132% on MuSiQue. The performance trans-
fer trends are consistent across model families and sizes (Qwen and Phi LLMs in 1-4B parameter
range). We fine-tune each base model with 2 random training seeds, and evaluate final checkpoints
of both experiment runs. With this we calculate the standard error, shown as error bars.

questions that require information typically from two Wikipedia paragraphs. Each question follows
a consistent two-hop reasoning structure, making it a 2-hop QA dataset. 2WikiMultihopQA (Ho
et al., 2020) is a more recent 2-hop dataset, containing over 190,000 two-hop questions organized
into four categories: compositional, inference, comparison, and bridge-comparison. The questions
are grounded in Wikidata’s knowledge graph, with each following a specific two-hop path between
related entities. MuSiQue (Trivedi et al., 2022) evaluates compositional reasoning with 2-4 hop
questions created by bridging single-hop questions. Questions require joining information from
multiple separate paragraphs. We use the MuSiQue-Answerable split of the dataset to ensure that
all questions can be answered using a subset of the given context.

4 RESULTS

Performance Transfer from Synthetic to Real-world Datasets. We fine-tune LLMs with GRPO
on PhantomWiki and GSM-oo training datasets, and evaluate their performance on HotpotQA,
2WikiMultihopQA, and MuSiQue. We show in Figure 2 that training on synthetic datasets im-
proves performance across all real-world evaluation datasets. Moreover, this performance transfer is
consistent across LLM model families and sizes, with the PhantomWiki dataset transferring better
to multi-hop reasoning than GSM-oo. Multi-hop reasoning performance of even Microsoft’s Phi-4-
mini-reasoning LLM improves with RL fine-tuning, even though the LLM was already trained on
synthetic data generated in-house (Abdin et al., 2025).

We separate the model’s ability to answer correctly from its ability to answer in the right format
with an ablation study. We fine-tune all LLMs for 3K training steps on a binary reward signal for the
correct output format in <answer>. . .</answer>: 1 if correct format and O if not. In Table 1,
we find that Qwen3 family of models and Phi-4-mini-reasoning performance does not improve with
format reward training, but Qwen2.5-1.5B-Instruct improves significantly.
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W : format  0.38 & 0.02 0.34 + 0.02 0.13 4+ 0.01
Qwen3-1.78 base  0.59 £ 0.02 0.64 + 0.02 0.34 + 0.02

: format 0,64 + 0.02 0.67 = 0.02 0.35 + 0.02
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base  0.02 £ 0.01 0.14 + 0.02 0.04 + 0.01

Qwen2.5-1.5B-Instruct ot 0.43 + 0.02 0.30 + 0.02 0.20 + 0.02

Table 1: Ablation study on training with binary format reward. F1 scores of Qwen3 LLMs
and Phi-4-mini-reasoning do not improve when trained with binary reward for correct output format
within <answer>. ..</answer> (it even hurts in some instances). Qwen2.5-1.5B-Instruct im-
proves remarkably with format reward training. We report standard error on the evaluation datasets.
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Figure 3: F1 scores on real-world multi-hop reasoning datasets of intermediate training check-
points, when LLMs are finetuned with GRPO on synthetic datasets. We evaluate intermediate
checkpoints from every 10% of the full training steps on all evaluation datasets, and show mean +
standard error with the solid line and shaded region. Performance on all evaluation datasets contin-
ues to improve with training steps, especially with PhantomWiki training.

There are two takeaways from this ablation study. First, RL fine-tuning teaches answer format-
ting, in our case Qwen2.5-1.5B-Instruct LLM. Perhaps this is expected, as the model learns “reward
hacking” to elicit the highest reward of 1. Hence, Qwen2.5-1.5B-Instruct model’s synthetic-to-real
performance transfer in Figure 2 constitutes improvements in both output formatting and correct-
ness. Second and more importantly, RL fine-tuning on synthetic datasets can boost multi-hop rea-
soning by teaching knowledge composition. This is especially true for the Qwen3 family and Phi-4-
mini-reasoning LLMs, which can correctly format outputs at initialization. Since PhantomWiki and
GSM-oo datasets are purely fictional and contain questions that require chaining logical inferences,
we attribute all improvement in real-world benchmark performance to knowledge composition. This
demonstrates that LLMs can develop knowledge composition from synthetic data alone, and apply
the transferrable skill in real-world settings.

