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ABSTRACT. In the development of imaging science and image processing re-
quest in our daily life, inpainting large regions always plays an important role.
However, the existing local regularized models and some patch manifold based
non-local models are often not effective in restoring the features and patterns in
the large missing regions. In this paper, we will apply a strategy of inpainting
from outside to inside and propose a re-weighted matching algorithm by closest
patch (RWCP), contributing to further enhancing the features in the missing
large regions. Additionally, we propose another re-weighted matching algo-
rithm by distance-based weighted average (RWWA), leading to a result with
higher PSNR value in some cases. Numerical simulations will demonstrate
that for large region inpainting, the proposed method is more applicable than
most canonical methods. Moreover, combined with image denoising methods,
the proposed model is also applicable for noisy image restoration with large
missing regions.

1. Introduction. Image inpainting, initially introduced to digital image process-
ing by [3], is about recovering the damaged pixels or regions from the corrupted
image. It often comes with the missing of image pixels, erasing unwanted objects of
the image, or the recovery of the degraded image damaged by various means. For
example, when restoring old photographs, the broken holes or spots of them need to
be repaired; or sometimes it needs to remove the disturbing targets of a processed
image such as the words, scratches or marks added by people. Good recovery of the
damaged regions should have clear features such as edges, textures and consistent
smoothness, and less unnatural noise or artifacts. After restoration, the boundary
between the damaged regions and the reliable parts usually should not be a sharp
edge of the new image.

The goal of image inpainting simply can be described as recovering a clear image
u from the initial corrupted image f. We represent the image as a matrix in R™*",
where m xn is the size of the digital image. Mathematically, the model for inpainting
can be summarized as follows:

(1) fz) =

u(z), x€A
v(z), x€A°’
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where f is the corrupted image, u is the original image we want to estimate, A is the
index of the observed valid pixels. v represents the value of pixels of the inpainting
domain and it can represent a diversity of damaged types of image. For instance, v
is a zero matrix if the information of the inpainting region loses completely, while
v is the unwanted patterns of the observed image when we are trying to remove
them.

In early literature, the image inpainting is mainly based on filter-based models
[3, 4], in which the Criminisi method [17] has better performance because of its
inpainting order and edge preservation. Later on, some variational based regular-
ized methods or wavelet frame [36, 20] regularized methods [15, 16, 13, 8, 14, 9, 29]
have even better performance in generating smooth regions and sharp edges. More-
over, from the technique of simultaneous cartoon and texture restoration [23], Cai
et.al. proposed a two-system wavelet frame regularized method [10], which helps
preserve textures in the smooth regions. [19] proposed a blind-inpainting method
for the cases where the inpainting index set A€ is unknown and cannot be accurately
detected. In summary, the above wavelet frame based models are based on local
regularization, which has not considered the similarity from different positions in
an image. In practice, however, when the missing region is slightly larger or the
scratch line is bolder, the local regularization, mainly recovering the missing pixels
by neighborhood information, cannot accurately estimate the brightness of miss-
ing pixels . Therefore, it is necessary to recover the missing/damaged pixels from
non-local information via patch matching [6, 7, 18], which contributes to discover-
ing and enhancing the non-local repetitive patterns. Nevertheless, their models are
still lack of integrity. For instance, [2, 31, 21] introduced some variational based
non-local inpainting methods. In particular, [31] proposed a universal variational
framework (UVF) for non-local inpainting and has better performance for inpaint-
ing with less proportion of A. The above regularized models are based on various
linear/non-linear functions of non-local partial derivatives of images, such as the
non-local gradient Vp f, where f is the object inpainted image. Additionally, [5]
introduced a Coherence Transport based Non-Local inpainting methods (CTNL)
and [32] provided an upgraded method with adaptive distance functions. [24] intro-
duced a dictionary learning based method and [22] introduced the bilateral variance
estimation for non-local image restoration, considering both the similarity of patches
and the distance between patches. Compare with the non-local regularized models,
these statistical methods proposed non-local regularizations that may be more agree
with the similarities of non-local patches in most natural images.

