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Nature Makes No Leaps: Building Continuous
Location Embeddings with Satellite Imagery from the Web

Anonymous Author(s)∗

Abstract
Building location embedding from web-sourced satellite imagery
has emerged as an enduring research focus in web mining. How-
ever, most existing methods are inherently constrained by their
reliance on discrete, sparse sampling strategies, failing to capture
the essential spatial continuity of geographic spaces. Moreover,
the presence of confounding factors in satellite images can dis-
tort the perception of actual objects, leading to semantic discon-
tinuity in the embeddings. In this work, we propose SatCLE, a
novel framework for Continuous Location Embeddings leverag-
ing Satellite imagery. Specifically, to address the out-of-distribution
query challenge of spatial continuity, we propose a geospatial re-
finement strategy comprising stochastic perturbation continuity
expansion and graph propagation fusion, which transforms dis-
crete geospatial coordinates into a continuous space. To mitigate
the effects of confounders on semantic continuity, we introduce
causal refinement, integrating causal theory to localize and elimi-
nate spurious correlations arising from the environmental context.
Through extensive experiments, SatCLE shows state-of-the-art per-
formance, exhibiting superior spatial coherence and semantic fi-
delity across diverse geospatial tasks. The source code is available
at https://anonymous.4open.science/r/SatCLE.

Keywords
Location Embedding, Satellite Imagery, Continuity, Web Mining

1 Introduction
With the ever-growing availability of geospatial data on the web,
the effective representation and understanding of location have
become critical research priorities. Location embedding, a promi-
nent and enduring theme within the domain of web mining and
knowledge discovery, involves encoding geographical locations
across the globe as dense vectors in a latent space, as depicted in
Figure 1. By integrating both spatial relationships and contextual
nuances from diverse web sources (e.g., satellite [25, 34] and street-
view imagery [58]), location embeddings significantly enhance the
capacity to analyze and predict spatial patterns, thereby improv-
ing the accuracy and efficiency of decision-making across a wide
range of applications [73], including web computing [32, 62], urban
planning [20, 67], and location-based social networks [12, 15, 68].

Compared to web-sourced data such as geo-tagged images [36,
58, 69], points of interests (POI) [33, 69] and road networks [26],
satellite imagery has emerged as a mainstreammodality for learning
location embeddings [73]. Its widespread accessibility and ability to
provide rich semantic information – ranging from natural environ-
ments and urban layouts to road networks – have contributed to
its growing adoption in web research. This trend is also driven by
the recent advances in deep learning methods [40, 70], which have
proven highly effective in extracting and learning visual features.

Existing studies [25, 34] on learning location embeddings with
satellite imagery primarily centers on a fundamental principle:

(c) Semantic Continuity

(b) Spatial Continuity

(a) Location embedding

(116.417°E, 39.917°N)

Input: Location Coordinates

Retrieve from the web
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Figure 1: Location embedding and its challenges.
the significance of geographic coordinates arises not from their
numerical values but from the contextual information associated
with the geographical entities they represent, encompassing social,
environmental, and geographical aspects. Early attempts mostly
concentrate on the use of explicit or manual location encodings (e.g.,
one-hot mapping [69], information theory [66], sinusoidal func-
tions [33]), which typically require intricate designs and exhibit
limited generalization capabilities across different domains. To miti-
gate this issue, Contrastive Learning (CL) has gained traction within
the web research community [63], aiming to develop more flexible
and general-purpose location embeddings, such as CSP [34] and
SatCLIP [25]. The key insight is to learn implicit location embed-
ding by matching extracted visual patterns of web-sourced satellite
imagery with their geographic coordinates. Further, the resulting
location encoder can efficiently summarize the characteristics of
any given location for convenient use in downstream tasks.

Though promising, these CL-based methods overlook another
fundamental principle of location embeddings – Continuity. As
Leibniz famously stated, "Nature makes no leaps", a principle de-
rived from classical philosophy and science, suggesting that natural
processes unfold gradually, without sudden or abrupt changes. In
the context of location embedding, this implies that geographical
and environmental changes occur incrementally, in continuous
steps rather than large, discontinuous leaps. In this paper, we argue
that the concept of continuity in location embeddings inherently
manifests from two distinct perspectives:

✦ Spatial Continuity. The overhead perspective of satellite im-
agery offers an exceptional means for capturing geographical con-
text. Although there are already global satellite platforms [46, 61]
available, the balance between spatial resolution and data volume
remains a persistent trade-off in learning location embedding from
global-level satellite imagery. Obtaining appropriate semantic con-
text for locations [17, 25] demands kilometer-level resolution, which
necessitates datasets on the scale of tens of millions. Therefore,
the current mainstream datasets for satellite image-based location
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embedding [25] adopt global sparse sampling, where points are ran-
domly and non-adjacently sampled, resulting in inherent distances
between them. As illustrated in Figure 1 (b), due to the lack of train-
ing data, capturing continuous spatial features near intermediate
points (marked with a red cross) poses a challenge. In particular,
without significantly increasing the dataset size, this spatial sam-
pling sparsity leads to out-of-distribution (OoD) query problems,
causing generalization errors during inference. To achieve more
fine-grained semantic modeling, it is crucial to capture the spatial
continuity inherent in the geographical data.

✦ Semantic Continuity. In addition to spatial continuity, an-
other scenario emerges where data points, although spatially dis-
tant, display notable similarity. Upon projection into the latent
space, these points similarly exhibit a form of continuity, which
we refer to as semantic continuity. As verified in previous stud-
ies [59, 72], satellite images often contain confounding factors that
can distort the perception of actual objects. This issue also arises
when learning location embeddings from satellite imagery, and can
lead to semantic discontinuity. For instance, Figure 1 (c) depicts
two structurally similar castles located in distant regions. Loca-
tion A, a castle situated in a well-developed tourist area in China,
is accurately represented. However, Location B, despite sharing
similar architectural features, is located in a remote area of India,
surrounded by dense crops and unsurfaced roads. Such environ-
mental context (e.g., crops) led to the misunderstanding of Location
B as a farm, acting as a confounding factor in this scenario. In
the presence of confounding factors, existing methods [25, 34] in
location embedding frequently struggle to maintain semantic con-
tinuity, as models often project semantically similar elements into
distinct latent spaces. Therefore, it is essential to develop an embed-
ding approach that can effectively mitigate confounding influences,
thereby addressing semantic continuity while enhancing both the
precision and coherence of semantic representations.

