
Data-Efficient Model Learning for Model Predictive
Control with Jacobian-Regularized Dynamic Mode

Decomposition

Anonymous Author(s)
Affiliation
Address
email

Abstract: We present a data-efficient algorithm for learning models for model-1

predictive control (MPC). Our approach, Jacobian-Regularized DMD (JDMD),2

offers improved sample efficiency over traditional Koopman approaches based on3

Dynamic-Mode Decomposition (DMD) by leveraging Jacobian information from4

an approximate prior model of the system, and improved tracking performance5

over traditional model-based MPC. We demonstrate JDMD’s ability to quickly6

learn bilinear Koopman dynamics representations across several realistic exam-7

ples in simulation, including a perching maneuver for a fixed-wing aircraft with8

an experimentally derived high-fidelity physics model. In all cases, we show that9

the models learned by JDMD provide superior tracking and generalization perfor-10

mance in the presence of significant model mismatch within a model-predictive11

control framework, when compared to the approximate prior models used in train-12

ing and models learned by standard extended DMD.13

1 Introduction14

In recent years, both model-based optimal-control [1, 2, 3, 4] and data-driven reinforcement-learning15

methods [5, 6, 7] have demonstrated impressive successes on complex, nonlinear robotic systems.16

However, both approaches suffer from inherent drawbacks: Data-driven methods often require ex-17

tremely large amounts of data and fail to generalize outside of the domain or task on which they were18

trained. On the other hand, model-based methods require an accurate model of the system to achieve19

good performance. In many cases, high-fidelity models can be too difficult to construct from first20

principles or too computationally expensive to be of practical use. However, low-order approximate21

models that can be evaluated cheaply at the expense of controller performance are often available.22

With this in mind, we seek a middle ground between model-based and data-driven approaches in23

this work.24

We propose a method for learning bilinear Koopman models of nonlinear dynamical systems for use25

in model-predictive control that leverages derivative information from an approximate prior dynam-26

ics model of the system in the training process. Given the increased availability of differentiable27

simulators [8, 9], this approximate derivative information is readily available for many systems of28

interest. Our new algorithm builds on extended Dynamic Mode Decomposition (EDMD), which29

learns Koopman models from trajectory data [10, 11, 12, 13, 14], by adding a derivative regular-30

ization term based on derivatives computed from a prior model. We show that this new algorithm,31

Jacobian-regularized Dynamic Mode Decomposition (JDMD), can learn models with dramatically32

fewer samples than EDMD, even when the prior model differs significantly from the true dynamics33

of the system. We also demonstrate the effectiveness of these learned models in a model-predictive34

control (MPC) framework. The result is a fast, robust, and sample-efficient pipeline for quickly train-35

ing a model that can outperform MPC controllers using the approximate analytical model as well36

models learned using both traditional Koopman approaches and multi-layer perceptrons (MLPs).37

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

While our proposed Koopman-based approached is significantly more sample efficient, we also38

demonstrate the utility of incorporating gradient information for learning a simple model using a39

two-layer MLP.40

Our work is most closely related to the recent work of Folkestad et. al. [13, 15, 16], which learn41

bilinear models and apply nonlinear model-predictive control directly on the learned bilinear dy-42

namics. Other recent works have combined linear Koopman models with model-predictive control43

[12] and Lyapunov control techniques with bilinear Koopman [17]. Our contributions are:44

• A novel extension to extended dynamic mode decomposition, called JDMD, that incorpo-45

rates gradient information from an approximate analytic model46

• A recursive, batch QR algorithm for solving the least-squares problems that arise when47

learning bilinear dynamical systems using DMD-based algorithms, including JDMD and48

EDMD49

The remainder of the paper is organized as follows: In Section 2 we provide some background50

on the application of Koopman operator theory to controlled dynamical systems and review some51

related works. Section 3 then describes the proposed JDMD algorithm. In Section 4 we outline52

a memory-efficient technique for solving the large, sparse linear least-squares problems that arise53

when applying JDMD and other DMD-based algorithms. Section 5 then provides simulation results54

and analysis of the proposed algorithm applied to control tasks on a cartpole, a quadrotor, and a small55

foam airplane with an experimentally determined aerodynamics model, all subject to significant56

model mismatch. It also includes a comparison of the current approach to model-learning via a57

multi-layer perceptron, for the canonical cartpole problem. In Section 6 we discuss the limitations58

of our approach, followed by some concluding remarks in Section 7.59

2 Background and Related Work60

2.1 Koopman Operator Theory61

The theoretical underpinnings of the Koopman operator and its application to dynamical systems has62

been extensively studied [18, 19, 11, 20, 21]. Rather than describe the theory in detail, we highlight63

the key concepts employed by the current work and refer the reader to the existing literature on64

Koopman theory for further details.65

We start by assuming a controlled, nonlinear, discrete-time dynamical system,66

x+ = f(x, u), (1)

where x ∈ X ⊆ RNx is the state vector, uk ∈ RNu is the control vector, and x+ is the state at the67

next time step. Assuming the dynamics are control-affine, the nonlinear finite-dimensional system68

(1) can be represented exactly by an infinite-dimensional bilinear system through the Koopman69

canonical transform [21]. This bilinear Koopman model follows the form,70

y+ = Ay +Bu+

m∑
i=1

uiCiy = g(y, u), (2)

where y = ϕ(x) is a nonlinear mapping from the finite-dimensional state space X to the infinite-71

dimensional Hilbert space of observables Y . In practice, we approximate (2) by restricting Y to be72

a finite-dimensional vector space, in which case ϕ becomes a finite-dimensional nonlinear function73

of the state variables, which can be either chosen heurstically based on domain expertise, or learned74

