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Referred Video Description Referred Video Question-Answering

Find the empty chair that is to the 
left of the main sitting down.

Segment the zebra standing 
in the middle of the frame.

Locate the area that a cyclist 
uses to navigate in the city.

Find the place where patients lie 
down to receive examination.

Please segment and track 
the marked <region>.

Please segment and track the hopping rabbit that leaped from the other one in the video. Where are the utensils used for drinking? Answer with masks. Q: Who shook off and scored? A: The man in red pants.

A: This police officer is a middle-aged man with a beard, wearing a blue uniform shirt, a 
black hat, and glasses. He stopped a blue vintage car and talked to the driver sitting inside.

Q: Please describe 
the <region>.

Q: If <region> continues his breakdance 
routine, what is a likely future event? A: He will perform more complex and varied breakdance moves.

Pixel-Level Video Question Answering (PixelQA) — Joint Referring + Segmentation + QA in Videos

Q: How does the behavior of [1] differ from that of [2]? Why?
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2 3

4

A: [1] appears disinterested and focuses on nibbling on the ground, while [2] is engaging with [4], 
who is offering food to [2] and [3]. This might because [1] doesn’t like the food from [4].

1
2

Figure 1: UniPixel flexibly supports a large variety of fine-grained image and video understanding
tasks, including referring/reasoning/interactive segmentation, motion-grounded video reasoning, and
referred video description & question answering. It can also handle a novel PixelQA task that jointly
requires object-centric referring, segmentation, and question answering in videos.

Abstract

Recent advances in Large Multi-modal Models (LMMs) have demonstrated their
remarkable success as general-purpose multi-modal assistants, with particular
focuses on holistic image- and video-language understanding. Conversely, less
attention has been given to scaling fine-grained pixel-level understanding capabili-
ties, where the models are expected to realize pixel-level alignment between visual
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signals and language semantics. Some previous studies have applied LMMs to
related tasks such as region-level captioning and referring expression segmentation.
However, these models are limited to performing either referring or segmentation
tasks independently and fail to integrate these fine-grained perception capabilities
into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal
model capable of flexibly comprehending visual prompt inputs and generating
mask-grounded responses. Our model distinguishes itself by seamlessly integrating
pixel-level perception with general visual understanding capabilities. Specifically,
UniPixel processes visual prompts and generates relevant masks on demand, and
performs subsequent reasoning conditioning on these intermediate pointers during
inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness
of our approach has been verified on 10 benchmarks across a diverse set of tasks,
including pixel-level referring/segmentation and object-centric understanding in
images/videos. A novel PixelQA task that jointly requires referring, segmentation,
and question answering is also designed to verify the flexibility of our method.

1 Introduction

Large Multi-modal Models (LMMs) have been the de facto standard for developing general-purpose
assistants. By effectively aligning multi-modalities with language, their significance has been
demonstrated across various applications, including multi-modal analysis [59, 19, 107, 108, 48],
autonomous driving (AD) [16, 79, 106, 11], and Embodied AI [111, 22, 30, 99].

In the field of visual-language understanding, efforts have been dedicated to developing holistic
understanding models, where simple projection layers between visual encoders and LLMs are utilized
to bridge vision and language modalities. Supported by large-scale alignment pre-training and
visual instruction tuning, such a straightforward paradigm achieves strong performance in holistic
understanding tasks such as captioning [40, 6, 114] and general question answering [36, 24, 54,
49]. However, these models exhibit two fundamental limitations in fine-grained scenarios. First,
their interactions with users are limited to text format, lacking support for more intuitive forms of
communication such as drawing points/boxes as references or grounding model responses with key
regions represented by masks. Second, the internal reasoning process of these models predominantly
operates at a coarse level, directly perceiving the entire content rather than reasoning over specific
objects/regions, making them hard to understand fine-grained details. Some previous studies have
explored the application of LMMs to related tasks such as region-level captioning [12, 102, 103],
referring expression segmentation [29, 55, 41, 21, 71, 62], and reasoning segmentation [32, 27,
96, 4, 112]. Nevertheless, their models are limited to performing either referring or segmentation
tasks independently via rigidly defined input/output templates (e.g., “It’s <SEG>.” in LISA [32]),
lacking the flexibility to comprehend user-referred concepts and generate mask-grounded responses
simultaneously. More importantly, these methods cannot integrate such fine-grained perception
capabilities with their original human-like [90, 89, 88, 92, 91] multi-modal reasoning abilities,
resulting in degraded performance on general visual understanding benchmarks [100, 93, 28].

In this work, we seek to bridge this gap by introducing UniPixel, a large multi-modal model that
can flexibly comprehend visual prompt inputs (i.e., points, boxes, and masks) and generate mask-
grounded responses. Our model significantly differentiates itself from existing ones by unifying
the internal representations of referred and segmented objects via a novel object memory bank,
which is a hashmap storing the spatial-temporal information of object-of-interests. During inference,
UniPixel initializes the object memory bank and updates it on demand by adding object-centric
information according to the context. The model responses are then generated conditioning on the
fine-grained object memory. Benefits from such unification, UniPixel is able to perform not only basic
referring/segmentation tasks, but also flexible pixel-level reasoning tasks that require simultaneous
visual prompt comprehension and mask prediction. As illustrated in Fig. 1 (the last row), given a
video2, a question, and optionally a visual prompt (e.g., a point specified by a click on an object in
any frame), UniPixel can (1) infer the mask for the referred object in the corresponding frame, (2)
propagate it to all video frames containing the same instance, (3) extract the mask-grounded object
features, and finally (4) answer the question conditioning on both the video-level and object-centric

2Images are treated as single-frame videos, thus we do not explicitly differentiate them in this work.
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Figure 2: Schematic comparison between UniPixel and its counterparts. To the best of our knowl-
edge, UniPixel is the first unified method supporting simultaneous object referring and segmentation.

information. All these operations are seamlessly conducted within a single model, eliminating the
need for external frame samplers [96], mask generators [102, 103], or object trackers [4].

We evaluate the effectiveness of UniPixel from two aspects, i.e., basic referring/segmentation ca-
pabilities and flexible pixel-level reasoning capabilities. For the first aspect, we conduct extensive
experiments on 10 public benchmarks across 9 image/video referring/segmentation tasks. Our method
achieves state-of-the-art performance in diverse scenarios. Notably, on the challenging video reason-
ing segmentation and referred video QA tasks, our 3B model obtains 62.1 J&F on ReVOS [96] and
72.8% Acc on VideoRefer-BenchQ [103], surpassing strong counterparts with 7B∼ 13B parameters.
Further ablation studies also demonstrate the mutual reinforcement effect of referring and segmenta-
tion. For the second aspect, we introduce a novel PixelQA task that jointly requires object-centric
referring, segmentation, and QA in videos, which cannot be handled by existing methods. UniPixel
establishes a strong baseline for this novel setting. Our contributions are summarized below:

1. We propose UniPixel, a unified large multi-modal model that supports flexible object referring
and segmentation in images and videos, via a novel object memory bank design.

2. Our model achieves state-of-the-art performance on 10 public benchmarks across 9 refer-
ring/segmentation tasks, verifying the mutual reinforcement effect of such unification.

3. We also introduce a novel PixelQA task that jointly requires object-centric referring, segmen-
tation, and QA in videos, where UniPixel establishes a strong baseline for this setting.