In this paper, we present SatCLE, a continuous location em-
bedding framework with satellite Imagery. To address the first
challenge, we design a geospatial refinement process consists of
two part: stochastic perturbation continuity expansion and graph
propagation fusion. Stochastic perturbation continuity expansion
incorporates random perturbations to transform discrete geospa-
tial coordinates into a continuous space. Subsequently, the graph
propagation fusion is employed to integrate the features of per-
muted locations, effectively mitigating the spatial OoD issues that
arise from insufficient coverage. To address the second challenge,
we introduce a causal refinement approach that leverages causal
theory to identify semantically meaningful patches and mitigate
interference from environmental confounders through a backdoor
adjustment mechanism. Our method achieves state-of-the-art per-
formance compared with other baselines. Specifically, it achieves
an average improvement of 15.03% in mean squared error for re-
gression tasks and an average improvement of 7.7% in accuracy for
classification tasks.

In summary, our contributions lie in the following aspects:
• Geospatial refinement for spatial continuity. We first propose a

geospatial refinement strategy that utilizes stochastic perturba-
tion continuity expansion and graph propagation fusion to in-
tegrate random perturbations, transforming discrete geospatial
coordinates into a continuous space to preserve spatial continuity.

• Causal refinement for semantic continuity. We also develop a causal
refinement strategy, which is the first to apply causal theory to
location embedding. This strategy employs a semantic attention
mechanism to identify semantically meaningful patches and uti-
lizes backdoor adjustment to mitigate spurious correlations result-
ing from environmental confounding factors.

• Extensive empirical studies. Our SatCLE framework demonstrates
superior performance across a range of tasks, enhancing general-
ization and robustness in location embeddings.

2 Preliminary
2.1 Formulation
Definition 1 (Geospatial Location) . It is identified using latitude
and longitude, which is a spherical coordinate system utilizing the
surface of a sphere in three dimensions to define spatial coordi-
nates on Earth. This system is capable of precisely pinpointing any
location on the Earth. Each geospatial location can be denoted as
(𝜆𝑖 , 𝜃𝑖 ), where 𝜆𝑖 ∈ [−𝜋, 𝜋] and 𝜃𝑖 ∈ [−𝜋/2, 𝜋/2] .
Definition 2 (Satellite Image). A satellite image provides a com-
prehensive view of a geographical area from a top-down perspec-
tive, offering rich information. For a satellite image, where the
center point corresponds to a given geospatial location, it is de-
noted as: 𝐼 ∈ RH×W×3, whereH andW are height and width.
Definition 3 (Geospatial Indicator). A geospatial indicator serves
as a reflection of environmental or socio-economic conditions (e.g.,
elevation, population, carbon emission) on Earth. It enables predic-
tions based solely on latitude and longitude coordinates, providing
a means to evaluate whether a model has effectively learned se-
mantically rich location embeddings. The𝑀 indicators on a set of
𝐾 locations on earth are denoted as 𝑌 ∈ R𝑀×𝐾 .
Problem Statement (Location Embedding). Given the coordi-
nate 𝐿 with its associated satellite imagery 𝐼 , the main goal is to
learn the location embedding ℎ and accurately estimate the socioe-
conomic indicator 𝑦. The process can be formulated as: ℎ = F (𝐼 , 𝐿),
F is a mapping function learned during training.

2.2 Related Work
2.2.1 Location Embedding from Web-Sourced Data. With the wide-
spread adoption of sensor-equipped smartphones, a vast amount
of data uploaded to the Internet from around the world is in-
creasingly associated with GPS coordinates, thereby giving rise
to the task of location embedding and its wide range of applica-
tions. [8, 33, 38, 53, 69]. Loc2Vec [53] first queries neighbouring
points in a GIS database for a given location and visualizes these
points as images usingMapnik [5], thereby learning location embed-
dings directly from the semantic context. GPS2Vec+ [69] segments
the Earth according to the Universal Transverse Mercator (UTM)
grid, representing these divisions using one-hot encoding.

Given the wide accessibility and the unique overhead perspec-
tive provided by satellite imagery, the current state-of-the-art re-
search [25, 34] prioritizes satellite imagery as the preferred sup-
plementary modality for location embedding. CSP [34] introduces
a dual-encoder architecture designed to separately encode both
images and their corresponding locations. SatCLIP [25] leverages
spherical harmonics as positional encoders, complemented by sinu-
soidal representation networks, enhancing its ability to model the
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(b) Phase 2: Downstream Tasks
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Figure 2: The overall framework of our proposed SatCLE. sg denotes stop gradient.

spatial complexity inherent in satellite vision. However, previous
works overlooked the continuity inherent in the physical world,
which resulted in the emergence of OoD bias. To address this, we
propose a novel continuous location embedding framework, integrat-
ing Geospatial Refinement and Causal Refinement to better capture
the seamless nature of real-world spatial data from the web.

2.2.2 Geospatial Contrastive Pretraining with Satellite Imagery. Geo-
spatial Learning with Satellite Imagery faces the challenge of using
vast amounts of unlabeled satellite data due to the high cost and ex-
pertise required for labeling [20, 63, 65, 67]. As a result, Contrastive
learning has increasingly evolved into a fundamental paradigm
for effectively leveraging the data [60]. After comprehensive lit-
erature review, we summarize two main approaches in geospatial
contrastive pretraining are: (a) Vision Pretraining, which uses satel-
lite imagery to represent geographic locations, reducing the need
for ground-based surveys. Methods like Tile2Vec [23] and SeCo [37]
enhance image learning but face limitations in accuracy due to the
absence of explicit location information. (b) Vision-Location Pre-
training, which integrates location coordinates with visual data.
SatCLIP [25], GeoCLIP [58], and Sphere2Vec [36] are notable meth-
ods in this category. Remarkably, our work follows the approach of
Vision-Location Pretraining, highlighting the long-overlooked impor-
tance of continuity and bridging the gap from both semantic and
spatial continuity perspectives.