[22, 23, 24].75

Intuitively, ϕ “lifts” our state x into a higher dimensional space Y where the dynamics are approx-76

imately (bi)linear, effectively trading dimensionality for (bi)linearity. Similarly, we can perform an77

“unlifting” operation by projecting a lifted state y back into the original state space X . In this work,78

2

since we embed the original state within the nonlinear mapping [11, 15, 25, 26, 27], ϕ is constructed79

in such a way that this unlifting is linear:80

x = Gy. (3)

We note that our proposed method does not rely on this assumption: any mapping could be used.81

The problem of finding an optimal mapping is itself a major area of research, and many recent82

studies have focused on jointly learning both the model and the mapping [22, 23, 28, 29, 24]. While83

clearly advantageous, learning an optimal embedding is orthogonal to the main focus of the current84

paper, which focuses on a straightforward way of incorporating analytical derivative information85

from an approximate model, which is equally applicable whether the embedding function is learned86

or chosen heuristically. The mappings in the current work are chosen heuristically based on problem87

insight and experience.88

2.2 Extended Dynamic Mode Decomposition89

A lifted bilinear system of the form (2) can be learned from P samples of the system dynamics90

(x+
j , xj , uj) using Extended Dynamic Mode Decomposition (EDMD) [20, 15]. We first define the91

following data matrices:92

Z1:P =

y1 y2 . . . yP
u1 u2 . . . uP

u1,1y1 u2,1y2 . . . uP,1yP
...

...
. . .

...
u1,my1 u2,my2 . . . uP,myP

 , Y +
1:P =

[
y+1 y+2 . . . y+P

]
, (4)

We then concatenate all of the model coefficient matrices as follows:93

E = [A B C1 . . . Cm] ∈ RNy×Nz , (5)

The model learning problem can then be written as the following linear least-squares problem:94

minimize
E

∥∥EZ1:P − Y +
1:P

∥∥2
2

(6)

EDMD is closely related to classical feature-based machine learning approaches like the “kernel95

trick” used in support vector machines [30], but extends these ideas to bilinear models of controlled96

dynamical systems.97

3 Jacobian-Regularizated Dynamic Mode Decomposition98

We now present JDMD as a straightforward adaptation of the original EDMD algorithm described99

in Section 2.2. Given P samples of the dynamics (x+
i , xi, ui), and an approximate discrete-time100

dynamics model,101

x+ = f̃(x, u), (7)

we can evaluate the Jacobians of our approximate model f̃ at each of the sample points: Ãi =102

∂f̃
∂x , B̃i =

∂f̃
∂u . After choosing a nonlinear mapping ϕ : RNx 7→ RNy our goal is to find a bilinear103

dynamics model (2) that matches the Jacobians of our approximate model, while also matching104

our dynamics samples. We accomplish this by penalizing differences between the Jacobians of105

our learned bilinear model with respect to the original states x and controls u, and the Jacobians106

we expect from our analytical model. These projected Jacobians are calculated by differentiating107

through the projected dynamics:108

x+ = G

(
Aϕ(x) +Bu+

m∑
i=1

uiCiϕ(x)

)
= f̄(x, u). (8)

3

Differentiating (8) with respect to x and u gives us109

Āj =
∂f̂

∂x
(xj , uj) = G

(
A+

m∑
i=1

uj,iCi

)
Φ(xj) = GEÂ(xj , uj) = GEÂj (9a)

B̄j =
∂f̂

∂u
(xj , uj) = G

(
B + [C1xj . . . Cmxj]

)
= GEB̂(xj , uj) = GEB̂j (9b)

where Φ(x) = ∂ϕ/∂x is the Jacobian of the nonlinear map ϕ, and110

Â(x, u) =

INy

0
u1INy

u2INy

...
umINy

Φ(x) ∈ RNz×Nx , B̂(x, u) =

0
INu

[ϕ(x) 0 ... 0]
[0 ϕ(x) ... 0]

...
[0 0 ... ϕ(x)]

 ∈ RNz×Nu . (10)

We then solve the following linear least-squares problem:111

minimize
E

(1− α)
∥∥EZ1:P − Y +

1:P

∥∥2
2
+ α

P∑
j=1

(∥∥∥GEÂj − Ãj

∥∥∥2
2
+
∥∥∥GEB̂j − B̃j

∥∥∥2
2

)
(11)

The resulting linear least-squares problem has (Ny +N2
x +Nx ·Nu) ·P rows and Ny ·Nz columns.112

Given that the number of rows in this problem grows quadratically with the state dimension, solving113

this problem can be challenging from a computational perspective. In the Section 4, we propose114

an algorithm for solving these problems without needing to move to a distributed-memory setup in115

order to solve these large linear systems. The proposed method also provides a straightforward way116

to approach incremental updates to the bilinear system, where the coefficients could be efficiently117

learned “live” while the robot gathers data by moving through its environment.118

4 Efficient Recursive Least Squares119

In its canonical formulation, a linear least squares problem can be represented as the following120

unconstrained optimization problem:121

min
x

∥Fx− d∥22. (12)

We assume F is a large, sparse matrix and that solving it directly using a QR or Cholesky decom-122

position requires too much memory for a single computer. While solving (12) using an iterative123

method such as LSMR [31] or LSQR [32] is possible, we find that these methods do not work well124

in practice for solving (11) due to ill-conditioning. Standard recursive methods for solving these125

problems are able to process the rows of the matrices sequentially to build a QR decomposition of126

the full matrix, but also tend to suffer from ill-conditioning [33, 34, 35].127

To overcome these issues, we propose an alternative recursive method based. We solve (12) by128

dividing up rows of F into batches:129

FTF = FT
1 F1 + FT

2 F2 + . . .+ FT
NFN . (13)

The main idea is to maintain and update an upper-triangular Cholesky factor Ui of the first i terms130

of the sum (13). Given Ui, we can calculate Ui+1 using the QR decomposition, as shown in [36]:131