2 Related Work

Large Multi-modal Models The remarkable success of large multi-modal models (LMMs) has
shifted the paradigm of visual-language understanding from close-ended experts to open-ended task
solvers. Early attempts [43, 42, 17, 115] involve an MLP projector or Q-Former [34] to align visual
encoders to LLMs, enabling open-ended tasks such as visual question answering. With advanced
designs such as dynamic resolution and data augmentation, open-source models, e.g., Qwen-VL
[2, 77, 3] and InternVL [14, 74, 13] series, have narrowed the gap with advanced proprietary models
like the GPT [58, 59] and Gemini families [67, 18]. Recent studies [60, 25, 51, 37, 48] also explore
test-time scaling on visual-language understanding. However, these methods are spatially coarse-
grained. UniPixel can also be regarded as an object-centric test-time scaling approach, where key
objects are first segmented then encoded to facilitate the subsequent reasoning process.

Visual Referring and Segmentation To meet the growing demand for fine-grained visual under-
standing [50, 46, 47, 45, 84], recent efforts have focused on enhancing LMMs with object referring
and segmentation capabilities, as compared in Fig. 2. LISA [32] is a representative model that enables
LMM-based segmentation by integrating SAM [31] as its decoder. They also introduced a novel
reasoning segmentation task, requiring models to perform segmentation based on implicit queries.
Other works in this direction [104, 69, 110, 65, 27] have explored advanced mask decoders, more
flexible tasks, and larger-scale datasets. Recent studies have also extended these capabilities to videos
[4, 96, 101]. Additionally, some research has examined regional understanding through boxes [12]
and masks [102, 103]. While recent approaches attempt to unify these two capabilities, they either
support only images [65] or rely on sub-optimal, tool-based pipelines [23]. To the best of knowledge,
UniPixel is the first end-to-end method unifying object referring and mask prediction.
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Figure 3: The architecture of UniPixel. Given a video, a question, and visual prompts, the model
encodes them into tokens via the visual encoder, prompt encoder, and tokenizer, respectively, then
predicts a spatial-temporal mask for each visual prompt via the mask decoder. The masks are updated
into the object memory bank, and subsequently injected into the prompt for pixel-level reasoning.

3 Method

Problem Formulation We provide a unified definition for pixel-level reasoning tasks. Formally,
the inputs are an image or a video X , a text prompt T , and N optional visual prompts {Pi}Ni=1 where
each Pi could be a point, box, or mask on a specific frame. The outputs are textual responses to
the prompt with K grounded spatial-temporal masks {Mi}Ki=1. Here, both N and K could be zero
(degenerating to a normal visual understanding task) and K is not necessarily equal to N , as the
model may segment extra objects/regions that are not specified by the visual prompts.

Overview Fig. 3 presents an overview of UniPixel. It is built upon the Qwen2.5-VL [3] framework,
consisting of an LLM backbone and a ViT-based visual encoder that supports dynamic resolution
inputs. Given a video and a text prompt, the model first tokenizes them via the visual encoder and
text tokenizer, then sends them into the LLM for response generation. To boost this framework from
holistic-level to pixel-level, we introduce (1) a prompt encoder (Sec.3.1) supporting three types of
visual prompts, (2) an object memory bank (Sec.3.2) for storing object information and injecting it
into the response generation process, and (3) a mask decoder (Sec.3.3) for generating spatial-temporal
masks. We also extend the LLM’s vocabulary by adding <REF>, <MEM>, and <SEG> tokens. The
former two serve as placeholders in the input prompt that would be replaced by visual prompt and
memory tokens, respectively, while the <SEG> token is utilized to trigger and guide the mask decoding
process. Detailed designs and interactions among these components are illustrated as follows.

3.1 Prompt Encoder

T (0.3)

X1Y1

(0.3, 0.2)

Linear

Linear

GELU + Linear

X2Y2

(0.8, 0.5) Linear

1D

2D

2D

Temporal Emb

Positional Emb

Type Emb

Fourier Emb

Element-wise Add

Channel-wise Cat

Figure 4: Joint positional & temporal encoding for
point (X1Y1T) and box (X1Y1X2Y2T) prompts.

This module aims to effectively encode each
visual prompt into a single token that can be
processed by the LLM. We denote a point
prompt as a tuple (x, y, t) containing its spa-
tial coordinates (x, y) and the corresponding
frame index t. For box prompts, it is extended
to (x1, y1, x2, y2, t) containing the positions
of top-left and bottom-right corners. A mask
prompt is densely represented by a 2D binary
mask mij ∈ {0, 1} with the same shape as
the encoded target frame.

For sparse prompts (points and boxes), as shown in Fig. 4, we encode each position (xi, yi) as the sum
of a 2D Fourier embedding [73] and a learnable type embedding (indicating whether it is a single point,
top-left corner, or bottom-right corner). For box prompts, we merge the two positional embeddings
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by concatenating them along the channel dimension and linearly projecting them back to the original
size. Frame indices are also encoded similarly with 1D Fourier embeddings. The resulting positional
and temporal embeddings are concatenated again, and then projected to the LLM’s embedding space
via a GELU→ Linear block, such that the sparse coordinates in a point/box are encoded into a
compact high-dimensional token. This design is inspired by [31, 66] with two key differences: (1) the
spatial-only embeddings are extended to include temporal information, and (2) the negative points
are discarded. For dense prompts (masks), we directly resize the binary masks and apply masked
pooling on the outputs of the visual encoder. An M→L projector (Linear→ GELU→ Linear) is
leveraged to project the pooled visual features to the LLM’s embedding space.

3.2 Object Memory Bank

Although sparse prompts contain rich positional and temporal information indicating the objects that
users are referring to, it is still hard for the model to focus on these important regions. Previous studies
[12, 102, 103] also confirm that direct region cropping can generally provide better object awareness
compared to positional pointers. To seamlessly integrate such a mechanism while preserving the
flexibility of visual prompts (e.g., allow pointing on a single frame instead of drawing complete
masks on all frames), we propose an object memory bank to bridge sparse visual prompts and dense
object masks. This is a hashmap where the keys are object IDs and the values are the corresponding
spatial-temporal masks. It is initialized as an empty storage for every chat session, and is dynamically
updated on demand. We define two operations for the object memory bank, namely memory pre-filling
and memory injection. Below is an example of memory-enhanced multi-round conversation.

Prompt 1: How does the behavior of [1] <REF> differ from [2] <REF> and [3] <REF>?

<REF> detected, enhancing the prompt with object memory.

Memory Pre-filling Response:
The relevant regions for this question are [1] <SEG> [2] <SEG> [3] <SEG> [4] <SEG>. ← 4 objects saved into the memory

Memory Injected Prompt:
Here is a video with 4 frames denoted as <1> to <4>. The highlighted regions are as follows:
[1]: <1> <MEM> <2> <MEM> <3> <MEM> ← This object cannot be seen in the last frame
[2]: <1> <MEM> <2> <MEM> <3> <MEM> <4> <MEM>
[3]: <1> <MEM> <2> <MEM> <3> <MEM> <4> <MEM>
[4]: <1> <MEM> <2> <MEM> <3> <MEM> <4> <MEM>
How does the behavior of [1] differ from [2] and [3]?

Response 1: [1] appears disinterested and focuses on nibbling on the ground, while [2] is engaging with [4], who is offering
some food to [2] and [3].
Prompt 2: What food is [4] offering? ← Users can directly refer to objects in the memory
Response 2: [4] is offering carrots.

Memory Pre-filling This operation is triggered upon the detection of <REF> tokens in the input
prompt, aiming to thoroughly analyze the referred objects and predict their corresponding masks. In
this stage, the model responds with object IDs and <SEG> tokens for the relevant objects according to
the context, and predicts their spatial-temporal masks accordingly. These object-mask pairs are then
saved into the object memory bank.