2.2.3 Causal Inference. Causal inference [11, 30, 59, 64] explores
how changes in certain variables impact outcomes, offering re-
searchers a powerful method to assess the true relationship be-
tween variables. Recent work integrates deep learning with causal
methods, extending its application to computer vision [11, 28]. For
instance, [11] enhances zero-shot learning by applying counterfac-
tual interventions to establish substantial visual-semantic correla-
tions, resulting in more robust visual classification. Additionally,
only a limited number of studies have extended this approach to
spatial data mining [30, 54, 64]. For example, [30] employs backdoor
adjustment to mitigate confounding factors in trajectory sequences,
while [59] utilizes attention mechanisms to identify causal features,
improving model robustness across different spatio-temporal tasks.
Nevertheless, to the best of our knowledge, there is little work
connecting causal inference to location embedding tasks. Conse-
quently, we adopt a causal perspective for the first time to investigate
confounding factors in location embedding and use causal techniques
to refine the semantic continuity in geographical visual contexts.

3 Methodology
Figure 2 depicts the dual-phase framework of our SatCLE :
• Phase 1: We initially obtain an image-location pair as input,

where the location refers to the coordinates of the central point
of each satellite image. The satellite image and location are
processed through their respective unimodal encoders indepen-
dently. While extracting unimodal features, the location under-
goes geospatial refinement, and the satellite image is subject to
causal refinement, both aimed at enhancing the continuity of
their respective features. Subsequently, a contrastive interaction
mechanism is developed to align the representations of these
two modalities within the latent space.

• Phase 2: In the downstream task prediction phase, we get rid of
the vision encoder and only utilize a frozen location encoder for
predicting downstream tasks, by simply finetuning multi-layer
perceptrons with a few trainable parameters.

3.1 Modality Representation Learning
We leverage Vision Transformer (ViT) [19] as the visual encoder
to process satellite imagery, which consists of alternating layers
that perform the multi-head self-attention (MSA) operation [57]
and fully-connected (FC) layers. Additionally, layer normalization
(LN) is applied before each block, while residual connections are
implemented following each block. For the location modality, we
propose using spherical harmonic basis functions as positional
embeddings [49], providing effective global coverage of geospatial
data. More details on modality learning can be found in Appendix B.

3.2 GeospatialRefinement for SpatialContinuity
Spatial continuity is a key aspect of continuous location embed-
ding. The current challenge lies in the construction of the dataset
of satellite image-geocoordinate pairs [25, 34], which is derived
from the random sampling of publicly available satellite imagery
with global coverage. Therefore, each sampled point is inherently
associated with a specific spatial distance from others, as illustrated
in Figure 11 in the Appendix. However, during inference, the input
data can correspond to any arbitrary location on Earth, resulting
in an out-of-distribution spatial shift, i.e., 𝑃 (𝑋𝑡𝑒 ) ≠ 𝑃 (𝑋𝑡𝑟 ). From
a learning perspective, while the principle of empirical risk mini-
mization is effective, considering functions (i.e., neural networks)
even with a parameter count comparable to the training sample
size may lead to simple memorization, making it difficult for the

3
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model to generalize beyond specific locations seen during training.
Thus, to achieve smoother uncertainty estimation, another effective
principle is vicinal risk minimization [71]. In practice, we enhance
geospatial refinement through spatially continuous augmentation,
thereby improving model robustness in downstream tasks.

Next, we introduce our spatial continuity augmentation method,
which consists of two key components: Stochastic Perturbation
Continuity Expansion (SPCE) to achieve a continuous probability
distribution and Graph Propagation Fusion for feature integration.

3.2.1 Stochastic Perturbation Continuity Expansion. As discussed
above, the geospatial coordinates corresponding to each satellite
image can be regarded as a discrete sample, with finite distances
between adjacent points. To tackle this challenge, we first propose
the SPCEmechanism. By introducing random perturbations, we can
transform discrete geospatial coordinates into a continuous space.
Specifically, given a set of discrete coordinates 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑛},
where each coordinate 𝑙𝑖 ∈ R2 represents a location on the Earth’s
surface. Without augmentation, these coordinates are discrete, with
no overlap between different points 𝑙𝑖 and 𝑙 𝑗 . Then we introduce
a random perturbation to each point, resulting in the new shifted
coordinate 𝑙 ′

𝑖
= 𝑙𝑖 + Δ𝑙𝑖 , where Δ𝑙𝑖 is a random variable sampled

from the distribution 𝑝 (Δ𝑙𝑖 ), which could be a Gaussian distribution
N(0, 𝜎2) or another type of distribution. This operation creates a
continuous range of perturbations around each point.

3.2.2 Graph Propogation Fusion. After the SPCE module intro-
duces perturbations, the augmented coordinates are no longer
isolated but form a continuous region centered around 𝑙𝑖 . This
effectively expands the surrounding space of the discrete points,
gradually connecting the originally scattered point set {𝑙1, 𝑙2, ..., 𝑙𝑛}
into a geometrically continuous space. To propagate spatial rela-
tionships between different location features, we employ a Graph
Neural Network (GNN) for feature fusion. In line with Tobler’s First
Law of Geography [39], which states that nearby objects are more
likely to share similar characteristics, we construct an adjacency
matrix 𝐴 based on the distance between coordinates:

𝐴𝑖 𝑗 = 𝑒𝑥𝑝 (−
𝑑2
𝑖 𝑗

2𝜎2
), 𝑑𝑖 𝑗 = | |𝑙 ′𝑖 − 𝑙

′
𝑗 | |, (1)

where 𝜎 denotes the standard deviation. Through the GNN, the
location feature 𝑧𝑙

𝑖
is aggregated with its neighboring features, pro-

ducing the fused feature:

ℎ𝑘+1𝑖 = 𝜙 (
∑︁
𝑗∈N

𝐴𝑖 𝑗𝑊
𝑘ℎ𝑘𝑗 ), (2)

where ℎ𝑘+1
𝑖

denotes the feature representation of node 𝑖 at layer 𝑘 ,
𝑊𝑘 is the learnable weight matrix, 𝜙 is the non-linear activation
function. N is the neighborhood set generated by SPCE of node 𝑖 .