Ui+1 =
√
UT
i Ui + FT

i+1Fi+1 = QRR

([
Ui

Fi+1

])
, (14)

where QRR returns the upper triangular matrix R from the QR decomposition. For an efficient132

implementation, this function should be an “economy” or “Q-less” QR decomposition since the Q133

matrix is never needed.134

4

We also handle regularization of the normal equations, equivalent to adding Tikhonov regularization135

to the original least squares problem, during the base case of our recursion. If we want to add an L2136

regularization with weight λ, we calculate U1 as:137

U1 = QRR

([
F1√
λI

]
.

)
. (15)

Throughout the paper, the results presented for both EDMD and JDMD correspond to the best-138

performing L2-regularization values for each algorithm to ensure a fair comparison is made. We139

perform a sweep over a range of L2-regularization values for each study, with MPC tracking error140

as the metric.141

5 Experimental Results142

This section presents the results of several simulation experiments to evaluate the performance of143

JDMD. For each simulated system we specify two models: a nominal model, which is simplified144

and contains both parametric and non-parametric model error, and a true model, which is used145

exclusively for simulating the system and evaluating algorithm performance.146

All models were trained by simulating the “true” system with a nominal controller to collect data in147

the region of the state space relevant to the task. A set of fixed-length trajectories were collected,148

each at a sample rate of 20-25 Hz. The bilinear EDMD model was trained using the same approach149

introduced by Folkestad and Burdick [15]. When applying MPC to the learned Koopman models, the150

projected Jacobians (9) were used, since this projected system is much more likely to be controllable151

than the lifted one and reduces the computational complexity back to that of the nominal MPC152

controller. This results in a nonlinear model in the original state space, which is linearized about153

the reference trajectory to create a linear MPC controller. All continuous dynamics were discretized154

with an explicit fourth-order Runge Kutta integrator. Code for all experiments is available at TODO:155

removed for anonymous review.156

5.1 Systems and Tasks157

Cartpole: We perform a swing-up task on a cartpole system. The true model includes Coulomb158

friction between the cart and the floor, viscous damping at both joints, and a deadband in the159

control input that were not included in the nominal model. Additionally, the mass of the cart160

and pole model were altered by 20% and 25% with respect to the nominal model, respec-161

tively. The following nonlinear mapping was used when learning the bilinear models: ϕ(x) =162

[1, x, sin(x), cos(x), sin(2x), sin(4x), T2(x), T3(x), T4(x)] ∈ R33, where Ti(x) is a Cheby-163

shev polynomial of the first kind of order i. All reference trajectories for the swing up task were164

generated using ALTRO [36, 37].165

Quadrotor: We track point-to-point linear reference trajectories from various initial condi-166

tions on both planar and full 3D quadrotor models. For both systems, the true model in-167

cludes aerodynamic drag terms not included in the nominal model, as well as parametric er-168

ror of roughly 5% on the system parameters (e.g. mass, rotor arm length, etc.). The planar169

model was trained using a nonlinear mapping of ϕ(x) = [1, x, sin(x), cos(x), sin(2x), T2(x)] ∈170

R25 while the full quadrotor model was trained using a nonlinear mapping of ϕ(x) =171

[1, x, T2(x), sin(p), cos(p), R
T v, vTRRT v, p× v, p×ω, ω×ω] ∈ R44, where p is the quadro-172

tor’s position, v and ω are the translational and angular velocities respectively, and R is the rotation173

matrix.174

Airplane: We perform a post-stall perching maneuver on a high-fidelity model of a fixed-wing175

airplane. The perching trajectory is produced using trajectory optimization (see Figure 1a) and176

tracked using MPC. Perching involves flight at high angles of attack, where the aerodynamic lift177

and drag forces are extremely complex and difficult to model from first principles. We look to178

previous works where the simulated aerodynamics were fitted using empirical data from in-person,179

5

(a) Expert perching demonstration, a high angle-of-attack maneuver that minimizes velocity at the goal position
with complex, post-stall aerodynamic forces

(b) E-Flite AS3Xtra airplane model used in
hardware data collection

(c) Experiment setup configurations for collecting flight
data

Figure 1: Complex dynamics of a perching fixed-wing airplane. High-angle-of-attack perching
maneuvers (top) require the modeling of complex post-stall aerodynamic effects. The simulated
aerodynamic forces were modeled as functions using flight data collected from real-world hardware
experiments (bottom).

wind-tunnel experiments (see Figure 1b and 1c) before being demonstrated on hardware platforms180

[38, 39]. The true model includes the empirically-modeled, nonlinear flight dynamics [39], while181

the nominal model uses a simple flat-plate wing model with linear lift and quadratic drag coefficient182

approximations. The bilinear models use a 68-dimensional nonlinear mapping ϕ including terms183

such as the rotation matrix (expressed in terms of a Modified Rodriguez Parameter), powers of the184

angle of attack and side slip angle, the body frame velocity, various cross products with the angular185

velocity, and some 3rd and 4th order Chebyshev polynomials of the states.186

5.2 Sample Efficiency187

We compare the sample efficiency of several algorithms on the cartpole swing-up task in Fig. 2,188

including a simple two-layer multi-layer perceptron trained using the a loss function equivalent to189