Reasoning Evolves during Training. Knowledge composition requires integrating facts in a chain
of logical inferences. So far, we have investigated what models learn from synthetic data in RL
fine-tuning. This poses a natural question about how they learn. To answer this, we evaluate inter-
mediate training checkpoints that are saved at every 10% of the total training steps. Since we train
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Figure 5: Reasoning evolution plots of F1 vs question difficulty of intermediate training check-
points. We evaluate intermediate training checkpoints of Qwen3-0.6B and Qwen3-1.7B trained
on PhantomWiki and GSM-co on corresponding validation datasets, and plot the performance as
a function of ground-truth question difficulty. On the left are models trained and evaluated on
PhantomWiki, stratified by question difficulty that corresponds to necessary number of hops in the
PhantomWiki-generated universe. On the right are those on GSM-oo, where the reasoning com-
plexity corresponds to number of arithmetic operations required to answer the math word problem.
With continued training and fresh synthetic training samples (lines becoming darker), performance
improves on validation questions across all difficulty levels.

for only 1 epoch on the dataset, models see each training sample exactly once. Furthermore, the 10K
training samples in PhantomWiki and GSM-oco are generated from a set of randomly generated uni-
verses with no overlap in factual knowledge. This means that evaluating intermediate checkpoints is
equivalent to studying the effect of synthetic data scaling in RL fine-tuning for multi-hop reasoning.

In Figure 3 we find that Qwen3 10 Quen3-0.68 Quen3-1.78
LLMs continue to improve on real-

world multi-hop reasoning bench- 081
marks with more training steps, or
equivalently more training samples.
This also shows that models do
not overfit to the synthetic training
dataset. In fact, learning to com- 0.2
pose knowledge in fictional worlds
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tinues to deliver real-world gains. Nth intermediate answer Nth intermediate answer
We observe a similar trend for Phi- Figure 4: Reasoning evolution plots on MuSiQue of
4-mini-reasoning in Figure 6, al- PhantomWiki training checkpoints. We evaluate training
though Qwen2.5-1.5B-Instruct does checkpoints on MuSiQue questions, and plot the fraction
not show such improvement. We note  of model’s generated text that contain the ground-truth n
that different LLMs exhibit varying intermediate answer. With continued training on synthetic
levels of malleability for RL fine- data, the LLM reasoning traces include a higher proportion
tuning: Qwen3-0.6B start off worse of correct intermediate answers.

but show a steep upward trend while

Qwen3-1.7B improve slowly. We leave to future work to analyze how LLM initialization and its
“quality” affects RL fine-tuning.
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Synthetic datasets PhantomWiki and GSM-oo contain questions of varying difficulties, allowing
us to examine model performance as a function of reasoning complexity (Gong et al., 2025; Zhou
etal., 2025). Figure 5 decomposes performance of intermediate training checkpoints as a function of
question difficulty and arithmetic operations for PhantomWiki and GSM-oo respectively. The trends
are striking: Qwen3 LLMs learn to correctly answer questions across all difficulty levels as training
proceeds. Again we see a similar trend for Phi-4-mini-reasoning in Figure 7, and observe Qwen2.5-
1.5B-Instruct saturating quickly. Note that universes in validation sets of PhantomWiki and GSM-
oo are completely disjoint from their training sets. Thus, improving on validation questions of all
difficulties translates to improving knowledge composition at all levels simultaneously.



Finally, we illustrate that LLMs learn to compose knowledge in real-world MuSiQue dataset in
Figure 4. Each question in MuSiQue dataset is supported with a list of ground-truth intermediate
answers. On evaluating generations from PhantomWiki training checkpoints, we find that LLMs
learn to generate reasoning traces with increasingly higher proportions of intermediate answers.
This observation coalesces our findings from performance transfer in Figure 2 and synthetic rea-
soning evolution in Figure 5 in a key insight: the ability to compose knowledge is a fundamental
and generalizable skill in multi-hop reasoning tasks, transferring across synthetic and real-world
datasets.

5 DISCUSSION AND FUTURE WORKS

Transferability of Reasoning. Our findings demonstrate that performance on real-world reasoning
tasks improves after fine-tuning with synthetic datasets. This cross-domain transfer from fictional
to real-world contexts rules out memorization and supports knowledge composition as a transfer-
able meta-skill. This supports that reasoning—specifically chaining logical inferences across multi-
ple steps—constitutes a transferable competency independent of domain-specific factual knowledge
(Toplak & Stanovich, 2002). However, the extent of this transferability remains an open ques-
tion. Real-world reasoning tasks contain both factual knowledge and knowledge composition, and
while memorization can degrade performance in counterfactual contexts (Wu et al., 2025a), mod-
els can learn memorization and generalizability simultaneously (Xie et al., 2024). Since synthetic
datasets are knowledge-free, further investigation of their interplay with knowledge-intensive real-
world datasets remains future work.