Memory Injection We inject the features of the saved objects into the prompt to enhance object-
awareness. Similar to the mask prompt encoder described in Sec. 3.1, each frame-level object mask
is downsampled to match the resolution of visual tokens. We then apply masked pooling to aggregate
object-centric features. Each frame-level mask is condensed into a single feature token, projected
through the mask projector, and subsequently utilized to replace the corresponding <MEM> token
in the memory-injected prompt. Through this pre-filling and injection mechanism, object-centric
information is effectively integrated into the model inference process.

Why using object memory bank? An alternative is directly appending a <SEG> token to each
<REF> token, followed by masked pooled features obtained during inference. However, we do not
adopt this approach for two reasons: (1) During mask prediction, the <SEG> tokens, due to the
unidirectional nature of causal self-attention, are unable to aggregate the full context of the prompt,
thereby compromising the quality of predicted masks. (2) By utilizing the object memory bank, we
can effectively decouple regional understanding and mask prediction, allowing each to benefit from
referring and segmentation data during training, thus enhancing both capabilities.
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Table 1: Comparison with state-of-the-art methods on ReVOS [96] val split. The best and second-
best results are marked bold and underlined, respectively.

Method Size
Referring Reasoning Overall

R
J F J&F J F J&F J F J&F

Non-LLM-based Specialists
MTTR [5] – 29.8 30.2 30.0 20.4 21.5 21.0 25.1 25.9 25.5 5.6
LMPM [21] – 29.0 39.1 34.1 13.3 24.3 18.8 21.2 31.7 26.4 3.2
ReferFormer [85] – 31.2 34.3 32.7 21.3 25.6 23.4 26.2 29.9 28.1 8.8

LLM-based Generalists
LISA [32] 13B 45.2 47.9 46.6 34.3 39.1 36.7 39.8 43.5 41.6 8.6
TrackGPT [72] 13B 48.3 50.6 49.5 38.1 42.9 40.5 43.2 46.8 45.0 12.8
VISA [96] 13B 55.6 59.1 57.4 42.0 46.7 44.3 48.8 52.9 50.9 14.5
HyperSeg [81] 3B 56.0 60.9 58.5 50.2 55.8 53.0 53.1 58.4 55.7 –
InstructSeg [82] 3B 54.8 59.2 57.0 49.2 54.7 51.9 52.0 56.9 54.5 –
GLUS [39] 7B 56.0 60.7 58.3 48.8 53.9 51.4 52.4 57.3 54.9 17.9
ViLLa [112] 6B – – – – – – 54.9 59.1 57.0 –
Sa2VA [101] 4B – – – – – – – – 53.2 –

UniPixel (Ours) 3B 62.3 66.7 64.5 57.1 62.1 59.6 59.7 64.4 62.1 19.0
UniPixel (Ours) 7B 63.9 67.8 65.8 59.4 63.7 61.5 61.7 65.7 63.7 19.4

3.3 Mask Decoder

We adopt SAM 2.1 [66] as the mask decoder to disentangle the discrete language modeling and
continuous mask prediction capabilities. For each <SEG> token, we extract its last-layer hidden
states, downsample them via an L→M projector (architecturally identical to the M→L projector),
and reshape them into two tokens. Using two tokens ensures better preservation of object information
when downsampling from high- to low-dimensional channel space. These tokens prompt the mask
decoder to predict the mask on the first frame, which is then propagated to the other frames.

3.4 Model Training

The training loss for UniPixel is a linear combination of language modeling loss and mask decoding
losses [66], including a focal loss and dice loss for mask prediction, a mean-absolute-error (MAE)
loss for IoU prediction, and a cross-entropy loss for objectness prediction. The loss weights are set
to 1, 100, 5, 5, and 5, respectively. We train the model through a three-stage progressive alignment
recipe. The datasets are listed in Tab. 12. In the first stage, we pre-train the sparse prompt encoder
using 851K regional captioning data. Then, we align the LLM and mask decoder by training the
L→M projector on 87K referring segmentation data. In the last stage, we further unfreeze the M→L
projector and mask decoder, and apply LoRA [26] on the visual encoder and LLM. The model is
jointly trained on a large-scale corpus with around 1M samples for diverse tasks.

4 Experiments

We evaluate the effectiveness of UniPixel by conducting extensive experiments across a diverse set of
benchmarks. Specifically, we study the following research questions.

Q1. Whether UniPixel is flexible and effective on basic image/video referring and segmentation
tasks compared to the corresponding representative methods?

Q2. How does it perform on the more challenging PixelQA task, which requires joint referring,
segmentation, and question answering in videos?

Q3. What effects does each architectural design contribute? More importantly, does the unified
modeling of referring and segmentation lead to a mutual reinforcement effect?

Detailed information about the benchmarks, evaluation metrics, implementation details, and more
experimental results can be found in the appendix.

4.1 Q1: Comparison with State-of-the-Arts on Referring and Segmentation Tasks

Reasoning Video Object Segmentation We begin with the most challenging ReVOS [96] dataset,
which requires models to predict masks based on implicit text queries demanding complex reasoning
abilities based on world knowledge. The results are shown in Tab. 1. Our 3B variant outperforms all
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Table 2: Comparison with state-of-the-art methods on referring video object segmentation (RVOS)
and motion-grounded video reasoning datasets, including MeViS [21] (val), Ref-YouTube-VOS [71]
(val), Ref-DAVIS17 [62] (val), and GroundMoRe [20] (test). The best and second-best results are
marked bold and underlined, respectively.

Method Size
MeViS Ref-YouTube-VOS Ref-DAVIS17 GroundMoRe

J F J&F J F J&F J F J&F J F J&F

Non-LLM-based Specialists
ReferFormer [85] – 29.8 32.2 31.0 61.3 64.6 62.9 58.1 64.1 61.1 11.2 14.3 12.7
LMPM [21] – 34.2 40.2 37.2 – – – – – – 12.7 14.0 13.3
OnlineRefer [83] – – – – 61.6 65.5 63.5 61.6 67.7 64.8 – – –

LLM-based Generalists
PixelLM [69] 7B 36.3 41.1 38.7 54.3 55.7 55.0 63.4 70.0 66.7 9.9 10.0 10.0
LISA [32] 13B 35.8 40.0 37.9 54.0 54.8 54.4 63.2 68.8 66.0 6.3 6.7 6.5
VISA [96] 13B 41.8 47.1 44.5 61.4 64.7 63.0 67.0 73.8 70.4 5.3 4.7 5.9
VideoLISA [4] 3.8B 41.3 47.6 44.4 61.7 65.7 63.7 64.9 72.7 68.8 – – –
VideoGLaMM [56] 3.8B 42.1 48.2 45.2 65.4 68.2 66.8 73.3 65.6 69.5 – – –
ViLLa [112] 6B 46.5 52.3 49.4 64.6 70.4 67.5 70.6 78.0 74.3 – – –
GLUS [39] 7B 48.5 54.2 51.3 65.5 69.0 67.3 – – – – – –
Sa2VA [101] 4B – – 46.2 – – 70.0 – – 73.8 – – –
MoRA [20] 7B – – – – – – – – – 27.4 26.9 27.2

UniPixel (Ours) 3B 50.4 55.7 53.1 68.6 72.3 70.5 70.7 77.8 74.2 36.0 38.7 37.4
UniPixel (Ours) 7B 53.2 58.3 55.8 69.5 72.4 71.0 72.7 80.1 76.4 36.5 39.1 37.8

Table 3: Comparison with state-of-the-art methods on image referring expression segmentation (RES)
and reasoning segmentation datasets, including RefCOCO/+/g [29, 55] and ReasonSeg [32] (val).
The best and second-best results are marked bold and underlined, respectively.