(11) with α = 1 (MLP) and α ∈ (0, 1) (JMLP). For JMLP, α was monotonically decreased over190

time, in order to place more weight on the data as more data was used (red line in Fig. 2b). The191

derivatives of the model with respect to the inputs are calculated automatically using backward prop-192

agation of the partial derivatives for usage in the loss function, resulting in second-order derivatives193

of the tanh activation functions when calculating the gradient with respect to the model parameters.194

As shown, the proposed method achieves the best performance overall, and does so with only two195

training trajectories. In comparison, traditional EDMD requires about 10 iterations to achieve con-196

sistent performance, whereas the MLP methods require hundreds of training trajectories. It’s also197

important to note that by applying the proposed approach to an MLP we were able to dramatically198

improve both the performance and sample efficiency of the MLP-based approach. Similar results199

were obtained for the airplane perching example (Fig. 6c), where EDMD requires about 3x the200

number of samples (35 vs 10) compared to the proposed approach, and never achieves the same201

closed-loop performance.202

5.3 Generalization203

We demonstrate the generalizability of the proposed method on both the planar and 3D quadrotor.204

In all tasks, the goal is to return to the origin, given an initial condition sampled from some uniform205

distribution centered at the origin. To test the generalizability of the algorithms, we scale the size206

6

0 10 20 30

10−1

100

Number of Training Trajectories

Tr
ac

ki
ng

E
rr

or

Nominal
EDMD
JDMD

(a) Koopman

0 200 400

10−1

100

Number of Training Trajectories

Tr
ac

ki
ng

E
rr

or

Nominal
MLP
JMLP

0

0.5

1

1.5

2

α

(b) Multi-layer perceptron (MLP). Red line is the
value of α used in training.

Figure 2: Cartpole swingup MPC tracking error vs training trajectories for Koopman methods (left)
and a multi-layer perceptron (right). The sample efficiency of both methods is significantly improved
when derivative information is included in the loss function. Note that Koopman approaches require
an order of magnitude fewer trajectories to stabilize compared the MLP-based approach. The median
error is shown as a thick line, while the shaded regions represent the 5% to 95% percentile bounds
on the 10 test trajectories.

0 1 2

0

50

100

150

200

Equilibrium Offset

St
ab

ili
za

tio
n

E
rr

or

(a) LQR stabilization error over increasing equilibrium
offset for 100 random initial conditions.

0 0.5 1 1.5 2 2.5

0

0.2

0.4

Fraction of Training Range

Tr
ac

ki
ng

E
rr

or

EDMD
JDMD

(b) MPC Tracking error over increasing scope of test
distribution for 50 random initial conditions.

Figure 3: Generalizability with respect to final or initial conditions sampled outside of the training
domain, studied on planar quadrotor performing an LQR stabilization (left) and MPC tracking task
(right). For the stabilization task, 100 equilibrium positions are sampled uniformly within an offset
value. For the tracking task, 50 initial conditions are sampled from a uniform distribution, whose
limits are determined by a scaling of those of the training distribution. A training range fraction
greater than 1 (vertical gray dashed line) indicates the distribution range is beyond that used to
generate the training trajectories. The median error is shown as a thick line, while the shaded regions
represent the 5% to 95% percentile bounds.

of the sampling “window” relative to the window on which it was trained, e.g. if the initial lateral207

position was trained on data in the interval [−1.5,+1.5], we sampled the test initial condition from208

the window [−γ1.5,+γ1.5]. The results for the planar quadrotor are shown in Figure 3b, with γ up209

to 2.5. As shown, JDMD generalizes well outside of the training window, where the performance210

of EDMD varies significantly even within the training window, as shown by the growing region that211

bounds the 5% to 95% percentile of the tracking performance over the 50 test cases. Additionally,212

in Figure 3a we show the effect of changing the equilibrium position away from the origin: while213

the true dynamics should be invariant to this change, EDMD fails to learn this whereas JDMD does.214

For the full quadrotor, given the goal of tracking a straight line back to the origin, we test 50 initial215

conditions, many of which are far from the goal, have large velocities, or are nearly inverted (see216

Figure 5a). The results using an MPC controller are shown in Table 1, demonstrating the excellent217

generalizability of the algorithm, given that the algorithm was only trained on 30 initial conditions,218

sampled relatively sparsely given the size of the sampling window. EDMD only successfully brings219

about 18% of the samples to the origin, while the majority of the time resulting in trajectories like220

7

0 100 200 300 400
0

2

4

·10−3

Number of Training Trajectories

L
os

s

MLP-train MLP-test
JMLP-train JMLP-test

Figure 4: Loss versus number of training trajectories for the cartpole MLP. Although the both mod-
els perform about equally well on instantaneously predicting the discrete dynamics, the sample
efficiency and performance on the closed-loop control problem different significantly (see Figure
2b.)

(a) Generated point-to-point trajectories and initial
conditions for testing tracking MPC of 6-DOF quadro-
tor.

(b) Performed trajectories of nominal MPC (black),
EDMD (orange), and JDMD (cyan) for tracking in-
feasible, point-to-point trajectory (red).

Figure 5: Point-to-point, test trajectory generation and example tracking performance of full, 6-DOF
quadrotor. The test trajectories generated include a wide scope of initial conditions beyond that of
the training set, such as high position offset, large velocities, and near-inverted attitude. JDMD often
had the best tracking performance while successfully reaching the goal state, with a similar success
rate as nominal MPC within a tighter distribution.

those in Figure 5b. JDMD improves the tracking performance of nominal MPC, which is subject to221

a constant error bias due to model mismatch, as shown in Fig. 5b.222

5.4 Sensitivity to Model Mismatch223

Nominal EDMD JDMD
Success Rate 82% 18% 80%

Median 0.30 0.63 0.11
5% Quantile 0.13 0.08 0.03

95% Quantile 0.38 2.62 0.23

Table 1: Performance summary of MPC tracking
of 6-DOF quadrotor. Other than success rate, all
values are the tracking error of the successfully
stabilized trajectories.