Synthetic Datasets as Meaningful Training Signals. Beyond simple evaluation, our analysis
demonstrates that models learn transferable reasoning capabilities from synthetic datasets. This
offers practical advantages: synthetic datasets provide a scalable alternative to human-annotated
reasoning data (Villalobos et al., 2024; Muennighoff et al., 2023), positioning domain experts as cu-
rators of verifiable curricula. While our work focuses on knowledge composition through multi-hop
reasoning, other reasoning capabilities may also transfer via synthetic datasets (Stojanovski et al.,
2025). Future work should explore whether causal reasoning, counterfactual inference, or analogical
thinking exhibit similar transferability patterns. Furthermore, understanding boundary conditions for
synthetic-to-real transfer and extending beyond multi-hop reasoning (Zhao et al., 2023; Wu et al.,
2025b; Wang et al., 2024) remain important open questions.

6 CONCLUSION

In this work, we evaluate the potential of synthetic multi-hop reasoning datasets as a scalable alterna-
tive to real-world training data for LLM reasoning. Our results demonstrate that synthetic reasoning
training develops transferable compositional inference abilities that achieve significant performance
gains on diverse real-world benchmarks, despite zero factual overlap with evaluation domains. This
suggests that reasoning transfers across domains, and improvements on synthetic tasks with varying
reasoning complexity translates to enhanced performance on real-world reasoning. Our findings
demonstrate promising trends towards cost-effective scaling of reasoning capabilities, opening new
avenues for developing reasoning-capable language models without traditional data availability con-
straints.
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pdf.

A EXPERIMENT CONFIGURATION

We use the 0.21.0 version of Hugging Face TRL library’s GRPOTrainer using VLLM colo-
cate mode (Kwon et al., 2023) and FlashAttention-2 (Dao, 2024) on 4 NVIDIA H100 GPUs
each with 80GB VRAM. With the configuration in Listing 1, RL finetuning a 1 to 4B param-
eter LLM on 10K training samples takes ~1 day on our Linux cluster. > Since Phi-4-mini-
reasoning is a 4B parameter LLM, we adjust the v11m_gpu_memory_utilization: 0.25,
per_device_train_batch_size: 4, and num_generations: 8 to train on 4 H100
GPUs each with 80GB VRAM. The prompt length varies for each training dataset, and we adjust
the max_prompt_length to prevent prompt truncation:

. PhantomWiki: 6000

. GSM-co: 2048

. HotpotQA: 6000

. 2WikiMultihopQA: 6000
. MuSiQue: 8000

DN AW =

# Training parameters
per_device_train_batch_size: 8
gradient_accumulation_steps: 1
num_generations: 16

# vLLM settings

use_vllm: true

v1llm_mode: "colocate"
v1llm_gpu_memory_utilization: 0.20
# Generation parameters
max_completion_length: 4096
temperature: 1.0

top_p: 1.0

top_k: null

min_p: null

/| repetition_penalty: 1.0

# GRPO algorithm parameters

beta: 0.0

epsilon: 0.2
importance_sampling_level: "token"
scale_rewards: true

loss_type: bnpo
mask_truncated_completions: false

Listing 1: GRPOTrainer hyperparameter values in our YAML configuration file

B ADDITIONAL RESULTS

’The larger models Qwen3-1.7B and Phi-4-mini-reasoning take the full 1 day, i.e. using ~100 H100 hours
per training experiment as they generate long CoT. The Qwen2.5-1.5B-Instruct model does not generate long
CoT, and thus trains the fastest in ~20 H100 hours.
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Figure 6: F1 scores on real-world multi-hop reasoning datasets of intermediate training check-
points, when LLMs are finetuned with GRPO on synthetic datasets. We evaluate intermediate
checkpoints from every 10% of the full training steps on all evaluation datasets, and show mean +
standard error with the solid line and shaded region. Performance on all evaluation datasets gener-
ally improves with training steps for Phi-4-mini-reasoning, but saturates for Qwen2.5-1.5B-Instruct.
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Figure 7: Reasoning evolution plots of F1 vs question difficulty of intermediate training check-
points. We evaluate intermediate training checkpoints of Qwen2.5-1.5B-Instruct and Phi-4-mini-
reasoning trained on PhantomWiki and GSM-co on corresponding validation datasets, and plot the
performance as a function of ground-truth question difficulty. On the left are models trained and
evaluated on PhantomWiki, decomposed on question difficulty that corresponds to necessary num-
ber of hops in the PhantomWiki-generated universe. On the right are those on GSM-co, where
the reasoning complexity corresponds to number of arithmetic operations required to answer the
math word problem. With continued training and fresh synthetic training samples (lines becoming
darker), performance improves on validation questions across all difficulty levels. Qwen2.5-1.5B-
Instruct saturates quickly on GSM-oco—the reason why the final checkpoint in dark blue hides the
intermediate checkpoint lines in the right plot.