3.2.3 Discussion. The essence of data augmentation lies in alter-
ing the distribution of the original points, so that we no longer
rely solely on discrete coordinate points. Instead, by adding noise,
these points become more broadly distributed across the space. The
augmented coordinates 𝑙 ′

𝑖
follow the distribution:

𝑝 (𝑙 ′𝑖 ) =
∫

𝑝 (𝑙𝑖 ) 𝑝 (Δ𝑙𝑖 ) 𝑑 (Δ𝑙𝑖 ), (3)

where 𝑝 (𝑙 ′
𝑖
) represents the distribution of the original discrete coor-

dinates, and 𝑝 (Δ𝑙𝑖 ) is the distribution of perturbations. This formula
shows that the perturbed point 𝑙 ′

𝑖
is no longer a single discrete point

but forms a continuous Gaussian distribution around 𝑙 ′
𝑖
. As the per-

turbation 𝜎 increases, the spatial gaps between geocoordinates are
gradually filled, thus achieving continuity. This process can be
described in terms of continuity using the following inequality:

lim
𝜎→0

𝑝 (𝑙 ′𝑖 ) = 𝛿 (𝑙 − 𝑙𝑖 ). (4)

As the perturbation 𝜎 approaches zero, 𝑝 (𝑙 ′
𝑖
) degenerates into the

original discrete distribution 𝛿 (𝑙 − 𝑙𝑖 ), which is the Dirac delta
function representing an isolated point. Conversely, when 𝜎 is
sufficiently large, 𝑝 (𝑙 ′

𝑖
) gradually covers the region surrounding

𝑙𝑖 , exhibiting continuity. Through graph propagation fusion, the
model further smooths these location features in the latent space,
ensuring continuity in both geometric and latent space.

3.3 Causal Refinement for Semantic Continuity
The presence of confounding factors is a primary challenge to
maintaining semantic continuity. Therefore, an effective location
embedding method should be able to effectively mitigate confound-
ing influences, ensuring that data with similar semantic patches are
accurately projected to proximate locations within the semantic
space. In this part, we first adopt a causal inference [45] perspective
to provide a theoretical foundation for understanding the impact of
confounding factors on the final semantic representations (e.g., the
existence of backdoor paths). Subsequently, we introduce backdoor
adjustment techniques to mitigate the effects of these confounding
factors. Finally, we present the practical implementation process.

X

V

H

E

(b) (c)

Analogy

Land Vegetation
Classification

X

V

H

E

(a)

Terrestrial 
Region

Oceanic
Region

Figure 3: SCM for Causal Patch Localization.

3.3.1 A Causal Look on Semantic Continuity. Formally, we care-
fully examine the existing process of satellite visual representation
learning and construct a Structural Causal Model (SCM) to analyze
the causal relationships in location embeddings, as shown in Fig-
ure 3 (a). The SCM consists of three components: visual semantic
representation𝑉 , environmental semantic representation 𝐸, and the
final representation𝐻 used for location embedding, with arrows in-
dicating causal relations. In the context of satellite image inputs, 𝑉
and 𝐸 are complementary and mutually exclusive, together forming
the complete input 𝑋 . The actual image components corresponding
to each part can be found in Figure 3 (c). In the SCM, beyond the
intuitive visual encoding process from 𝑉 → 𝐻 and 𝐸 → 𝐻 , the
transition from 𝐸 → 𝑉 further illustrates that the representation of
visual information is strongly influenced by environmental factors.
The castle example discussed in Section 1 is an intuitive case.

Therefore, this establishes a backdoor path as𝑉 ← 𝐸 → 𝐻 . Here,
environmental information serves as a confounding factor influenc-
ing both the visual semantic data 𝑋 and the visual representation
𝐻 . Accordingly, we propose the utlization of causal intervention
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techniques on variable 𝑉 to address the confounding influences of
variable 𝐸 (Figure 3 (b)), thereby enhancing the learning of robust
representations from inherently biased visual data.

3.3.2 Backdoor Adjustment. Building on the previous causal analy-
sis, our method for learning visual semantic representations focuses
on eliminating backdoor paths instead of directly modeling the as-
sociation 𝑃 (𝐻 | 𝑉 ). Grounded in causal theory [44], we utilize the
robust technique of backdoor adjustment, which enables us to ob-
struct the backdoor path by estimating 𝑃 (𝐻 | 𝑑𝑜 (𝑉 )), where 𝑑𝑜 (·)
denotes the do-calculus.

𝑃 (𝐻 | 𝑑𝑜 (𝑉 ) ) =
𝜂∑︁
𝑖

𝑃 (𝐻 | 𝑑𝑜 (𝑉 ), 𝑒𝑖 ) 𝑃 (𝑒𝑖 | 𝑑𝑜 (𝑉 ) )

=

𝜂∑︁
𝑖

𝑃 (𝐻 | 𝑑𝑜 (𝑉 ), 𝑒𝑖 ) 𝑃 (𝑒𝑖 ) =
𝜂∑︁
𝑖

𝑃 (𝐻 | 𝑉 , 𝑒𝑖 ) 𝑃 (𝑒𝑖 ),

(5)
where 𝑒𝑖 ∈ 𝐸 denotes the patches containing environmental in-
formation. First, we can re-express 𝑃 (𝐻 | 𝑑𝑜 (𝑉 )) using Bayes’
theorem. Next, given that the variables 𝑉 is not the descendant of
𝐻 , it follows that 𝑃 (𝑒𝑖 | 𝑑𝑜 (𝑉 )) = 𝑃 (𝑒𝑖 ). At the same time, since
the reaction of 𝐻 to 𝑉 and 𝑒𝑖 does not affect the causal relation-
ship between 𝐻 and 𝑉 , we can set the conditional probabilities
𝑃 (𝐻 | 𝑑𝑜 (𝑉 ), 𝑒𝑖 ) = 𝑃 (𝐻 | 𝑉 , 𝑒𝑖 ).

3.3.3 Implementation. In practical implementation, the process
can be divided into two steps: Causal Patch Localization and At-
tentional Semantic Smoothing. As illustrated in [59], semantically
relevant information remains prominent even after undergoing
unsupervised training techniques such as view changes and data
augmentation. This notion is analogous to the concept of our se-
mantic causal patches (e.g., the terrestrial region in Figure 3 (c)).
Consequently, we leverage the pretrained visual attention mecha-
nism [9] during pretraining to distinguish causal content. Its per-
taining process is illustrated in Figure 2 (c). The overall structure is a
self-distillation framework that maintains a student network (green)
and a teacher network (orange), both sharing the same architecture
but having different parameters. We apply two distinct affine trans-
formations to an input image, one each for the student and teacher
networks. The output of the teacher network is centered using a
mean computed over the batch. A stop-gradient (sg) operation is
applied to the teacher to ensure that gradients are propagated only
through the student. The teacher’s parameters are updated using
an exponential moving average (ema) of the student’s parameters,
and their similarity is measured through cross-entropy loss.