While we’ve introduced a significant mount of224

model mismatch in all of the examples so far,225

a natural argument against model-based meth-226

ods is that they’re only as good as your model227

is at capturing the salient dynamics of the sys-228

tem. We investigated the effect of increasing229

model mismatch by incrementally increasing230

the Coulomb friction coefficient between the231

cart and the floor for the cartpole stabilization232

task (recall the nominal model assumed zero233

friction). The results are shown in Table 2. As expected, the number of training trajectories re-234

quired to find a good stabilizing controller increases for the proposed approach. We achieved the235

results above by setting α = 0.01, corresponding to a decreased confidence in our model, thereby236

8

Friction (µ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Nominal ✓ ✓ ✗ ✗ ✗ ✗ ✗
EDMD 3 19 6 14 ✗ ✗ ✗
JDMD 2 2 2 2 3 7 12

Table 2: Training trajectories required to stabilize the cartpole with the given friction coefficient

0 0.2 0.4 0.6 0.8

10−2

10−1

100

101

α

E
rr

or

Closed-loop
Open-loop

(a) Median JDMD model prediction error (open-
loop) and MPC tracking error (closed-loop) for
perching airplane over varying α values. Closed-
loop behavior changes little with respect to open-loop
prediction error. The missing open-loop values are
points there the states of the open-loop system di-
verged to infinity.

0 20 40 60 80 100

10−0.2

100

100.2

Number of Training Trajectories

Ja
co

bi
an

E
rr

or

Nominal
EDMD
JDMD

(b) Error from true model Jacobians for the nominal
model, EDMD, and JDMD. With just a few training
trajectories, JDMD closely matches the Jacobian in-
formation from the nominal model. Even with sub-
stantial training data EDMD has significant error in
the Jacobians.

0 20 40 60 80 100
0

0.1

0.2

Number of Training Trajectories

Tr
ac

ki
ng

E
rr

or Nominal MPC
EDMD
JDMD

(c) Sample efficiency for the airplane perching problem. JDMD learns the model with only 10 training trajec-
tories, whereas EDMD requires about 35. Both models perform significantly better than nominal MPC due to
significant model mismatch at high angles of attack.

Figure 6: Results on the airplane perching task

placing greater weight on the experimental data. The standard EDMD approach always required237

more samples, and was unable to find a good enough model above friction values of 0.4. While this238

could likely be remedied by adjusting the nonlinear mapping ϕ, the proposed approach works well239

with the given bases. Note that the nominal MPC controller failed to stabilize the system above fric-240

tion values of 0.1, so again, we demonstrate that we can improve MPC performance substantially241

with just a few training samples by combining analytical gradient information and data sampled242

from the true dynamics.243

5.5 Model Prediction Error vs. Controller Performance244

Much of the previous literature on model learning focuses on open-loop dynamics prediction error.245

While intuitive, we argue that this is a poor metric when the end goal is closed-loop control perfor-246

mance. In Figure 6a we show that decreasing confidence in the analytical model (by increasing α)247

increases open-loop dynamics prediction error significantly while having minimal impact on closed248

loop performance below α = 0.7. We found we can often quickly find models “good enough” for249

9

control with just a few training trajectories (typically with a higher value of α), that predicted the250

open-loop dynamics very poorly. For example, in Fig. 6a at the extremes of α = 0 (EDMD) and251

α ≥ 0.8, the open-loop predictions were unstable and diverged, while the closed-loop system still252

successfully tracked the reference trajectory. This also extends to the MLP example, where MPC253

tracking performance does not correlate to minimizing loss in the training and test process as seen254

in Fig. 4. In addition, JDMD matches the Jacobians of that of the nominal model (which has some255

Jacobian error from the true model), while EDMD has significant Jacobian error as shown in Fig.256

6b. This further demonstrates the importance of Jacobians over open-loop dynamics prediction in a257

closed-loop control setting, which may be unsurprising due to the presence of the Jacobians in the258

feedback-policy of closed-loop controllers.259

6 Limitations260

Many of the limitations of the proposed approach derive from the limitations of Koopman ap-261

proaches more broadly. Foremost among these is the sensitivity of performance to the selections262

of the nonlinear mapping and respective unlifting operation; the current study has not investigated263

the incorporation of the proposed method in methods which jointly learn both the model and the264

nonlinear mapping, although the extension should be fairly straightforward. In addition, the bilinear265

Koopman model assumes the original, nonlinear dynamics to be control-affine, limiting its applica-266

tion to broad dynamical systems in general. Another significant limitation of the current work is lack267

of demonstration on hardware, something we plan to remedy in the future. Better, in-depth compar-268

isons of the given approach to other approaches beyond a simple MLP would also be enlightening,269

which were left out due to scope limitations. Additionally, while the presented single rigid-body270

systems such as a quadrotor or airplane have similar dimensionality to many autonomous systems271

of interest, extensions to systems with many degrees of freedom may be difficult computationally,272

given derivative information grows with the square of the state dimension. In addition, the relation-273

ship between closed-loop performance and open-loop dynamics prediction error should be studied274

futher, given we have demonstrated good MPC performance that has not translated directly to model275

prediction error. As with most data-driven techniques, it is difficult to claim that our method will276