Method Size
RefCOCO RefCOCO+ RefCOCOg ReasonSeg

val testA testB val testA testB val(U) test(U) gIoU cIoU

Non-LLM-based Specialists
ReLA [41] – 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0 – –
X-Decoder [116] – – – – – – – 64.6 – 22.6 17.9
SEEM [117] – – – – – – – 65.7 – 25.5 21.2

LLM-based Image Generalists
NExT-Chat [104] 7B 74.7 78.9 69.5 65.1 71.9 56.7 67.0 67.0 – –
PixelLM [69] 7B 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5 – –
LISA [32] 7B 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6 61.3 62.9
Groundhog [110] 7B 78.5 79.9 75.7 70.5 75.0 64.9 74.1 74.6 56.2 –
LaSagnA [80] 7B 76.8 78.7 73.8 66.4 70.6 60.1 70.6 71.9 48.8 47.2
M2SA [27] 13B 74.6 77.6 71.0 64.0 68.1 57.6 69.0 69.3 – –

LLM-based Video Generalists
VideoLISA [4] 3.8B 73.8 76.6 68.8 63.4 68.8 56.2 68.3 68.8 61.4 67.1
VISA [96] 7B 72.4 75.5 68.1 59.8 64.8 53.1 65.5 66.4 52.7 57.8
Vitron [23] 7B 75.5 79.5 72.2 66.7 72.5 58.0 67.9 68.9 – –
Sa2VA [101] 4B 78.9 – – 71.7 – – 74.1 – – –

UniPixel (Ours) 3B 80.5 82.6 76.9 74.3 78.9 68.4 76.3 77.0 64.0 56.2
UniPixel (Ours) 7B 80.8 83.0 77.4 75.3 80.1 70.0 76.4 77.1 60.5 58.7

existing methods with larger LLMs (including Sa2VA-4B [101] also with SAM 2 decoder), achieving
62.1 overall J&F . The 7B model further boosts the performance to 64.0 J&F – an improvement
of 12% over the previous state-of-the-art – demonstrating that UniPixel can effectively understand
implicit queries based on its world knowledge, and accurately generate masks as responses.

Referring Video Object Segmentation The performance comparisons on MeViS [21], Ref-
YouTube-VOS [71], and Ref-DAVIS17 [62] datasets are presented in Tab. 2. UniPixel consistently
achieves the best performance among its counterparts. Its advantage is particularly evident on the
more challenging MeViS dataset, where our 3B model outperforms GLUS-7B [39] by around 3.5%,
as well as the similarly sized VideoGLaMM-3.8B [56] by 17%. More experimental results on MeViS
[21] valu set and Ref-SAV [101] val set are provided in Tab. 4 and Tab. 5, respectively. Ref-SAV
features long referring descriptions, large object motion, large camera motion, and heavy occlusion
compared with existing datasets. Given these complex descriptions and video content, our method
consistently performs better than counterparts, including those fine-tuned on the target dataset.

Motion-Grounded Video Reasoning We also evaluate our method on GroundMoRe [20] dataset
(results shown in Tab. 2), which highlights visual answer generation that requires joint spatial and
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Table 4: Experimental results on MeViS [21] valu
set. Post means applying post optimization.

Method Size FT J F J&F

LMPM [21] – ✗ 36.5 43.9 40.2

LISA [32] 7B ✗ 39.9 46.5 43.2
LISA [32] + XMem [15] 7B ✗ 41.9 49.3 45.6
VideoLISA [4] 7B ✗ 48.4 54.9 51.7
VideoLISA [4] + Post 7B ✗ 50.9 58.1 54.5
Sa2VA [101] 4B ✗ – – 52.1
Sa2VA [101] 8B ✗ – – 57.0

UniPixel (Ours) 3B ✗ 56.1 63.2 59.7
UniPixel (Ours) 7B ✗ 58.4 65.0 61.7

Table 5: Comparison on Ref-SAV [101] val set.
FT means fine-tuning after pre-/co-training.

Method Size FT J F J&F

UniRef++ [86] – ✗ 11.6 9.5 10.5
UNINEXT [95] – ✗ 8.8 6.4 7.6
LMPM [21] – ✗ 12.2 9.8 10.3
VISA [96] 7B ✗ 13.2 11.3 11.8
Sa2VA [101] 8B ✗ 39.6 43.0 41.3

UniRef++ [86] – ✓ 15.8 13.4 14.6
Sa2VA [101] 8B ✓ 48.3 51.7 50.0

UniPixel (Ours) 3B ✗ 66.9 67.6 67.2
UniPixel (Ours) 7B ✗ 68.5 69.6 69.0

Table 6: Fine-tuned performance on referring expression segmentation (RES) datasets, including Ref-
COCO/+/g [29, 55]. The best and second-best results are marked bold and underlined, respectively.

Method Size
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val(U) test(U)

LISA [32] 7B 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6
GSVA [87] 7B 77.2 78.9 73.5 65.9 69.6 59.8 72.7 73.3
OMG-LLaVA [109] 7B 78.0 80.3 74.1 69.1 73.1 63.0 72.9 72.9
GLaMM [65] 7B 79.5 83.2 76.9 72.6 78.7 64.6 74.2 74.9
Sa2VA [101] 4B 80.4 – – 74.3 – – 75.7 –

UniPixel (Ours) 3B 81.9 83.5 78.6 75.3 80.3 70.6 77.2 78.5
UniPixel (Ours) 7B 83.0 84.9 80.4 77.8 82.3 72.7 78.7 79.7

Table 7: Experimental results on referring expression comprehension (REC) datasets, including Ref-
COCO/+/g [29, 55]. The best and second-best results are marked bold and underlined, respectively.

Method Size
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val(U) test(U)

OFA [78] – 80.0 83.7 76.4 68.3 76.0 61.8 67.6 67.6
Shikra [9] 7B 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2
MiniGPT-v2 [8] 7B 88.7 91.6 85.3 79.9 85.1 74.4 84.4 84.6
Vitron [23] 7B 90.9 93.2 89.3 83.7 89.1 76.9 86.4 87.0

UniPixel (Ours) 3B 91.8 93.8 87.5 86.3 90.8 80.3 88.0 88.2
UniPixel (Ours) 7B 92.0 94.4 88.1 87.2 91.9 82.1 88.6 88.7

temporal grounding. Note that we mainly compare the results with MoRA [20], which is fine-tuned
on GroundMoRe while other methods are evaluated under the zero-shot setting. Benefit from the
strong pixel-level reasoning capability, UniPixel significantly performs better than the baseline.

Referring Expression Segmentation and Reasoning Segmentation Tab. 3 compares the image
segmentation capabilities using explicit and implicit queries. We evaluate our co-trained model on
RefCOCO/+/g [29, 55] and ReasonSeg [32]. While state-of-the-art performance has been achieved
on RES datasets, we observe that the reasoning segmentation data (239 samples) can be easily
overwhelmed by the other samples during training due to its limited size. Tab. 6 presents the RES
performance after fine-tuning. We follow the common practice that jointly fine-tunes the model on
RefCOCO/+/g datasets [29, 55], and then evaluate on them separately. These results demonstrate the
generalizability of UniPixel when facing both explicit and implicit queries.

Referring Expression Comprehension Our method also supports referring expression compre-
hension by inferring the bounding boxes from predicted masks. Its performance (accuracy with IoU
⩾ 0.5) is compared with representative methods in Tab. 7. Benefiting from the high-quality mask
prediction, UniPixel can also achieve very competitive performance on this simpler task.

Referred Video Description and Question Answering We study UniPixel’s regional understand-
ing capabilities on VideoRefer-Bench [103], which contains two subsets for description and question
answering tasks. The comparisons are in Tab. 8 and Tab. 9. BQ, SQ, RQ, CQ, and FP denote basic
questions, sequential questions, relational questions, reasoning questions, and future predictions,
respectively. Both tasks leverage mask prompts as inputs, where single-frame and multi-frame modes
denote applying the masks only on a specific frame and on all frames, respectively. UniPixel can
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Table 8: Comparison with state-of-the-art methods on VideoRefer-BenchD [103]. The best and
second-best results are marked bold and underlined, respectively.