After localizing the causal patches, it is imperative to mitigate
the influence of environmental factors and extraneous variables in
order to maintain semantic consistency throughout the pretraining
process. We perform the attentional semantic smoothing on the
non-causal patches, i.e., replacing them with semantic blocks from
the causal patches, which can be formulated as:

𝑃 ′𝑖 =

{
𝑃𝑖 , if 𝐴𝑖 ≥ 𝜏 (causal patches)

1
|S (𝑃𝑖 ) |

∑
𝑃 𝑗 ∈S(𝑃𝑖 ) 𝑃 𝑗 , if 𝐴𝑖 < 𝜏 (non-causal patches),

(6)
where 𝐴𝑖 is the attention value of each patch, 𝜏 is the threshold for
identifying a causal patch, 𝑃𝑖 /𝑃 ′𝑖 is the original/new value of i-th
patch, and S(𝑃𝑖 ) denote the nearby patches of 𝑃𝑖 .

3.4 Pretraining & Finetuning
3.4.1 Pretraining Stage. The overall goal of our framework in-
volves optimizing the contrastive loss:

Lcontrast = − log
exp (sim(ℎ𝑖 , 𝑣𝑖 )/𝜏)∑
𝑘 exp (sim(ℎ𝑖 , 𝑣𝑘 )/𝜏)

, (7)

where ℎ𝑖 and 𝑣𝑖 denote the normalized embedding of location rep-
resentation and image representation in the 𝑖−th pair respectively.
In this equation, 𝛼 and 𝛽 represent weight hyperparameters. By em-
ploying back propagation optimization, we align multi-granularity
cross-modal urban image-text input data, leading to the develop-
ment of a robust encoder.

3.4.2 Finetuning Stage. After the pretaining phase, we can obtain
the final satellite image-enhanced location embeddingℎ. During the
finetuning stage, as illustrated in Figure 2 (b), we keep the location
embedding ℎ frozen and a Multi-Layer Perception (MLP) classifier
is trained on top to finetune the prediction of geo spatial indicators,
represented as 𝑌 = MLP(ℎ).

4 Experiments
In this section, we evaluate our method to answer the following
research questions (RQs):
• RQ1: Does SatCLE surpasses existing methodologies in perfor-

mance and demonstrate robust generalization across diverse
socioeconomic and environmental applications?

• RQ2: What are the individual contributions of the various com-
ponents of SatCLE to its overall effectiveness?

• RQ3: To what extent does SatCLE exhibit transferability across
different urban environments?

• RQ4: How does SatCLE perform qualitatively in real-world case
studies, and what insights can be drawn from its predictions
when applied to diverse urban environments?

4.1 Experimental Setup
4.1.1 Datasets. We utilize the open-source S2-100k dataset [25]
as our pretraining dataset, which is derived from Sentinel-2 satel-
lite imagery. This dataset consists of 12 channels and spans all
seven continents, offering the most extensive and balanced spatial
coverage compared to other popular datasets, such as [14, 34, 55].

The S2-100k dataset encompasses imagery from 2021 to 2023,
formatted into 256x256 pixel image patches in GeoTIFF format, with
each pixel representing a resolution of 10 meters. Each satellite
image is associated with the corresponding latitude and longitude
of the patch’s center point, utilizing the EPSG:4326 coordinate
system. Follow [25], we randomly select 90% of the data points for
pretraining, ensuring uniform distribution, while the remaining
10% is set aside as a validation set to check for overfitting.

4.1.2 Downstream Tasks. In our work, the Downstream Dataset is
pivotal in assessing the practical implications of our SatCLE frame-
work. We gather five representative socio-economic and environ-
mental indicators: Population, Elevation, Carbon Emissions, Country
Code and Land Vegetation. Each of these indicators sheds light on
critical aspects of earth-based observations. For all the downstream
dataset, we split the downstream dataset randomly into training,
validation, and testing sets with a ratio of 7:1:2.
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Table 1: Performance of differentmodels on various tasks. The best results are in bold, and the second-best results are underlined.
The last row indicates the relative improvement in percentage.

Dataset Global North Amarica

Model Population Elevation Carbon Country Land Veg. Population Elevation Carbon Country Land Veg.
MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ Acc↑ Acc↑ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ Acc↑ Acc↑

OneHot 1.144 0.749 0.673 0.517 0.712 0.632 0.715 0.254 3.767 1.330 0.882 0.534 1.893 0.837 0.214 0.098
Sinusoid 0.455 0.470 0.524 0.495 0.702 0.601 0.843 0.102 2.690 1.103 0.586 0.488 1.785 0.823 0.353 0.268
CSP (iNat) 0.231 0.292 0.230 0.296 0.642 0.572 0.962 0.560 0.690 0.654 0.337 0.380 1.275 0.692 0.407 0.484
CSP (FMoW) 0.338 0.370 0.424 0.426 0.687 0.587 0.874 0.510 0.729 0.657 0.554 0.516 1.288 0.704 0.402 0.398
GeoCLIP 0.377 0.354 0.186 0.259 0.565 0.552 0.967 0.513 0.716 0.520 0.423 0.428 2.165 0.608 0.227 0.364
SatCLIP 0.204 0.275 0.120 0.206 0.568 0.559 0.952 0.525 0.679 0.593 0.240 0.331 1.162 0.617 0.562 0.497
SatCLE 0.168 0.245 0.093 0.185 0.537 0.518 0.981 0.590 0.626 0.512 0.217 0.303 1.138 0.583 0.588 0.504

Improvement 17.65% 10.91% 22.50% 10.19% 5.21% 6.56% 1.43% 12.38% 7.81% 1.56% 9.58% 8.46% 2.07% 5.51% 4.63% 1.41%

Dataset Africa Oceania

Model Population Elevation Carbon Country Land Veg. Population Elevation Carbon Country Land Veg.
MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ Acc↑ Acc↑ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ Acc↑ Acc↑