increase performance in all cases. It is possible that having an extremely poor prior model may277

hurt rather than help the training process. However, we found that even when the α parameter is ex-278

tremely small (placing little weight on the Jacobians during the learning process), it still dramatically279

improves the sample efficiency over standard EDMD. It is also quite possible that the performance280

gaps between EDMD and JDMD shown here can be reduced through better selection of basis func-281

tions and better training data sets; however, given that the proposed approach converges to EDMD282

as α → 0, we see no reason to not adopt the proposed methodology and simply tune α based on the283

confidence of the model and the quantity (and quality) of training data.284

7 Conclusions and Future Work285

We have presented JDMD, a simple but powerful extension to EDMD that incorporates derivative286

information from an approximate prior model. We have tested JDMD in combination with a simple287

linear MPC control policy across a range of systems and tasks, and have found that the resulting288

combination can dramatically increase sample efficiency over EDMD, often improving over a nom-289

inal MPC policy with just a few sample trajectories. We also showed that the proposed approach290

is more efficient than a simple multi-layer perception by one or two orders of magnitude. Substan-291

tial areas for future work remain: most notably, demonstrating the proposed pipeline on hardware.292

Additional directions include applications on sytems with many degrees of freedom such as those293

whose dynamics are governed by discretized PDEs, lifelong learning or adaptive control applica-294

tions, combining simulated and real data through the use of modern differentiable physics engines295

[9, 8], residual dynamics learning, as well as the development of specialized numerical methods for296

solving nonlinear optimal control problems using the learned bilinear dynamics.297

10

References298

[1] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli. An efficient optimal planning299

and control framework for quadrupedal locomotion. In 2017 {IEEE} International Conference300

on Robotics and Automation ({ICRA}), pages 93–100. doi:10.1109/ICRA.2017.7989016.301

[2] S. Kuindersma, F. Permenter, and R. Tedrake. An efficiently solvable quadratic program for302

stabilizing dynamic locomotion. pages 2589–2594. ISSN 9781479936854. doi:10.1109/ICRA.303

2014.6907230.304

[3] M. Bjelonic, R. Grandia, O. Harley, C. Galliard, S. Zimmermann, and M. Hutter. Whole-Body305

MPC and Online Gait Sequence Generation for Wheeled-Legged Robots. pages 8388–8395.306

ISSN 9781665417143. doi:10.1109/IROS51168.2021.9636371.307

[4] J. K. Subosits and J. C. Gerdes. From the racetrack to the road: Real-time trajectory replanning308

for autonomous driving. 4(2):309–320. doi:10.1109/TIV.2019.2904390.309

[5] N. Karnchanachari, M. I. Valls, S. David Hoeller, and M. Hutter. Practical Reinforce-310

ment Learning For MPC: Learning from sparse objectives in under an hour on a real robot.311

pages 1–14. doi:10.3929/ETHZ-B-000404690. URL https://doi.org/10.3929/312

ethz-b-000404690.313

[6] D. . Hoeller, F. . Farshidian, M. Hutter, F. Farshidian, and D. Hoeller. Deep Value Model314

Predictive Control. 100:990–1004. doi:10.3929/ETHZ-B-000368961. URL https://doi.315

org/10.3929/ethz-b-000368961.316

[7] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforcement317

Learning for Robust Parameterized Locomotion Control of Bipedal Robots. 2021-May:2811–318

2817. ISSN 9781728190778. doi:10.1109/ICRA48506.2021.9560769.319

[8] T. A. Howell, S. L. Cleac’h, J. Z. Kolter, M. Schwager, and Z. Manchester. Dojo: A differen-320

tiable simulator for robotics. arXiv preprint arXiv:2203.00806, 2022.321

[9] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In322

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–323

5033. IEEE, 2012. doi:10.1109/IROS.2012.6386109.324

[10] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti. BiConMP: A Nonlinear325

Model Predictive Control Framework for Whole Body Motion Planning. doi:10.48550/arxiv.326

2201.07601. URL https://arxiv.org/abs/2201.07601v1.327

[11] D. Bruder, X. Fu, and R. Vasudevan. Advantages of Bilinear Koopman Realizations for the328

Modeling and Control of Systems with Unknown Dynamics. 6(3):4369–4376. doi:10.1109/329

LRA.2021.3068117.330

[12] M. Korda and I. Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator331

meets model predictive control. 93:149–160. doi:10.1016/j.automatica.2018.03.046. URL332

https://doi.org/10.1016/j.automatica.2018.03.046.333

[13] C. Folkestad, D. Pastor, and J. W. Burdick. Episodic Koopman Learning of Nonlinear334

Robot Dynamics with Application to Fast Multirotor Landing. pages 9216–9222. ISSN335

9781728173955. doi:10.1109/ICRA40945.2020.9197510.336

[14] H. J. Suh and R. Tedrake. The Surprising Effectiveness of Linear Models for Visual Foresight337

in Object Pile Manipulation. 17:347–363. doi:10.48550/arxiv.2002.09093. URL https:338