Method Size
Single-Frame Multi-Frame

SC AD TD HD Avg. SC AD TD HD Avg.

General LMMs
LLaVA-OV [33] 7B 2.62 1.58 2.19 2.07 2.12 3.09 1.94 2.50 2.41 2.48
Qwen2-VL [77] 7B 2.97 2.24 2.03 2.31 2.39 3.30 2.54 2.22 2.12 2.55
InternVL2 [74] 26B 3.55 2.99 2.57 2.25 2.84 4.08 3.35 3.08 2.28 3.20
GPT-4o-mini [59] – 3.56 2.85 2.87 2.38 2.92 3.89 3.18 2.62 2.50 3.05
GPT-4o [59] – 3.34 2.96 3.01 2.50 2.95 4.15 3.31 3.11 2.43 3.25

Image Referring LMMs
Ferret [98] 7B 3.08 2.01 1.54 2.14 2.19 3.20 2.38 1.97 1.38 2.23
Osprey [102] 7B 3.19 2.16 1.54 2.45 2.34 3.30 2.66 2.10 1.58 2.41

Video Referring LMMs
Elysium [75] 7B 2.35 0.30 0.02 3.59 1.57 – – – – –
Artemis [63] 7B – – – – – 3.42 1.34 1.39 2.90 2.26
VideoRefer [103] 7B 4.41 3.27 3.03 2.97 3.42 4.44 3.27 3.10 3.04 3.46

UniPixel (Ours) 3B 4.04 3.15 3.10 3.37 3.42 4.08 3.13 3.13 3.42 3.44
UniPixel (Ours) 7B 3.83 3.07 2.96 3.62 3.37 3.82 3.05 3.01 3.57 3.36

Table 9: Comparison with state-of-the-art methods on
VideoRefer-BenchQ [103] (mask prompts). MF denotes
multi-frame mode. Full question types are in Sec. 4.1.

Method Size MF BQ SQ RQ CQ FP Avg.

General LMMs
LLaVA-OV [33] 7B ✗ 58.7 62.9 64.7 87.4 76.3 67.4
Qwen2-VL [77] 7B ✗ 62.0 69.6 54.9 87.3 74.6 66.0
InternVL2 [74] 26B ✗ 58.5 63.5 53.4 88.0 78.9 65.0
GPT-4o-mini [59] – ✗ 57.6 67.1 56.5 85.9 75.4 65.8
GPT-4o [59] – ✗ 62.3 74.5 66.0 88.0 73.7 71.3

Image Referring LMMs
Ferret [98] 7B ✗ 35.2 44.7 41.9 70.4 74.6 48.8
Osprey [102] 7B ✗ 45.9 47.1 30.0 48.6 23.7 39.9

Video Referring LMMs
VideoRefer [103] 7B ✗ 75.4 68.6 59.3 89.4 78.1 71.9
UniPixel (Ours) 3B ✗ 73.6 70.3 60.7 88.8 78.0 72.2
UniPixel (Ours) 7B ✗ 68.9 73.1 64.7 88.8 83.3 73.4

VideoRefer [103] 7B ✓ – 70.6 60.5 – – 72.1
UniPixel (Ours) 3B ✓ 75.3 70.7 62.3 87.4 77.2 72.8
UniPixel (Ours) 7B ✓ 70.6 74.6 64.7 88.8 82.5 74.1

Table 10: Evaluation results on our newly
introduced PixelQA task. All the visual
prompts are applied in a single frame. See
Sec. 4.2 for detailed settings.

Method Size J F J&F Acc

Point Prompts
InternVL2 [74] 26B – – – 60.8
Qwen2-VL [77] 72B – – – 69.3
UniPixel (Ours) 3B 57.3 64.4 60.9 71.1
UniPixel (Ours) 7B 42.1 47.1 44.6 71.4

Box Prompts
InternVL2 [74] 26B – – – 61.3
Qwen2-VL [77] 72B – – – 69.0
UniPixel (Ours) 3B 57.8 64.7 61.3 70.3
UniPixel (Ours) 7B 41.1 46.4 43.8 71.4

Mixed (50% Points + 50% Boxes)
InternVL2 [74] 26B – – – 60.9
Qwen2-VL [77] 72B – – – 69.1
UniPixel (Ours) 3B 57.2 64.1 60.6 70.8
UniPixel (Ours) 7B 42.3 47.5 44.9 71.4

effectively comprehend both types of prompts, and accurately respond with object-centric descriptions
or answers, surpassing strong models including GPT-4o [59] and VideoRefer [103].

4.2 Q2: Pixel-Level Video Question Answering (PixelQA)

We design the new PixelQA task based on VideoRefer-BenchQ [103], where the original mask
prompts are replaced with more challenging point or box prompts. Given these ambiguous visual
cues, models are expected to correctly identify the target object according to the question and the
visual prompt, then respond with both the textual answer and the corresponding object masks.
We report the mask prediction J&F and MCQ accuracy in Tab. 10. Note that none of the existing
methods supports this scenario. Thus, we apply set-of-mark prompts [97] directly on video frames,
and evaluate the QA accuracies of two strong LMMs [77, 74] as our baselines. Aside from point- or
box-only prompts, we also explore a more flexible setting that randomly chooses different prompts
for different objects. The results verify that our memory pre-filling & injection paradigm effectively
enhances the model’s reasoning capabilities. Visualizations of this task are shown in Fig. 5.

4.3 Q3: Key Ablation Studies

Effect of Task Unification We study the effect of task unification in Tab. 11 (a). Unifying referring
and segmentation capabilities into a single model and training them jointly leads to better results
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If [1] continues moving forward, what is a likely future event?
(A) The bear will encounter other animals (B) The bear will find a place to rest (C) The bear will start running (D) The bear will climb the stone wall

What is a likely future event with [1]?
(A) He will stop and rest (B) He will start walking slowly (C) He will continue to navigate through more obstacles (D) He will sit down and take a break

How is [4] related to [2]?
(A) [4] is holding [2] (B) [4] is controlling [2] with a leash (C) [4] is walking away from [2] (D) [4] is ignoring [2]

Figure 5: Visualization of the outputs from UniPixel on PixelQA task. Star marks and boxes
refer to point and box prompts, respectively. The boxed frames denote where the visual prompts are
applied. Given different types of visual prompts on a single frame, our method can flexibly infer the
relevant object, track it across the entire video, and involve its features in reasoning.

Table 11: Key ablation studies with UniPixel-3B on PixelQA (mixed). See Sec. 4.3 for explanations.
(a) Task Unification

Refer Segment Memory J&F Acc

✓ – 64.6
✓ 47.5 –

✓ ✓ 48.2 67.4

✓ ✓ ✓ 49.0 68.5

(b) Object Memory Bank

Referring Method J&F Acc

① <REF> 46.8 64.5
② <REF><SEG> 47.8 64.9
③ <REF><SEG> + Pooling 47.5 66.3

④ Object Memory Bank 49.0 68.5

(c) Prompt Encoder & Mask Decoder

Encoder Decoder J&F Acc

w/o Time – 44.3 63.7
w/ Time – 49.0 68.5

– Independent 46.1 66.2
– Propagation 49.0 68.5

on both tasks (first three rows), demonstrating the mutual reinforcement effect of such unification.
Incorporating memory pre-filling as an auxiliary task (last row) brings extra improvements.