OneHot 5.898 1.900 1.373 0.686 3.289 1.178 0.089 0.184 0.964 0.688 0.594 0.721 3.446 1.135 0.143 0.071
Sinusoid 3.839 1.547 1.055 0.813 3.243 1.176 0.117 0.104 0.648 0.655 0.325 0.509 3.512 4.141 0.191 0.093
CSP (iNat) 0.849 0.713 0.538 0.556 3.173 1.160 0.342 0.411 0.267 0.290 0.251 0.359 3.173 0.993 0.330 0.359
CSP (FMoW) 0.941 0.820 0.570 0.583 3.175 1.162 0.302 0.384 0.546 0.628 0.252 0.370 3.179 1.055 0.318 0.312
GeoCLIP 1.109 0.707 0.465 0.464 3.127 1.165 0.116 0.390 0.300 0.294 0.236 0.341 3.424 1.127 0.396 0.257
SatCLIP 0.769 0.644 0.479 0.493 3.067 1.152 0.367 0.454 0.258 0.271 0.223 0.330 2.397 1.051 0.523 0.360
SatCLE 0.686 0.578 0.337 0.425 2.379 1.062 0.402 0.472 0.197 0.259 0.184 0.285 2.314 0.994 0.632 0.378

Improvement 10.79% 10.25% 37.98% 8.41% 28.92% 7.81% 9.54% 3.96% 23.64% 4.43% 17.49% 13.64% 3.46% 5.42% 20.84% 5.00%

• Population:. The population density data are subsampled from
the global datasets from [48]. The dataset includes a random
sample of 10,000 data points from a global scale.

• Elevation: Similar to the population density, the elevation fig-
ures are subsampled from the global datasets provided by [48].
This dataset comprises a random sample of 10,000 data points
on a global scale. The unit is people per sq. km.

• Carbon Emissions: Sourced from the Open-sourced Data In-
ventory for Anthropogenic CO2 (ODIAC) 2022 [42], the dataset
includes a random sample of 10,000 data points from a global
scale, with emissions quantified in tons on a monthly basis.

• Country Code: Following [25], we obtain country boundaries
from the 4.1 release of The Database of Global Administrative
Areas1. The dataset includes a random sample of 10,000 data
points from a global scale.

• Land Vegetation: The Land Cover data is sourced from [2],
which categorizes land cover into 38 distinct classes, such as
cropland_rainfed and shrubland. The dataset includes a random
sample of 10,000 data points on a global scale in 2022.

4.1.3 Baselines. Intuitively, vision encoders [18, 21] can be readily
applied for geospatial indicator prediction by retrieving satellite
images corresponding to specific locations. However, due to the
limits imposed by free API quota restrictions [1, 4], we were unable
to conduct extensive experiments or include comparisons with rel-
evant baselines. Therefore, we compare SatCLE with the following
state-of-the-art methods in satellite-based location embedding:
• OneHot [14, 69]. The approach utilizes UTM Zones as grid

cells to encode geotags globally. However, the number of cells
available for encoding geotags is invariably constrained by com-
putational cost and memory limitations.

• Sinusoid [33]. This method employs sinusoidal functions to
model both absolute locations and spatial contexts, capturing the
inherent periodicity and cyclic patterns associated with locations.

1https://gadm.org/

• CSP [34]. A dual-encoder framework encodes images and geo-
graphic locations from iNat2018 [56] and FMoW datasets [14],
with various pretraining loss options available [8, 23, 27, 37].
Given the similarity in the contrastive framework, training the
CSP model on the S2-100K dataset would yield results analogous
to SatCLIP. Therefore, follow the established practices [25], we
employed CSP pretrained on the FMoW and iNat datasets, here-
inafter referred to as CSP(iNat) and CSP(FMoW), respectively.

• GeoCLIP [58]. The pioneering work in utilizing GPS encoding
for geolocation introduces a novel geo-tagged image-to-GPS
location contrastive method. Given the similarity in the con-
trastive framework, training the GeoCLIP model on the S2-100K
dataset would yield results analogous to SatCLIP. We repurpose
the model weights trained on the MP-16 dataset [58] due to its
extensive global coverage, thereby capable of furnishing a degree
of performance reference.

• SatCLIP [25]. It introduced CLIP into satellite images, a globally
applicable geolocation encoder that learns implicit representa-
tions of locations from globally sampled Sentinel-2 satellite data.

4.1.4 Metrics and Implementation. To evaluate predictive accuracy,
we utilize three widely recognized metrics [25, 34]: mean squared
error (MSE), and mean absolute error (MAE) [30, 82] and accuracy
(Acc). Better performance is indicated by a lower values forMSE and
MAE and a higher Accuracy. Parameter initialization is consistent
with the approach described in [25]. During parameter learning,
the Adam optimizer is selected to minimize training loss.

A grid search is performed on hyperparameters, with learning
rates and batch sizes explored within the ranges {2e-6, 1e-5, 2e-4,
1e-4, 1e-3, 1e-2} and {64, 128, 256, 512, 1024}, respectively. We ul-
timately selected a batch size of 512 and a learning rate of 1e-4
with 1e-2 wright decay, which produced the best results. We train
models for 500 epochs with an early stopping strategy on A100
GPUs with PyTorch 1.13.1 framework on Ubuntu 22.04. We set 𝐾
as 5, 𝑟 as 0.01 in Section 3. For 𝜏 in 3.3.3 we set its value to the
threshold of the lowest 10%.
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Figure 4: Population prediction of different models.

4.2 Overall Performance (RQ1)
Table 1 illustrates the overall results on model comparison. As we
can see, our model significantly surpasses the baselines, achieving
state-of-the-art performance in five downstream tasks, both in
regression and classification. The performance gain is 17.6%, 22.5%,
5% in terms of MSE of regression tasks and 3.0%, 12.4% in terms of
Accuracy of classification tasks.

In downstream tasks, we can observe that models generally ex-
hibit strong performance in population and elevation prediction
in regression tasks, while their performance in carbon estimation
may be slightly inferior. This discrepancy could be attributed to the
close relationship between carbon emissions and economic activi-
ties, with satellite imagery not capturing these factors significantly.
For classification tasks, the prediction of country code performs
well, possibly owing to that regions within the same country share
the same label, thereby avoiding abrupt differences and simplifying
the prediction task. In contrast, land vegetation classification is
associated with various factors such as human activities, climate
types, and topography, resulting in lower prediction accuracy.