//arxiv.org/abs/2002.09093v3.339

11

http://dx.doi.org/10.1109/ICRA.2017.7989016
http://dx.doi.org/10.1109/ICRA.2014.6907230
http://dx.doi.org/10.1109/ICRA.2014.6907230
http://dx.doi.org/10.1109/ICRA.2014.6907230
http://dx.doi.org/10.1109/IROS51168.2021.9636371
http://dx.doi.org/10.1109/TIV.2019.2904390
http://dx.doi.org/10.3929/ETHZ-B-000404690
https://doi.org/10.3929/ethz-b-000404690
https://doi.org/10.3929/ethz-b-000404690
https://doi.org/10.3929/ethz-b-000404690
http://dx.doi.org/10.3929/ETHZ-B-000368961
https://doi.org/10.3929/ethz-b-000368961
https://doi.org/10.3929/ethz-b-000368961
https://doi.org/10.3929/ethz-b-000368961
http://dx.doi.org/10.1109/ICRA48506.2021.9560769
http://dx.doi.org/10.1109/IROS.2012.6386109
http://dx.doi.org/10.48550/arxiv.2201.07601
http://dx.doi.org/10.48550/arxiv.2201.07601
http://dx.doi.org/10.48550/arxiv.2201.07601
https://arxiv.org/abs/2201.07601v1
http://dx.doi.org/10.1109/LRA.2021.3068117
http://dx.doi.org/10.1109/LRA.2021.3068117
http://dx.doi.org/10.1109/LRA.2021.3068117
http://dx.doi.org/10.1016/j.automatica.2018.03.046
https://doi.org/10.1016/j.automatica.2018.03.046
http://dx.doi.org/10.1109/ICRA40945.2020.9197510
http://dx.doi.org/10.48550/arxiv.2002.09093
https://arxiv.org/abs/2002.09093v3
https://arxiv.org/abs/2002.09093v3
https://arxiv.org/abs/2002.09093v3

[15] C. Folkestad and J. W. Burdick. Koopman NMPC: Koopman-based Learning and Nonlinear340

Model Predictive Control of Control-affine Systems. In Proceedings - IEEE International341

Conference on Robotics and Automation, volume 2021-May, pages 7350–7356. Institute of342

Electrical and Electronics Engineers Inc. ISBN 978-1-72819-077-8. doi:10.1109/ICRA48506.343

2021.9562002.344

[16] C. Folkestad, S. X. Wei, and J. W. Burdick. Quadrotor Trajectory Tracking with Learned345

Dynamics: Joint Koopman-based Learning of System Models and Function Dictionaries. URL346

http://arxiv.org/abs/2110.10341.347

[17] A. Narasingam, J. Sang, and I. Kwon. Data-driven feedback stabilization of nonlinear systems:348

Koopman-based model predictive control. pages 1–12.349

[18] SINDy with Control: A Tutorial. URL https://github.com/urban-fasel/SEIR.350

[19] J. L. Proctor, S. L. Brunton, and J. Nathan Kutz. Generalizing koopman theory to allow for351

inputs and control. 17(1):909–930. doi:10.1137/16M1062296. URL http://www.siam.352

org/journals/siads/17-1/M106229.html.353

[20] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A Data–Driven Approximation354

of the Koopman Operator: Extending Dynamic Mode Decomposition. 25(6):1307–1346.355

doi:10.1007/S00332-015-9258-5/FIGURES/14. URL https://link.springer.com/356

article/10.1007/s00332-015-9258-5.357

[21] A. Surana. Koopman Operator Based Observer Synthesis for Control-Affine Nonlinear Sys-358

tems; Koopman Operator Based Observer Synthesis for Control-Affine Nonlinear Systems.359

ISBN 978-1-5090-1837-6. doi:10.1109/CDC.2016.7799268.360

[22] C. Folkestad, D. Pastor, I. Mezic, R. Mohr, M. Fonoberova, and J. Burdick. Extended Dynamic361

Mode Decomposition with Learned Koopman Eigenfunctions for Prediction and Control. In362

2020 American Control Conference (ACC), pages 3906–3913. IEEE, 2020.363

[23] C. Folkestad, S. X. Wei, and J. W. Burdick. Koopnet: Joint learning of koopman bilinear364

models and function dictionaries with application to quadrotor trajectory tracking. In 2022365

International Conference on Robotics and Automation (ICRA), pages 1344–1350. IEEE, 2022.366

[24] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis. Extended dynamic mode decomposi-367

tion with dictionary learning: A data-driven adaptive spectral decomposition of the koopman368

operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111, 2017.369

[25] G. Mamakoukas, M. Castano, X. Tan, and T. Murphey. Local Koopman operators for data-370

driven control of robotic systems. In Robotics: science and systems, 2019.371

[26] B. Huang, X. Ma, and U. Vaidya. Feedback stabilization using koopman operator. In 2018372

IEEE Conference on Decision and Control (CDC), pages 6434–6439. IEEE, 2018.373

[27] X. Ma, B. Huang, and U. Vaidya. Optimal quadratic regulation of nonlinear system using374

koopman operator. In 2019 American Control Conference (ACC), pages 4911–4916. IEEE,375

2019.376

[28] R. Wang, Y. Han, and U. Vaidya. Deep koopman data-driven optimal control framework for377

autonomous racing. Early Access, 5, 2021.378

[29] E. Kaiser, J. N. Kutz, and S. L. Brunton. Data-driven discovery of koopman eigenfunctions for379

control. Machine Learning: Science and Technology, 2(3):035023, 2021.380

[30] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic mode decomposition:381

data-driven modeling of complex systems. SIAM, 2016.382

12

http://dx.doi.org/10.1109/ICRA48506.2021.9562002
http://dx.doi.org/10.1109/ICRA48506.2021.9562002
http://dx.doi.org/10.1109/ICRA48506.2021.9562002
http://arxiv.org/abs/2110.10341
https://github.com/urban-fasel/SEIR
http://dx.doi.org/10.1137/16M1062296
http://www.siam.org/journals/siads/17-1/M106229.html
http://www.siam.org/journals/siads/17-1/M106229.html
http://www.siam.org/journals/siads/17-1/M106229.html
http://dx.doi.org/10.1007/S00332-015-9258-5/FIGURES/14
https://link.springer.com/article/10.1007/s00332-015-9258-5
https://link.springer.com/article/10.1007/s00332-015-9258-5
https://link.springer.com/article/10.1007/s00332-015-9258-5
http://dx.doi.org/10.1109/CDC.2016.7799268