Effect of Object Memory Bank Tab. 11 (b) verifies the effectiveness of object memory bank. ①
means using a single token for each referred object. ② means adding an extra segmentation token to
segment it as an auxiliary task. ③ further appends masked-pooled visual tokens after it. The results
show that (1) both adding auxiliary segmentation task and masked-pooled features help regional
understanding, and (2) decoupling them via object memory bank can further boost the performance.

Design Space of Prompt Encoder & Mask Decoder We compare different prompt encoder
and mask decoder designs in Tab. 11 (c). The performance significantly drops when the temporal
encoding in the prompt encoder is removed (first two rows). For the mask decoder (last two rows),
we explore an alternative strategy that treats video frames independently (as batched images), which
could largely accelerate inference but lead to sub-optimal accuracies. We hypothesize that this is
because the LLM-generated <SEG> token cannot well-capture the object information in all frames,
thus disentangling the segmentation and tracking capabilities to an external module is reasonable.

5 Conclusion

In this work, we proposed UniPixel, a large multi-modal model that supports flexible pixel-level
visual reasoning. It unifies the internal representations of referred and segmented objects through
a novel object memory bank. We observe that by such unification, the performance of object
referring and segmentation can be jointly enhanced. Extensive experiments on diverse pixel-level
understanding tasks, including the PixelQA task, demonstrate the significance of the proposed
method. We hope this work inspires future advancements in pixel-level visual understanding.
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Appendix

In this appendix, we provide more details about the training data, model implementation, and experi-
mental settings to complement the main paper. Additional analysis, ablation studies, visualizations,
and discussions are also incorporated. Below is the table of contents.

A. Model

1. Implementation Details
2. Training Recipe

B. Experiments

1. Tasks and Benchmarks
2. Evaluation Metrics
3. More Experimental Results
4. Ablation Studies
5. Qualitative Results

C. Discussions

1. Limitations & Future Work
2. Potential Societal Impacts

D. Licenses

A Model

A.1 Implementation Details

We instantiate our base models with 3B and 7B versions of Qwen2.5-VL [3]. Both variants employ
pre-trained SAM 2.1 [66] with Hiera Base+ [70] backbone as the mask decoder. The M→L projector
is initialized with the weights from the V→L projector of Qwen2.5-VL. The hidden size inside the
prompt encoder is 256. To reduce GPU memory and accelerate training, we randomly sample 8
frames per video, with each frame resized to 3162 ∼ 4482 pixels (128∼ 256 tokens per frame). The
frame sampling strategies follow the specifications of each benchmark during inference. The mask
decoder has a fixed resolution of 768× 768. For each segmentation sample, up to 5 objects are
randomly selected to compute the mask prediction losses. During training, LoRA adapters [26] with
rank=128 and alpha=256 are applied to all QKVO layers in the visual encoder and LLM. The input
sequences are restricted to 4K tokens. We train the model with 8 RTX A6000 Ada (48G) GPUs, with
a global batch size of 256 for stages 1 and 2, and 32 for stage 3. In the first two stages, the learning
rates are set to 1e-3. In the last stage, it is set to 5e-6 for the mask decoder and 2e-5 for all the other
parameters, respectively. A linear warmup in the first 3% steps followed by cosine decay is adopted
in all stages. The configurations of datasets are introduced in the following section.

A.2 Training Recipe

The detailed distribution of training datasets for UniPixel is shown in Tab. 12. Within the three-stage
training recipe, we first pre-train the sparse prompt encoder using short caption samples from Inst-IT
[61] and VideoRefer [103]. For each sample, we randomly select a point inside the ground truth
mask (50%) or generate an augmented box from it (50%). This stage aims to enable the model with
simple visual prompt comprehension and regional captioning capabilities on images and videos. In
the second stage, we align the LLM and mask decoder using referring object segmentation datasets
[29, 55, 71]. We use short caption/query samples for the first two stages to focus on alignment rather
than knowledge learning. For the last stage, we collect a large-scale, high-quality corpus called
UniPixel-SFT-1M3 to jointly train the model on diverse pixel-level tasks. The original annotations
have been rewritten using task-specific templates to incorporate instructions. All the repurposed
datasets and pre-processing pipelines will be publicly available to facilitate future research.

3 https://huggingface.co/datasets/PolyU-ChenLab/UniPixel-SFT-1M
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Table 12: The distribution of training datasets for UniPixel. We use different background colors to
denote object referring , object segmentation , regional understanding , memory pre-filling , and

general video understanding data, respectively.

Stage Dataset
Inputs Outputs

#Samples #Repeat Ratio
Text Image Video Point Box Mask Text Mask

1 Inst-IT-Image-Short-Caption [61] ✓ ✓ ✓ ✓ ✓ 351K 1 41.2%
VideoRefer-Short-Caption [103] ✓ ✓ ✓ ✓ ✓ 500K 1 58.8%

RefCOCO [29] ✓ ✓ ✓ ✓ 17K 5 20.8%
RefCOCO+ [29] ✓ ✓ ✓ ✓ 17K 5 20.8%

2 RefCOCOg [55] ✓ ✓ ✓ ✓ 22K 5 26.8%
RefClef [29] ✓ ✓ ✓ ✓ 18K 5 22.0%
Ref-YouTube-VOS [71] ✓ ✓ ✓ ✓ 13K 3 9.5%

3

Osprey-Conversation [102] ✓ ✓ ✓ ✓ 1.4K 5 0.1%
Osprey-Detail-Description [102] ✓ ✓ ✓ ✓ 29K 5 2.5%
Osprey-Pos-Neg [102] ✓ ✓ ✓ ✓ 20K 5 1.7%
VideoRefer-Detailed-Caption [103] ✓ ✓ ✓ ✓ 120K 5 10.1%
VideoRefer-QA [103] ✓ ✓ ✓ ✓ 69K 5 5.8%
Inst-IT-Video-QA [61] ✓ ✓ ✓ ✓ 159K 5 13.4%
VideoRefer-QA-Memory [103] ✓ ✓ ✓ ✓ ✓ ✓ 69K 3 3.5%
Inst-IT-QA-Memory [61] ✓ ✓ ✓ ✓ ✓ ✓ 158K 3 8.0%
RefCOCO [29] ✓ ✓ ✓ ✓ 17K 10 2.9%
RefCOCO+ [29] ✓ ✓ ✓ ✓ 17K 10 2.9%
RefCOCOg [55] ✓ ✓ ✓ ✓ 22K 10 3.7%
RefClef [29] ✓ ✓ ✓ ✓ 18K 10 3.0%
ReasonSeg [32] ✓ ✓ ✓ ✓ 1.6K 10 0.3%
ADE20K [113] ✓ ✓ ✓ ✓ 20K 3 1.0%
COCOStuff [7] ✓ ✓ ✓ ✓ 118K 3 6.0%
Mapillary Vistas [57] ✓ ✓ ✓ ✓ 18K 3 0.9%
PACO-LVIS [64] ✓ ✓ ✓ ✓ 46K 3 2.3%
PASCAL-Part [10] ✓ ✓ ✓ ✓ 4.4K 3 0.2%
Ref-YouTube-VOS [71] ✓ ✓ ✓ ✓ 13K 5 1.1%
Ref-DAVIS17 [62] ✓ ✓ ✓ ✓ 0.6K 10 0.1%
Ref-SAV [101] ✓ ✓ ✓ ✓ 56K 3 2.8%
MeViS [21] ✓ ✓ ✓ ✓ 23K 5 1.9%
LV-VIS [76] ✓ ✓ ✓ ✓ 11K 3 0.6%
ViCaS [1] ✓ ✓ ✓ ✓ 41K 3 2.1%
ReVOS [96] ✓ ✓ ✓ ✓ 29K 5 2.5%
GroundMoRe [20] ✓ ✓ ✓ ✓ 5.6K 3 0.3%
LLaVA-1.5-Mix-665K [42] ✓ ✓ ✓ 647K 1 10.9%
VideoGPT+ Instruct [52] ✓ ✓ ✓ 573K 1 9.7%