C PROMPTS

C.1 PHANTOMWIKI PROMPT

We use CoT prompt template and examples from (Gong et al., 2025), with a custom instruction
asking the LLM to output the final answer within <answer>...</answer>.

You are given the following evidence:
(BEGIN EVIDENCE)

{{evidence}}

(END EVIDENCE)
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You will be provided a question. Your response must end with the
final answer enclosed in tags: <answer>FINAL_ANSWER</answer>

Here, FINAL_ANSWER must be one of the following:

- a name (if there is only one correct answer);

- a list of names separated by ’,’ (if there are multiple correct
answers); oOr

- numbers separated by ’,’ (if the answer is numerical); or

- empty string (if there is no answer).

Here are some examples:

(START OF EXAMPLES)

Example 1:

Question: Who is the sister of Aida Wang?

Answer: Based on the evidence, the sisters of Aida Wang are
Barabara Beltran, Vicki Hackworth. <answer>Barabara Beltran,
Vicki Hackworth</answer>.

Example 2:

Question: Who is the child of Alvaro Smock?

Answer: Based on the evidence, the children of Alvaro Smock are
Eli Smock, Gene Smock. <answer>Eli Smock, Gene Smock</answer>.

Example 3:

Question: Who is the friend of the child of Alvaro Smock?

Answer: First I need to find the children of Alvaro Smock. Based
on the evidence, the children of Alvaro Smock are Eli Smock,
Gene Smock. Now I need to find the friends of Eli Smock and
Gene Smock. Based on the evidence, the friends of Eli Smock
are Leisa Lutz, Shelli Beltran, Vicki Hackworth, Virgil
Hackworth, Alison Smock, Brian Beltran. The friends of Gene
Smock are Leeann Hackworth, Leisa Lutz, Ricardo Hackworth,
Alvaro Smock, Dominique Smock. <answer>Leisa Lutz, Shelli
Beltran,Vicki Hackworth,Virgil Hackworth,Alison Smock,Brian
Beltran, Leeann Hackworth,Ricardo Hackworth,Dominique Smock</
answer>.

Example 4:

Question: Who is the aunt of Vicki Hackworth?

Answer: An aunt is the sister of a parent. Based on the evidence,
the parents of Vicki Hackworth are Shelli Beltran, Dino
Beltran. To find the aunt of Vicki Hackworth, I need to find
the sister of Shelli Beltran and Dino Beltran. Based on the
evidence, Shelli Beltran has no sister, and the sister of Dino

Beltran is Stacia Toombs. <answer>Stacia Toombs</answer>.

Example 5:

Question: What is the occupation of the husband of Stacia Toombs?

Answer: Based on the evidence, the husband of Stacia Toombs is
Wilbert Toombs. The occupation of Wilbert Toombs is theatre
manager. <answer>theatre manager</answer>.

Example 6:

Question: What is the hobby of the daughter-in-law of Lannie Smock
2

Answer: A daughter-in-law is the wife of a child. Based on the
evidence, the children of Lannie Smock are Eli Smock, Gene
Smock. Eli Smock has no wife, and the wife of Gene Smock is
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Dominique Smock. The hobby of Dominique Smock is dominoes. <
answer>dominoes</answer>.

Example 7:

Question: What is the date of birth of the person whose hobby is
finance?

Answer: I need to search for people whose hobby is finance. Based
on the evidence, the person whose hobby is finance is Stacia
Toombs. The date of birth of Stacia Toombs is 0959-03-22. <
answer>0959-03-22</answer>.

Example 8:

Question: Who is the great-granddaughter of the person whose

occupation is biomedical scientist?

Answer: I need to search for people whose occupation is biomedical
scientist. Based on the evidence, the person whose occupation
is biomedical scientist is Lannie Smock. To find the great-

granddaughter of Lannie Smock, I need to find the daughter of
the child of the child of Lannie Smock. Based on the evidence,
the children of Lannie Smock are Eli Smock, Gene Smock. Eli
Smock has no child, and the child of Gene Smock is Williams
Smock. The daughters of Williams Smock are Shelli Beltran,
Stacia Toombs. <answer>Shelli Beltran, Stacia Toombs</answer>.

Example 9:

Question: How many friends does Ryan Wang have?