[31] D. C.-L. Fong and M. Saunders. LSMR: An Iterative Algorithm for Sparse Least-Squares383

Problems. 33(5):2950–2971. ISSN 1064-8275. doi:10.1137/10079687X. URL https:384

//epubs.siam.org/doi/abs/10.1137/10079687X.385

[32] C. C. Paige and M. A. Saunders. LSQR: An Algorithm for Sparse Linear Equations and Sparse386

Least Squares. 8(1):43–71. ISSN 0098-3500, 1557-7295. doi:10.1145/355984.355989. URL387

https://dl.acm.org/doi/10.1145/355984.355989.388

[33] P. Strobach. Recursive Least-Squares Using the QR Decomposition. In P. Strobach, edi-389

tor, Linear Prediction Theory: A Mathematical Basis for Adaptive Systems, Springer Series390

in Information Sciences, pages 63–101. Springer. ISBN 978-3-642-75206-3. doi:10.1007/391

978-3-642-75206-3 4. URL https://doi.org/10.1007/978-3-642-75206-3_392

4.393

[34] A. Sayed and T. Kailath. Recursive Least-Squares Adaptive Filters, volume 20094251 of Elec-394

trical Engineering Handbook, pages 1–40. CRC Press. ISBN 978-1-4200-4606-9 978-1-4200-395

4607-6. doi:10.1201/9781420046076-c21. URL http://www.crcnetbase.com/doi/396

abs/10.1201/9781420046076-c21.397

[35] A. Ghirnikar and S. Alexander. Stable recursive least squares filtering using an inverse QR398

decomposition. In International Conference on Acoustics, Speech, and Signal Processing,399

pages 1623–1626 vol.3. doi:10.1109/ICASSP.1990.115736.400

[36] T. A. Howell, B. E. Jackson, and Z. Manchester. ALTRO: A Fast Solver for Constrained401

Trajectory Optimization. pages 7674–7679. ISSN 9781728140049. doi:10.1109/IROS40897.402

2019.8967788.403

[37] B. E. Jackson, T. Punnoose, D. Neamati, K. Tracy, R. Jitosho, and Z. Manchester. ALTRO-404

C: A Fast Solver for Conic Model-Predictive Control; ALTRO-C: A Fast Solver for Conic405

Model-Predictive Control. ISSN 9781728190778. doi:10.1109/ICRA48506.2021.9561438.406

URL https://github.com/.407

[38] J. Moore, R. Cory, and R. Tedrake. Robust post-stall perching with a simple fixed-wing408

glider using LQR-Trees. Bioinspiration &\mathsemicolon Biomimetics, 9(2):025013,409

May 2014. doi:10.1088/1748-3182/9/2/025013. URL https://doi.org/10.1088/410

1748-3182/9/2/025013. Publisher: IOP Publishing.411

[39] Z. Manchester, J. Lipton, R. Wood, and S. Kuindersma. A Variable Forward-Sweep Wing412

Design for Enhanced Perching in Micro Aerial Vehicles. In AIAA Aerospace Sciences Meeting.413

URL https://rexlab.stanford.edu/papers/Morphing_Wing.pdf.414

13

http://dx.doi.org/10.1137/10079687X
https://epubs.siam.org/doi/abs/10.1137/10079687X
https://epubs.siam.org/doi/abs/10.1137/10079687X
https://epubs.siam.org/doi/abs/10.1137/10079687X
http://dx.doi.org/10.1145/355984.355989
https://dl.acm.org/doi/10.1145/355984.355989
http://dx.doi.org/10.1007/978-3-642-75206-3_4
http://dx.doi.org/10.1007/978-3-642-75206-3_4
http://dx.doi.org/10.1007/978-3-642-75206-3_4
https://doi.org/10.1007/978-3-642-75206-3_4
https://doi.org/10.1007/978-3-642-75206-3_4
https://doi.org/10.1007/978-3-642-75206-3_4
http://dx.doi.org/10.1201/9781420046076-c21
http://www.crcnetbase.com/doi/abs/10.1201/9781420046076-c21
http://www.crcnetbase.com/doi/abs/10.1201/9781420046076-c21
http://www.crcnetbase.com/doi/abs/10.1201/9781420046076-c21
http://dx.doi.org/10.1109/ICASSP.1990.115736
http://dx.doi.org/10.1109/IROS40897.2019.8967788
http://dx.doi.org/10.1109/IROS40897.2019.8967788
http://dx.doi.org/10.1109/IROS40897.2019.8967788
http://dx.doi.org/10.1109/ICRA48506.2021.9561438
https://github.com/
http://dx.doi.org/10.1088/1748-3182/9/2/025013
https://doi.org/10.1088/1748-3182/9/2/025013
https://doi.org/10.1088/1748-3182/9/2/025013
https://doi.org/10.1088/1748-3182/9/2/025013
https://rexlab.stanford.edu/papers/Morphing_Wing.pdf

	Introduction
	Background and Related Work
	Koopman Operator Theory
	Extended Dynamic Mode Decomposition

	Jacobian-Regularizated Dynamic Mode Decomposition
	Efficient Recursive Least Squares
	Experimental Results
	Systems and Tasks
	Sample Efficiency
	Generalization
	Sensitivity to Model Mismatch
	Model Prediction Error vs. Controller Performance

	Limitations
	Conclusions and Future Work