In recent years, based on computational differential geometry, there were some
works on inpainting problems, such as Manifold based Low-Rank regularized (MLR)
method [30], Low-Dimensional Manifold Method (LDMM) with/without Weighted
Graph Laplacian (WGL) [34]. Simultaneously, Newson et.al. proposed a non-local
patch based (NLPB) method [33], which is beneficial for improving the quality of
small region inpainting and texture preservation. However, in some practices, they
showed great inadaptability when the inpainting domain is very large, i.e. the diam-
eter of the inpainting region is over 50 pixels or several times of the patch size. As
the results illustrated in FIG 1.1, both the UVF non-local method [31] and the MLR
method [30] generate meaningless regions without any valuable information. At the
same time, the Criminisi method [17], CTNL method [32], LDMM+WGL method
[34] and the NLPB method [33] generate some features similar as the boundary of
grapes but also generate lots of unnatural artifacts (either too blurry or too sharp).
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In this situation, it is difficult to construct the inner part from merely the single
image f due to the severe loss of information. There are some machine learning
and big data based methods, such as a generative image inpainting method [38],
to deal with the large region inpainting in some case. But the models are usually
much more time and memory-consuming and intensely sensitive to the amount and
quality of the training data.
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UVF non-local [31] MLR method[30] LDMM-+WGL[34] NLPBJ[33]
33.50dB 22.94dB 31.54dB 33.37dB

FicURE 1. Large region ipainting by some canonical and recent methods.

In this paper, based on the non-local patch matching scheme, we will first propose
that it is effective to inpaint from outside to inside when the inpainting region is
large. By such a strategy, the outer part of the large region can be estimated without
the interference of the unknown inner part, while the inner part can be estimated
after a reasonable outer part has been restored. Furthermore, we will propose a
re-weighted matching algorithm by closest patch (RWCP) and another re-weighted
matching algorithm by distance-based weighted average (RWWA). Both re-weighted
methods are based on iterative algorithms and dynamical weight in the regularized
model, reflecting the strategy of inpainting from outside to inside. In numerical
simulations, by different regularization terms, the proposed RWCP model can re-
cover clearer features while the RWWA model can construct a relatively smooth and
reliable pattern. Compared with other recent methods, our proposed re-weighted
models can reconstruct more reasonable features in the large and inpainting re-
gion. This means the restored image looks natural and cannot be recognized as
an inpainted image at a short glance. Moreover, for almost all inpainting cases,
our proposed re-weighted models have the highest PSNR value, which fully guar-
antee the inpainting accuracy. Additionally, we will demonstrate that the proposed
models can be combined with denoising methods when restoring noisy images with
large missing regions. Therefore, this paper would provide a novel non-local patch



4 YITING CHEN, JIA L1 AND QINGYUN YU

matching based method that is most applicable for large regions inpainting from
single degraded image.

The rest of this paper will be organized as follows. In Section 2, we will propose
a benefit inpainting order and two re-weighted models for image inpainting. They
help recover more features of the image with or without Gaussian noise. We will
implement numerical experiments and compare with the popular methods in Section
3. In Section 4, we will give a brief conclusion of our work.

2. Proposed models. For inpainting large regions, the canonical mean, median
filter-based method [3], or existing regularized methods [12, 9, 10, 37, 30] cannot
accurately estimate the inner part of the missing large region. Due to the difficulties
in utilizing the neighborhood information or directly formulating patches to estimate
the inner part, it is natural to finish the inpainting from the boundary to the center
of the missing region.

2.1. Non-local inpainting from outside to inside. Generally speaking, all reg-
ularized image inpainting model can be summarized as follows:

(2) min Z Ry(u) s.tulp = fla,
rEAC

where u is the estimated image, f is the degraded image, A is the index set for
available pixels such that f|p is the same as the ground truth in A, A¢ is the
complement set representing the missing pixels. The operator R, (u) is a non-local
regularization operator that defines the similarity of the pixel centered at pixel z and
its similar pixels. In early literature, the non-local regularization operator R, (u)
can be constructed by a simple difference of patches (such as (3) or see [6, 25]),
which reduces the difference with similar and nearby patches. In recent literature,
R, (u) can also be defined as the patch manifold regularization operators proposed
in [37, 30]. For different settings of R,(u), the solution of u can be solved by
either direct solve the linear combination of valid intensities or iterative algorithms,
such as the Alternating Direction Method of Multipliers (ADMM) [28]. In practice,
however, when the diameter of the missing region is much larger than the patch size,
then the above regularization operators R, (u) usually generate the solutions with a
sizeable blurry region without any useful information. Therefore, it is necessary to
provide a strategy to restrict the order of inpainting, such as inpainting from outside
to inside. The representation of local patches with similarity can be illustrated as
in FIG. 2. In literature, the inpainting from outside to inside has appeared in a
coherent based method [32] and the non-local patch based method [33]. One is based
on the contour of a skeleton function while the other relies on the weight function.
In this paper, we will utilize the similarity of non-local patches and inpaint from
outside to inside by different approaches.