4.3 Ablation Study (RQ2)
To verify the effects of different components in our SatCLE model,
we conduct ablation study of our proposed SatCLE model and re-
port the results in terms of MSE and Accuracy in Figure 5. As
illustrated, the Population and Carbon prediction are likely to be
substantially affected by geographic location, which results in a
stronger reliance on spatial continuity. In contrast, the performance
of other tasks exhibits a greater dependence on semantic continuity.
While the significance of spatial and semantic continuity varies
across different tasks, the model integrating both forms (SatCLE)
consistently demonstrates superior performance. This suggests a

Figure 5: Ablation study on the core components. SpaC: spa-
tial continuity; SemC: semantic continuity.

complementary relationship between these two types of continuity,
collectively enhancing the model’s ability to capture the spatial and
semantic attributes inherent in the data.

4.4 Transferability Study (RQ3)
Due to significant differences in the extent of data collection across
various regions of the world, researchers in different regions face
varying challenges. For instance, in developed cities such as New
York [7], Singapore [3], and Hong Kong [6], governments actively
promote digitalization and have made a wealth of valuable urban
data publicly available. In contrast, researchers working in under-
developed countries or regions may need to independently collect
and annotate the required data. Therefore, we further investigate
whether geographic models can learn robust and transferable fea-
tures within the regions they are trained on, thus helping to alleviate
the challenges posed by sparse data label scenarios.

Figure 6: Transferring capability study.

Specifically, we evaluate the geographic adaptability of different
methods by segmenting the world into regions based on continents.
During evaluation, we exclude data from the target continent in
the pre-training phase. For downstream tasks, we introduce a small
subset of future data from the test continent (randomly selecting 1%
uniformly) into the training set, constructing a practical few-shot
geographic adaptation scenario. The detailed data distribution for
the few-shot scenario is shown in Figure 9 in the appendix.

As seen in Table 1, geographic shifts lead to varying degrees of
performance decline. Specifically, across three regression tasks, the
average performance on three continents decreased by 0.335, 0.153,
and 1.407 in terms of MSE compared to North America and Africa,
the performance drop observed in Oceania is less significant, likely
due to Oceania’s smaller geographic area and relatively uniform
environmental conditions [50], reducing the complexity of domain
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Figure 7: Transferring capability on the Population dataset.

adaptation. Moreover, as shown in Figure 7, which plots the perfor-
mance difference between SatCLE and SatCLIP across continents,
nearly all yellow indicators highlight the consistent superiority of
SatCLE’s transferability across different continents and tasks.

4.5 Qualitative Analysis (RQ4)
4.5.1 Visualization of predicted results. To effectively illustrate our
model’s performance, we visualize the predicted outcomes across
two distinct indicators: population and land vegetation. As demon-
strated in Figure 4, compared with SatCLIP, our SatCLE model in-
corporates a continuity mechanism that effectively corrects certain
inaccurate predictions, particularly in addressing the extreme val-
ues within population forecasting. while CSP demonstrates overall
over-smoothed predictions, showing minimal abrupt value fluctua-
tions across different locations.

4.5.2 Visualization of geographic adaptation results. We also vi-
sualize the transferibility results on population forecasts in North
America and Africa in Figure 7. As observed, CSP, due to its reliance
on classical self-supervised methods and issues such as the sparsity
of the training dataset and cross-domain challenges, exhibits overly
smooth continuous transitions. On the other hand, SatCLIP shows
abrupt and unnatural changes in spatial representations, which
may be attributed to overfitting during training. In contrast, our
SatCLE effectively balances the smooth and gradual variation of
neighboring values with the semantic and geographic distinctions
of different locations. This improvement is primarily due to our pro-
posed geographic and semantic refinement strategy, allowing for
a more natural capture of the continuous changes across different
regions of the Earth’s surface.

4.5.3 Location Embedding Similarity. We proceed with a qualita-
tive analysis aimed at evaluating the degree towhich variousmodels
have implicitly encoded the representations of distinct geographical
locations. Specifically, we examine the similarity between location
embeddings, quantified through the cosine distance between the
embedding of a given location, 𝐿, and a reference location, 𝐿∗. In
Figure 8, we use Beijing, China, as the reference point and visualize
the resulting similarity map of the surrounding regions.

SatCLIP SatCLE

Figure 8: Location Embedding Similarity. The location of
Beijing, China is marked with the red star.

As we can see, compared to SatCLIP, our model demonstrates
more accurate location embeddings compared to SatCLIP, which
can be observed in two aspects: 1) More accurate similarity range.
In the right figure, our SatCLEmodel captures a more concentrated
region of similarity around the reference location (i.e., Beijing),
underscoring its enhanced capacity to accurately represent local
geographic areas. In contrast, the left figure reveals a more diffuse
similarity distribution, where distant regions still display relatively
high similarity. This indicate that SatCLIP may not effectively cap-
ture differences between distant locations. 2) More effective capture
of abrupt transitions. In the right figure, similarity decreases sig-
nificantly as the distance from Beijing increases, demonstrating
the model’s superior ability to identify abrupt changes between
geographic locations. On the other hand, the left figure shows that
the similarity transition is too smooth and fails to fully reflect the
significant differences between positions.

5 Conclusion and Future Work
Location embedding has attracted widespread attention due to its
characteristics of "one single unified input (i.e., coordinates) serving
diverse downstream tasks". In this work, we investigate the conti-
nuity issue of location embedding from both semantic and spatial
perspectives and propose respective geospatial and semantic refine-
ment strategy to bridge the gap. The state-of-the-art performance
validates the effectiveness of our model. In the future, we envision
the development direction can leverage knowledge distillation tech-
niques to improve location embedding performance by utilizing
the knowledge base of large models in other modalities [41, 65].
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Appendix

Figure 9: Downstream Dataset Distribution.