B Experiments

B.1 Tasks and Benchmarks

Our method is extensively evaluated across 9 fine-grained image/video understanding tasks. The
benchmark(s) used for each task are listed as follows:

1. Reasoning Video Object Segmentation: ReVOS [96]
2. Referring Video Object Segmentation: MeViS [21], Ref-YouTube-VOS [71], Ref-DAVIS17 [62], Ref-SAV [101]
3. Motion-Grounded Video Reasoning: GroundMoRe [20]
4. Referring Expression Segmentation: RefCOCO [29], RefCOCO+ [29], RefCOCOg [55]
5. Reasoning Segmentation: ReasonSeg [32]
6. Referring Expression Comprehension: RefCOCO [29], RefCOCO+ [29], RefCOCOg [55]
7. Referred Video Description: VideoRefer-BenchD [103]
8. Referred Video Question Answering: VideoRefer-BenchQ [103]
9. Flexible Pixel-Level Understanding: PixelQA (Ours)

B.2 Evaluation Metrics

For video segmentation tasks, we adopt J&F as the main metric to jointly consider region similarity
J and contour accuracy F . Image segmentation is evaluated using cIoU (the cumulative intersection
over the cumulative union) and gIoU (the average of all per-image IoUs) following existing work. For
referred video description and question answering tasks, we follow the official evaluation protocols to
report GPT-4o [59] scores and MCQ accuracy, respectively. For referring expression comprehension,

19



Table 13: Performance comparison on general video question answering (VideoQA) on MVBench
[36]. Note that UniPixel is the only model supporting pixel-level referring & segmentation.

Model Size AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg.

GPT-4V [58] – 55.5 63.5 72.0 46.5 73.5 18.5 59.0 29.5 12.0 40.5 83.5 39.0 12.0 22.5 45.0 47.5 52.0 31.0 59.0 11.0 43.5

Video-ChatGPT [53] 7B 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5 32.7
Video-LLaMA [105] 7B 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0 34.1
VideoChat [35] 7B 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0 35.5
Video-LLaVA [38] 7B 46.0 42.5 56.5 39.0 53.5 53.0 48.0 41.0 29.0 31.5 82.5 45.0 26.0 53.0 41.5 33.5 41.5 27.5 38.5 31.5 43.0
TimeChat [68] 7B 40.5 36.0 61.0 32.5 53.0 53.5 41.5 29.0 19.5 26.5 66.5 34.0 20.0 43.5 42.0 36.5 36.0 29.0 35.0 35.0 38.5
PLLaVA [94] 7B 58.0 49.0 55.5 41.0 61.0 56.0 61.0 36.0 23.5 26.0 82.0 39.5 42.0 52.0 45.0 42.0 53.5 30.5 48.0 31.0 46.6
ST-LLM [44] 7B 66.0 53.5 84.0 44.0 58.5 80.5 73.5 38.5 42.5 31.0 86.5 36.5 56.5 78.5 43.0 44.5 46.5 34.5 41.5 58.5 54.9
VideoGPT+ [52] 4B 69.0 60.0 83.0 48.5 66.5 85.5 75.5 36.0 44.0 34.0 89.5 39.5 71.0 90.5 45.0 53.0 50.0 29.5 44.0 60.0 58.7
VideoChat2 [36] 7B 75.5 58.0 83.5 50.5 60.5 87.5 74.5 45.0 47.5 44.0 82.5 37.0 64.5 87.5 51.0 66.5 47.0 35.0 37.0 72.5 60.4

UniPixel (Ours) 3B 69.5 62.5 83.0 48.5 76.5 86.5 66.5 38.0 49.0 40.5 87.0 49.0 74.0 95.0 49.0 45.0 63.5 34.5 58.0 73.5 62.5
UniPixel (Ours) 7B 71.0 68.0 84.0 45.0 78.0 91.5 66.5 35.5 57.5 43.0 91.5 47.0 73.5 92.5 58.0 53.0 74.0 37.5 49.0 69.0 64.3

Table 14: Effectiveness justification of multi-stage training. The best and second-best results are
marked bold and underlined, respectively. The three-stage recipe leads to optimal performance.

Stage 1 Stage 2 Stage 3
ReVOS MeViS (valu) VideoRefer-BenchQ

J F J&F J F J&F Single-Frame Multi-Frame

✓ 58.3 63.6 61.0 54.8 61.9 58.4 71.1 71.5
✓ ✓ 59.0 63.4 61.2 55.2 62.1 58.7 71.8 72.3

✓ ✓ 59.6 63.5 61.6 55.7 62.5 59.1 71.2 71.6

✓ ✓ ✓ 59.7 64.4 62.1 56.1 63.2 59.7 72.2 72.8

we leverage mean accuracies, where a predicted bounding box is considered correct when it has the
intersection over union (IoU) with the ground truth no less than 0.5.

B.3 More Experimental Results

General Video Question Answering We also evaluate UniPixel on MVBench [36] to compare its
general video understanding capabilities with existing methods. The results are illustrated in Tab. 13.
Note that our method is the only one in the table that supports referring and segmentation. By jointly
training on holistic-level and pixel-level data, UniPixel can effectively balance the capabilities under
both scenarios, demonstrated by the strong performance compared with holistic-level models.

B.4 Ablation Studies

Effect of Multi-stage Training We investigate the effectiveness of multi-stage training in Tab. 14.
As shown in the first line, directly training the model using large-scale data only leads to sub-optimal
performance, due to the unaligned representations among prompt encoder, LLM, and mask decoder.
We observe that pre-training either the sparse prompt encoder or the L→M projector (the second and
third lines) brings performance gains on both tasks (referring and segmentation). We hypothesize that
this is because pre-aligning either of them can alleviate the burden of joint-task learning in stage 3.
The last row verifies that the performance can be further boosted by pre-aligning both of them.

Number of Hidden Tokens for Mask Decoder As mentioned in the main paper, there is a huge
gap between the feature dimensions of the LLM and the mask decoder, thus splitting the <SEG> token
into more hidden tokens can better preserve the object information from the LLM. We ablate this
mechanism in Tab. 15. According to the results, using only 1 hidden token cannot fully preserve the
object information, as the mask prediction performance is sub-optimal. However, we also observe
that using more than 2 hidden tokens (e.g., 4 or 8) only brings negligible performance gain. Therefore,
we choose 2 hidden tokens per object in our final model.

Training Strategy for the M→L projector The M→L projector aims to project the masked-pooled
object-centric features to the LLM’s embedding space. Since the object features originate from the
visual encoder, it is possible to re-use the pre-trained weights of the original V→L projector in
Qwen2.5-VL. Its effects are studied in Tab. 16. We investigated two strategies: 1) re-using the
weights and 2) adding an extra pre-training stage for better alignment. The comparison shows that
directly re-using weights without extra pre-training can achieve the best results.
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Table 15: Ablation study on the number of hid-
den tokens for each <SEG>. Performance gains
are negligible with more than 2 tokens/object.

#Tokens
ReVOS MeViS (valu)

J F J&F J F J&F

1 59.6 63.5 61.6 55.8 62.5 59.2
2 59.7 64.4 62.1 56.1 63.2 59.7
4 59.8 63.9 61.9 56.8 63.1 59.9
8 59.5 64.0 61.8 56.4 62.8 59.6

Table 16: Ablation study on M→L projector. Init
and PT denote weight initialization from V→L
projector and extra pre-training, respectively.