Consider the patch P(x) centered at the pixel z, if we take the regularization
term R, (u) as the square of Frobenius norm between the most similar patches, the
definition can be given as:

(3) Ry(u)= min > (u(t) = f(t+y—x))

POCA  AmP @)

where P(y) is the patch centered at another pixel y and fully contained in the set
A. In fact, during the inpainting procedure, it is relatively easier to estimate the
boundary part of the missing region whose accurate neighborhoods are more than
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FIGURE 2. An example of similar patches in fruits image.

the inner part. Therefore, one can first inpaint these boundary pixels by a non-local
matching method. Then the inner part of the missing region can be estimated with
more reasonable patterns or features rather than a blurry part. To emphasize the
importance of this inpainting scheme, we first estimate each pixel z by minimizing
R, (u) defined in (3), respectively. All the non-local matching is based on the
matching between the unknown patches and full accurate patches, accounting for
a simple inpainting scheme. The importance is to calculate the geometric center of
the large missing regions and define the order of inpainting. These details of the
simple inpainting algorithm from outside to inside can be stated as in Algorithm 1.
In Section 3, FIG. 5 shows that even such a simple algorithm helps protect some
features in the large region for inpainting, implying that an inpainting scheme from
outside to inside is applicable and effective for large region inpainting.

Algorithm 1 Strategy of re-weighted inpating for large region

Step 0. Calculate geometric center of the missing region z. (the choice is not
sensitive and can be simply defined as the median of the coordinates for all missing
pixels if the missing regions are convex or nearly convex). Then sort the missing
pixel set A¢ by the distance to the geometric center x.. Denote the sorted set A¢
as a sequence {Ty}i<p<r, where L is the cardinality of A°. Initialize ¢ as ¢ = 1.
while i # L do
Step 1. For each x;, estimate the brightness u,, by minimizing R, (u) defined
in (3).
Step 2. Set z; in A, z; out of A¢, fp, = uy,
Step 3. Set i =17+ 1.
end while

2.2. Re-weighted Model. Generally speaking, the above inpainting strategy sim-
ply restricts the inpainting order and improves the quality of the inpainting of the
large regions. However, such a strategy only builds up weak connection between the
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unknown pixels, which is generally focused on most non-local models in the litera-
ture. In this paper, we mainly propose a re-weighted algorithm, which is essentially
a different approach of solving (2) with iterative strategy and a particular inpainting
order. The re-weighted model for each iteration can be defined as follows:

(4) min Z Ryw,(u) s.tulp, =f
TEAS

A

where A; is the reliable pixel set in i-th iteration that initially equals to A and would
finally equal to the whole image set 2. For each unknown pixel , R, w, (u) is the
re-weighted regularized operator whose weights in different pixels are different. The
weight W, for pixel x is between 0 and 1, representing the reliability of each pixel x.
During the i-th iteration, the reliable set A; and all weight matrices {W,.} are fixed
therefore the definition of R, yw, (u) is similar to the non-weighted regularization
term R, (u). To simulate the strategy of inpainting from outside to inside, the
weight W, should be larger for boundary pixels and smaller for inner pixels of the
missing region. During the iterations, the weights W, keeps increasing and the
weight at the boundary pixels of missing regions are always relatively higher, which
implies that the boundary part can be estimated earlier and can be utilized to
inpainting the inner region. Therefore, the algorithm has a similar strategy as (2)
but can update the brightness in A€ several times. Therefore, the only problem is
how to define the dynamical index set A; and the weight matrices {W,}.

In this paper, the value of W, is always 1 if the pixel = is in A, which means the
valid pixels can always be fully trusted. The other weights W, for x € A® varies
from different iterations if the pixel is in A°. For pixels in A€, the itinial weights
are 0, and keep increasing during the iterations. After each iteration, for the pixels
near the boundary of inpainting region with weights higher than a threshold value
T, we set it as 1 and assume the inpainting of the pixel is finished, while other
weights for inner pixels in A¢ would be updated by the average of neighborhood’s
weights that are also increased if it is near the boundary. In the meantime, we define
an expanding available set A; that includes more and more pixels from outside to
inside. As a result, the weights increase and the A; expands to the whole set 2,
and the algorithm will stop and converge in a few iterations. In this paper, the
threshold parameter T is set as an empirical value 0.6 and the result of inpainting is
not sensitive to 7' if it is between 0.4 and 0.8. The detail of the re-weighted strategy
is stated as Algorithm 2.