A Continuous Modeling Learning
In recent years, the concept of continuity modeling has garnered
significant attention within the deep learning community, demon-
strating substantial potential in fields such as time-series analy-
sis [10, 24], visual signal processing [13, 35, 51], and drug discov-
ery [47]. [10] introduced Neural Ordinary Differential Equations
(Neural ODEs), which integrate differential equations into neural
networks, enabling continuous-time reasoning that surpasses the
capabilities of traditional discrete models like Recurrent Neural
Networks (RNNs) networks. In the domain of computer vision, [51]
advanced implicit neural representations by incorporating periodic
activation functions, such as SIREN, to robustly fit complex signals.
This approach has proven to enhance the performance of models in
tasks like image reconstruction and neural rendering. Additionally,
LIIF [13] achieves more efficient image super-resolution through
localized image processing, significantly improving generalization
across varying resolution inputs. Furthermore, the SSIF model [35],
specifically designed for spatial-spectral super-resolution tasks,
effectively combines spatial and spectral data to generate high-
resolution imagery, demonstrating exceptional performance in re-
mote sensing analysis. We introduce the concept of continuity in
the context of location embedding for the first time, and decouple it
into two distinct aspects, addressing each dimension with tailored
approaches.

B Modality Representation Learning
B.1 Visual Modality.
We leverage ViT [19] as the visual encoder to process satellite
imagery. For a satellite image 𝐼 ∈ R𝐻×𝑊 ×3 with a centroid location
at the specific coordinate 𝐿. We first split it into a sequence of
2D patches 𝐼𝑃 ∈ R𝑁×(𝑃

2 ·𝐶 ) , where 𝐶 represents the number of
channels, 𝑝 is the resolution of each image patch, and 𝑁 = 𝐻𝑊 /𝑃2
denotes the length of patch sequences. Then we linearly embedded
the visual patches into a dense vector with the latent vector size
D: 𝑒𝐼

𝑃
= 𝑊𝑃 𝐼

⊤
𝑃
+ 𝑏𝑃 , where𝑊𝑃 and 𝑏𝑃 are learnable parameters.

We also add a learnable embedding 𝐼𝑐𝑙𝑠 (similar to BERT [16]’s
[class] token) at the beginning of the patch embedding sequence
to serve as the image representation. Additionally, we incorporate
a learnable positional embedding 𝐸𝑝𝑜𝑠 ∈ R(𝑁+1)×𝑑 to preserve
positional information. We formalize this process as:

𝑧𝑣0 = [𝐼𝑐𝑙𝑠 ; 𝑒1𝑝 ; 𝑒2𝑝 ; ...; 𝑒𝑁𝑝 ] + 𝐸𝑝𝑜𝑠 , (8)

𝑧0 is subsequently fed into the ViT. The ViT architecture consists of
alternating layers that perform the multi-head self-attention (MSA)
operation [57] and fully-connected (FC) layers. Additionally, layer
normalization (LN) is applied before each block, while residual
connections are implemented following each block.

z′𝑣𝑙 = MSA(LN(z𝑣
𝑙−1)) + z

𝑣
𝑙−1, 𝑙 = 1 . . . 𝐿, (9)

z𝑣
𝑙
= FC(LN(z′𝑣𝑙 )) + z

′𝑣
𝑙 , 𝑙 = 1 . . . 𝐿. (10)

Other suitable vision encoders, such as ResNet [22] or Swin
Transformer [29], can be seamlessly integrated into this framework.

B.2 Location Modality.
Spherical harmonics have a longstanding tradition in the geo-
sciences, where they are employed to represent various physical
field theories [43, 52]. In this work, we propose to utilize spherical
harmonic basis functions as positional embeddings, which could
offer an effective global coverage, including coordinates at the poles.

z𝑙 = 𝑓 (SH(𝜆𝑖 , 𝜃𝑖 )), (11)
where 𝜆𝑖 ∈ [−𝜋, 𝜋] and 𝜃𝑖 ∈ [−𝜋/2, 𝜋/2] denote the longitude
and latitude as global geographic coordinates. 𝑆𝐻 representes the
Siren location encoder [49] that utilizes spherical harmonics basis
functions. 𝑓 can be different neural networks such as linear layers
and residual layers [31]. Following [49], we leverage SirenNet [51]
to encode the posion embedding.

C Attention Visualization
To showcase the effectiveness of removing environmental confound-
ing factors in SatCLE, we conducted an attention visualization pre-
sented in Figure 10. As observed, the truly semantic patches can be
pinpointed by high attention values across various topographical
features. Subsequently, those non-causal patches undergo a seman-
tic smoothing process to maintain overall semantic continuity.

(a)

(c) (d)

(b)

Original
Image

Attention
Map

Causal Patch
Location

Original
Image

Attention
Map

Causal Patch
Location

Figure 10: Attention Visualization.

D Downstream Dataset Distribution
To effectively illustrate the data distribution across downstream
tasks, we visualize the downstream dataset distribution in Figure 9.
As observed, all five downstream tasks achieve comprehensive
global coverage.
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Figure 11: S2-100k Distribution.

Figure 12: DownstreamElevation Data Distribution for North
America, Africa, and Oceania.

Figure 12 demonstrates the data distribution in transferability
study. We incorporate a small, uniformly randomly selected subset
of data (1%) from the test continent into the training set, thereby
creating a practical few-shot geographic adaptation scenario.

E S2-100k Distribution
To support our argument regarding spatial out-of-distribution is-
sues, we visualize the actual distribution of the S2-100k dataset in
Figure 11, focusing on specific regions that are displayed with en-
hanced magnification. As illustrated, the spacing between points is
notably extensive. Each satellite image covers an area of 2.5 km by
2.5 km; however, the distance between adjacent points can extend
to several tens of kilometers.

12


	Abstract
	1 Introduction
	2 Preliminary
	2.1 Formulation
	2.2 Related Work

	3 Methodology
	3.1 Modality Representation Learning
	3.2 Geospatial Refinement for Spatial Continuity
	3.3 Causal Refinement for Semantic Continuity
	3.4 Pretraining & Finetuning

	4 Experiments
	4.1 Experimental Setup
	4.2 Overall Performance (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Transferability Study (RQ3)
	4.5 Qualitative Analysis (RQ4)

	5 Conclusion and Future Work
	References
	A Continuous Modeling Learning
	B Modality Representation Learning
	B.1 Visual Modality.
	B.2 Location Modality.

	C Attention Visualization
	D Downstream Dataset Distribution
	E S2-100k Distribution