Answer: Based on the evidence, the friends of Ryan Wang are Shelli
Beltran, Stacia Toombs, Virgil Hackworth, Aida Wang. <answer
>4</answer>.

Example 10:

Question: How many friends does the child of Alvaro Smock have?
Answer: First, I need to find the children of Alvaro Smock. Based
on the evidence, the children of Alvaro Smock are Eli Smock,
Gene Smock. Now I need to find how many friends they have.

Based on the evidence, the friends of Eli Smock are Leisa Lutz

, Shelli Beltran, Vicki Hackworth, Virgil Hackworth, Alison
Smock, Brian Beltran. The friends of Gene Smock are Leeann
Hackworth, Leisa Lutz, Ricardo Hackworth, Alvaro Smock,
Dominique Smock. <answer>6, 5</answer>.

Example 11:

Question: How many uncles does the friend of Stacia Toombs have?

Answer: First, I need to find the friends of Stacia Toombs. Based
on the evidence, the friends of Stacia Toombs are Brian
Beltran, Isiah Lutz, Leeann Hackworth, Lesley Lutz, Ryan Wang.

Now I need to find how many uncles they have. An uncle is

the brother of a parent. Based on the evidence, Brian Beltran
has no parents, Isiah Lutz has no parents, Leeann Hackworth
has 2 parents, Lesley Lutz has 2 parents, and Ryan Wang has no

parents. Based on the evidence, the parents of Leeann
Hackworth are Vicki Hackworth, Ricardo Hackworth. But both
parents do not have brothers. Based on the evidence, the

parents of Lesley Lutz are Leisa Lutz, Isiah Lutz. The brother
of Leisa Lutz is Virgil Hackworth, so he is an uncle of
Lesley Lutz. Isiah Lutz has no brother. So the friends of
Stacia Toombs have 0, 0, 0, 1, 0 uncles. Unique is 0, 1. <
answer>0, 1</answer>.
(END OF EXAMPLES)
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Question: {{question}}
Answer: """

C.2 GSM-oco PROMPT

We modify the CoT prompt template from PhantomWiki (Gong et al., 2025) by replacing
EVIDENCE with the problem statement. GSM-oco also generates a templated solution for each
question pairs, which we use as the CoT examples in the prompt.

You are given the following problem:
(BEGIN PROBLEM)

{{problem}}

(END PROBLEM)

You will be provided a question on the above problem. Your
response must end with the final answer enclosed in tags: <
answer>FINAL_ANSWER</answer>

Here, FINAL_ANSWER must be a number.

Here are some examples:

(START OF EXAMPLES)

Example 1:

Question: What is the total number of adult animals in Maple Creek
2

Answer: Define adult wolf in Maple Creek as r; so r = 2. Define
total number of adult animals in Maple Creek as p; so p = r =
2. <answer>2</answer>.

Example 2:

Question: What is the total number of schools in Clearwater Bay?

Answer: Define elementary school in Riverton City as b; so b = 3.
Define private middle school in Clearwater Bay as i; so i1 = Db

= 3. Define public highschool in Clearwater Bay as M; so M = i
= 3. Define elementary school in Clearwater Bay as G; so G =
2. Define total number of schools in Clearwater Bay as W; V =

G+1i=2+4+3=5; sowWw=V+M 5 + 3 = 8. <answer>8</answer
>,
Example 3:

Question: What is the total number of movies in Festival de
Clairmont?

Answer: Define upbeat metropolis comedy in Festival de Saint-
Rivage as m; so m = 4. Define total number of movies in
Festival de Saint-Rivage as k; so k = m = 4. Define intense
detective thriller in Festival Lumil\uOOe8re de Valmont as C; 1

=k -m=4-4=0; soC=3+1=23+ 0= 3. Define total
number of movies in Festival Lumi\u0Oe8re de Valmont as Q; so
Q = C = 3. Define solemn period drama in R\uOOeaves de
Belleville as N; t = Q +C =3+ 3=6; T=t +k =206+ 4 =
10; so N=4 4+ T =4 + 10 = 14. Define total number of movies
in R\uOOeaves de Belleville as y; so y = N = 14, Define
futuristic sci-fi movie in Festival de Clairmont as A; z =y +
N =14 + 14 = 28; g=2z + C =28 + 3 = 31; so A =3 % Qg 3 %
31 = 93. Define total number of movies in Festival de
Clairmont as p; so p = A = 93. <answer>93</answer>.

(END OF EXAMPLES)
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Question: {{question}}
Answer:

LLM USE

LLMs were used to revise and proofread paper content. All claims have been verified and cross-
referenced by the authors.
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