Theoretically, when all the weights W, tend to 1, the ultimate solution of Algo-
rithm 2 should have a similar result as that from Algorithm 1. But surprisingly,
such a strategy can make the algorithm more likely to converge to a solution with
clear regions and features in A°. The reason can be explained as that the index set
A; explodes during iterations. Moreover, the re-weighted system gives higher initial
weights at the boundary part and lower weights in the inner part of the missing
region. Therefore, the boundary part can be estimated earlier and the inner part
can be ignored without confusing the boundary part. After the boundary part has
been estimated and joined the set A;, the inner part of the missing region can be
estimated from all other pixel values. Then the inpainting region can be regarded
as smaller. Therefore, it is natural to understand that Algorithm 2 as an upgrade
of the simple inpainting Algorithm 1.

In practice, similar to (3), the regularization term R, w (u) can be similarly
defined by the difference between the closest patch . The main difference is caused
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Algorithm 2 Strategy of re-weighted large region inpating

. s . l.Lx e A
Step 0. For each pixel = € (), set initial weight W, = . . Denote
0, otherwise

Ay = A, A§ = A€, Set the threshold parameter 0 < T < 1 for sufficiently reliable
of each pixel during the inpainting, which means when W, > T the pixel can be
fully trusted and the inpainting is finished. Set the initial value i as i = 1.
while A; # Q do

Step 1. Solve the model (4) with fixed weight W, by direct non-local matching

method or ADMM algorithm [28], and update the solution of w.

Step 2. For each pixel x € A{, calculate the temporary weight as the average

weight W, = % in the patch centered at x. Patchsize is always set to
be 11 for this paper. This step makes the weights keep incerasing, with outside
weights converges to 1 earlier while the inner weights converges to 1 later.
if W, > T then
Set x in Ajy1, fr = ug, set the weight W, = 1.
else
Set x in Af, .
end if
Step 3. Set the updated weight W, = W, for all the pixels z.
Step 4. Set all pixels in A; in A; 4.
Step 5. Set i =i+ 1.
end while

by the weight W, at each pixel, resulting in that the pixels with higher weight, or
reliability would be considered heavily. We define as follows:
(5) R, w(u) = min Z Wi - (u(t) — ult +y — )3,
P(y)CA;
teP(x)

where P(y) centered at y are other pixels for comparing with P(x), ¢ represents the
position of different pixels in P(x). When the regularization term (5) is applied, the
algorithm tends to duplicate the closest patch to the unknown region. In Algorithm
2, since the inner part has lower initial weights and the outer part has higher weights,
the object function would be mainly determined by pixels at the boundary part of
the inpainting region, similar to the strategy of inpainting from outside to inside.
When the iteration converges, all the weights W, tend to 1 the model (4) would tend
to the model without weight. The solution is slightly better than that in Algorithm
1 and it is generated by an iterated model strictly.

Sometimes in practice, regularization term (5) can easily cause overfitting, hence
we also propose another Gaussian weighted distance-based regularization term as:

Wt' u —Uu - 2
exp (-Ztef’m ) )-W(x)—u(y)),

(6) Rogw(u)= )

P(y)CA;

g

where the parameter ¢ is always set as constant 500 in all the numerical simu-
lations. Following this paper, we call Algorithm 2 with regularization term (5)
as Re-weighted matching algorithm by closest patch (RWCP). Besides, we call
Algorithm 2 with regularization term (6) as Re-weighted matching algorithm by
distance-based weighted average (RWWA). We will show that both methods have
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their unique superiority in numerical simulations. In particular, the regularization
term (5) performs the best visual quality for almost all simulation.

The following FIG. 3 shows that as an example of inpainting the fruits image
in FIG. 1, the object functions for both our proposed RWMC and RWWA model
converge fast to their minimum values.