Init PT
VideoRefer-BenchQ PixelQA

Single-Frame Multi-Frame Mixed Acc

71.4 71.9 67.7
✓ 71.5 71.7 67.4

✓ 72.4 72.6 68.2
✓ ✓ 72.2 72.8 68.5

Table 17: Ablation study on training data used in stage 3. The best and second-best results are marked
bold and underlined, respectively. Gradually adding more pixel-level data brings performance gains.

Regional Segmentation Memory General
ReVOS MeViS (valu) VideoRefer-BenchQ

J F J&F J F J&F Single-Frame Multi-Frame

✓ – – – – – – 72.1 72.0
✓ 58.9 63.8 61.4 56.0 63.2 59.6 – –

✓ ✓ 59.2 63.7 61.5 55.8 63.1 59.5 72.3 72.6
✓ ✓ ✓ 59.6 64.5 62.1 56.3 63.5 59.9 72.4 72.5

✓ ✓ ✓ ✓ 59.7 64.4 62.1 56.1 63.2 59.7 72.2 72.8

Combination of Training Data Tab. 17 studies the effect of the combination of multi-task co-
training data in stage 3. Compared with training only on the regional or segmentation data, leveraging
both of them leads to considerable performance on both tasks. Incorporating memory pre-filling data
(requiring both referring and segmentation) can further boost the performance. We also mix some
general holistic-level video understanding data to preserve the original capabilities of the pre-trained
model, while it slightly affects the performance on pixel-level tasks.

B.5 Qualitative Results

Fig. 6∼ 11 present more visualizations of outputs from UniPixel on different pixel-level understanding
tasks. Our method can effectively handle flexible visual prompts [103], implicit queries [32, 96], long
queries [101], and motion-grounded questions [20].

C Discussion

C.1 Limitations & Future Work

Due to the limited computing resources, we did not further scale up the training data to incorporate
more pixel-level tasks such as grounded caption generation (GCG) on images [65] or videos [56],
which are interesting scenarios and their data may bring more performance gains. Besides, the mask
decoder currently predicts the first mask on the first frame and propagates it to the following frames,
while it potentially supports predicting on the best frame (defined as the frame with the best view of
the target) and propagates it to both sides of the video. We will focus in our future work to explore
more pixel-level understanding tasks and more flexible mechanisms for the mask decoder.

C.2 Potential Societal Impacts

This work introduces a new framework for pixel-level visual-language understanding, which could
potentially be used in education, surveillance, and healthcare industries, where flexible interactions
with the users and fine-grained understanding of images & videos are required. In other scenarios
requiring multi-modal assistants, our method can also serve as a more advanced alternative. To the
best of our knowledge, there are no potential negative societal impacts to declare.

D Licenses

Our model is built based on the pre-trained Qwen2.5-VL [3] and SAM 2.1 [66] models. They are both
licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).
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If [1] continues to move forward, what is a likely future event involving [2]?
(A) [2] will run away (B) [2] will sit down and stop moving (C) [2] will start barking (D) [2] will continue walking by the wheelchair

What action does [1] perform that involves [3]?
(A) [1] extends an arm across [3]'s chest (B) [1] hands something to [3] (C) [1] talks to [3] (D) [1] ignores [3]

What is [1] wearing?
(A) Blue sweatshirt and black jeans (B) Red sweatshirt and light blue jeans (C) Green t-shirt and white pants (D) Yellow hoodie and dark blue jeans

If <object1><region> continues riding the bike, what is a likely future event?
(A) [1] will stop (B) [1] will start running (C) [1] will change a different outfit (D) [1] will continue to challenge different high difficulty movements

Figure 6: Visualization of the predictions from UniPixel on PixelQA.

Please segment the zebra which is younger in this video.

Please segment the cow that is the furthest from the camera in this video.

Which goldfish is on the left side of the screen at the beginning of the video? Please provide the segmentation mask.

Can you find the skunk that has black fur all over its body and a tuft of white fur on its head and the tip of its tail?

Where is the instrument that serves to shield from the sun or protect from rain and snow?

Which ferret(s) is/are being licked by a cat consistently? Please provide the segmentation mask.

Can you segment the insect(s) belonging to the superfamily Papilionoidea of the Lepidoptera order in this video?

Figure 7: Visualization of the predictions from UniPixel on ReVOS [96].
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Where is the man wearing a cap and shorts in this video? Respond with the segmentation mask.

Can you find the blue wooden car in the frames?

Segment and track the green motorbike in this video.

Please segment the black swan in this video.

Where is the rope? Give me the segmentation results directly.

Figure 8: Visualization of the predictions from UniPixel on Ref-DAVIS17 [62].

Q: Who might not open the cooler if not for feeding the walrus a fish?                                                       A: The woman.

Q: Who opens the ziploc bag to transfer the crushed Oreo cookies into the bowl?                                                  A: The girl.

Q: Who dribbles the ball before he shoots it?                                                                      A: The man in the black shorts.

Q: Who asked if the little girl could carry the box before she picked it up?                                                 A: The man.

Q: What might not be given to the woman by the man if he did not eat by himself? A: The bag.

Q: Who kicks the ball into the goal? A: The boy.

Figure 9: Visualization of the predictions from UniPixel on GroundMoRe [20].
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Find the object according to the description: The object is a dark-colored backpack with light-colored accents, featuring multiple
compartments and pockets, securely fastened to an individual's back. The person is dressed in dark clothing and ascending an
escalator in a public setting, likely a mall or transportation hub. The backpack has adjustable straps and a top handle, appearing
functional for carrying various items. The individual moves steadily up the escalator, indicating a purposeful journey.

Analyze the following sentences and provide the corresponding segmentation mask: The object is a dark-colored sedan, likely blue
or black, parked on an unpaved surface, possibly a dirt road or an area with loose soil. It has four doors, a visible rear spoiler on
the trunk, silver wheels, and tinted windows. The car is slightly tilted, suggesting it might be parked on uneven ground or
experiencing some form of imbalance. Throughout the video, the sedan remains stationary, with no indication of movement or
actions being performed by the vehicle.

Please segment the object according to the description: The object is a person with long dark hair, wearing a dark top and a
patterned skirt with geometric designs. This individual is stationary or moving very slowly in the background of a retail store,
possibly a furniture or home goods store. The person remains in close proximity to another shopper pushing a shopping cart,
suggesting they might be together or interacting. The scene captures a typical shopping experience.

Figure 10: Visualization of the predictions from UniPixel on Ref-SAV [101].

Find the lens that is more 
suitable for photographing 
nearby objects.

Where is the goat nearest 
to the bottom stone? Give 
me the segmentation mask.

In some rural areas, horse-
drawn carts are still used for 
transportation and carrying 
goods. What is the main 
source of power that drives 
the cart in the picture?

What item in the picture can 
provide information to help 
guide travelers through this 
rugged terrain that can be 
challenging to navigate?

Please localize the place 
where piano players should 
sit in this image.

Where is the place where 
the garbage should be put? 
Please respond with the 
segmentation mask.

Which part of the vehicle 
must be used to display 
identifying information as 
required by law? Segment 
the target directly.

Segment the place where the 
patient lies down to receive 
examination in this image.

Figure 11: Visualization of the predictions from UniPixel on ReasonSeg [32].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: To the best of our knowledge, all the claims made in the abstract and introduc-
tion are verified either by referring to previous studies or by conducting experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are carefully discussed in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results. All the claims shall be verified
through ablation studies.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly present the list of datasets used for training, the implementation
details, and the evaluation metrics we used to produce the experimental results in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-source all the code, checkpoints, data, and training logs to ensure full
reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the detailed settings, hyperparameters, and other necessary information are
provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We are not able to fully report the error bars given the limited computing
resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This information is included in the implementation details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that the research conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The potential societal impacts are discussed in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provided citations to the original papers for all the used datasets and base
models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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