RWMC model RWWA model

Object funation (2.1)
o

Object function (2.1)
>

1 2‘ .'; 1‘1 5‘ é "l 8 é 10 1 2 Z; 4 5‘ 6 "I 8 9 10
No. of iterations No. of iterations
FiGure 3. Convergence curve for the object functions in Algo-

rithm 2. The left image is the convergence curve for RWMC model
and the right image is that for RWWA model.

2.3. Image inpainting from noisy image with large missing region. In prac-
tice, some images might include some large missing/damaged regions, at the same
time, the rest pixels are also corrupted by additive noise such as Gaussian noise.
Therefore, we also discuss the model for large regions inpainting from noisy im-
ages. In literature, image denoising technique has been improved from local regu-
larized models [27, 26] to non-local regularized and dictionary learning based mod-
els [6, 18, 1, 11]. In recent years, image denoising can be efficiently performed by
some pre-trained neuron networks, such as Denoise Convolutional Neural Network
(DnCNN) [39].

When the degraded image f has a large region Q\ A to be inpainted, it is necessary
to decide the order of removing the noise and inpainting the missing region. It
can be naturally observed that if the inpainting is based on a denoised image, the
original information might be smoothed or lost. On the other hand, the large region
would be noisy if the inpainting is directly based on noisy prior knowledge. To deal
with this dilemma, this paper proposes a two-stage algorithm to inpaint a noisy full
image, in which the outer part of the large region can be trusted with edges and
features while the inner part is slightly not acceptable. Then we rectify the inner
part of the inpainted regions with lower weight by more iterations of Algorithm 2
after the denoising. The detail of the algorithm is shown in Algorithm 3.

It can be clearly seen in FIG. 4 that “Denoise and Inpaint” scheme may easily gen-
erate artifacts so that the boundary of the large region can be clearly observed with
artifacts. On the other hand, “Inpaint and Denoise” scheme generates a smoother
image while the inner part of a large region is over smoothed and blurred. Com-
pared to the previous two schemes, Algorithm 3 has the best result in terms of both
the visual quality and the PSNR value.

3. Numerical results. In this section, we implement numerical simulations for
our proposed inpainting algorithms for image inpainting from missing large regions.
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Algorithm 3 Strategy of re-weighted large region inpainting from noisy images

Step 1. From the noisy image f with missing region, inpaint the large region
by ONLY ONE ITERATION of Algorithm 2 with RWCP regularization term to
formulate a full noisy image u;.

Step 2. Using a denoising method to u; (such as DnCNN based denoising
proposed in [39]) to remove the noise and generate a clear image us.

Step 3. Inpaint the inner part of the large region with weight less than 7' = 0.6
by implementing more iterations of of Algorithm 2 with RWCP regularization to
estimate a clear image ug.

Step 4. Using the denoising method again to usz to generate an ultimate estima-
tion of clear image u.

Noisy Fruits Image Denoise & Inpaint Inpaint & Denoise Algorithm 3
15.81dB 30.63dB 30.81dB 31.12dB

FIGURE 4. The result of large region inpainting from noisy images
with Gaussian noise o = 10.

Our results validate that the proposed methods can inpaint the large region by
accurate, similar or at least reasonable patterns. In contrast, most other existed
models can only generate images with unacceptable visual observation by either
blurry regions or some artifacts. In practice, some results may have lower error
but they include large blurry inpainted parts. Therefore, for all image restoration
results, we mainly focus on the visual quality and comfortableness to see whether
the region has more clear features and fewer artifacts. As a minor consideration,
we also quantitatively evaluate the restoration error by peak signal-to-noise ratios
(PSNR) value:

£ _ £ )2
PSNR(f7 f) =10 IOglo MN({}HB‘_" fH.Qfmm)
2

where f is the ground truth image, fiax and fnin are its maximal and minimal
pixel values respectively and M, N represent the size of the image.

In practice, the quality of inpainting is always determined by the features of
restored images and the numerical error to the ground truth images. Generally
speaking, for most natural images, our proposed re-weighted RWCP method always
has the best performance in visual quality which makes the result images “natural
and difficult to be recognized as an inpainted image”. On the other hand, our
proposed RWWA method sometimes has an even higher PSNR value, implying the
least relative error to the ground truth image. FIG. 5 shows that for the fruit’s
image, the local wavelet frame-based model [35, 9] and the UVF non-local model
[31] can only reconstruct a blurry region without any information though high

I
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PSNR value. The Criminisi method [17] generates a lot of artifacts without smooth
grape regions. The MLR method in [30] fails to estimate the inner part of the
missing large region and only gives a gray part. The low dimensional manifold
+ weighted graph Laplacian method (LDMM+WGL) [34] and CNTL method [32]
has the partial blurry part and partial artifacts part with the shape not similar
to grapes. Conversely, our proposed simple directional inpainting Algorithm 1 can
provide a reasonable inner region that looks like some shape of grapes. Its result
is comparable to the result from NLPB method [33]. Furthermore, our proposed
re-weighted model with the closest patch regularization term (RWCP) provides the
highest PSNR value and can reconstruct an even clearer region including several
precise shapes and boundaries of grapes. Another proposed re-weighted model with
distance-based average regularization term (RWWA) can also generate a clear outer
part of the missing region and there are almost no artifacts in the restored image.
Compared to other existed methods, our methods are more applicable for such
inpainting problem from large missing regions.

For other numerical simulations, there are two examples for boat image with
smaller inpainting region in FIG. 6. Compared to two recent methods, LDMM+WGL
[34] and NLPB [33], our proposed RWCP method recovers more features and gen-
erates fewer artifacts. For example, only the RWCP method recovered a clear and
sharp “ship tail” structure, hardly recognized as “inpainted”. Moreover, for “Fin-
gerprint” image and “Bricks” image with more textures, the RWCP method has a
definite advantage in terms of visual quality and PSNR value. Although the NLPB
method [33] also duplicates some reasonable features in the inpainting region, the
curves at the boundary are discontinuous, apparently reducing the reliability of
the inpainting. On the other hand, our proposed RWWA method has the highest
PSNR value for “Boat 17 and “Fingerprint” image, which shows that the features
for these results are most reliable although parts of the inpainting region is still
blurry. Furthermore, by Canny edge detection operator, FIG. 7 also indicates that
the RWCP method recovered most valid edges, textures or features with almost
no artifacts in the large missing domain. In contrast, the LDMM+WLG [34] and
NLPB [33] have a larger hole without edges and textures or generate some unnatu-
ral singularities. Therefore, we can claim that for large domain inpainting from the
single degraded image, the proposed methods have a better utilization in non-local
matching, bringing results with more sharp edges and reliable features.

Additionally, we simulated the proposed Algorithm 3 for large regions inpainting
from noisy images with different levels of Gaussian noise. FIG. 8 shows that Algo-
rithm 3 is applicable for inpainting noisy images with large missing regions, which
has not and could not be solved by most existing single image restoration methods.

4. Conclusion. In this paper, we first proposed Algorithm 1 as a simple image
inpainting model by non-local matching and strategy of inpainting from outside to
inside. With the demonstration and comparison in FIG. 5, we elaborate that such
a simple inpainting strategy is applicable and effective for large region inpainting.
However, Algorithm 1 cannot update and improve the inpainting region so that
such an algorithm still generates some unnatural artifacts. Therefore, the proposed
re-weighted models RWCP and RWWA can further solve such issues, generating
the result with more reasonable features, fewer artifacts, and higher inpainting
accuracy. FIG. 5 and 6 show that for various types of large region inpainting, our
proposed models always outperform the existing local wavelet regularized model
[9], the LDMM+WGL method [34], and the MLR method [30] which are totally
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FIGURE 5. Large region inpainting for a fruits image.
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Degraded Images
" VR |

Boat 1 Boat 2 Fingerprint Bricks

LDMM+WGL [34]
o |

30.95dB 27.43dB 24.28dB 20.69dB

NLPB method [33]

31.90dB 28.77dB 23.01dB 19.92dB

Proposed RWCP method

33.42dB 26.08dB 25.17dB 21.97dB

FIGURE 6. Numerical results for boat and bricks image inpainting
from missing large region.
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Fingerprint in FIG. 6

F1GURE 7. Edge detection of inpainting results via Canny operator.

not applicable for large domain inpainting. Furthermore, FIG. 8 shows that by the
appropriate composition of the proposed large region inpainting method and image
denoising method, it is possible to restore clear images from noisy images with large
missing regions. The strategy, models, algorithms, and results of this paper can be
applied to other large domain inpainting or restoration problems. From this paper
as a new example, the non-local matching was validated as still an essential scheme
for image restoration from single images. In the future, the result of this paper
can also be compared or combined with the big-data or deep learning based image
inpainting methods.
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